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Relaxation in yield stress systems through elastically interacting activated events

Ezequiel E. Ferrero, Kirsten Martens, and Jean-Louis Barrat
Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and

CNRS, LIPHY, F-38000 Grenoble, France

We study consequences of long-range elasticity in thermally assisted dynamics of yield stress
materials. Within a two-dimensinal mesoscopic model we calculate the mean-square displacement
and the dynamical structure factor for tracer particle trajectories. The ballistic regime at short time
scales is associated with a compressed exponential decay in the dynamical structure factor, followed
by a subdiffusive crossover prior to the onset of diffusion. We relate this crossover to spatiotemporal
correlations and thus go beyond established mean field predictions.

PACS numbers: 82.70.Gg, 61.20.Lc, 62.20.fq

Relaxation of the microscopic structure in glasses, and
more generally in soft yield stress materials, is a topic
of long-standing interest and great complexity. Broad
ranges of time, energy and length scales are involved,
together with nonequilibrium aspects such as aging and
a strong dependence on the sample preparation scheme.
As a result, no unique scenario has emerged to describe
the relaxation of density fluctuations in systems that,
quenched from a liquid into a glassy (solid) state, still dis-
play internal dynamics strong enough to produce struc-
tural relaxation on a measurable time scale. The com-
plexity of the relaxation is usually quantified by the man-
ner in which it deviates from exponential. In many cases,
stretching, corresponding to a broad distribution of relax-
ation times, is observed. However, the opposite situation
of compressed relaxation (i.e., faster than exponential)
has emerged in the last years as a new paradigm. In this
work, we confirm through the numerical study of a sim-
plified model that this behavior can result from thermally
activated plastic events akin to the shear transformations
observed in yield stress solids undergoing external defor-
mation.

A milestone in the experimental analysis of the re-
laxations processes at hand has been achieved by a se-
ries of dynamic light-scattering experiments on colloidal
gels [1–5]. More recently, x-ray photon correlation spec-
troscopy [6] has been used to study slow dynamics, not
only in supercooled liquids [7], colloidal suspensions [8]
and gels [9, 10], but also in hard amorphous materials like
metallic glasses [11, 12]. A common denominator of these
experiments is the decay of the dynamical structure fac-
tor as a compressed exponential in time t and scattering
vector q: f(q, t) ∼ exp[−(t/τf )

γ ], with τf ∼ q−n, n ≃ 1
and shape parameter γ > 1. The observed dynamics was
a priori unexpected, not only because of the faster than
exponential decay of the correlations but also because
of the ballistic dynamics contrasting the usual diffusive
behavior (τf ∼ q−2) in molecular dynamics simulations
of glassy systems (see, for example, [13]). Simulations
on a gel-former model [14, 15] have shown a compressed
exponential decay of f(q, t), but this was explained as a
trivial effect of Newtonian dynamics.

Originally, a heuristic explanation for the observed

phenomena was based on the syneresis of a gel: the gel
shrinks locally and the inhomogeneity acts as a dipole
force with a long range-elastic effect [1]. A simple mean-
field model approach [16–18] further encouraged the view
that anomalous relaxation has its origin in elasticity ef-
fects, and stressed its dependence on the time scales con-
sidered. On the other hand, this approach was reported
to fail in emulating a q dependence of γ observed in ex-
periments [5, 7, 10]. Independently, a phenomenological
continuous time random walk (CTRW) model with Lévy
flights was introduced [5]. It was used to fit the crossover,
with q, between compressed and noncompressed behav-
iors. However, the assumed Poissonian distribution for
the number of events and the particular power-law distri-
bution for the displacements have never been confirmed.

In this Letter we propose a novel minimalistic model at
the mesoscale for thermally activated relaxation dynam-
ics in yield stress materials. After introducing in the first
part the main assumptions and the model description,
we validate our results against mean-field predictions for
elasticity effects in the relaxation. Later, we go beyond
mean field and reveal effects due to correlations in the dy-
namics that give rise to new interesting phenomena. We
conclude with a discussion of our results and their impact
on the understanding of recent experimental findings.

The model – Our model for the coarse-grained relax-
ation dynamics is based on two main ingredients: ther-
mally activated yield events (plastic rearrangements) and
a long-range elastic response of the surrounding medium.
To simplify further an a priori tensorial description, we
assume rearrangements occurring along only one axis,
such that we can describe the system with scalar quan-
tities for local stresses and deformations [19, 20].

The yielding of a site leads to a rearrangement
with a local deformation rate given by ∂tǫ

pl(r, t) =
n(r, t)ε(r, t)/(2τ), where τ = 1 is a mechanical relax-
ation time defining our time scale, and n(r, t) is a lo-
cal “state variable” indicating whether a site is yielding
(n = 1) or not (n = 0). The typical strain ε caused by a
rearrangement is given by ε(r, t) = ±ε0 integrated over
the average duration of an event, depending only on a
sign according to the yielding direction [21].

The response of the surrounding medium is modeled
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by using the Eshelby theory of elasticity [22]. If G(r, r′)
is the solution for the far field elastic response to a
deformed inclusion, an overdamped dynamics for the
coarse-grained scalar stress field σ(r, t) reads

∂tσ(r, t) = 2µ

∫

dr′G(r, r′)∂tǫ
pl(r′, t), (1)

where µ is the elastic modulus. The propagator for an
infinite system in polar coordinates [19, 22] is G∞(r, θ) =
2 cos(4θ)/πr2. We discretize Eq. (1) in time and space,
on a square lattice (typical linear sizes L = 28, 29) with
periodic boundary conditions. We solve the evolution of
σ(r, t) using a pseudospectral method and the discretized
propagator in Fourier space [19, 20].
The stochastic activation rules for n(r, t) depend only

on the local stress σ, two symmetric yield stresses σY =
±σ0, that mimic the local energy barrier to yield, and the
temperature T . Sites with |σ| > |σY| become immediately
active (n : 0 → 1), while the activation probabilities for
sites with |σ| < |σY| read

pon(±) = Γ0 exp

[

−(σY
2 ∓ sgn(σ)σ2)

2κT

]

. (2)

Independent of the stress value, active sites deactivate
(n : 1 → 0) at a fix rate, poff = τres

−1. Γ0 is an at-
tempt frequency and τres the typical duration of a re-
structuring event. All characteristic times are chosen
to be equal to τ = 1/Γ0 = τres = 1, unless otherwise
specified. κ = µV −1

0 kB is a unitary constant that pro-
vides the right magnitudes and σ0 = 1 defines the stress
units. The lack of disorder in the local yield stress leads
to steady state dynamics without aging effects. This sim-
plifies enormously the analysis of the dynamics. For each
temperature T , we reach a unique steady-state character-
ized by stress fluctuations around zero with an approxi-
mately Gaussian distribution.
To establish an analogy with experiments we need

to introduce particles in the model. We calculate at
each time step the vectorial displacement field u(r, t)
associated with the discretized plastic strain field [19]
and introduce tracer particles that follow this field, with
no further interactions, mimicking the underlying par-
ticle dynamics [23]. For example, considering a single
event at the origin the resulting displacement field reads
u(r) = (2ℓ2ε0xy/πr

4)r, with ℓ the lattice parameter and
unit of length. The typical strain change due to a re-
arrangement is expected to be material dependent. We
choose here ε0 = 1, a rather large value that enhance
spatial correlations and make the resulting effects more
visible. Qualitatively, the observed phenomena persist
for smaller ε0, although possibly less noticeable.
The observed dynamical features can essentially be

separated in two categories: On one hand, part of the
phenomenology is purely due to the characteristic spa-
tial decay of the elastic propagator and can easily be
captured in mean-field descriptions. On the other hand,
the presence of spatiotemporal correlations in the sys-
tem leads to the prediction of a new dynamical regime.

Yet, before going into the discussion of the correlation
effects we show the compatibility of our model with the
mean-field predictions [16–18].
Elasticity effects – In order to compare our thermal

model with the mean-field results, we implement inde-
pendently an analogous system with the sole difference
of having randomly activated sites; a Poissonian rule for
activation instead of the stress-dependent rule (2). In this
second random model, we control the activity, that is, the
number of events per unit time. We measure the mean
activity a =

〈

1
N

∑

i ni

〉

(time average) in the thermal
model and plug it in the random model as a parameter
to compare equivalent systems[24].
In Fig. 1(a) we compare for both models the evolution

of the diffusion coefficient D(t) = 〈∆r2〉/(4t), where the
mean square displacement 〈∆r2〉 on a time window t is
averaged both over number of tracers (typically 213, 214)
and sliding time t0, for distances ∆ri = |ri(t0+t)−ri(t0)|
traveled by each tracer i. We observe that the initial bal-
listic regime (regime I), whose duration is related with
the persistence τres of the events, does not depend on
the model. Also, for both dynamics we find a long
time diffusive behavior, only with different values of the
diffusion coefficient (regime III). Although there exists
a third intermediate subdiffusive regime in the spatial
model (regime II), we will focus first on the two regimes
that can be predicted by mean-field considerations.
In analogy with experimental measurements, we cal-

culate the dynamical structure factor,

S(q, t) =
1

M

〈[

M
∑

n=1

cos[q · (rn(t+ t0)− rn(t0))]

]〉

t0,|q|=q

where M is the total number of tracers, and the brackets
average over the sliding time window t0 and the differ-
ent discretized wave vectors that share the same modu-
lus [25]. From mean-field considerations [16] we expect
for the ballistic regime a decay of S(q, t) as a compressed
exponential with a dimensionality-dependent shape pa-
rameter γ2d = 2 (γ3d = 3/2) [26]. If we search for the
best fit of the data for τf ∝ q−1 we find indeed γ ≈ 2, but
the best collapse of the data is achieved for τf ∝ q−1.125

yielding a fit with γ = 1.8 [see Fig. 1(b)]. In the diffusive
regime, we can collapse the data by plotting S(q, t) as a
function of q2t and we obtain a pure exponential decay
with γ = 1 as expected [see Fig. 1(d)]. Even when we
show these results for a particular temperature, they hold
for all the range of analyzed temperatures (and further,
also in the equivalent random model); only the prefactors
αb, αd are T dependent.
Assuming a long-range elastic response to the local re-

laxation processes, we expect the displacement field to
decay as u ∼ 1/rd−1, where r is the distance to the event
and d the dimensionality of the system. From a mean-
field analysis the distribution of particle displacements
is expected to decay as P (u) ∝ u−(2d−1)/(d−1) for large
u, yielding for our two-dimensional study P (u) ∝ u−3,
with a finite mean value. This results directly from the



3

Figure 1. Tracer particle dynamics – Numerical measure-
ments of self-diffusion coefficients and dynamical structure
factors in the steady state. (a) Diffusion coefficient D =
〈(∆r)2〉/(4t) as a function of time t for different tempera-
tures Ti = 0.05, 0.07, 0.1, 0.2. Pointed lines guide the eye
to distinguish three different dynamical regions, (I) ballis-
tic, (II) crossover, (III) diffusive. The gray curves show re-
sults for the random model (see text) with a mean activity

ai ≈ 3.1e−0.48/Ti corresponding to the same temperatures.
(b) Dynamical structure factor S(q, t) for T = 0.2 as a func-
tion of q1.125t for time intervals corresponding to the ballistic
regime (I), fitted by an compressed exponential with shape
parameter γ ≈ 1.8 and αb ≈ 0.07 (dashed line). The inset
shows the raw data. (c) Dynamical structure factor S(q, t)
for T = 0.07 as a function of q2.3t for time intervals corre-
sponding to the crossover regime (II), fitted by a stretched
exponential with shape parameter γ ≈ 0.86 and αs ≈ 0.0015
(dashed line). The inset shows the raw data. (d) Dynamical
structure factor S(q, t) for T = 0.2 as a function of q2t for
time intervals corresponding to the diffusive regime (III), fit-
ted by a pure exponential with shape parameter γ = 1 and
αD ≈ 0.1 (dashed line). The inset shows the raw data.

strong elastic response at small distances. The proba-
bility for small displacements on the other hand should
grow as ud−1, due to the far field effect of the propa-
gator. The crossover between these two regimes should
depend on the density of events, that is, on the activity
a. We confirm these scalings within our simulations for
low temperatures [see Fig. 2(a)]. For high temperatures
we expect the assumptions of the mean-field description
to break down, due to the high density of events that
leads to a screening of the large displacements.

Correlations effects – One of the main differences of
the thermal model compared to random dynamics is the

appearance of subdiffusion. While the random model
changes from a ballistic to a pure diffusive behavior for
all activation probabilities, a comparable (same activity)
thermal model, where spatial correlations are allowed to
arise, develops an intermediate subdiffusive regime for
low enough temperatures [regime II in Fig. 1(a)].

To determine the origin of this effect, we first check
if the tracer displacements are essentially changed when
considering systems with and without spatial correla-
tions. We find that the distribution for the absolute
displacements is not altered [see Fig.2(a)]. The change
of the dynamics is rather due to negative correlations
in the two-time autocorrelation function of the vectorial
displacements [Fig.2(c)]. Note that the resolution of the
correlation measurement is not sufficient to determine
the extension of the subdiffusive regime, which instead is
seen in the intermittent dynamics of the local rearrange-
ments [Fig. 2(b)].
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Figure 2. Statistical features of the thermally activated dy-

namics – In all panels, circles correspond to the thermal model
for temperatures Ti = 0.04, 0.05, 0.07, 0.1, 0.15, 0.2, while gray
triangles stand for the random model at a ≃ 0.0034. (a) Dis-
tribution of absolute displacements per unit time u = |u| of
the tracer particles for different temperatures, rescaled by the
square root of the average activity a(Ti). Dashed lines dis-
play power laws. The inset shows the data without rescaling.
(b) Rescaled local probability distribution ψ(τev)/a(Ti) for
rescaled waiting times a(Ti)τev between events. The power-
law dashed line serves as a guide to the eye. The inset shows
raw data. (c) Two time autocorrelation function Cu(t) of the
vectorial displacements of tracer particles. The inset shows
the result of a CTRW model with the Laplace transform of
ψ(aτev) as an input. (d) Two time autocorrelation function
Cσ(t) of the local stress as a function of the rescaled time
a(Ti)t. The inset shows raw data.
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Defining τev as the elapsed time between two consec-
utive activations of the same site, the resulting distri-
bution Ψ(τev) shows a trivial exponential shape in the
random case (expected by construction) but a power-law
form with an exponential cutoff in the thermal model,
well scalable with the mean activity in a master curve
Ψ(aτev) ∼ (aτev)

−2/3. We devise a simplified CTRW
model [27], where we assume that the tracer particles
only move when there is an event close by. In this
picture the mean-square displacement is given by the
number N of events in a time interval t times the typi-
cal displacement during jumps. The Laplace transform
of N(t) is related to the waiting time distribution as

Ñ(s) = ψ̃(s)/(s(1 − ψ̃(s)) and is shown in the inset of
Fig. 2c. We observe two regimes: one proportional to
s−2, this is, the long time diffusion, and a second one
proportional to s−5/3, subdiffusive. This leads to a pre-
diction of 〈∆r2〉(t) ∝ t1/3 that does not compare well
with an exponent of about 0.85 estimated from a power-
law fit in the subdiffusive regime corresponding to T1 in
Fig.1(a). We expect this to be due to the rough assump-
tion of dynamical arrest between large jumps. Still, the
qualitative picture and the duration of the sub-diffusive
regime are captured. We deduce that this regime results
from the negative correlations in the displacements com-
bined with the intermittent dynamics for the activity, a
feature that we like to call “statistical caging”.

It is the local activity intermittency (power-law dis-
tributed) that allows the emergence of a correlated dy-
namical regime, like the subdiffusive one observed here,
and gives rise to crossovers in time scale that will im-
pact any measurement covering them. For instance, com-
ing back to the analysis of S(q, t), we notice that during
the sub-diffusive regime, the relaxation time τr scales as
τr ∼ q−n with n > 2. When rescaling time and wave-
lengths as qnt with the appropriate n, curves correspond-
ing to a time window where D(t) decreases, collapse onto
a new master curve S(q, t) = exp [−αs(q

nt)γ ], now with
γ < 1. This anomalous diffusion with a stretched behav-
ior of S(q, t) is not accessible in a mean-field approxima-
tion, and we could expect it a priori to be realized in
experiments.

Discussion – Despite the strong simplifications we
made to derive our model description, we expect the qual-
itative features to be relevant in real systems. We tested
our model reproducing mean-field predictions for the dis-
tribution of the absolute values of the tracer displace-
ments and related values of the dimension-dependent
shape parameters in the decay of the dynamical struc-
ture factor S(q, t). We perfectly fit S(q, t) in the ballistic
regime with a compressed exponential of shape param-
eter γ ≈ 1.8 (given τf ∝ q−1.125), a value close to ex-

pected mean-field value in two dimensions γMF = 2. We
have observed (data not shown) that we further approach
γ ≈ 2 when we address smaller time scales compared to
the event duration by increasing τres, and that this is ac-
companied by a clearer ballistic (τf ∝ q−1) scaling of the
curves. Note that the anomalous structural relaxation
coexists with a stretched exponential decay of two time
autocorrelations in the local stresses [Fig. 2(d)].
We insist that the commonly referenced γMF = 3/2 is

valid in three dimensions only, and for times smaller than
the typical rearrangement duration. We observe that the
comparison between experiments and the mean-field pre-
diction is frequently inaccurate in the literature, failing
in basic aspects as dimensionality mismatching and/or
overlooking the range of validity of the predictions. In-
terestingly, the observed value γ ≈ 1.8 coincides with ex-
perimental results on effectively two-dimensional systems
in the high-density and small q regime [10]. In that work,
a q dependence of the shape parameter is also reported.
We think that this feature is not captured by our model,
since it considers only point-like rearrangements and does
not resolve the scales comparable to their size. Experi-
mental estimations of rearrangement typical size and du-
ration are fundamental to interpret the q-dependence of
the measured shape parameter and compare with theo-
retical predictions. Such information is also indispens-
able to distinguish between a ballistic motion ruled by
typical displacements induced by a single rearrangement
and one (yet not acknowledged in simulations) caused by
correlations among events instead.
We could claim at this point that even when aging

is typically present in all experimental studies reporting
compressed exponentials, and actually affects the typical
relaxation time, it is not necessarily a key ingredient to
observe this kind of phenomenology. In fact, the same
kind of relaxation has been reported very recently in a
stationary state [28], free of aging.
Beyond the mean field results, we find that, at least

in two-dimensional systems, correlations between events
lead to a partial confinement of the tracers generated by
an evolving displacement field with in time anticorrela-
tions. This phenomenon is a priori different from the
traditional atomic caging effect, that happens at smaller
length and time scales. We call it “statistical caging”.
Instead of enhancing the persistence of the tracer parti-
cles as often assumed in the literature, correlations lead
in our model to subdiffusive behavior.
We acknowledge financial support from ERC Grant
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