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We consider the minimization problem with strictly convex, possibly nondifferentiable, separable

cost and linear constraints. The dual of this problem is an unconstrained minimization problem

with differentiable cost which is well suited for solution by parallel methods based on Gauss-Seidel

relaxation. We show that these methods yield the optimal primal solution and, under additional

assumptions, an optimal dual solution. To do this it is necessary to extend the classical Gauss-Seidel

convergence results because the dual cost may not be strictly convex, and may have unbounded

level sets.
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1. Introduction

We 

consider the problem
m

f(x) = L Jj(Xj)
j=1

(1)minimize

subject to Ex = 0

where x is the vector in R rn with coordinates denoted Xj, j = 1, 2, ..., m, Jj: R -+

( -00, 00], and E is a n x m matrix with elements denoted eg, i = I, ..., n,j = 1, ..., m.

We make the following standing assumptions on Jj:

Assumption A. Each Jj is strictly convex, lower semi continuous, and there exists at

least one feasible solution for (1), i.e. the set

{xIJ(x) <+oo}

and the constraint subs pace

C={xIEx=O}. (2)

have a nonempty intersection.
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Assumption B. The conjugate convex function of.fj defined by

gj(;) = sup{tjXj -.fj(Xj)}
XI

(3)

is real valued, i.e. -00 < g) Ij) < + 00 for all Ij E R.

It is easily seen that Assumptions A and B imply that for every tj there is some

Xj with Jj(Xj) < 00 attaining the supremum in (3). and furthermore

lim Jj(Xj) = +00.
IxJi-++cx>

It follows that the cost function of (1) has bounded level sets, and therefore (using

also the lower semi continuity and strict convexity of f) there exists a unique optimal

solution to (1).

Note that, because Jj is extended real valued, upper and lower bound constraints
on the variables Xj can be incorporated into Jj by letting jj(Xj) = +00 whenever Xj

lies outside these bounds. We denote by

~ = inf{~IJj(~) < +oo},

c} = sup{~IJj(~) < +oo}

the lower and upper bounds on Xj implied by jj. Note also that by introducing

additional variables it is possible to convert linear manifold constraints of the form

Ax = b into a subspace constraint such as the one of (1). We assume a subs pace

rather than a linear manifold constraint because this simplifies notation and leads

to a symmetric duality theory [11].

A dual problem for (1) is

(4)minimize q(p)

subject to no constraint on p

where q is the dual functional given by

m

q(p) = L gj(EJp).

j=\

Ej denotes the jth column of E, and T denotes transpose. We refer to P as the price

vector and to its coordinates Pi as prices. The duality between problems (1) and (4)

can be developed either by viewing Pi as the Lagrange multiplier associated with

the ith equation of the system Ex = 0, or via Fenchel's duality theorem. It is explored

extensively in [11], where it is shown that, under Assumption A, there is no duality

gap in the sense that the primal and dual optimal costs are opposites of each other.

It is shown in [10, p. 337-338] that a vector x={xjU=1,..., m} satisfying Ex=O
is optimal for (1) and a price vector P = {Pi I i = 1,..., n} is optimal for (4) if and

only if

(6)fj-(Xj) ~ EJ p ~fj+(xj), j= 1, ,m



P. Tseng, D.P. Bertsekas / Relaxation methods 305

wherefj(xj) andfj+(xj) denote the left and right derivatives of.fj at Xj (see Fig. 1).

These derivatives are defined in the usual way for Xj belonging to (lj, Cj). When

-00 < lj< Cj we define

f:+-(I.) = limf:+-(~) 1:-(1.) = -00.
J7 ~J./jJ , J7

When ~ < Cj < +00 we define

fj-(Cj) = ~t~fj-(I;,), fj+(Cj) = +00.

Finally when ~ = Cj we detinefi(lj) = -oo,!j+(Cj) = +00. Because of the strict convexity

assumed in Assumption A, the conjugate function gj is continuously differentiable

and its gradient denoted Vgj(;) is the unique Xj attaining the supremum in (3) (see

[10], p. 218, 253]), i.e.

(7)v gj(;) = arg SUp{;Xj -Jj(Xj)}.
xl

Note that V gJ tj), being the gradient of a differentiable convex function, is continuous

and monotonically nondecreasing. Since (6) is equivalent to EJ p being a subgradient

of jj at Xj, it follows in view of (7), that (6) is equivalent to

Xj=Vgj(EJp) Vj=1,2,...,m. (8)

Anyone of the two equivalent relations (6) and (8) is referred to as the Complementary

Slackness condition.
The differentiability of q [cf. (5)] motivates a coordinate descent method of the

Gauss-Seidel relaxation type for solving (4) whereby, given a price vector p, a

coordinate Pi such that iJq(p)/ iJpi > 0 «0) is chosen and Pi is decreased (increased)

in order to decrease the dual cost. One then repeats the procedure iteratively. One

important advantage of such a coordinate relaxation method is its suitability for

parallel implementation on problems where E has special structure. To see this

note, from (5), that two prices Pi and Pk are uncoupled, and can be iterated upon

(relaxed) simultaneously if there is no column index j such that eij;e 0 and ekj;e o.

For example when E is the node-arc incidence matrix of a directed network this
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translates to the condition that nodes i and k are not joined by an arc j. Computational

testing conducted by Zenios and Mulvey [16] on network problems showed that

such a synchronous parallelization scheme can improve the solution time many-fold.

Convergence of the Gauss-Seidel method for differentiable optimization has been

well studied [6, 8, 12, 14, 15]. However it has typically been assumed that the cost

function is strictly convex and has compact level sets, that exact line search is done

during each descent, and that the coordinates are relaxed in an essentially cyclical

manner. The strict convexity assumption is relaxed in [14] but the proof used there

assumes that the algorithmic rnap associated with exact line search over the interval

( -00,00) is closed. Powell [9] gave an example of nonconvergence for a particular

implementation of the Gauss-Seidel method, which is effectively a counterexample

to the closure assertion, and shows that strict convexity is in general a required

assumption. For our problem (4) the dual functional q is not strictly convex and it

does not necessarily have bounded level sets. Indeed the dual problem (4) need not

have an optimal solution. One of the contributions of this paper is to show that,

under quite weak assumptions, the Gauss-Seidel method applied to (4) generates

a sequence of primal vectors converging to the optimal solution for (1) and a

sequence of dual costs that converges to the optimal cost for (4). The assumptions

permit the line search to be done approximately and require that either (i) the

coordinates are relaxed in an essentially cyclical manner or (ii) the primal cost is

strongly convex. For case (ii) a certain mild restriction regarding the order of

relaxation is also required. The result on convergence to the optimal primal solution

(regardless of convergence to an optimal dual solution) is similar in flavor to that

obtained by Pang [7] for problems whose primal cost is not necessarily separable.

However his result further requires that the primal cost is differentiable and strongly

(rather than strictly) convex, that the coordinates are relaxed in a cyclical manner,

and that each line search is done exactly. The results of this paper extend also those

obtained for separable strictly convex network flow problems in [2], where conver-

gence to optimal primal and dual solutions is shown without any assumption on

the order of relaxation. References [2] and [16] contain computational results with

the relaxation method of this paper applied to network problems. Reference [1]

explores convergence for network problems in a distributed asynchronous

framework.

2. Algorithm description

The ith partial derivative of the dual cost (5) is denoted by dj(p). We have

~:
iJpi

m

= L eijVgj(Ejp),

j=l

(9)dj(p) = i= 1, 2,

, 

n.

Since d;(p) is a partial derivative of a differentiable convex function we have that

d;(p) is continuous and monotonically nondecreasing in the ith coordinate. Note from
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(8), (9) that if x and p satisfy Complementary Slackness then

(10)d(p) =Vq(p) = Ex.

We now define a Gauss-Seidel type of method whereby at each iteration a

coordinate Ps with positive (negative) ds(p) is chosen and Ps is decreased (increased)
in order to decrease the dual cost q(p). We initially choose a fixed scalar 8 in the

interval (0,1) which controls the accuracy of line search. Then we execute repeatedly

the relaxation iteration described below.

Relaxation Iteration

If dj(p) = OVi then STOP.

Else
Choose any coordinate Ps. Set fJ = ds(p).

If fJ = 0, do nothing.

If fJ > 0, then decrease Ps so that O~ ds(p) ~ 5fJ.

If fJ < 0, then increase p so that O~ ds(p) ~ 5fJ.

Each relaxation iteration is well defined, in the sense that every step in the iteration

is executable. To see this note that if ds(p»O and there does not exist a ~ (~>O)

such that ds(p -.1es) ~ 15{3. where es denotes the s-th coordinate vector, then using

the definition of d and the fact that

lim Vgj(l1) = Ij,

,,--.xJ
j=1,2, ,m,lim Vgj(l1) = Cj,

1}-+00

we have (cf. (8), (9»

lim ds(p -L1es) = L esjlj + L eS}<j ~ SfJ > O.
.1-+00 0 0esj> esj<

On the other hand for every x satisfying the constraint Ex = 0 we have

0= L e.jxj+ L e.jxj'" L e.jlj+ L e.jcj
e'j>O e'j<O e'j>O e'j<O

which contradicts the previous relation. An analogous argument can be made for

the case where d.(p) < O. The appendix provides an implementation of the approxi-

mation line search of the relaxation iteration.
We will consider the following assumption regarding the order in which the

coordinates are chosen for relaxation.

Assumption C. There exists a positive integer T such that every coordinate is chosen

at least once for relaxation between iterations rand r+ 1: for r = 0,1,2, ...

Assumption C is more general than the usual assumption that the order in which

the coordinates are relaxed is cyclical. We will weaken this assumption later.
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3. Convergence analysis

We will first show under Assumption C that by successively executing the relaxa-

tion iteration we generate a sequence of primal vectors that converges to the optimal

primal solution, and a sequence of dual costs that converges to the optimal dual cost.

The line of argument that we will use is as follows: We first show through a rather

technical argument that the sequence of primal vectors is bounded. Then we show

that if the sequence of primal vectors does not approach the constraint subs pace

C, we can bound from below the amount of improvement in the dual functional q

per iteration by a positive quantity whose sum over all iterations tends to infinity.

It follows that the optimal dual cost has a value of -00, a contradiction of Assumption

A. Thus each limit point of the primal vector sequence by the above argument must

be primal feasible which together with the fact that Complementary Slackness is

maintained at all iterations imply that each limit point is necessarily optimal.

Convergence to the optimal primal solution then follows from the uniqueness of

the solution.

We will denote the price vector generated by the method at the rth iteration by
pr, r = 0, 1,2, ...(pO is the initial price vector) and the index of the coordinate

relaxed at the rth iteration by sr, r = 0, 1,2, ...To simplify the presentation we

denote

t~ = E! p'
J J'

xi=Vgj(ti),

and.by t' and x' the vectors with coordinates ti and xi respectively. Note that from

(9) and (10) we have

V q(pr) = Exr

so that the dual gradient sequence V q(pr) approaches zero if and only if the primal

vector sequence xr approaches primal feasibility. We develop our convergence result

through a sequence of lemmas the first of which provides a lower bound to the dual

cost improvement at each iteration. (Note from (6) that ti is a subgradient of Jj at

xi, so the right side of (11) below is nonnegative.)

Lemma 1. We have, for all r,

m

q(p') -q(p'+I) ~ L [Jj(xi+l) -Jj(xi) -(xi+1
j-1

-xj)tj],
r = 0, 1,2, (11)

with equality holding if exact line minimization is used (d.,(p') =0).

Proof. From (3), (5), and (7) we have

m

q(pr) = L [xiti -jj(xi)]
j=l

r = 0, 1,2,
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Consider a fixed index r ~ O. Denote s = s' and i1 = p;+t -p;. Then

m m

q(p')_q(p'+I)= I [xiti-Jj(xi)]- I [ti+1xi+1
j=1 j=1

_jj(X;+l)]

m m

= L [xjtj-Jj(xj)]- L [(tj+esjl1)xj+l_Jj(xj+l)]
j=l j=l

m

= L [jj(Xi+l) -jj(xi) -(xi+1
j=1 .

-x~ )t~ -e .,:1X~+l]J J 5J J

m
= L [.fj(Xj+l) -.fj(xj) -(Xj+l

j=l

m-x':
)t': ] -jj ~ e .X'+l

J J L.. 5J J

j=l

m

= L [JJ(Xi+1) -JJ(xi) -(Xi+1- xi)!i] -i!ds(pr+l).
j=1

Since I1ds(pr+l)~o (and ds(pr+l) =0 if we use exact line minimization) (11)

follows. 0

For notational simplicity let us denote

m

d~=di(pr)= L eijVgj(tj)
j=l

and denote by dr the vector with coordinates d~. Also we denote the orthogonal

complement of C by C.l, i.e.

C.l = {II t = ETp for somep}.

For each x and z in R m, we denote the directional derivative off at x in the direction

z byf'(x; z), i.e.,

f(x+ jLz) -f(x)
f(x; z) = lim

,.1,0 JL

Similarly, for each p and u in R", we denote

q'(p; u)=limq(p+AU)-q(P)
AJ,O A

We will next show that the sequence {a'} is bounded. For this we will require the

following lemma:

Lemma 2. If each coordinate of tr either tends to 00, or tends to -00, or is bounded,

then there exists a vector v in C.L such that

Vj > 0 V j such that tj -+ 00,

Vj < 0 Vj such that tj -+ -00,

Vj = 0 Vj such that t; is bounded.
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Proof. If each coordinate of t' is bounded as r tends to 00 then we can trivially
take v = O. If each coordinate of t' either tends to 00 or tends to -00 then we can

take v to be any t' with r sufficiently large. Otherwise there exists an index j such

that ti tends to either 00 or -00 and an indexj such that ti is bounded. Let J denote

the nonempty set of is such that ti is bounded. For each fixed r consider the

solution of the following system of linear equations in 1T and T

7= ET'IT ,
r'T. = t.

} }

This system is clearly consistent since (pr, tr), where pr is some n-vector satisfying
tr = ET pr, is a solution. Furthermore, if for each r we can find a solution ('lTr, Tr)

to it such that the sequence {Tr} is bounded, then it follows that we can take v = tr -Tr

for any r sufficiently large. To find such a sequence {T'}, we consider, for each r,

the following reduced system of linear equations
n

tj = L eij'ITj, j E Jf,

i~1

where J' is a subset of J such that the columns of E whose index belongs to rare

linearly independent and span the same space as the columns of E whose index

belongs to J. Then we partition the above reduced system into

t~. = B1TB + N1TN, 'IT = ( 'ITs, 'lTN)

where B is an invertible matrix and Ij, denotes the vector with coordinates Ij,j E J'

and set

r ET rT = 'IT.'IT' = ('IT~, 'IT~) = (B-1tj" 0), 0

Lemma 

3. {dr} is bounded.

Proof. Suppose that {dr} is not bounded. Then in view of (12), there exist aj* 

E {1, 2, ..., m} and a subsequence R such that either Cj. = 00, {li.}R ~ 00 or~. = -00,

{Ii.} R ~ -00. Without loss of generality we will assume that {Ii.} R ~ -00. Passing to

a subsequence if necessary we assume that, for each j, {Ii} R is either bounded, or

tends to 00, or tends to -00. From Lemma 2 we have that there exists v E C.L such
that v satisfies (13). Let u be such that v = ETu. Then for any nonnegative ~ we have

q'(p'-.1u; -u) = -
k L

tJ-+,",.kER

V

g .( t~ -1!v. )v.-
:J J J J k L

'j-+-ro,keR

V

g .( t~ -t1v. ) v. 'v'rE R
,; J J J

and since

lim V gj( T}j) = Cj and
11-+00

Jim V gj( Tlj) =~,'I-+-(X) j = 1, 2, ..., m,

it follows that

lim q'(p'-i1u; -u)=- L CjVj- L ~Vj'
,-+CX).,e R vJ>O vJ<O

(14)
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By construction each term on the right hand side of (14) is less than +00 and at

least one (namely the one which is indexed by j*) has the value of -00 we obtain that

lim Q'(pr_i1u;-u)=-oo. (15)
r-+(X).reR

Also by integrating from 0 to i1 and using the convexity of q we obtain that

q(p' -i1u) ~ q(p') + i1q'(p' -i1u; -u) Vr E R sufficiently large.

This result, together with (15), implies that the dual cost can be decreased by any

arbitrary amount by taking r t R sufficiently large. Since q( p') is nonincreasing,
this implies that inf q( p) = -00, contradicting Assumption A. 0

The following lemma is an intermediate step toward showing that {xr} is bounded.

Lemma 4. If. for each j, {xi} either tends to 00, or tends to -00, or is bounded then,

for each r, xr can be decomposed into xr = yr + zr such that {yr} is bounded and {zr}

satisfies Ezr = 0 for all r and, for each j,

zi ~ 00 ijxi ~ 00

zi ~ -00 ijxi ~-oo

zi=O'v'r ijxi is bounded.

Proof (by construction). Let J denote the set of j for which {xi} is bounded. For

each r, consider the solution to the following system of linear equations in g

Eg=d', ~=xi 'v'jEJ.

This system is consistent since x' is a solution to it. Its solution set can be expressed

as

Lemma 5. {x'} is bounded.

Proof. We will argue by contradiction. Suppose that {xr} is not bounded. Then

passing to a subsequence if necessary we can assume that each xi either tends to

00, or tends to -00, or is bounded. Using Lemma 4 we decompose xr into the sum

of a bounded part and an unbounded part:
x' = w' + zr where wr is bounded, Ezr = 0, and for eachj, zi -+ 00 if xi -+ 00, zi -+ -00

if xi -+ -00, zi = 0 Vr if xi is bounded. Since, for all r,

f j-(xi) ~ Ii ~f j+(xi), j = 1, 2, ..., m,

where x~ is a vector with coordinates xi, j E J and L is some linear operator that

depends on E and J only. Let y' denote the element of the above solution set with

minimum Lz norm. Since each of the sequences {d'} and {xi}, j E J, is bounded it

follows that the sequence {y'} is bounded. It is easily verified that {y'} and {z'},
where z' = x' -y' for all r, give the desired decomposition. 0
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it follows that for r sufficiently large

m

L f j-(xj)zj + L f j+(xj)zj ~ L tjzj = O. (16)

j3zj-+a) j3zj-+-a) j=l

From Assumption B and the boundedness of wr we have

zj -+ 00 ~ f j-(xj) -+ 00 and zj -+ -00 ~ ft(xj) -+-00

implying that the quantity on the left hand side of(16) tends to 00 thus contradicting
(16). 0 .

Using Lemmas 3 and 5 we obtain:

Lemma 6. d~r-+O as r-+OO.

Proof. Consider a fixed r and let s = sr. Since the decrease in the magnitude of

ds(p) during the rth iteration is at least Id~l(l- b') we obtain

m mId~l(l- 
b') ~ Id~ -d~+ll ~ L lesjllx; -x;+ll ~ L lesjl m~x Ix;'- x;+ll.

j=l j=l }

This implies that

Suppose that d~r does not tend to zero, then there exist B > 0, subsequence R,
and an index s such that s' = s, Id~1 ~ B for all r E R. It follows from (17) that for

each r E R there exists some j such that xi must change by at least

E(l-b')
m

I lesjl
j=l

We will assume without loss of generality that xi increases and that it is the same

j for all rE R.

Let 8 denote the scalar in (18). Since x' is bounded it has a limit point X. Passing

to a subsequence if necessary we will assume that {X'}R-" x. Since ti~fj+(xi) we

have that, for each rE R,

.tj(xi+1) -.tj(xi) -ti(xi+1- xi) ~ .tj(xi+1) -.tj(xi) -fj+(xi)(xi+1- xi)

.~ .tj(xi + 8) -.tj(xi) -fj+(xi) 8.

Using the fact that x' -..X and the upper semicontinuity of h+ we obtain

limfj+(xi) ~fj+(Xj),-+00

,eR
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so that (using the lower semicontinuity of Jj)

lim [fj(xj + 8) -Jj(xj) -fj+(xj) 8] ~ Jj(Xj + 8) -Jj(Xj) -fj+(Xj) 8.
r-+~

reR

Using Lemma 1 we obtain that

lim inf[q(p') -q(p'+I)] ~ jj(Xj+ 8) -jj(Xj) -fJ(Xj) 8
,--00
,eR

and since the right hand side of the relation above is a positive quantity (due to

the strict convexity of fj), we have that q(pr) -+ -00, contradicting Assumption A. 0

Using Lemma 6 we obtain our first convergence result:

Proposition 1. Under Assumption C, x' -+ x* and q(p') -+ -f(x*), where x* denotes

the optimal primal solution.

Proof. We first derive an upper bound on the change

Idi(pr)-di(pr+l)l, i=1,2,...,n.

We have

(19)Id;(p'} -dj(p,+l}1 =

where

~;=IX;-X;+ll.

Let us denote for notational convenience

s=s'

If d~>O then p~+I_p~<O while p~+1

n
, ~ ( ,+1 '

)-tj=£.., eij Pi -Pi
i=1

= p~ for i ~ s. Since

t~+1
}

(20a)

(20b)

we see that

1;+1- I; <0 if esj >0,

1;+1- I;> 0 if esj <0.

If d~ < 0 then similarly

1;+1- I;> 0 if eSj > 0,

1;+1- I; <0 if esj <0.

We also have

r+l r V ( r+l ) V (t r )Xj -Xi = gj tj -gj j,
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and the gradient V gj is monotonically nondecreasing since gj is convex. Using this

fact together with (20) we obtain

d~>O ~ esj(xi+1-xi)~0 Vj

d~<O ~ esj(xi+1-xi)~0 Vi

After the rth relaxation iteration d~+l will be smaller in absolute value and will

have the same sign as d~, so we have using the relations above

Id~I~ld~-d~+ll=I I eSj(xi-Xi+1) 1 = I lesjllxi-Xi+11
j=l j=l

~ [min lesjl][m~x J1 i].
eSj"O J

Therefore

max L1 j ~--:~ -.
j mmesJ"o lesjl

Combining this relation with (19) we have, for all i,

Id;(p') -d;(p'+l)1 ~~~~ ~
mmesJ"o lesjl

~ld;IL, (21)

where

L = ma.xi Lj,"=. leijl.

mme'j"O lesjl

For a fixed s, if s = s' for some index r then for kE {r+ 1,..., r+ T} we have

(using (21»

r+T

Id:I~ld:I+L L Id~h I,
h=r+l

where T is the upper bound in Assumption C. By Lemma 6 we obtain that

lim Id~l=o.
k-ooo

Since the choice of s was arbitrary, we have that d' -+ O. Therefore, since d' = Ex',

every limit point of the sequence {x'} is primal feasible.

For all r and all column indexes j we have that the Complementary Slackness

condition

fj-(xi) ~ ti ~fj+(xi)

holds. Let z be any vector in the constraint subspace C. Then

m

~ trz. =0 Vr
i... J:} ,

j=l
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so using (22) and (23) we obtain that

}:: fj-(xj)Zj + }:: fj+(xj)Zj:5;; 0:5;; }:: fj+(xj)Zj + }:: fj-(xj)Zj V r. (24)
%»0 %)<0 %»0 %)<0

Let {X'}'eR be a subsequence converging to [cf. Lemma 5] some limit point X. Then

from (24) and using the lower semicontinuity of fj- and the upper semicontinuity

of fj+ we have, for all Z belonging to the constraint subspace C, that

}:: fj-(Xj)Zj+ }:: fj+(Xj)Zj:5;;O:5;; }:: fj+(xj)Zj+ }:: f;(Xj)zjO
%»0 %)<0 %,>0 %,<0

Therefore the directional derivative f(x, z) is nonnegative for each Z E C. Since X

is primal feasible, this implies that X is an optimal primal solution. Since the optimal

primal solution x* is unique, the entire sequence {x'} converges to x*.

Now we will prove that q(p')~ -f(x*). We first have, using (3) and (5), the weak

duality result

O~f(x*)+q(p') 'v'r. (25)

To obtain a bound on the right hand side of (25) we observe that (t') T x* = 0 so that

f(x*) + q(p') = f(x*) -(t')T x* + (t')T x' -f(x') 'v'r. (26)

:ontinuity of fj+Using (22) and the lower semi continuity of 1j- and the upper semi<

we obtain: For all j such that Ij < xj < Cj,

-00 <fj-(xj) ~ lim inf{tj} and lim sup{tj}~fj+(xj) <00
r-+OO r-+OO

and therefore Itil is bounded by some positive scalar M.
For all j such that ~ = xj < Cj,

lim ti(xj -xi) ~ limfj+(~)(xj -xi) = O.
r-oOO r-oOO

For all j such that Ij < xj = Cj.

lim ti(xj -xi) ~ limfj-( Cj)(xj -xi) = O.
r-+OO r-+OO

For all j such that ~ = Cj,

ti(xj-xi)=O V'r.

Combining (26) with (27) and (30) yields

m
f(x*) + q(p') = L [Jj(Xf) -Jj(xi) -ti(xj -xi)]

j=l

L MlxJ-xil
1}<x7<c}

-~ t~ (X'!' -X~ ) -~ t~(X'!' -X~ )L. J J J L. J J J.

x7=1}<c} 1}<c}=x7

Since xr -'Jo x* it follows from (25), (28), and (29) that f(x*) + q(pr) -'Jo O.

m

~ I [Jj(xj) -Jj(xj)] +
j=l

0
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As a consequence of Proposition 1 we obtain that every limit of the dual price

sequence {pr} is an optimal dual solution. However the existence and number of

limit points of {pr} are unresolved issues at present. For the case of network problems

it was shown (under an additional mild condition on the line search in the relaxation

iteration) that the entire sequence {pr} converges to some optimal price vector

assuming the dual problem has at least one solution [2]. (For network problems

the dual optimal solution set is unbounded when it is nonempty [2] but it is possible

that no optimal solution exists.) The best that we have been able to show is that

the distance of pr to the optimal dual solution set converges to zero when the dual

solution set is nonempty. Since this result is not as strong as the one obtained for

network problems in [2] we will not give it here.

We consider next another assumption regarding the order of relaxation that is

weaker than Assumption C. Consider it sequence {'Tk} satisfying the following

condition:

TI = 0 and Tk+1 = Tk + bk, k = 1, 2, ...,

where {bk} is any sequence of scalars such that for some positive scalar p

<X> f I 1P

bk ~ n, k = 1, 2, , and L -= 00.
k=] bk

The assumption is as follows:

Assumption C'. For every positive integer k, every coordinate is chosen at least once

for relaxation between iterations Tk + 1. and Tk+l"

The condition bk ~ n for all k is required to allow each coordinate to be relaxed

at least once between iterations 'Tk + 1 and 'Tk+l so that Assumption C' can be satisfied.

Note that if bk ~ 00 then the length of the interval ['Tk + 1, 'Tk+l] tends to 00 with k.

For example, bk = (k1/P)n gives one such sequence.

Assumption C' allows the time between successive relaxation of each coordinate

to grow, although not to grow too fast. We will show that the conclusions of

Proposition 1 hold, under Assumption C', if in addition the cost function! is strongly

convex. These convergence results are of interest in that they show that, for a large

class of problems, cyclical relaxation is not essential for the Gauss-Seidel method

to be convergent. To the best of our knowledge, the only other works treating

convergence of the Gauss-Seidel method that do not require cyclical relaxation are

[1] and [2] dealing with the special case of network flow problems.

Proposition 2. If f is strongly convex in the sense that there exist scalars 0" > 0 and

'Y> 1 such that

f(y) -f(x) -f'(x; y-x) ~ O"lIy -xilY Vx, ysuch thatf(x) <oo,f(y) <00, (31)

where 11.11 denotes the L2 norm, and Assumption C' holds with p = 'Y -1, then xr -+ x*

and q(pr) -+ -f(x*), where x* denotes the optimal primal solution.
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Proof. By Lemma 1 and (31) we have that

q(pr) -q(pr+l) ~ ullxr+l_Xrll'Y Vr,

which together with (17) implies that there exists a positive scalar K depending

only on 5, u, 'Y, and the problem data such that

q(pr)_q(pr+l)~Kld~1'Y Vr.

Summing the above inequality <?ver all r, we obtain

00

q(pO) -lim q(pr) ~ K L Id~rl"Y.
r-+OO r=O

Since the left hand side of the relation above is real valued it follows that

00

I Id~i'Y<oo.
r=1

(32)

We show next that there exists a subsequence R such that

lim Id;1 = 0 for s = 1,2, ..., n.
r-+oo.rE R

(33)

Consider a fixed S E {I, 2, ..., n}. By Assumption C/, coordinate P. is relaxed in at
least one iteration, which we denote by r(h), between Th + 1 and Th+l for h = 1, 2,...

(for a given h, if more than one choice of value for r( h) is possible then an arbitrary

choice is made). We have

,. -I
r(It) ,,~ (d r+1 d r ) h - 1 2d;"+l=d.r<">+L .-., -"...,

r=r(It)

".+1
Id;.+II~ max Id~1+L L Id~1, h=l,2, (34)

re{,..+I ,..+,} r=,..+1

The choice of s was arbitrary and therefore (34) holds for all s. To prove (33) it

is sufficient that we show that there exists some subsequence H of {I, 2, ...} such

that the right hand side of (34) tends to zero as h ~ 00, hE H, since this will imply

that

Id;h+'I-+ 0 as h -+ 00, hE H

for all s.

By Lemma 6 the first term on the right hand side of (34) tends to zero as h ~ CX)

and therefore we only have to prove that there exists some subsequence H of

{I, 2, ...} such that

""+1

L
r=,.,,+1

Id~1~O 

ash~oo,hEH.

which together with (21) implies that there exists a scalar L depending only on the

problem data such that
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We will argue by contradiction. Suppose that such a subsequence does not exist.

Then there exists a positive scalar E and a h* such that

Th+l

E~ L Id~1
r-Th+1

Vh ~ h*.

We will use the Holder inequality [5] which says that for any positive integer N
and two vectors x and y in R N

IxTyl~ IIxllvllyliT/ :where 

1/ v + 1/11 = 1 and v> 1. If x ~ 0 and if we let y be the vector with entries all1 

we obtain that

N [ N ] l/V j~l Xj ~ i~l (xj)V (N)l/T/.

Applying the above identity to the right hand side of (36) with v = 'Y and N = Th+1

yields
-Th

-Th),,-t Vh;;. h*

00 00 T'+I 00

E'Y L 'Y-l ~ L L Id~"Y = L Id~"'Y. (37)
h=h* (Th+l- Th) h=h*1 r=T.+l .r=T..+l

The leftmost quantity of (37) by construction of the sequence {Tk} has value of +00

while the rightmost quantity of (37) according to (32) has finite value thereby

reaching a contradiction. This establishes (33).
By (33) there exists a subsequence R such that d r -+ 0 as r -+ 00, r E R. It thus

follows from Lemma 5 that the subsequence {Xr}reR has at least one limit point

and that each limit point of {Xr}reR is primal feasible. Then following an argument

identical to that used in the second half of the proof of Proposition 1 we obtain

that {Xr}reR converges to the optimal primal solution x* and that {q(pr)}reR-+

-f(x*). Since q(pr) is monotonically decreasing in r it then follows that

q(pr)-+ -f(x*) as r-+OO (38)

and the second part of Proposition 2 is proven.

To prove the first part of Proposition 2 we first note that if f satisfies (31) then

every primal feasible solution is regularly feasible (in the terminology of [11, Chapter

11]), and guarantees (together with Assumption A) that the dual problem (4) has

an optimal price vector [11, Chapter 11]. Let p* denote one such optimal price

vector. Then using (31) and an argument similar to that used in proving Lemma 1

we obtain that

q(pr)_q(p*)~ul/xr-x*I/Y, r=O,I,...

which together with (38) and the fact that -f(x*) = q(p*) yields xr -+ x*. 0

1
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Appendix. Implementation of the inexact line search

The inexact line minimization step in the relaxation iteration requires, for a given

set of prices Pi and a coordinate s, the determination of a nonnegative scalar ~

satisfying the following set of inequalities:

0~Le,jVgj(tj-~e,j)~5{J if{J>O, (AI)
j

5{J ~L e,jVgj(tj+~e'j)~O if {J <0, (A2)
j .

where (J = d,(p) and tj =Li eijpi. For simplicity we will assume that {J <0. The case

where (J > 0 may be treated analogously. Consider a fixed r e [5{J, 0]. Then a scalar

~ satisfies (A2) if for some xi, j = I, 2,..., m,

fj-(xi) -tj ~ ~e,j ~fj+(xi) -tj, j = I, 2, ..., m,

~ ,'-' e,jxj = r,
j

or equivalently if xi, j = I, 2, ..., m, is the optimal solution to

minimize LJj(Xj) -tjXj,
j

(A3)
subject to L e,jxj = r,

j

and ~ is the optimal Lagrange multiplier associated with'the equality constraint.

Thus we can reduce the inexact line search problem to that of finding a solution to

(A3) for some re[5{J,O].
In the special case where V gj can be evaluated pointwise, a ~ satisfying (A2)

may be computed more directly by applying anyone of many zero finding techniques

to the function

h(A)=L e'jVgj(;+Ae'j)'
j

One such technique is binary search. To implement binary search we need an upper

bound on 11. To do this we will make the assumption that -00 < Ij < Cj < +00 and

fj-(cj)<+oo,fj+(lj»-oo, for allj (such an assumption is clearly reasonable for

practical computation). With this additional assumption we obtain [cf. (A2)] that

11 must satisfy

eSj[V gj(tj+ l1esj) -V gj(;)] ~ -fJ for allj

or equivalently

V gj(; + l1esj) ~ V gj(;) -fJ / esj for all j such that esj> 0,

V gj(; + l1esj) ~ V gj(;) -fJ/ esj for allj such that esj <0.

Thus an upper bound 11' on the inexact linesearch stepsize 11 is

11' = min{111' I1J,
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where

. { .j)-(y)-t) .j:l-(yo)-to }kil=mm mm ,mm'} \J}' O},

eSj>O es) eSj<O es)

{ j:-(co)-t. j:l-(l.o)-to }ki = max max'} \-}' O} max J} '7' O}
2 , ,

esj>O es) eSj<O eS)

and

Yj = v gj( tj) -fJ / esj for all j such that esj ~ o.

An instance for which V gj can be evaluated pointwise is where eachij is piecewise

differentiable and on each piece (Vij)-t has closed form. An example is when each

jj is the pointwise maximum of scalar functions of forms such as

beaXj + C,

or blXj -dla + c,

or b(Xj -d)-l + C,

b>O,

a> 1, b> 0,

b>O.

In the special case where each Jj is piecewise differentiable, and the number of

pieces is relatively small we can reduce the work in the binary search by first sorting

the breakpoints of h(A) and then applying binary search on the breakpoints to

determine the two neighboring breakpoints between which a i1 satisfying (A2) lies.

We can then apply binary search to this smaller interval.
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