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Relaxation of Prestressing Steel at Varying Strain and
Temperature: Viscoplastic Constitutive Relation

Zdenék P. Bazant, Hon.M.ASCE"; and Qiang Yu?

Abstract: Recent studies of excessive multidecade deflections of prestressed segmentally erected box girders revealed that more accurate pre-
dictions of the prestress loss due to steel relaxation are needed for the design of large-span creep-sensitive structures. In particular, the loss needs
to be calculated as part of creep structural analysis, during which the strain of concrete to which the prestressing steel is bonded varies in each
time step. The existing empirical formulas used in the European Model Code and American practice, which are valid only for constant strain and
constant temperature, are here generalized to arbitrarily variable strain and temperature, heeding obvious asymptotic restrictions and the fact
that steel is a viscoplastic material whose constitutive principles are well known. The resulting formula is a memoryless nonlinear equation for
the viscoplastic strain rate of steel as a function of the current stress, strain, and temperature. Close fits of all the main test data from the literature,
including the available data on the effects of strain and temperature changes, are achieved. The effect of temperature is found to be quite im-
portant and is formulated on the basis of the activation energy of viscoplastic flow of metals. Finally, the need for further tests at variable strain

and variable temperature is emphasized. DOI: 10.1061/(ASCE)EM.1943-7889.0000533. © 2013 American Society of Civil Engineers.
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Introduction

The stress relaxation of prestressing steel tendons is normally mea-
sured at constant strain and constant temperature. The measurement
results, embodied in simple formulas, are then used directly in the
calculation of prestress losses. This classical approach is contingent
on assuming the strain changes during structural lifetime to be neg-
ligible compared with the initial strain in steel and the temperature
changes to be unimportant. Recently, however, it transpired that in
creep-sensitive structures such as large-span segmentally erected box
girders, the strain changes in concrete are not negligible, and the
temperature rise in concrete slabs exposed to sun may be important.

The importance of strain changes in steel was brought to light by
the 2008 unsealing of previously sealed data from the investigation
of the 1996 collapse of the Koror-Babeldaob (KB) Bridge in Palau.
Built in 1977, with a world-record span of 241 m (791 ft), this
prestressed segmentally erected box girder suffered grossly exces-
sive creep deflections that, within 18 years, reached 1.61 m (com-
pared with the design camber). In 1996, a retrofit with installation of
additional external tendons inside the box was undertaken to lift the
bridge, and the bridge was then reopened to traffic. Three months
later, the bridge suddenly collapsed (with fatalities) probably due to
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creep-delamination buckling of the top slab. After the resulting lit-
igation was complete, all the data were sealed in perpetuity, but
thanks to a resolution of the Structural Engineers World Congress
in November 1997 [introduced by Bazant; see BaZant et al. (2010)],
the technical data were released 2 months later to Northwestern
University, and their scientific analysis could begin.

As a unique aspect of the investigation in 1996, just before in-
stalling the additional external tendons, three of the original tendons
were sacrificed to determine their prestress loss by stress-relief tests.
At three different locations on each of three tendons, the concrete
cover was removed, tendons were bared, and strain gauges were
glued to the prestressing steel. The tendons were then cut, and their
stress was back-calculated from the shortening measured by the
gauges. The result was startling—the average prestress loss was
50%, whereas in design the standard estimate of 22% was used.

A three-dimensional (3D) creep analysis (Bazant et al. 2010),
which succeeded in explaining the excessive deflections, high-
lighted the importance of using a realistic concrete creep model.
Subsequent refined analysis (Bazant et al. 2012a, b) further showed
that the use of a good model of steel relaxation at variable strain and
temperature is, in the case of large-span creep-sensitive structures,
imperative.

Calculations showed that the tendon temperature in the top slab
must have reached about 40°C each afternoon. They also showed
that the strain in the top-slab tendons of the KB Bridge must have
decreased by about 30% over 18 years. It might seem surprising that
the excessive deflection did not produce a strain increase with major
cracking in the top slab. This would, of course, be the case if the
deflection were caused purely by flexure under overload. The creep
and shrinkage, however, cause not only flexure but also significant
shortening of the girder, which explains why the tendon strain
decreased.

Further efforts led to the acquisition of sufficient data for five
other excessively deflecting box girders in Japan and the Czech
Republic. The same kind of detailed analysis resulted in similar
conclusions (Bazant et al. 2012a, b).
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A subsequent search under the auspices of a newly formed RILEM
Committee TC-MDC (Multi-Decade Creep) revealed similar histo-
ries of excessive or nearly excessive deflections of 69 prestressed
segmental box girders in 11 countries (Bazant et al. 2011a, b, ¢). It is
estimated that hundreds of excessively deflecting bridges of this kind
exist worldwide. Although it has not been possible to obtain sufficient
data for 3D FEM analysis of these bridges, it could nevertheless be
concluded that the tendons in these bridges must have undergone
similar significant strain and temperature changes.

To check whether excessive deflections might develop and to
find a good design that avoids such deflections, a realistic consti-
tutive model for steel relaxation is one requisite tool. To develop
such a model is the goal of this paper.

It should be emphasized that the excessive deflections caused by
concrete creep and steel relaxation cannot cause structural failure by
themselves. They only result in an abrupt change in roadway slope,
increased vibrations, traffic speed limitations, water runoff prob-
lems, possibly also excessive cracking allowing enhanced ingress of
corrosive agents, higher maintenance costs, and ultimately, bridge
closing. The retrofit that may be provoked by excessive deflections
is sometimes risky and can cause unexpected failure (as exemplified
by the KB Bridge in Palau).

It should further be noted that accurate estimation of prestress loss
is important for structures dominated by self-weight. This is the case
for large spans, roughly over 80 m. For small spans, for which the self-
weight is a relatively small fraction of the total maximum load, the
errors of the classical simple estimates of prestress loss do not matter.

Design Codes: Fédération Internationale de Béton
Formula for Constant Strain and Temperature

While the American Concrete Institute (ACI) Standard 318-05
(Section 18.6) and Commentary (ACI2005a, b) specify no particular
formula for the prestress loss caused by steel relaxation, the Comité
Euro-International du Béton (CEB) Model Code 1990 (CEB 1990),
later co-opted by the Fédération Internationale de Béton (fib 2010),
does. Its formula is

L‘T(I):p x ‘ for e = constant (1)
(o)) ! )\1

where t = time elapsed since the transfer of prestress force onto
concrete, o = axial (normal) stress in the steel bar or wire, oy = initial
prestress = stress in tendon when the prestressing force is transferred
to the anchor (which is usually also the maximum stress ever ex-
perienced by the tendon), op — o (¢) = prestress loss at time 7, and
A1 =1,000 h. Parameter p; has different values for three classes of
prestressing steel: normal wires and strands (Class 1), improved wires
and strands (Class 2), and bars (Class 3), for which, respectively,
p1 = 8%,2%, and 4% if o /f, =0.7; 4%, 1%, and 2% if o0 /f, =
0.6; and 12%, 5%, and 7% if a'o/ﬁp = 0.8 (later it will be argued that
accurate estimation requires the prestress level and temperature to
also be taken into account). Here f, = ultimate strength of pre-
stressing steel. Furthermore, k = 0.12 for Class 1 and 0.19 for Class 2,
and for all prestressing steel including bars, k ~10g;,(p; 000/ P100)
where p; o and p, (o = values of relaxationratio p = [ — o (t)] /7o
measured at 100 and 1,000 h of relaxation, respectively. The CEB
(1990) relaxation formula [Eq. (1)] is plotted in Fig. 1(a) in a
semilogarithmic plot of o versus log .

Empirical Formula Used in American Practice

The manufacturers’ data on prestress loss g — o due to relaxation at
constant strain ¢ and constant temperature are in American practice
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Fig. 1. (a, b) Stress relaxation at various constant levels of strain
according to formula of CEB-fib and the formula from American
practice, with decomposition of stress increment for relaxation during
time interval dr at variable strain £(¢); (c, d) stress-strain paths of
prestressing steel during initial jacking (0123) and afterward during
stress relaxation (346), for relaxation at constant strain € = & in steel,
and at increasing strain &(¢) in steel (in which each incremental stress
drop do during relaxation, i.e., 46, consists of elastic strain decrement
45 followed by viscoplastic strain increment 56)

often approximated by the following formula, which, in the ACI nota-
tion, reads (Magura et al. 1964; see also Section 3.3 in Nawy 2006)

o=t _ ni20))

g Sy

where s = 0.55 f,y, s, = (10 In 10)f,, = 23.03f,y,Ao =1 hand () =
Macauley brackets, defined as (x) = max(x,0). This formula gen-
erally gives a slower evolution of prestress loss than the fib formula
(2010) and is meaningful only for 7 > A(. But this formula is more
realistic in that it has a bound that is set at 0.55f;,,. Based on the ACI
notation, o =f,, 09 =0(0) =fy, and f, =f,, = specified yield
strength of prestressing steel. The typical values of f, are 0.80 f,,, for
prestressing bars, 0.85 f,,, for stress-relieved tendons, and 0.90 f;,,, for
low-relaxation tendons, where f,, = specified tensile strength of
prestressing steel. Normally, the decadic logarithm log is used in
the foregoing equation, but the natural logarithm In ¢ is more con-
venient for taking the derivative.

If plotted in the semilogarithmic scale of o versus log ¢, the ACI
empirical formula [Eq. (2)] is a straight line [see Fig. 1(b)].
Therefore, it cannot capture the short-time relaxation accurately,
although its long-time estimate is acceptable for constant strain and
temperature. For different initial values of prestress oy, the plot is
a system of lines with a downward slope o (o9 — o) /).

for £ = constant (2)

Joi = 50)

Viscoplasticity of Metals

From the mechanics viewpoint, the problem now is to find a uniaxial
constitutive law for the prestressing steel that gives Eq. (1) as a solution
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for the case of ¢ = constant. Generally, the solution is nonunique.
Many different nonlinear constitutive laws can give the same stress-
relaxation history [and many the same creep history, as shown in
Bazant et al. (1994)]. Therefore, some further facts and hypotheses
must be introduced.

First, we observe that the stress relaxation in steel is a manifestation
of viscoplasticity, a phenomenon systematically studied and well
understood for metals and alloys at high temperatures (Jirdsek and
Bazant 2002). The viscoplastic strain is independent of the stress or
strain history (i.e., there is no memory). Thus the constitutive equation
must be a first-order differential equation. Its simplest form, with no
internal friction, is the Bingham model (Jirdsek and Bazant 2002)

E=&+é +al (3)
& =f(e.0) (4)
& =0/E (5)
where

&, = maximum strain that the steel has experienced up to the present
time ¢, &€ = total normal (axial) strain in steel bar or wire, &, =
viscoplastic strain, & = instantaneous (short-time) strain, f(e, o) =
function to be calibrated by tests, 7T = temperature, &« = thermal
expansion coefficient, E, = tangential (incremental) modulus, £ =
initial Young’s elastic modulus of prestressing steel, which also re-
presents the unloading modulus at any strain level and the reloading
modulus if £<eg, [typically E =200 GPa (29 X 10° Ib/sq in.)],
the superior dots represent the time derivatives, i.e., X = dx/dz, and
“otherwise” means either £ =0 or £ < ¢,, (unloading or reloading).
If £ >0, then E, = F'(e) = dF(e)/de = plastic hardening modulus
corresponding to strain ¢. For wires, the initial prestressing normally
does not exceed the linear elastic range, and then E, = F'(¢) = E (but
for alloy bars, this might not be the case), and F (&) is a monotonically
increasing function describing the short-time uniaxial elastoplastic
behavior of the prestressing steel (curve 0123 in Fig. 1(c and d).

The initial stress o enforced at the outset by the prestressing
operation is

oo = F(&) att =20 (7)
The initial portion of the curve of F (&) is straight [Fig. 1(c and d)]
and describes the elastic behavior with elastic modulus E, i.e.,
dF(e&9)/deg = E. Normally &g = 0, but in some cases the prestress
may introduce a stress o7 that is higher than the elastic limit, and then
the initial inelastic strain &( is nonzero [as shown in Fig. 1(c and d)].

Fédération Internationale de Béton Relaxation
Formula Generalized to Variable Strain

A constitutive law for variable strain cannot contain time ¢ explicitly.
To eliminate ¢t from Eq. (1), we may first differentiate it

G/F(g0) = — piA~Hk £ (®)
where we have replaced op with F(&o). Then we express ¢ from

Eq. (1) and substitute it here. This yields the following differential
equation for stress relaxation at constant strain & = &:
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do = —%kF(EO)[ P

1/k—1
[ Fleo) = o/F(eoJ a ®)

It may be checked that integration of this differential equation at
constant ¢ for initial condition & = &y delivers Eq. (1).

Eq. (9) contains &, the initial value of a variable, which is in-
admissible for a constitutive relation. To get rid of it, we need to
introduce the following hypothesis, which appears to be quite
plausible from the viewpoint of viscoplasticity.

Hypothesis |

For variable strain history, the stress-relaxation increment do- oc-
curring at strain £ during time interval d¢ [12 in Figs. 1(a and b) and
56 in Figs. 1(c and d )] may be calculated as if the current strain were
maintained constant from the beginning. In other words, the infini-
tesimal stress-relaxation increments are independent of the previous
history and depend only on the current strain and stress, which is
a defining characteristic of viscoplasticity; see function f(e,0) in
Eq. (3).

Graphically, this hypothesis means that a small increment
(Ag, Ao) [13 in Figs. 1(a and b)] may be decomposed into stress-
relaxation increment Ao [12 in Figs. 1(a and b), imagined to occur
at constant ], followed by an instantaneous jump up or down [23
in Figs. 1(a and b)], from the relaxation curve for constant £ [12 in
Figs. 1(aand b)] to the relaxation curve for constant (¢ + Ae) [34in
Figs. 1(a and b)].

According to the hypothesis made, the total stress increment
do = E; de must be added to the stress-relaxation increment in
Eq. (9) when the strain increment de is nonzero. Thus, after some
rearrangements, Eq. (9) becomes

s k' F@e

E, E\i (1 -q/F(e)]/*!

E=i+é, b= (10)

This is the general constitutive equation that we have been seeking.
Note here that the parameter p; is a function of strain € (as well as
temperature). It may be checked that integration of this differential
equation for the special case ¢ = 0 with the initial condition & = &,
leads to Eq. (1).

The constitutive equation also can be written in the form corre-
sponding to a nonlinear Kelvin rheologic model

£=0 40 (11)

in which 7 is a viscosity depending on both the current stress and
strain and is expressed as

n=L2 L[l—i} o (12)
W FE) | e

American Practice Formula Generalized to
Variable Strain

Again we differentiate the relaxation Eq. (2) with respect to time ¢
and then substitute the expression for ¢ obtained by solving Eq. (2).
This furnishes
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o)

for £ = constant

Using Hypothesis I, we then generalize this equation to the fol-
lowing constitutive equation at variable strain (valid only if
> )\0)1

&= % + 4,
(F(&) = s0) exp{_m@ _%ﬂ

Implementation in Step-by-Step FEM Creep
Analysis of Structures

_ Flo)
- E[Sy/\(]

&y

When the strain in concrete to which the steel is bonded varies ap-
preciably due to concrete creep (as in the KB Bridge in Palau) (see
Bazant et al. 2010, 2012b), Eq. (10) requires imposing in each time
step At of structural creep analysis the following inelastic strain
increments in the finite elements (bar elements) of the prestressing
tendons

1/k

k

Ae, =T Ar =1 Fe) T A (15)
n EAi 1 —o/F(e)]

Normally, E; = E, but should the strain exceed the elastic limit for
the initial elastic loading (which may happen for alloy bars under
high prestress), the tangential modulus E; < E for loading.

If no iterations of the time step At are used, this expression must
be used in the sense of a forward finite difference in time, in which o
and ¢ are taken with the values at the end of the preceding time step.
It is, of course, more accurate to iterate the time step, in which case
this expression is used in the second iteration in the sense of a central-
difference approximation, with o and ¢ representing the average of
the starting and ending values obtained in the first iteration.

A similar expression for Age, may be written for the constitutive
Eq. (14) corresponding to the American practice

Aev:%At
_ F(e) — soVexp |— Sy _ T
“ oo ) °>ep{ <F(€)—So><l F@MA’

(16)

A detailed algorithm for creep structural analysis incorporating the
present model for steel relaxation is presented in Yu, Bazant and
Wendner (2012).

Comparisons with Relaxation Tests

During 1940-1990, numerous steel relaxation tests were carried out
(see Dawance 1948; Magnel 1948; Spare 1952, 1954; Bannister
1953; Clark and Walley 1953; Gifford 1953; deStrycher 1953;
Schwier 1955; Dumas 1958; Kajfasz 1958; Levi 1958; Papsdorf and
Schwier 1958; Jevtic 1959; Kinghamet al. 1961; Maguraetal. 1964;
Glodowski and Lorenzetti 1972; and Buckler and Scribner 1985).
Among these tests, those of Magura et al. (1964) at constant strain
were most extensive, and those conducted by Buckler and Scribner

(1985) were the only significant tests that included variable strain
[Glodowski and Lorenzetti (1972) also reported a test at variable
strain, but only one]. Buckler and Scribner’s (1985) tests were
conducted on stress-relieved strands of ultimate strength f,, =
2,000 MPa (289.9 ksi), yield strength f; (defined by 1% offset) =
1,807 MPa (262 ksi), and elastic modulus E = 194.5 GPa (28,200
ksi). In Test I, the stress-relieved strands were fixed at both ends
after being prestressed to different stress levels, and then the re-
laxation was measured up to about 1,000 h. In Test II, a sudden
strain (and stress) drop in the prestressed strands was introduced by
loosening the anchor after 24 h of relaxation. Then the anchor was
tightened again at its new position, and further relaxation was
measured up to about 1,000 h.

The differential Eq. (15) for the fib (2010) model and Eq. (16) for
American practice are integrated, and the results are shown in Fig. 2
as the solid and dashed curves, respectively (for a piecewise constant
strain history, analytical integration is possible, although numerical
integration was more convenient). The curves integrated for dif-
ferent initial prestress levels are compared in the figure with the test
results of Buckler and Scribner (1985), represented by the circled
points in Fig. 2.

AsseeninFig. 2, Eq. (16), popular in American practice, does not
fit the Test I measurements well. This is not surprising because
Eq. (2) is intended to predict the relaxation for long durations only.
But describing solely the long durations is acceptable only if the
creep of concrete is not significantly affected by errors in the stress
of prestressing steel, which is frequently not true (as in the case of
the KB Bridge or dozens of other excessively deflecting bridges) (see
Bazant et al. 2012a, b).

Eq. (15) of the fib (2010) model, on the other hand, gives a close
fit of the test data for relaxation at various constant strain values. For
all the fits in Fig. 2, k =0.25, which is obtained as the mean of
optimal values from a separate regression for each different og. To
determine optimal parameter p,, the data for oy = 1,117, 1,214,
1,303, 1,400, and 1,490 MPa (162, 176, 189, 203, and 216 ksi)
are first fitted individually, and the corresponding optimal p,; values
are found to be 0.024, 0.029, 0.052, 0.058, and 0.080. Because the
initial value o) cannot occur in a constitutive law, parameter p; must
be considered to be a function of &, as shown by the data points in

1500

1250— ~

Stress (MPa)
1

==~ American practice
O Series SR2-5

(Buckler & Scribner 1985)
1000__|_|_|-|'|'|'|TI T Illln'[ T Illln'[ T IIIIITI T Illln'l
0.1 1 10 100 1000 10000

log 7 (hours)

Fig. 2. Simulation results based on CEB-fib (solid curve) and
American practice (dashed curve) compared with the tests data (Buckler
and Scribner 1985)
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Fig. 3(a). These data can be satisfactorily fitted by a straight line,
which gives

Fle) _
055, 1] (17)

(for p; > 0). Fig. 3(a) documents that this equation gives a good
agreement. For the stress-relieved strands used in Tests I and 11, the
elastic limit is about 1,724 MPa (250 ksi). This is higher than the
highest initial prestress oy of 1,490 MPa (216 ksi) [see Fig. 3(b)],
and so one can replace F(¢) in Eq. (17) with Ee.

After Eq. (17) is verified and calibrated by Test I, Test II with
strain step is simulated. It makes no sense to consider Eq. (16)
because it does not fit Test I for constant strain relaxation. Thus only
Eq. (15) is considered for Test II. The results are compared in
Figs. 4(a and b), respectively, to the data points measured for the
initial stress o of 1,303 MPa (189 ksi) or 1,400 MPa (203 ksi)
dropped at 24 h to 1,214 MPa (176 ksi) or 1,214 MPa (176 ksi). The
agreement is seen to be quite good.

Improved Constitutive Law for Prestressing
Steel Relaxation

For the rate-type generalization Eq. (15) of the current fib (2010)
formula, Eq. (1) seems to give good enough results. But this positive
observation is due to a limited data range. Besides, there are two
other problems:

1. Contrary to Eq. (1), the relaxation in steel stops if the stress
drops to yfy [where typically y = 0.55 (Kajfasz 1958; Magura
et al. 1964), although the precise value of threshold y varies
slightly with the type of steel; probably y = 0.45 might be
a realistic bound].

2. Another problem of Eq. (1) is that for the same steel, the
relaxation curves for different constant strains will cross each
other after a long enough time. To check this, we differentiate
Eq. (1) with respect to o at constant ¢

k
do t
=2 —_1- | — 1
dog (P1 +0'OP1) ()\1) (18)

Here dp, /do > 0, which guarantees that the relaxation curves will
cross at sufficiently large ¢ (although it usually occurs beyond the
conceivable lifetime).

16
g,
=0.155 b 1
¢ {0.55;@ ]
& >
S
— 87
<)
0 T T T
1 15
(a) 0,/0.55f,

To remedy the aforementioned problems, an improved relaxation
formula for constant strain is proposed

kq—c
o = min(yfy, 09) +ﬂ<gg—y>[l +§(7t\) } (19)
This equation satisfies the following four conditions:
1. For g = vf;, there must be no relaxation.
2. The relaxing stress must approach y f; for t — .
3. For short times ¢, Eq. (19) must asymptotically approach the
fib (2010) formula [Eq. (1)].
4. The relaxation curves for different constants &£ must never
cross each other, which requires that ¢(1 — y)h =< 1, where
h = material constant.
For variable strain £(z), the same procedure as before leads from
Eq. (19) to the following improved constitutive relation for arbitrary
strain variation:

E=¢&i+ &y,
. F(e) —vfy 1/k 1—1/k 1-1/k
g:£+< )>kp € (1/“—1) / (20)
E, E, A§l+1/c
where
F(e) —vfy he
{:7” = e 21
s P = Po ( )

k, ¢, py, h = positive empirical constants for the given steel, and p =
empirical function of the current strain £(7), which can be determined
by optimal fitting of the experimental data for various strain levels
(and room temperatures), as shown by the linear regression of data in
Fig. 5. Generally, the value of c can be selected as 2.

For the tests of straight oil-tempered wire [manufactured by
Wickwire Spencer Company, OT Series of Magura et al. (1964)], the
regression result is p, =0.34 and 4 = 0.01. But subsequent steel
relaxation studies (Magura et al. 1964; Buckler and Scribner 1985;
Rostésy and Thienel 1991) show that the value of /1 is very small and
that setting 2 = 0 makes a negligible difference. Therefore, in what
follows, h =0 is used. This not only simplifies the proposed re-
laxation formula but also ensures that the relaxation curves for
different oy never cross. At constant strain, F(¢) = oy = initial
prestress. Note that at variable temperature, the thermal-strain in-
crement aAT must be taken into account according to Eq. (3).

250
_____ Highest prestress
applied in tests
E;
w
B 125
n
1 |
0 : y

i 0,
b) Strain (%)

Fig. 3. (a) Best fit of p,—&j curve; (b) stress-strain curve of the strand used in tests (Buckler and Scribner 1985)
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Fig. 4. Simulations based on Eq. (15) are compared with tests (Buckler and Scribner 1985) for (a) 5% load drop and (b) 10% load drop after 24 h
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Fig. 5. Regression to obtain p based on Eq. (21)

Eq. (19) for constant strain and Eq. (20) for varying strain describe
the test data quite well. Fig. 6 shows a comparison of the computer
integration of Eq. (19) or Eq. (20) for constant strain with the tests of
(1) steel wire (Magura et al. 1964). (2) straight oil-tempered wire
(Magura et al. 1964), and (3) stress-relieved strand (Buckler and
Scribner 1985). Furthermore, Fig. 7 shows a comparison of the
computer integration of Eq. (20) for strain histories with one sudden
stress drop in magnitude of about 5% or 10%, both imposed at
t =24 h (Buckler and Scribner 1985). It can be seen that the new
proposed formula agrees with all these experimental results very well.

Effect of Temperature

An increase in temperature strongly accelerates the flow of metals
and thus also the prestressing steel relaxation. The acceleration may

be characterized by considering time ¢ in all the preceding equations
as the effective (or reduced) time, defined as

dt =Ardr or t= | Ap(r)dr (22)
7'=0
where
_ o 0
Ar(r) = exp {kBTO kBT(Z)} (@)

7 = real time, T'(¢) = absolute temperature at time 7, A7 = Arrhenius
factor (Cottrell 1964), chosen so that Ay =1 at Ty, Tp =298 K =
reference (room) temperature, Q = activation energy of flow of
prestressing steel, and kg = Boltzmann’s constant (kg = 1.381 X
10=2 J/K).InEgs. (15) and (16), At = A7 A7. Egs. (1), (2), and (19)
for constant strain remain valid for any constant temperature 7 # T
if t = AT is substituted.

To calibrate the temperature effect, data from the Shinko Wire
Co., Ltd. (Japan), have been used; see Fig. 8. The times to reach the
loss of 4% for normal relaxation-grade steel have been extracted
from the figure and are shown by the circled points in Fig. 8(b) as the
plotofIn(¢/7) versus 1/T. This plot represents linear regression, and
the slope of the regression line gives Q/kp = 14,600 K. Strictly
speaking, the value of f; and the nonlinear portion of function F/(¢)
are also affected by temperature, but these effects are negligible for
the temperatures caused by sun illumination (they are important for
fire exposure) (Bazant et al. 2008).

Using the constants obtained by fitting relaxation at 20°C by
Eq. (19), one is able to predict the relaxations for different tem-
peratures. As evidenced by Fig. 9, the new proposed Eq. (19)
agrees very well with the data recorded by Shinko. In comparison
with the curve for 20°C, the figure demonstrates that elevated
temperatures due to sun exposure in hot countries can enormously
accelerate the stress relaxation. For example, according to Eq. (19)
for constant strain, it takes 100 years for the initial prestress to drop
by 13% due to relaxation alone at 20°C, but at 40°C the same
prestress loss occurs within 4 years. This time is, in practice, of
course, roughly doubled because the temperature fluctuates daily
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Fig. 6. Simulations based on Eq. (20) are compared with tests under constant strain (Buckler and Scribner 1985; Magura et al. 1964)
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between 40 and 20°C. Integration of ¢ from Eq. (22) gives the same
degree of relaxation within about 8 years.

This observation reveals that at locations where the sunshine can
heat the pavement substantially, the tendons in the top slab should be
placed as deep below the top surface as possible, and the pavement
should have the lowest possible thermal conductivity or contain an
insulating layer. The acceleration of prestress loss by elevated tem-
perature means that the threshold yf; can be approached closely
within real lifetimes and that the condition of no crossing of re-
laxation curves can become important. Therefore, in the case of
elevated temperatures, Eq. (20) must be used instead of Eq. (10).

Similarly, Eqs. (19) and (22) are compared with the tests con-
ducted by Rostdsy and Thienel (1991). Unlike the data from Shinko,
the highest temperature used in their tests reached 175°C, and so the

= 1000
o
=
&
g 960
&

920

Shinko
880 T T
1 10 100 1000

(a) Time (hours)

effect of temperature on the yield strength must be considered in the
fitting of these data. In Fig. 9 it can be seen that the prediction agrees
with the test data very well for temperatures from 20 to 175°C.
Furthermore, the relaxation formulas proposed here are also
compared with the relaxation tests under stepwise heating. The
temperature history used in Rostdsy and Thienel’s (1991) tests is
reproduced in Fig. 10. In these tests, the thermal expansion due to
temperature change is eliminated from the total strain, and the
mechanically induced initial strain is kept constant. Beside the
thermal expansion, it is also well known that heating will increase
the inelastic strain in the steel. Here it is assumed that for heating by
1 degree, the increase in the average inelastic strain increase is
2.8 X 107°. Then, when compared with the tests, the predictions
based on Egs. (19) and (22) seem to be acceptable; see Fig. 10.
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Fig. 9. Predictions based on material constants identified from tests at 20°C: (a) for Shinko tests; (b) for Rostasy and Thienel (1991) tests
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Fig. 10. Predictions of the proposed formula compared with the tests at stepwise heating
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To generalize Eq. (20) to variable temperature, the thermal ex-
pansion rate a7 has been added to the right-hand side and it was
assumed that the accumulated strain rate should not be subtracted
from total strain ¢ in function Fe.

Furthermore, it was noted (M. Jirdsek, personal communica-
tion, Jan. 1, 2013) that, during cooling, the calculation of { in Eq.
(21) could in general cause { <1. In that case, the power function
of the parenthetic expression in Eq. (20) would become un-
defined. Therefore, in programming, { must not be allowed to
drop below some constant close to 1. For example, it can be
replaced with (£“*' 4+ 1.01)/(£* + 1), where u is a positive con-
stant. This is, of course, only an ad hoc trick to prevent the program
from crashing, but new test data would be needed to validate this
experimentally.

Main Points and Conclusions

1. A constitutive equation for steel relaxation at variable strain
and variable temperature has been developed on the basis of
metal viscoplasticity and the activation-energy theory.

2. The new constitutive equation amalgamates and extends the
steel relaxation formulas for constant strain and constant
temperature used in the European design code and American
practice.

3. The resulting steel relaxation formula is a memoryless equa-
tion for the viscoplastic strain rate of steel as a function of the
current stress, strain, and temperature.

4. Satisfactory agreement has been attained with the main exist-
ing test data for prestressing steel. Calibration of the coeffi-
cients of the constitutive equation according to data for the
particular prestressing steel to be used is advisable.

5. Inlarge-span structures of high creep sensitivity dominated by
self-weight, the prestress loss due to steel relaxation cannot be
separated from the analysis of concrete creep and shrinkage
effects in the structure. The concrete creep and shrinkage
affect the steel relaxation, and the steel relaxation affects the
concrete creep.

6. The rate form of the equation makes it easy to use in step-
by-step FEM programs for creep analysis of concrete struc-
tures. However, linear viscoelastic creep analysis based
on the principle of superposition is insufficient to deter-
mine the effects of steel relaxation at variable strain and
temperature because the viscoplastic constitutive equation is
nonlinear.

7. The present refinement of the steel relaxation formula is
important for large concrete structures of high creep
sensitivity.

8. The existing experimental evidence for the relaxation of
prestressing steel at varying strain and varying temperature
is quite limited. Further tests would be useful. The manu-
facturers should conduct their relaxation tests not only at
room temperature but also at an elevated temperature such
as 40°C.
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