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RELAXATION METHODS FOR NETWORK FLOW PROBLEMS
WITH CONVEX ARC COSTS*

DIMITRI P. BERTSEKASt, PATRICK A. HOSEINt AND PAUL TSENGt

Abstract. We consider the standard single commodity network flow problem with both linear and strictly

convex possibly nondifferentiable arc costs. For the case where all arc costs are strictly convex we study

the convergence of a dual Gauss-Seide! type relaxation method that is well suited for parallel computation.

We then extend this method to the case where some of the arc costs are linear. As a special case we recover

a relaxation method for the linear minimum cost network flow problem proposed in Bertsekas [1] and

Bertsekas and Tseng [2].

Key words. network flow, relaxation methods, parallcl computation

1. Introduction. Consider a directed graph with set of nodes N and set of arcs

A. We will write j -(i, k) to denote that the start and end nodes of arc j are i and k,

respectively. The network incidence matrix is denoted by E and has elements eij given

by

(1) eiJ =

r 1 if i is the start node of arc j,

-1 if i is the end node of arc j,

0 otherwise.

We denote by Xj the flow of arc j, and by dj the deficit of node i which is defined by

(2) d = \:' ex Vi EN1 L.. I) J .

jEA

In words dj is the balance of flow outgoing from i and flow coming into i. The vectors

with coordinates Xj and dj are denoted x and d respectively. Thus (2) is written as

(3) d = Ex.

In what follows the association of particular deficit vectors and flow vectors via (3)

should be clear from the context.
Each arc j has associated with it a cost function jj : R -+ ( -00, +00]. We consider

the problem of minimizing total cost subject to a conservation of flow constraint at

each node:
minimize f(x) = L Jj(Xj)

jEA
(4)

subject to x E C

where C is the circulation subspace:

(5) C = {xld; = 0, i EN} = {xlEx = O}.

We make the following assumptions on jj.

Assumption A. Each function jj is convex, lower semi continuous, and there exists

at least one feasible solution for problem (4), i.e., the effective domain of 1

dom (I) = {xl/(x) < +oo}

and the circulation subs pace C have a nonempty intersectiol'l.
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Assumption B. The conjugate convex function of each.tj defined by

(6) gj(tj) = sup {tjXj -Jj(Xj)}

xl

is real valued, i.e., -00 < gj( tj) < +00 for all tj E R.

Assumption B implies that Jj(Xj) > -00 for all Xj and j. It follows that the set of

points where Jj is real valued, denoted dom (Jj), is a nonempty interval the right and

left endpoints of which (possibly +00 or -00) we denote by Cj and Ij, respectively, i.e.,

Cj = sup {Xjljj(Xj) < +OO}, Ij = inf {xjljj(xj) < +oo}.

We call Cj and Ij the upper and lower capacity bounds of jj respectively. It is easily seen

that Assumptions A and B imply that for every tj there is some X"j E dom (jj) attaining

the supremum in (6), and furthermore

lim '"( )Ix)I-++oo Jj Xj = +00,

It follows that the cost function of (4) has bounded level sets, and therefore (using
also the lower semicontinuity of f) there exists at least one optimal flow vector.

Assumptions A and B are satisfied, if, for example, Jj is of the form

if Xj E [~, Cj],

otherwise
(7)

where ~, Cj are given upper and lower bounds on the flow of arc j, and ~ is a real
valued convex function on the real line R. In this case gj(;) is linear for 1;1 large
enough with slopes Ij and Cj as ; approaches -00 and +00, respectively (see Fig. 1.1).

Problem (4) is called the optimal distribution problem in Rockafellar [3]. The same
reference develops in detail a duality theory (a refinement of what can be obtained
from Fenchel's duality theorem) involving the dual problem

g(t)£ L gj(tj)
jEA

minimize

(8)
subject to t E C.L

where t is the vector with coordinates tj, j E A, and CL is the orthogonal complement
of C. We call tj the tension of the arcj and CL the tension subspace. From (1)-(3) and

FIG. 1.1. Primal cost function of the form (7) and its duaL
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(5) we have that t E C.L if and only if there exist scalars Pi, i EN, called prices, such that

(9) VjEA withj-(i,k),tj = Pi -Pk

or equivalently

10) t = ETp

where E T is the transpose of the network incidence matrix E and P is the vector with

coordinates Pi, i EN. Therefore the dual problem (8) can also be written as

(11)
minimize q(p)

subject to no constraints on p

where q is the dual functional

(12) q(p) = L
jeA

j-(i.k)

gj(Pi -Pk).

As shown in [3, p.349], Assumption A guarantees that there is no duality gap in the
sense that the primal and dual optimal costs are opposites of each other.

An impo~ant fact for the purposes ?f the present paper is that (in view of
Assumption B ~bove) the dual problem (11) is an unconstrained optimization problem.
If each function jj is strictly convex, the dual functional is also differentiable ([4,

p.253]) and as a result unconstrained smooth optimization methods can be applied
for solution. This is particularly so since the gradient of the dual cost can be easily
calculated. Indeed, when jj is strictly convex, for every tension vector t there exists a
unique flow vector x such that

(13) Xj = arg max {;Zj -.fj(Zj)}

z./
VjeA

and it can be shown [4; p. 218] that Xj is the gradient ofgj at tj

(14) x = Vg .( t. ):I :J :I VjEA.

From (1) and (12) we see that for a given price vector p the partial derivatives of the
dual functional q are given by

~
°Pi

15) = L eij V gj(tj
jEA

ViEN.

Equivalently (cf. (2», the partial derivative aq(p)/api equals the deficit of node i when
the arc flows Xj are the unique scalars defined by (13).

The differentiability of the dual cost when the primal cost is strictly convex
motivates a Gauss-Seidel type of algorithm whereby, given a price vector p, one
calculates the corresponding flows Xj = V gj( tj), j E A, chooses a node i with positive

(negative) deficit and decreases (increases) Pi up to the point where the corresponding
partial derivative aq / api becomes zero. (This amounts to minimizing the dual functional
q along the coordinate Pi.) One then repeats the procedure iteratively. The algorithm
above is attractive not only because of its simplicity but also because it lends itself
naturally to distributed computation, whereby minimization along different pric~ coor-
dinates is carried out simultaneously by several processors. Indeed, this can be done
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in an asynchronous format as described and analyzed in Bertsekas and EI Baz [5].
Simulations of a synchronous par&llel method of this type [19] have shown remarkable
speedup in computation time.

Gauss-Seidel relaxation methods for unconstrained optimization have been
studied extensively [6]-[ 10]. However they typically require for convergence something
like a strict convexity assumption on the cost minimized as well as boundedness of its
level sets (see [10] for a counterexample). Unfortunately the dual cost (12) always has
unbounded level sets since adding the same constant to all node prices leaves the cost
unchanged. Even if we remove this degree of freedom by restricting the price of some
special node to be zero (i.e. passing to a quotient space), the dual cost may still have
unbounded levels sets and is not strictly convex when the functionsjj are nondifferenti-
able as in the important special case (7) where they imply capacity constraints. One
contribution of the present paper (§ 2) is to show convergence of a flow sequence
generated by the Gauss-Seidel method to the unique optimal solution of the primal
problem (4). Convergence of the corresponding price vector sequence to some optimal
solution of the dual problem (11) is also shown assuming the dual has an optimal
solution. For this we actually require that the minimization along coordinates be done
only approximately. Furthermore nodes can be relaxed in arbitrary order. The only
requirement is that each node is relaxed infinitely often. This result is new and is
remarkable in that it requires a rather unconventional method of proof. It improves
on a result by Pang [11] (see also an earlier paper by Cottle and Pang [12]) which
asserts converg..ence of the flow vector sequence under the assumption that gj is of the
form (7) with Jj differentiable, and strongly convex (rather than just strictly convex as
we assume). Pang's result requires exact minimization along each coordinate and
contains no assertion on convergence of the price vector sequence; however it applies
to a more general problem where the primal cost function need not be separable and
the linear constraints need not have a network structure. The paper by Cottle and Pang
[12] asserts subsequence convergence to a dual optimal solution for a transportation
problem with quadratic arc costs but also uses a nondegeneracy assumption and places
a restriction in the way relaxation is. carried out. This result is strengthened in our
analysis as described above.

When some of the arc cost functions jj are not strictly convex, the dual cost is
not differentiable, and the Gauss-Seidel method breaks down. However Bertsekas [1]
and Bertsekas and Tseng [2] have proposed methods that are conceptually related to
Gauss-Seidel and work with linear arc costs. They allow line minimization along
directions involving several coordinates to cope with situations where minimizing along
a single coordinate is not possible. Computational experimentation with standard
benchmark problems and a code named RELAX [1], [2] shows that these methods
are very promising and outperform, in terms of computation time, some of the best
primal simplex and primal dual codes currently available. The second objective of this
paper is to propose in § 3 a new relaxation method that in some sense bridges the gap
between the strictly convex arc cost Gauss-Seidel method described earlier and the
Bertsekas- Tseng linear arc cost version. We show that this method works with both
linear and nonlinear (convex) arc costs and contains as special cases both relaxation
methods described above. To our knowledge the only other known algorithm for
network problems with both linear and nonlinear, possibly nondifferentiable, arc costs
is Rockafellar's fortified descent method [3, Chap. 9]. Our algorithm relates in roughly
the same way to the Bertsekas- Tseng relaxation method, as Rockafellar's relates to
the classical primal-dual method. We note that the methods considered here for linear
costs and, more generally, not strictly convex costs are not easily parallelizable. Related
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synchronous and asynchronous relaxation methods that admit massive paraUelization
have been proposed recently in [20], [21].

The last section of the paper provides results of computational experimentation
with codes implementing both of the relaxation algorithms proposed.

2. The relaxation method for strictly convex arc costs. In this section in addition
to Assumptions A and B, there will be a standing assumption that each Jj is strictly
convex. Two important consequences of this assumption are that the optimalflow vector
is unique and the conjugate functions gj are differentiable, (in addition to being real
valued by Assumption B). Indeed it is easily verified (see also [3] and [4, p. 218]) that
we have for all tj

(16) Vgj(tj) = arg max {tjXj -Jj(Xj)}'
x

J

Furtherntore V gj(;) is the unique scalar Xj satisfying together with; the Complementary

Slackness (CS) condition

(17) fj-(Xj) ~; ~fj+(xj)

where fj-(xj) and fj+(xj) denote the left and right derivatives offj at Xj (see Fig. 2.1).

These derivatives are defined in the usual way for Xj in the interior of dom (fj). When
-00 < ~ < Cj we define

~({),

f :!" ( l.) = lim
J:J t"J./j

fj-(~) = -00.

When lj < Cj < +00 we define

fj-(Cj) = lim fj-(~), h+(Cj) = +00.
ttCj

Finally when lj = Cj we definefj-(~) = -oo,fj+(Cj) = +00. Note that Vgj(tj) is continuous

and monotonically nondecreasing. We define the deficit functions d; by

d;(p) = L eijVgj(tj) ViE N
jeA

where t =ETp, and denote by d(p) the vector with coordinates d;(p). Note that the

definition of d is identical to that given in (2), except that here we have used the strict

convexity of jj to express flow and deficit as functions of the dual price vector. In view

of the form of the dual functional, the relation above yields

d;(p)=~ Vi EN.
api

Since di(p) is a partial derivative of a differentiable convex function, we have that

di (p) is continuous and monotonically nondecreasing in the coordinate Pi.

FIG. 2.1. The left and right derivatives offj.
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Proof. Fix an index r ~ O. Denote s = s' and ~ = p:+I- P:. From (6), (12) and (16)

we have

q(pr)=L [tixi-Jj(xi)]
jeA

Vr~O.

Therefore

q(p')_q(p'+I)= L [tixi-jj(xi)]- L [ti+'xi+'~jj(xi+')]
jeA jeA

= L [tixi-jj(xi)]- L [(ti+esjd)xi+'_jj(xi+')]
jeA jeA

= L [jj(xi+I)-jj(xi)-(xi+1-xi)ti-esjdxi+l]
jeA

= L [jj(Xi+1)-jj(xi)-(xi+l-xi)ti]-d L eSjxi+'
jeA jeA

= L [jj(xi+')-jj(xi)-(xi+'-xi)ti]-dds(p'+').
jeA

Since Ad.,,(p'+I)~O (and d.,,(p'+') =0 if we use line minimization) the left side of(18)

follows. The right side of (18) follows from the strict convexity of jj and the fact

X'+l ¥ x'. QED

PROPOSITION 2.2. The sequence {xr} is bounded.

Proof We first note that at every iteration the total deficit does not increase, i.e.,

L Id;(p'+')I~ L Idj(p')I.
;eN ;eN

(This follows from the fact that a flow change on an arc reflects itself in a change of

the deficit of its start node and an opposite change in the deficit of its end node.

Furthermore the deficit of node s' chosen for relaxation at the rth iteration cannot

increase in absolute value or change sign during that iteration.) It follows that {d(p')}

is bounded. We now argue by contradiction. Suppose {x'} is unbounded. Then there

must exist an arc j and a subsequence R such that /xi/-+ +00 as r -+ 00, r E R. Since

{d(p')} is bounded it follows (passing into another subsequence if necessary) that

there exists a directed cycle Y such that xi -+ +00 for all j E Y+, and xi -+ -00 for all
j E Y- as r -+ 00, r E R. Since by the CS condition (17)

fj-(xi) ~ Ii ~fj+(xi),

and also

~ t~ -~ t~ = 0
i..} i..}'

je y+ je Y-

we have for all r

L fj-(xj)- L fj+(xj)~o.
je y+ je Y-

This is a contradiction since xi -+ +00 implies h-(xi) -+ +00 while xi -+ -00 implies

fj+(xi) -+ -00. QED

The next result is remarkable in that it shows that under a mild restriction on the

way the relaxation iteration is carried out (which is typically very easy to satisfy in

practice), the sequence of price vectors approaches the dual optimal set in an unusual

manner. The result depends on the monotonicity of the functions Vgj.
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We now define a Gauss-Seidel type of algorithm similar to the one sketched in

§ 1 whereby at each iteration a node s with positive (negative) deficit ds (p) is chosen

and Ps is decreased (increased) with the aim of decreasing the dual cost q( p). More

formally, we initially choose a price vector p and a fixed scalar 15 in the interval (0, I).

Then we execute repeatedly the relaxation iteration described below.

Relaxation iteration for strictly convex arc costs.
If dj(p) =0 'v'ie N then STOP.

Else
Choose any node s. Set (3 = ds(p).
If {3 = 0, do nothing.

If (3 > 0, then decrease Ps so that 0 ~ ds(p) ~ 5{3.

If{3<O, then increase Ps so that 0~ds(p)~5{3.

The only assumption we make regarding the order in which nodes are chosen for
relaxation is the following.

Assumption C. Every node in N is chosen as the node s in the relaxation iteration
an infinite number of times.

The relaxation iteration is well defined, in the sense that every step in the iteration
is executable. To see this suppose that (3 > 0 and there does not exist a 11 < 0 such that
ds(p + .1es) ~ fJ{3, where es denotes the sth coordinate vector. Then using the definition
of d, Ij, and Cj, it is easily seen that

lim ds(p + l1es) = L eSj~ + L eSjcj ~ fJ{3 > 0,
.1--00 0 0~sj> ~sj<

which implies that the flow deficit of node s is positive for any flow x within the upper
and lower arc capacity bounds and contradicts the existence of a feasible flow (Assump-
tion A). An analogous argument can be made for the case where {3 < O.

In order to obtain our convergence result we must show that the sequence of flow
vectors generated by the relaxation algorithm approaches the circulation subspace C

(given by (5». The line of argument that we will use is as follows: We will lower
bound the amount of improvement in the dual functional q per iteration by a positive
quantity. We will then show that if the sequence of flow vectors do not approach the
circulation subs pace, the quantity itself can be lower bounded by a positive constant
which implies that the optimal dual functional has a value of -00. This will contradict
the finiteness of the optimal primal cost.

We will denote the price vector generated at the rth iteration by pr, r = 0,1,2, ...
and the node operated on at the rth iteration by sr, r = 0, 1,2, To simplify notation
we will denote

tr=ET pr X~=V g .( tr ), ) ) J'

We denote by xr the vector with coordinates xi, j EA. Note the symmetry following
from the CS condition (16) or (17); xi is the gradient of the dual cost gj at ti, while ti
is a subgradient of the primal cost jj at xi. For any directed cycle Y of the network we
will use y+ to denote the set of arcs {j E AU is positively oriented in Y}, and Y- to
denote Y\ Y+. We first show three preliminary results.

PROPOSITION 2.1. We have for all rsuch thatpr+'¥pr [i.e. ds.(pr)¥OJ

(18) q(pr)_q(pr+I)~ L [jj(xi+')-jj(xi)-(xi+l-xi)tiJ>O,
jeA

with equality holding if line minimization is used [ds.(pr+')=OJ.
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PROPOSITION 2.3. Given pERINI, let s be a node and let p denote a dual price vector

obtained by applying the relaxation iteration to p using node s. Assume in addition that

p is chosen so that

(19a) ifds(p»O then ds[p+a(p-p)]>O Va>O,

(19b) ifds(p)<O then ds[p+a(p-p)]<O Va>O.

Then for all kEN, and all optimal dual price vectors p* we have

(20) min {Pi -pHiE N}~Pk -pZ~max {pi-p1IiE N}.

Note. Assumption (19) when ds(p) > 0 [ds(p) < 0] is equivalent to assuming that
Ps is chosen greater (less) or equal to the largest (smallest) minimizing point of the
dual cost along the sth coordinate starting from p. It is automatically satisfied if the
dual cost has a unique minimizing point along the line {p + aesla E R}.

Proof. Fix an optimal dual price vector p* and consider an arbitrary price vector
p. Let k be such that Pk -pZ = max {Pi -p1/i EN}. We have

Pk-PZ~Pi-p1 Vi~k

so 

that

ftk -j; ~pZ -pt Vj- (k, i), j; -ftk ~pt -pZ Vj -(i, k).

Since V gj is a nondecreasing function, we have that

Vgj(ftk-j;)~Vgj(p~-pt) Vj-(k,i), Vgj(j;-ftk)~Vgj(pt-pZ) Vj-(i,k).

Thus dk(ft) ~ dk(p*) = O.

The desired assertion (20) holds if d.(p) = 0 since then we have P = p. Assume
that d. (p ) < O. Consider the vector ft defined by

- {Pi if i ~ s,
Pi= p:+max{pj-p!UEN} ifi=s.

Then we have ft. -P: = max {j;- ptli EN} = max {Pi -ptli EN} and by the preceding

argument we have d.(ft)~O. Therefore, using assumption (19), we have P.~ft. while
at the same time P. < P., and Pi = Pi for all i ~ s. The assertion (20) follows. The proof
is similar when d.(p»O. Q.E.D.

Note that Proposition 2.3 implies among other things that, if (19) is satisfied at
all iterations, the sequence {p'} generated by the relaxation method is bounded.

Furthermore if we can show that {p'} accumulates at an optimal price vector, the

proposition implies that {p'} must converge to that vector. We are now ready to show
our main result.

PROPOSITION 2.4. Let {p', x'} be a sequence generated by the relaxation method
for strictly convex arc costs. Then

(21) (a) lim d(p')=O.
,-00

(b)(22) lim x' = x*
'-00

where x* is the unique optimal flow vector.

(c) limq(p')=-J(x*)=infq(p).
,-+00 p
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(d) If condition (19) is satisfied at each iteration, and the dual problem has an

optimal solution, then

(23) lim pr ..". p*
r~OO

where p* is some optimal price vector.

Proof. (a) We first show that

(24) Jim ds'( p') = O.
""00

Indeed, if this is not so there must exist an E >0 and a subsequence R such that
Ids'(pr)1 ~ E for all rE R. Without loss of generality we assume that ds'(pr) ~ E for all
rE R. Since 8Ids'(pr)1 ~ Ids'(pr+l)j we have that at the rth iteration some arc incidentTO 

node sr must change its flow by at least .1 where .1 = (1- 8)E/IAI. By passing to a

subsequence if necessary we assume that this happens for the same arc j* for all r E R-
and that xi:1 -'- xi- ~.1, for all r E R. Using the boundedness of {xr} (Proposition 2.2)

we may also assume that the subsequence {Xi-}rER converges to some Xj-. Using the
convexity of.fj and Proposition 2.1 we have

( ' ) ( '+1 ) :> I" ( '+1 ) I" ( ' ) ( ,+1 ' )t ' q p -q P =Jj- Xj- -Jj- Xj- -Xj- -Xj- j-

~ij-(Xi- + A) -ij-(Xi-) -Ati-

~ij-(Xi- + A) -ij-(Xi-) -Afj-l;.(Xi-]

Taking the limit as r -jo 00, r E R and using the facts xi, -jo Xj' and limr-oofj-r.(xi') ~fj-r.(xj.)

(in view of the upper semicontinuity of fj-r.) we obtain

rim 

inf [q(p') -q(p'+l)] ~jj.(Xj. + 11) -jj.(Xj.]
,-00
'ER

+-~fj.(xj.) > o.

This implies that limr,.oo q(pr) = -'-00. But this is not possible because from (6) and
(12) we have q(P)~-LjeAJj(Xj) for all p and xeC. Therefore (24) is proved by
contradiction.

We now show (21). Choose any i EN. Take any £ > 0 and let R be the set of
indices r such that dj(pr» 2£. Assume without loss of generality that dj(pr) < £ for
all r with i = sr (cf. (24». For every rE R let r' be the first index with r'> r such that
i = sr'. Then during iterations r, r + 1, ..., r' -1 node i is not chosen for relaxation

while its deficit decreases from greater than 2£ to lower than £. We claim that during
these iterations the total deficit LkeN Idk(p)1 is decreased by an amount of more than
2£. To see this, note that the total absolute deficit cannot increase at any iteration as
noted earlier in the proof of Proposition 2.2. Next observe that for any of the iterations
r, r + 1, ..., r' -1, say r, for which the deficit of i is decreased by an amount ~ > 0
from a positive value dj(pf) > 0, it must be that the node s chosen for relaxation is a
neighbor of i and has a negative deficit ds(pr) < O. Since all increase in ds(pr) during
the iteration must be matched by decreases of the deficits of the neighbor nodes of s,
and the deficit of s will remain nonpositive after the iteration, it follows that the total
absolute deficit will be decreased by at least 2 min {~, dj(pr)} during the iteration. This
shows that during iterations r, r + 1, ..., r' -1 the total absolute deficit must decrease
by more than 2£. It follows that the set R of indices r for which dj( pr) > 2£ cannot
be infinite. Since £ > 0 is arbitrary we obtain lim suPr-ooo dj(pr) ~ O. Similarly we can
show that lim infr-ooo dj(pr) ~ 0 and therefore dj(pr) ~ O.
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(b) For all r and arcs j we have the CS condition

fj-(xi);a Ii ;afj+(xi).

If Y is any cycle we have

~ t~- ~ t~=O
i..} i..},

je y+ je Y-

so from (25) we obtain

(26) L fj-(xi) -L fj+(xi) ~ 0 ~ L fj+(xi) -L fj-(xi).
je y+ je Y- je y+ je Y-

Let {X'}'eR be a subsequence converging to some X (cf. Proposition 2.2). Then from

(26) and the lower (upper) semicontinuity of fj-(fj+) , we have for all cycles Y

L fj-(Xj)- L fj+(xj)~O~ L fj+(xj)- L fj-(xj),
je y+ je Y- je y+ je Y-

while from part (a) we have x E C. This implies that x is an optimal flow ([3, Chap.

8]) and therefore must be equal to the unique optimal flow x*. Since, by Proposition
2.2, {x'} is bounded we obtain x' -+ x*.

(c) For every arc j for which Ij < Cj there are three possibilities:

(1) {Ii} is bounded.
(2) * + r <: * d I.. f ' I ' r Xj =Cj< 00, Xj=Xj an -00< ImID r-a>lj~ ImsuPr_a> Ij =+00.

(3) * _ I '::> * d I.. f '<: I .r +Xj -:;>-00, Xj=Xj an -00= ImID r-a>lj= ImsUp,_oolj< 00,

while for an arc j with Ij = Cj we must have xj = xi for all r. Using this fact we can

easily see that we can construct a subsequence R such that

~ Ir(X~-X"' )~ ~ I~(xr-x", ) VrER
/;..)) )-/;..)))

jeA je B

where B is a set of arcs j such that {Ii} R is bounded. We have (since Ir E C.!., X* E C,
and therefore LjeA lixj = 0)

f(x') + q(p') = L lixi = L li(xi -xl) ~ L li(xi -xl).
jeA jeA jeB

Since xi -+ xj and {Ii} R is bounded for j E B we obtain by taking the limit above

f(x*)+limr_ooq(p')~O. On the other hand we have for all p using (6) and (12)

f(x*) + q(p) ~ O. This together with the preceding relation show the desired result.

(d) By Proposition 2.3, {p'} is bounded. Let {p'}'eR be a subsequence converging
to a vector p* and let 1* = E T p*. We have for all j E A

h-(xi)~li~h+(xi) VrER.

It follows using part (b) and the lower (upper) semicontinuity of h-(fj+) that for all

j E A, fj-(xj) ~ Ij ~h+(xj) where x* is the optimal flow vector. Therefore 1* satisfies

together with x* the complementary slackness conditions and must be dual optimal.

Proposition 2.3 shows that {p'} cannot have two different dual optimal price vectors

as limit points and the conclusion follows. QED

3. The relaxation method for mixed linear and strictly convex arc costs. We first

introduce some terminology. We will say that a point bE dom (Jj) is a breakpoint of

Jj if fj-(b) <fj+(b). Note that the dual functional q, as given by (12), is separable and

is piecewise either linear or strictly convex. Roughly speaking each linear piece

(breakpoint) of the primal cost function Jj corresponds to a breakpoint (linear piece)

of the dual cost function gj (see Fig. 3.1).
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FIG. 3.1. Correspondence between the breakpoints ofJj and the linear pieces of gj (and vice versa).

Assumption D. fj+(Xj) > -00 and fj-(Xj) < +00 for all Xj E dom (fj).
In the terminology of ([3, Chap. 8]), Assumption D implies that every feasible

primal solution is regularly feasible and guarantees, together with Assumptions A and
B, that the dual problem has an optimal solution ([3, p. 360]). For a given e > 0, we
say that x E RIAl and pERINI satisfy e-Complementary Slackness (e-CS for short) if

(27) h-(xj)-e~tj~fj+(xj)+e VjEA
where t = E T p. For a given p, (27) defines upper and lower bounds, called e-bounds,

on the flow vector:

(28) II =min {~lfj+(~):E; tj-e}, cI = max {~I/;(~) ~ tj+e} VjE A.

Then x and p satisfying e-CS is equivalent to

(29) XjE[/I,cI] VjEA
where t = E T p. For a given ;, we can obtain II and cI from the graph of the subdifferen-

tial mapping of fj as shown in Figs. 3.2-3.3. Intuition suggests that if x is in the

E.

tE.
t

I,E C.E
J J

(~
FIG. 3.3. Graph of a./j and e-bounds corresponding 10 Ij.
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circulation subs pace C, x and p satisfy e-CS and e is small, then both x and p should
be near optimal. This idea will be made precise later when we explore the hear optimality
properties of the solution generated by a relaxation algorithm that uses the notion of
e-CS. The definition of e-CS is related to the e-subgradient idea introduced in
non differentiable optimization in [13] as well as to the fortified descent method of
Rockafellar [3]. The latter method, however, for a given p and t = E T p, uses different

lower and upper bounds on Xj given by

.gj(tj + 11) -gj(tj) + e gj(tj) -gj(tj -11) -e
mf A and sup A .
~>o ~ ~>o ~

Our bounds of (28) seem simpler for implementation purposes particularly when some
of the cost functions jj are linear within their effective domain.

For a given x within the e-bounds, we define the deficit of node i as in (2) and
.say that a sequence of nodes {nl ...nk} forms a flow augmenting path if

d < 0 d > 0 d { Xj<Cj ifj-(nm,nm+I), me{I,.'.,k-I},
", '"k an 1£ . f '

( ) { }Xj> j t J- nm+l,nm, me I,...,k-i.

Let

C;-Xj ifj-(nm,nm+l)'
xi-I; if j-(nm+l' nm),

mE {It ,k I}.JLm =

We will call

#L = min {-dn" dnk' #Lt, ..., #Lk-t}

the capacity of the path. The relaxation algorithm of this section uses the labeling
method of Ford and Fulkerson [14] for finding flow augmenting paths and for augment-
ing flow along them.

For a given tension vector t E C and any subset of nodes S, we define Ce(S, t) by

(30) Ce(S, t) = L lj -L cj
je[S,N\S] je[N\S,S]

where we use the notation

[S, N\S] = {jJJ -(i, k), i E S, k e S},

We also define the INI-vector u(S) by

N\S, S] ={jjj-(i, k), it S, ke S}.

q'(p; u(S» = Jim q(p + l1-u(S» -q(p)

.1to 11-

is easily verified to be

q'(p; u(S» = L CJ- L IJ~ -C£(S, t)
je[N\S.S] je[S.N\S]

where cJ, IJ are the e-bounds corresponding to e =0, and we are making use of the
fact cJ ~ c;, IJ ~ I;, for all e ~ O.

We now describe the relaxation algorithm. The algorithm is iterative and uses the
e-CS idea. The scalar e is kept fixed throughout the algorithm. At the beginning of

The importance of these notions is due to the fact that for any E ~ 0, C~(S, t) > 0

implies that u(S) is a dual descent direction at p,'where p is any price vector satisfying
E T P = t. This follows from the fact that the directional derivative of q at p in the

direction u(S) defined by
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each iteration we have a dual price vector p and a flow vector x satisfying I; ~ Xj ~ c;
for all j E A. If x E C then we terminate. Otherwise we use labeling to either find a
flow augmenting path, in which case a flow augmentation is performed to bring x
"closer" to C; or to find a dual descent direction, in which case a dual descent along
this direction is performed. When each jj is linear within its effective domain, E = 0,
and all problem data is integer, the algorithm coincides with the relaxation method of
[1]. [2]. When each jj is strictly convex and to = 0 the algorithm coincides with the

exact line minimization version of the algorithm of the previous section (8 = 0).

Relaxation iteration.
'Step o. Given p and x satisfying I; ~ Xj ~ c; for allj, let t and d be the correspond-

ing tension and deficit vectors. I

Step 1. Pick a node s such that ds > o. If no such node exists terminate. Else set
all nodes to be unlabeled and unscanned. Give the label 0 to node s. Set S = eJ and

go to Step 2.
Step 2. Choose a labeled but unscanned node k. Set S +- S U {k} and go to Step 3.
Step 3. Scan the label of the node k as follows: Give the label k to all unlabeled

nodes m such that Xj < c; for j -(m, k) and to all unlabeled nodes m such that Xj> I;
forj-(k, m). If Ce(S, t»O then go to Step 5. Else if for any of the nodes m labeled
from k we have dm < 0 then go to Step 4. Else go to Step 2.

Step 4. (Flow Augmentation Step). A flow augmenting path has been found which
starts at the node m (with dm < 0) identified in Step 3 and ends at the node s. The
path can be constructed by tracing labels starting from m. Let JL be the capacity of
the path. Increase by JL the flow of all arcs on the path oriented in the direction from

/

m to s, decrease by JL the flow of all other arcs on the path. Update the deficit vector
d and return.

Step 5. (Dual Descent Step). Determine A * such that

q(p + A *u(S» = min {q(p + Au(S»}.
,.,..n

Set p ~ p + A *u(S) and update the bounds I; and c;. Update x to maintain the e-CS

condition I; ~ Xj ~ c; and return.

Validity and finite termination of the relaxation iteration. We will show that, under
Assumption D, all steps in the Relaxation Iteration are executable and that the iteration
terminates in a finite number of operations. \

Steps 0, 1, and 3 are trivially executable. Step 2 is certainly executable on its first
pass since the node s is labeled but unscanned. To show that it remains executable
on subsequent passes we only need to verify that each time we go to Step 2 from Step
3 there always exists a labeled but unscanned node. In Step 2, if all labeled nodes are
also scanned we have :

I dj = I Xj -I Xj
iES jE[S.N\S] jE[N\S,S]

= L lj- L cj= Ce(S, I).
jE[S,N\S] jE[N\S,S]

Since node s has positive deficit and all other labeled nodes have nonnegative deficits
we obtain that Ce(S, t) > 0 and therefore in the previous pass through Step 3 we would
have branched to Step 5 rather than to Step 2. Step 4 is executable since the rule for
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labeling ensures that a flow augmenting path exists from node m to node s, so a flow
augmentation is possible. Step 5 is executable since C" (S, t) > 0 implies that u (S) is
a dual descent direction at p, and we can show that there exists a minimizing stepsize
A *. To see this assume the contrary, i.e., that there does not exist a stepsize A * achieving

the minimum along the direction u(S). In that case the convexity of q implies that

q'(p+Au(S); u(S»<O VA >0,

lim q'(p+Au(S); u(S»~O.
"-+00

Then it can be easily seen that either

L ~- L
je[S,N\S] je[N\S,S]

in which case Assumption A is violated [dom (f) n C is empty], or

L ~- L Cj=O
je[S,N\S] je[N\S,S]

and either fj+(~) = -,00 for some je [S, N / S] or fj-(Cj) = +00 for some j e [N\S, S], in

which case Assumption D is violated. To complete the proof that the relaxation iteration
terminates in a finite number of operations we note that we cannot loop between Step
2 and Step 3 infinitely often since the number of scanned nodes is increased by one
each time we visit Step 3.

We next show that the relaxation algorithm, when applied in conjunction with an

easily implementable labeling rule, terminates in a finite number of iterations. The
proof may be divided into two separate parts. The first part involves showing that the
number of dual descent steps is not infinite. This is done by arguing that the optimal
dual cost is necessarily -00 if the number of dual descent steps is infinite. The second

part involves showing that the number of flow augmentations between successive dual
descent steps is finite. This is done by choosing an appropriate labeling scheme for
the relaxation algorithm and showing that the number of flow augmentations is finite
under the chosen scheme. For this purpose we will propose two schemes: breadth-first
search and arc discrimination.

We first show that the stepsize in each dual descent step is bounded from below
by E. Indeed our definition of E-CS was motivated primarily by this fact.

PROPOSITION 3.1. The stepsize in each dual descent step is greater than E.
Proof. Under Assumption B, q( p) is subdifferentiable everywhere. Let S denote

the subset of nodes corresponding to the dual descent direction generated by the
relaxation iteration. In other words, the dual descent direction u is given by

if i E S.

if itS.

{-I

Uj= 0(31)

and S satisfies C.(S, t» O. Now consider p' given by p' = p+ EU and t'= ETp'. Then

Ii = Ij-e if je [S, N\S],

t;=tj+e ifje[N\S,S],

I' - I .j-J otherwise,
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so that

Ij = miD {~Ifj+(~) ~ tj -e}= miD {~Ifj+(~) ~ ti} for all j e [S, N\S],

cj = max {~Ifj-(~) ~ tj+ e} = max {~I/j-(~) ~ ti} for all je [N\S, S].

Therefore

q'(p';u)=- L Ij+ L cj=-Ce(S,t)<O.
je[S,N\S] je[N\S,S]

Since q is convex, q'(p; u)<O and q'(P+EU; u)<O imply that q'(p+au; u)<O for

all a E [0, E]. Therefore the stepsize in a dual descent step is greater than E. QED

We will now use Proposition 3.1 to prove that the number of dual descent steps

is necessarily finite. The following result is a first step in this direction.

PROPOSITION 3.2. Let pr denote the price vector generated by the relaxation algorithm

just before the rth dual descent step. Then for each r E {O, 1, 2, ...}

(32) q(pr) -q(pr+l) > L [/;('I'~) -/;(X~) -('I'~ -X~)t~] ~ 0
, , J J J J J J J

je[S ,N\S ] or

je[N\S',S']

where we define

'1": = {g;(ti -e) if j e [S', N\S'], X' = { gj(ti) if j e [S', N\S'],
J gj(ti+e) ifje[N\S',S'], J g;(ti) ifje[N\S',S'],

and S' denotes the node subset co"esponding to the descent direction at the rth dual
descent step.

Proof From the definition of 'l'i and Xi we have that

gj(ti) =Xiti -Jj(Xi), gj(ti -e) ='I'i(ti -e) -Jj('I'i) Vje[sr, N\Sr],

gj(ti) = Xiti -Jj(Xi), gj(ti + e) = 'l'i(ti + e) -Jj('I'i) Vj e [N\sr, sr].

From the definition of q, sr and u(sr) we have that

q(p' + EU(S'» = q(p')+
[gj(tj -E) -gj(tj)]}:

je[S'.N\S'j

}:
je[N\S',S'j

+ [gj(ti + E) -gj( 'i)]

and from Proposition 3.1 we have that

q(p') -q(p'+I) ~ q(p') -q(p' + EU(S'».

Combining the above three sets of equalities and inequalities we obtain that

q(p') -q(p'+I) ~ L [[XiIi -Jj(Xi)] -[(Ii -E )'l'i -Jj(vi)]]
je[S'.N\S']

+ L I
je[N\S',S']

L [Jj(Vi) -Jj(Xi) -(Vi -Xi)tj]
je[S',N\S'] or

je[N\S',S']

[[Xiti 

-jj(Xi)] -[(ti + E )'1'; -jj('I'i)]]

+£ [ L
je[S'.N\Sj

'lI'- ~ 'lI~
J i... J

jE[N\S'.S']
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Since

'l'j- 2; '1';= L g;(tj-e)- L gj-(tj+e)
je[N\S'.S'] je[S'.N\S'] je[N\S'.S']

~ L gj-(tj-e)- L gj+{tj+e)
je[S'.N\S'] je[ N\S'.S']

= _q'(pr + eu(sr); U(sr» > 0

(where the last strict inequality is obtained from Proposition 3.1) the left side of (32)
follows. The right side of (32) follows from the convexity of lj. QED

PROPOSITION 3.3. Under Assumption D the number of dual descent steps is finite.
Proof. We will argue by contradiction. Suppose that the number of dual descent

steps is infinite. We denote the price vector, the tension vector and the flow vector

generated by the relaxation algorithm at the rth dual descent step by pr, tr, and xr,
respectively. First we show the following property of the sequence {tr}:

For each j

(33) {tj}R~+OO for some subsequence R~cj<+OO, lj(Cj) <00,

(34) {tj}R ~ -00 for some subsequence R~~ > -00, lj(~» -00.

If {tr} is bounded then (33), (34) trivially hold. Consider a subsequence R such
that {tr} R is unbounded. Without loss of generality suppose that, for each arc j E A,
{Ii} is either bounded, or tends to 00, or tends to -00. We now partition N into a
collection of non empty subsets No, N" -.., NL (L~ 1) such that

{(p~ -Pk)}~ 00 if a>.B and i E Na, kE N/3-

(One way to construct such a collection is to consider a graph identical to the original
except that all arcs j such that {tj} R is bounded are discarded, and all arcs j such that
{tj}R ~ -00 are reversed in their orientation. Since the sum of tensions along a directed

cycle is zero we see that this graph is acyclic. The set No is the set of nodes of this

acyclic graph having no outgoing arcs. The set N, is obtained similarly after all arcs
incident to No in the acyclic graph have been discarded, etc.)

For a = 1,2, ..., L, we define the following arc sets:

~

L
je[S',N\S']

Then each set A; U A-;; is a cut in the network and

ti ~ +00, r E R if and only if j belongs to some A;,

ti ~ -00, r E R if and only if j belongs to some A-;;.

Consider any fixed positive scalar 11. Equation (35) implies that for all a

lim gj(ti -11) = Cj 'v'j E A;, lim gj+(ti + 11) = ~ 'v'j E A-;;.
r-'OO,reR r-'OO,reR

q'(p'+l1u; u)=- L g;(tj-I1)+ L g;(tj+l1)
+ -jeA. jeA.
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where u is given by

if i E U NT,
T~a

otherwise,

Uj=

0

it follows from (36) that

(37) lim q'(p'+AU; u)=- L Cj+ L ~.
,-oo.,ER " A + " A-

)E. )E.

Let 0 denote the right-hand side quantity in (37). We will argue that 0 = O. Clearly

we cannot have 0> 0 since this would imply that there does not exist a primal feasible

solution. We also cannot have 0 < 0 since then (37) implies that for r sufficiently large

q(p'+Au) ~ q(p')+A0.

This is not possible since A can be chosen arbitrarily large while q(p') is nonincreasing
with r. This leaves the only possibility that 0 = 0 or that

L Cj= L Ij, a=I,.'.,L.
jEA; jEA;;

It follows that for every feasible flow vector we have

Xj=Cj VjeA;, xj=lj VjeA;, a=I,'.',L.

This implies (33) and (34).

Now we will bound from below the amount of improvement in the dual cost per

dual descent step by a positive constant. Proposition 3.1 assures us that at each dual

descent step the step length is more than E. Consider the interval [~E, ~E], which we

denote by T. Also let u' denote the dual descent direction at the rth dual descent step.

We have that the dual cost is decreasing on the line segment connecting t' and t,+I.

It follows from (33), (34) and Assumption D that there exists a subsequence R such

that for r sufficiently large, r e R, we have for all A e T

q'(p'+Aur; u')= L CjVi+ L ~Vi+ L gt(ti+Avi)vi
jEJ+ jEJ- jEJO

vj>o

+ L gj-(ti+Avi)Vi<O
Jo

)E
vj<o

where we define

J+ = Ui{ti},eR -+oo}, J- = Ui{ti},eR -+ -oo},

Jo = U\{ ti} ,e R is bounded}

and v' = ET u'. Consider a fixed r E R. Define 8: R -+ R by

8(A) = q( p' + Au').

We consider two cases. In case (i) the right derivative of 8(A) assumes at most 21AI

distinct values in the interval I. In case (ii) the right derivative of 8(A) assumes more

than 21AI distinct values in the interval I. In case (i) q( p' + Au') is linear for A in some

subinterval I' of I of length at least E/4\AI and it follows that q'(p'+Au'; u') over

I' is linear of the form

q'(p'+~u'; u')= L CjV;+ L Ijv;+ L bjv;
jeJ+ jeJ- jeJo

(38)
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where v' = E T u' and bj denotes some breakpoint of jj. This implies that, for eachj E Jo

such that vi;: 0, the dual functional gj( Ii + ~vi) is linear with slope bj for ~ in I'. For
each j E JO, {Ii} 'E R is bounded, and therefore the number of distinct linear pieces of
gj of length ~ E /41AI encountered during the course of the algorithm is finite. This
together with the fact that v' is chosen from a finite set imply that q'(p'+~u'; u') (cf.
(38» can only assume one of a finite set of values over the subinterval I'. It follows
that in case (i) we can bound the amount of dual cost improvement from below by
5E/41AI where 5 is some positive scalar. This implies that case (i) can occur for only
a finite set of indexes r (for otherwise the dual cost tends to -00) and we need only
to consider case (ii). In case (ii) for each r E R there must exist a j E Jo such that vi;: 0
and the right derivative of the function h(~) defined by h(~) = gj( Ii + ~vi) assumes at

least three distinct values in the interval f. Since vi equals either 1 or -1 it follows
that either li+1 ~ Ii + E and g;(li + ~I) < gj(li + ~2) for at least two points ~I < ~2 in
f or li+l~ Ii -E and g;(li-~2) <gj(li-~I) for least two points ~I <~2 in f. Passing
to a subsequence if necessary, we can assume that it is the same j and either li+1 e;: li+ E
or li+1 ~ Ii -E for all r E R that are sufficiently large. Without loss of generality we
will assume that li+1 ~ Ii + E for all r E R that are sufficiently large. Since j E Jo the

subsequence {Ii} 'E R is bounded and therefore has a limit point If. Passing to a
subsequence if necessary, we assume that {Ii} converges to If. Then it follows that
there exists a fixed interval L such that

(39) Lc[li, li+E] VrER, r sufficiently large

11. < 112 and g;< 11.) < g;< 11J

for at least two distinct points 11. and 112 in L. We then define

~. = g;< 11.), ~2 = g;< 11J.

Then ~. and ~2 belong to the interval

[gj(a), g;(b)]

where a, b are the left and the right endpoints of L, respectively, and they satisfy

(40) ~t < ~2 and h+(~I) <fj-(~J.

Then for r sufficiently large, rE R, we obtain (cf. (39) that

(41) g;(tj)~~t<~2~gj(tj+e).

It follows from Proposition 3.2 that for all sufficiently large r E R

q(pr) -q(pr+t) ~Jj(gj(tj + e)) -Jj(g;(tj» -fj+(g;(tj))(gj(tj + e) -g;(tj)
(42)

~Jj(~J -Jj(~I) -fj+(~I)(~2- ~t)

where the second inequality follows from (41) and the convexity of Jj. From (40) and
the convexity of Jj we obtain that the right-band side of (42) is positive. Therefore the
dual cost improvement per dual descent is bounded from below by a positive constant,
and the dual cost tends to -00, contradicting Assumption A. QED

The second part of our finite termination proof involves showing that the number
of flow augmentations between successive dual descent steps is finite. Since the
e-bounds remain unchanged between successive dual descent steps, the issue in effect
is whether the labeling algorithm used will solve finitely the max flow problem with
the given e-bounds taken as capacity constraints. It was shown by Ford and Fulkerson
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([14, p. 126]) that, when the data is irrational, an arbitrary choice of labeled nodes
may result in an infinite number of flow augmentations, so a more specific scheme for
labeling is necessary to deal with irrational data. Here we propose two such schemes:
breadth-first search and arc discrimination. In practice, the data is always rational,
being stored on a finite precision machine, and therefore finite convergence is assured
even if labeling is done arbitrarily.

Breadth-first search is a well-known scheme used in labeling. It can be easily
implemented using a FIFO queue. In [15, Chap. 9.3, 16] it was shown that, under
breadth-first search, the number of flow augmentations is finite if all nodes with positive
deficit are labeled initially. We now show that the same conclusion holds if a single
node with positive deficit is labeled initially, as is the case for the relaxation iteration.
This fact requires a nontrivial proof and, to our knowledge, is not reported in the
literature.

PROPOSITION 3.4. When labeling is done by breadth-first search, the number of flow
augmentations between successive dual descent steps is finite.

Proof. We will assume that the number of flow augmentations is infinite and obtain
a contradiction. For simplicity, we call a node with negative deficit a source and a
node with positive deficit a sink. Since the number of flow augmentations is infinite,
after a while the set of sources and sinks must become fixed (since a source cannot
become a sink or vice versa) and the set of flow augmenting paths must repeat (since
all flow augmenting paths are simple and therefore there are only a finite number of
them). Let P be the set of flow augmenting paths that repeat infinitely often. We say
that an arc belonging to a path pEP is saturated in the direction of p if the flow of the
arc is at the upper (lower) bound and the arc is oriented from the source (sink) of p
to the sink (source) of p.

Consider a path pEP. After a flow augmentation using p as the path, some arc
of p will become saturated in the direction of p. Let Ap denote the set of arcs on p
that become saturated in the direction of p infinitely often. Ap is clearly nonempty.
We will show, by induction, that Ap is empty when breadth-first search is done and
thus obtain a contradiction.

Initialization. For- all pEP, every a E Ap is at least onti arc away from the sink t

ofp.
Proof. This is true since if the arc on p incident to t is saturated, it must remain

saturated from then on.
kth inductive step. Suppose that, for all pEP, every a e Ap is at least k arcs away

from the sink of p. We will show that, for all pEP, every a e Ap, is k + 1 arcs away
from the sink of p. Suppose the contrary. Then there exists ape P, whose source and
sink we denote by sand t respectively, and an arc a in Ap such that a is k arcs away
from t. Mter a becomes saturated, there must be a flow augmenting path p' to unsaturate
it (see Fig. 3.4). From the inductive hypothesis, the arcs on p between a and tare
unsaturated in the direction of p. Since the labeling is done by breadth-first search,

a PIp

FIG. 3.4. p' unsaturating the arc a.
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this implies that the number of arcs on the subpath P~ (see Fig. 3.4) must be strictly
less than that of the subpath PI (otherwise during the iteration that generated P' as
the flow augmenting path node t would have been labeled before node t'). It follows
that, just before the iteration that generated path P, some arc of the subpath P~ must
be saturated in the direction of p' (otherwise during the iteration that generated p node
t' would be labeled before node t). This arc must then belong to Ap'. Since the number
of arcs on p~ is strictly less than k, the inductive hypothesis is contradicted.

Since the inductive hypothesis holds for all k and the number of arcs on each
flow augmenting path is at most INI-1, it follows that Ap is empty for all p and the
desired contradiction is obtained. QED

In the arc discrimination scheme, the order in which nodes are labeled and scanned
is given by the following simple rule:

Each labeled but unscanned node records whether it is connected to an unlabeled
neighbor by an arc whose flow is strictly between the lower and upper bounds.
A node with such a neighbor is scanned first.

The proof of finite convergence under this scheme is given in [11]. The implementa-
tion of the arc discrimination scheme requires more global information than breadth-
first search. However, when the relaxation algorithm is extended to operate on both
positive and negativ~ deficit nodes between successive dual descent steps, which had
been shown to be computationaly beneficial in the case of linear cost problems, arc
discrimination can still be shown to yield finite convergence. It is not known if this is
also true of breadth-first search.

Propositions 3.3 and 3.4 show that the relaxation algorithm of this section termin-
ates after a finite number of iterations. Since the algorithm only terminates when all
the node deficits have zero value, the final flow vector x must belong to C. Since E-CS
is maintained at all iterations of the algorithm, it follows that x and the final dual
price vector must satisfy E-CS also.

We next show that we can bring the cost of the solution generated by the relaxation
algorithm arbitrarily close to the optimal cost by taking E sufficiently small. The main
part of the argument is embodied in the next proposition.

PROPOSITION 3.5. Let x and p satisfy E-CS, and let~ and p satisfy CS. If x e C then

O~f(x)+q(p)~E L Ixj-~jl.
jeA

Proof Let t = E T p. Since ~ and p satisfy CS we have

jj(~j)=~j;-gj(;) 'v'jeA.

Take an arc j such that Xj ~~. Then by convexity of jj

jj(Xj) + (~- Xj)h-(Xj) ~jj(~) = ~j; -gj(;).

Hence

:Jj(Xj) + gj(tj) ~ (Xj -~j)(fj-(xj) -tj) + Xjtj

$ Ix. -1:. le + x.t.,- J~) J J

where the second inequality follows from e-CS. This inequality is similarly obtained
when Xj ~~, so we have

Jj(Xj) + gj(tj) ~ IXj -~jl£ + Xjtj Vj E A.

From the definition of gj we also have

Xjtj~Jj(XJ+gAtj) VjEA
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By combining these two inequalities and adding over all j E A, we obtain

L Xjtj~ L [jj(Xj)+gj(;)]~E L IXj-~I+ L Xi;'
jeA jeA jeA jeA

Since x E C we have LjeA Xi; = 0 and the result follows. QED

From Proposition 3.5 we can obtain a simple bound on the suboptimality of the

solution in the special case where ~ > -00 and Cj < +00 for all j EA.

COROLLARY 3.1. Let x and p satisfy E-CS. If x E C, and -00 < ~ ~ Cj < +00 for all

jE A, then

O~f(X)+q(p)~E L (cj-lj)'
jeA

For the general case we have the following.
PROPOSITION 3.6. Let x( e) and p( e) denote any flow and price vector pair such that

x(e) andp(e) satisfy e-CS andx(e)E C. Thenf(x(e»+q(p(e»~O as e~O.
Proof. First we show that x( e) remains bounded as e -+ o. If x( e) is not bounded

as e ~ 0, then since x( e ) E C for all e > 0 there exists a directed cycle Y and a sequence
{en}~O such that Cj = +00, xj(en)~ +00 for all jE Y+ and ~ = -00, Xj(en)-+ -00 for all

j E Y-. By Assumption B

lim fj-(~)=+oo foralljEY+, lim f!(~)=-oo foralljEY-.
E-++ao E-+-ao

and tj( En) -

p(En) we have

L tj(En) -L tj(En) = 0 for all n,
je y+ je Y-

which contradicts (43). Therefore X(E) is bounded as E -').0.
Now we will show that ~(E)-Xj(E) is bounded for alljEA as E-').O, where t"(E)

is some vector satisfyingfj-(~(E»~ tj(E)~f!(~(E», for alljEA. If Cj <00 then ~(E)
is trivially bounded from above. If Cj = +00 then by Assumption B we have f j- (t") -'). +00

as t" -'). +00. Since Xj( E) is bounded we have that ;( E) is bounded from above which

in turn implies that t"j (E) is bounded from above. Similarly, we can argue that ~ (E)
is bounded from below. Therefore I~(E) -xj(E)1 is bounded for all j E A as E -'). o. This
then completes our proof in view of Proposition 3.5. QED

Unfortunately Proposition 3.6 does not tell us how small E must be to achieve a
certain degree of near optimality. We need to solve the problem first for some guess
E to obtain x( E) and t"( E), evaluate the quality of the solution on the basis of the gap
f(~(E» + q(p(E» between primal and dual solution, and then decide whether E needs
to be decreased. If however the bounds Ij and Cj are finite, we can, by Corollary 3.1,
obtain an a priori estimate on E.

4. Computational experimentation. Two experimental codes implementing the
methods of the paper were developed and tested on linear benchmark problems and
nonlinear variations.

The first code, named NRELAX, implements the relaxation method for strictly
convex problems of § 2. The second code, named MNRELAX, implements the method
for mixed linear and strictly convex problems of § 3. Both codes were written in Fortran
on a VAX 11-750 and were compiled and run under the VMS version 3.7 operating

system.

< 

tj(Eo) for all j E Y

This implies that for n sufficiently large,

(43) ;(£n»;(£o) foralljeY+

where t(En)=ETP(En). Since t(£n)=E1
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TABLE 1
Timesfor NETGEN benchmark problems. MNRELAX uses E =0. Times in this

and subsequent tables are in secs on a VAX 11-750. All codes are written in Fortran

and compiled under VMS version 3.7.

Number of
nodes

200

200
200

200

200

300

300

300

300

300

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1000

1000

1000

Number of

arcs

Problem

number
MNRELAX

E=O RELAX-II

1300

1500

2000

2200
2900

3150
4500

5155

6015
6300
1500

2250

3000
3150
4500

1306

2443
1306

2443

1416

2836
1416

2836

1382
2616

1382
2616
2900

3400

4400

5.13

6.33

4.86

7.74

6.83

12.85
13.46

14.54

17.38

14.39

4.71

5.81

6.27

7.79

9.64

9.06

8.87

8.98

8.81

9.82

10.36

9.08

13.80

4.73

7.15

3.73

6.41

20.17

19.15

25.62

2.07

2.12

1.92

2.52

2.97

4.37

5.46

5.39

6.38

4.12

1.23

1.38

1.68

2.43

2.79

2.79

2.67

2.56

2.73

2.85

3.80
2.56

4.91

1.27

2.01

1.79

2.15

4.90

5.57

7.31

7

8

9

10

12
13

14

15

16
17
18

19

20
21
22

23
24

25
26

27
28

29

30

The test problems were generated using the public domain code NETGEN [18].
There are 40 "standard" benchmark linear cost problems that can be obtained using
this code. We tested our codes with some of these problems either in their standard
(linear cost) form or in a modified form whereby a quadratic cost was added to the
linear cost of some or all of the arcs as discussed below. In order to test coding
efficiency we tested MNRELAX with E = 0 against the very efficient linear cost code

RELAX-II (see [1], [2]) under identical conditions on the first 30 NETGEN benchmark
problems. The two codes are close to being mathematically equivalent on linear cost
problems but MNRELAX uses floating point arithmetic. The results shown in Table
1 appear to indicate that MNRELAX is coded fairly efficiently.

There were two issues that we wanted to clarify through the experimentation:
(a) The effect of the parameter E on the performance of MNRELAX;
(b) The relative efficiency of NRELAX versus MNRELAX with optimal choice

of the parameter E on strictly convex problems.
A large number of experiments some of which are presented in Tables 2 and 3

showed that for all except some very "difficult" problems it is best to operate
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MNRELAX with E = 0 and tenninate the iterations when the deficit of all nodes
becomes sufficiently close to zero. Indeed it appears that for such problems the time
required for MNRELAX to tenninate increases with E. The reason is probably that
with large E the intervals defined by the E-bounds become larger and, as a result, a
large number of flow augmentations are needed before a descent direction can be

found. Given that a large value of E leads also to inaccurate solutions (see Proposition
3.5), it appears that for most problems the best way to operate MNRELAX is with

E = 0 or with E very small.
When E = 0 and all arc costs are strictly convex, MNRELAX and NRELAX are

mathematically equivalent. However NRELAX is somewhat faster because of more

efficient coding as shown in Table 3.
Finally in Table 4 we show results obtained on some "difficult" problems with

strictly convex arc costs. These problems were constructed by choosing the quadratic
cost efficients of some arcs to be very small relative to others as described in Table 4.
This is similar to a situation in nonlinear unconstrained minimization where the Hessian
matrix of the cost function has some eigenvalues that are very small relative to other
eigenvalues. For this class of problems MNRELAX with nonzero E can outperfonn
both NRELAX and MNRELAX with E = O. This is not surprising in view of the
coordinate descent interpretation of NRELAX. The version of MNRELAX that we
found most efficient for these problems is one whereby we start with a moderate value
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1300

1500

2000

2200

2900

3150

4500

5155

6075

6300

1500

2250

3000

3750

4500

1306

2443

1306

2443

1416

2836

1416

2836

1382

2676

22.63
23.37

19.33
37.87

34.82

113.75

85.26

95.11

70.48

(6)99.69
(7)43.19
(6)39.56

(7)34.62

(6)34.97
64.90

65.86

60.62
84.26
60.56

108.49

62.78
95.91

43.41
59.83

53.57

17.97
19.12

20.77
25.38

32.37
57.95

50.49

70.08

69.44
69.33
34.37

33.31
32.66
35.32

42.53

54.19
46.20

72.41

46.18
72.11

38.79
55.25

33.21
65.35

42.06

10.80
11.51
12.04
17.22

21.44

40.23
37.77

49.38
48.04
41.41
14.67

12.98
18.34

20.86

24.95

21.54

21.89

48.97

20.80
38.70

38.69

42.03
20.70
42.47

37.88

200

200

200

200

200

300

300

300

300

300

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

7

7

8

7

6

7

6

8

7

5
6

5

5

5

5
6

6
7

6

7

2

3

4

5

6

7

8

9

10
II

12

13

14

15
16

17
18

19
20

21

22

23

25

of E, operate MNRELAX to termination, then reduce E by a factor of 10 and repeat
the process up to the point where primal and dual values differ by a specified accuracy.
Still, the proper starting value for E was not easy to determine and it was necessary
to do some initial experimentation with several of these difficult problems. The con-
clusion is that the methods of this paper may not be successful for such problems. We
do not know, however, of a better alternative.

TABLE 4

Times for NETGEN benchmark problems modified so that all arcs have an additional quadratic term. In

50% of the arcs the quadratic cost coefficient was small as indicated. In the other 50% of the arcs the quadratic

cost coefficient was from the range [5, 10]. Numbers in parentheses where present indicate significant digits
of accuracy of the answer. In MNRELAX E is progressively decreased during solution of each problem.

-

Problem
number

Small quad

coeff.

.0001

.001,

.0001

.0001

.01

.001

.001

.001

MNRELAX
£>0 NRELAX

(3)58.00

(2)50.15
(2)218.24

(3)1957.70

(2)350.97

(2)321.76

(2)134.51

200

200

300

400

400

400

400

400

1300

2900
4500

1500
4500

1306

1306

1382

(4)52.98
(5)227.93

(3)301.03
(4)111.36

(3)361.71

(3)287.13

(3)188.78

(4)417.83

(2)27.16
(2)131.10

15

16
18

24 (2)46.21
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