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RELAXATION OF SINGULAR FUNCTIONALS DEFINED
ON SOBOLEV SPACES

Hafedh Ben Belgacem
1

Abstract. In this paper, we consider a Borel measurable function on the space of m×n matrices
f :Mm×n→R̄taking the value +∞, such that its rank-one-convex envelope Rf is finite and satisfies for
some fixed p>1:

−c0≤Rf(F )≤c(1+‖F‖p) for all F∈Mm×n,

where c,c0>0. Let Ω be a given regular bounded open domain of Rn. We define on W1,p(Ω;Rm) the
functional

I(u)=
R
Ω f(∇u(x)) dx.

Then, under some technical restrictions on f, we show that the relaxed functional Ī for the weak
topology of W1,p(Ω;Rm) has the integral representation:

Ī(u)=
R
ΩQ[Rf ](∇u(x)) dx,

where for a given function g, Qg denotes its quasiconvex envelope.

Résumé. On considère une fonction Borel mesurable f : Mm×n → R qui prend la valeur +∞,
dont l’enveloppe rang-1-convexe Rf est finie et satisfait pour un certain p > 1, −c0 ≤ Rf(F )
≤ c(1 + ‖F‖p),∀F ∈ Mm×n, avec c, c0 > 0 fixés. Étant donné un ouvert borné Ω de Rn , on introduit
la fonctionnelle I(u) :=

R
Ω
f(∇u(x)) dx, pour u ∈ W 1,p(Ω;Rm). On montre alors sous quelques hy-

pothèses supplémentaires concernant f , que la relaxée Ī de I pour la topolgie faible de W 1,p(Ω;Rm)
admet la représentation suivante : Ī(u) =

R
Ω
QRf(∇u(x)) dx, où pour une fonction donnée g, Qg

désigne son enveloppe quasi-convexe.
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1. Introduction

Let n,m ≥ 1 be two integers, Mm×n be the space of m×n real matrices endowed with the topology of Rnm,
and Ω ⊂ Rn be an open bounded subset. Let f : Mm×n →R be a Borel measurable function taking the value
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+∞, such that its rank-one-convex envelope Rf is everywhere finite. We introduce the functional

I(u) =
∫

Ω

f(∇u(x)) dx for u ∈W 1,p(Ω;Rm).

This functional is singular in the following sense: since f takes the value +∞ and its rank-one-convex envelope
Rf is everywhere finite, it follows that f cannot be rank-one-convex. Thus, using a result due to Tartar [30],
we conclude that I is not sequentially weakly lower semi-continuous on W 1,p(Ω;Rm).

It is usual in the calculus of variations to introduce the relaxed functional associated with I. In the case
when f is everywhere finite and satisfies the bound from below and growth assumption

−c0 ≤ f(F ) ≤ c(1 + ‖F‖p) for all F ∈Mm×n, (1.1)

Acerbi and Fusco [3] showed that the relaxed functional Ī of I admits the integral representation

Ī(u) =
∫

Ω

Qf(∇u(x)) dx, ∀u ∈W 1,p(Ω;Rm).

Let us emphasize that this formula is only applicable in the finite case, see Ball and Murat [5] for a counter-
example with functions that take the value +∞. More precisely, in the general case i.e., when f takes the value
+∞, it is known that Qf may give rise to a functional that is not weakly lower semi-continuous, see the above
counter-example.

Our main result is that if f takes the value +∞ but Rf is everywhere finite and satisfies (1.1), then the
relaxed functional admits the integral representation:

Ī(u) =
∫

Ω

Q[Rf ](∇u(x)) dx

under a few additional technical restrictions. In the proof, the main difficulty is to show that

Ī(u) ≤
∫

Ω

Rf(∇u(x)) dx, for all piecewise affine functions. (1.2)

We essentially use the results of Ball and Murat [5], Fonseca [16] and a characterization of the rank-one-convex
envelope Rf due to Kohn and Strang [19, 20] to prove formula (1.2).

In Section 4, we will be concerned with the one-dimensional case. We thus recover the result of Acerbi et al.
[1], and we give a generalization dealing with functions f : Rm −→R, such that the convex envelope f∗∗ satisfies
for some 1 < q ≤ p, the following assumption:

c′|z|q − c0 ≤ f∗∗(z) ≤ c(1 + |z|p),∀z ∈ Rm,

where c, c′, c0 > 0 are fixed.
In Section 5, we give some applications to nonlinear elasticity that have to do with the stored-energy density

for membranes (n = 2,m = 3) and strings (n = 1,m = 3).
Let us recall that the main impetus for all of those models was provided by the paper of Acerbi et al. [1].

These authors deal with strings, i.e., one-dimensional models, and use the tools of Γ–convergence theory to
derive their result from genuine three-dimensional elasticity.

For two-dimensional models, Le Dret and Raoult [21, 22] used Γ–convergence techniques to obtain a nonlinear
membrane model from a three dimensional hyperelastic body, whose stored energy function W : M3×3 −→ R
is everywhere finite. They showed that the stored energy function of the membrane is of the form QW0, where
W0 : M3×2 −→ R is deduced from the function W .



RELAXATION OF SINGULAR FUNCTIONALS DEFINED ON SOBOLEV SPACES 73

Here, we will be primarily concerned with the two-dimensional case, and we give a generalization to the case:
W : M3×3 −→R satisfying the natural assumption: W (F ) = +∞ if and only if detF ≤ 0.

We show that using our relaxation result, the stored energy function of the membrane that we obtain is equal
to Q[RW0]. Here the auxiliary function W0 : M3×2 −→R is such that W0(F ) = +∞ if and only if rank(F ) < 2.

We close this paper by showing how the study developed in Section 4 allow us to consider the case of strings
for a large class of hyperelastic materials, namely those of Ogden [28].

2. Preliminaries

Throughout this section g : Mm×n −→R is a Borel measurable, bounded below function.

Definition 2.1. The function g is said to be quasiconvex if for all F ∈Mm×n

g(F ) ≤ 1
meas(D)

∫
D

g(F +∇φ(x)) dx (2.1)

for every bounded open set D ⊂ Rn with meas(∂D) = 0, and for all φ ∈W 1,∞
0 (D;Rm).

For a ∈ Rm and b ∈ Rn, we denote by a⊗ b the rank-one-matrix (aibj)1≤i≤m,1≤j≤n.

Definition 2.2. The function g is said to be rank-one-convex if for all F ∈Mm×n

g(F ) ≤ (1− λ)g(F − λa⊗ b) + λg(F + (1− λ)a⊗ b) (2.2)

for all λ ∈ [0, 1], a ∈ Rn and b ∈ Rm.

It is well known that rank-one-convexity follows from quasiconvexity for finite functions, see Dacorogna [11–
13] and Morrey [25, 26]. Ball and Murat [5] remarked that this is still true for continuous bounded below
functions attaining the value +∞. In addition, let us define for a function g, the effective domain to be

De(g) := {F ∈Mm×n; g(F ) is finite }·

In [16], Fonseca showed,

Theorem 2.3. Let g : Mm×n −→R be Borel measurable, bounded below and quasiconvex. Then g is rank-one-
convex at every matrix F belonging to the interior of its effective domain.

Remark. As a consequence of this theorem, it follows that a quasiconvex function is continuous on the interior
of its effective domain. Thus, using Corollary 3.2. in Dacorogna and Marcellini [14] , and Proposition 2 in Ball
and James [6], one can show that the interior of the effective domain of a quasiconvex function is lamination
convex. Let us recall that a set K is lamination convex if for every A,B ∈ K such that rank A − B ≤ 1, then
(1− λ)A+ λB ∈ K,∀λ ∈ [0, 1].

We now define the quasiconvex (resp. rank-one-convex) envelope, and we denote by Qg (resp. Rg), the
largest quasiconvex (resp. rank-one-convex) function less than or equal to g. The quasiconvex envelope Qg of a
continuous function g : Mm×n −→ R admits a representation obtained by Dacorogna [12, 13]. More precisely:

Theorem 2.4. Let g : Mm×n −→ R be continuous and bounded below. If D ⊂ Rn is an open bounded set with
meas(∂D) = 0 then

Qg(F ) = inf
{

1
meas(D)

∫
D

g(F +∇φ(x)) dx;φ ∈W 1,∞
0 (D;Rm)

}
(2.3)

for all F ∈Mm×n.
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We do not know whether an analog of Theorem 2.4 holds for Borel measurable functions attaining the value
+∞. Let us define

ZDg(F ) := inf
{

1
meas(D)

∫
D

g(F +∇φ(x)) dx;φ ∈W 1,∞
0 (D;Rm)

}
(2.4)

where F ∈Mm×n and D ⊂ Rm is an open bounded set with meas(∂D) = 0. If D = [0, 1]n then ZDg is denoted
by Zg. Since

Qg ≤ ZDg ≤ g,
(2.3) is satisfied if and only if ZDg is quasiconvex.

Following Ball and Murat [5], it is easy to show that:

Lemma 2.5. We have:
ZDg(F ) = Zg(F ) for all F ∈Mm×n. (2.5)

In the case when g : Mm×n −→R is Borel measurable and bounded below, we do not know if Zg is quasiconvex.
Moreover, following Fonseca [16], we have

Lemma 2.6. Let g be as above, then i) Let D ⊂ Rn be an open bounded set with meas (∂D) = 0. If ξ ∈
W 1,∞

0 (D;Rm) is a piecewise affine function then

Zg(F ) ≤ 1
meas(D)

∫
D

Zg(F +∇ξ(x)) dx (2.6)

for all F ∈Mm×n.
ii) The function Zg is rank-one-convex at every matrix F ∈ int De(g).

Remark. Since the proofs of Lemmas 2.5 and 2.6 require the Vitali covering theorem, we are no longer sure
that they are valid if in formula (2.4), we replace W 1,∞

0 (D;Rm) by the subclass of piecewise affine functions. A
new class of functions will be needed that is larger than the set of piecewise affine functions.

Definition 2.7. Let D ⊂ Rn be an open bounded subset, a function φ ∈ W 1,∞(D;Rm) is said to be Vitali
piecewise affine on D if and only if the following conditions are satisfied:

(i) Card{∇u(y); y ∈ D} is finite,
(ii) there exists a countable family of open disjoint subsets (Oi)i∈I with meas(∂Oi) = 0 for all i ∈ I and

meas(D \ ∪i∈IOi) = 0, such that the restriction of φ to Oi is affine.

As an example of such a function, let D be an open subset of Rn, and consider a piecewise affine function u on
the unit ball B(0, 1) with u = 0 on ∂B(0, 1). By the Vitali covering theorem, there exists a finite or countable
disjoint sequence ai + εiB̄(0, 1) of subsets of D, where ai ∈ Rn and 0 < εi < 1, such that

meas(D \
⋃
i

(ai + εiB̄(0, 1)) = 0.

Let us define on D, the function

v(x) :=
{
εiu(x−aiεi

), if x ∈ ai + εiB̄(0, 1),
0, otherwise.

Clearly, the function v thus constructed is Vitali piecewise affine on D.
We introduce for each bounded domain D, the subspace

V0(D;Rm) :=
{
φ is Vitali piecewise affine on D and φ = 0 on ∂D

}
·
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Now, let g be a given function, we define

ZVDg(F ) := inf
{

1
meas(D)

∫
D

g(F +∇φ(x)) dx;φ ∈ V0(D;Rm)
}
, (2.7)

for each open bounded subset D with meas (∂D) = 0. As in the above lemmas, we claim that

Proposition 2.8. The function ZVDg satisfies the following:
i) Let D ⊂ Rn be an open bounded set with meas(∂D) = 0, then ZVDg(F ) = ZV g(F ) for all F ∈Mm×n.
ii) Let D ⊂ Rn be an open bounded set with meas (∂D) = 0. If ξ ∈W 1,∞

0 (D;Rm) is a Vitali piecewise affine
function, then

ZV g(F ) ≤ 1
meas(D)

∫
D

ZV g(F +∇ξ(x)) dx (2.8)

for all F ∈Mm×n.
iii) ZV g is rank-one-convex on the interior of its effective domain.

Proof. We only sketch it, since part i) follows exactly the lines of Ball and Murat [5] Proposition 2.3. Part
ii) is based on the Vitali covering theorem. Finally, for part iii), an examination of the details of the proof
of the Theorem 2.4 in Fonseca [16] shows that the conclusion wil remain valid if quasiconvexity is replaced by
condition (2.8).

Remark. We see at once that ZV g is larger than Dacorogna’s function Zg. However, since ZV g is less then
g, its effective domain may be greater than the one of g. Therefore, the set where ZV g is rank-one-convex is
larger than the one of Zg.

Now, we recall an algorithm due to Kohn and Strang [19, 20] for computing the rank-one-convex envelope of
a function.

Proposition 2.9. Let g be a Borel measurable function and bounded below. Define the sequence (Ri(g))i∈N by
R0g = g and

Ri+1g(F ) = inf{(1− λ)Rig(F − λa⊗ b) + λRig(F + (1− λ)a⊗ b); for all λ ∈ [0, 1], a ∈ Rm and b ∈ Rn}, (2.9)

for i ≥ 1.
Then for all F ∈Mm×n, the sequence (Rig(F ))i∈N decreases to Rg(F ).

Finally, we give a characterization of Q[Rf ] for a function f whose rank-one-convex envelope is everywhere
finite.

Let g : Mm×n −→R be Borel measurable and bounded below, Ω ⊂ Rn be an open bounded domain with
regular bound.

We consider for some fixed p > 1, the functional

J(u) :=
∫

Ω

g(∇u(x)) dx

for all u ∈W 1,p(Ω;Rm). Ball and Murat [5] showed,

Theorem 2.10. Let us suppose that J is sequentially weakly lower semi-continuous on W 1,p(Ω;Rm). Then g
is lower semi-continuous, and

g

(
1

meas(Q)

∫
Q

∇v(x) dx
)
≤ 1

meas(Q)

∫
Q

g(∇v(x)) dx (2.10)

for every n-cube Q and for all v ∈W 1,p
loc (Rn;Rm) such that ∇v is Q-periodic.
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Note that formula (2.10) implies that g is at the same time quasiconvex and rank-one-convex. We thus claim,

Proposition 2.11. Let f : Mm×n −→R be a Borel measurable, bounded below function taking the value +∞,
such that its rank-one-convex envelope Rf is everywhere finite and satisfies the following growth assumption:

Rf(F ) ≤ c(1 + ‖F‖p) for all F ∈Mm×n

where c > 0 is fixed. Then,
Q[Rf ](F ) = sup{h(F );h ≤ f satisfying (2.10)}

for all F ∈Mm×n.

3. Relaxation

Let f : Mm×n →R be Borel measurable, bounded below with the following hypotheses:

(H1) the open set Of := int
{
F ∈Mm×n;ZV [Rif ](F ) ≤ Ri+1f(F ), for all i integer

}
is dense in Mm×n.

(H2) For each F ∈Mm×n and i ≥ 1 fixed,

lim sup
ε→0+

Rif(Fε) ≤ Rif(F ),

whenever (Fε)ε>0 belongs to Of , Fε −→ F when ε→ 0.

(H3) The rank-one-convex envelope Rf is everywhere finite and satisfies for some fixed p > 1 the following
growth assumption:

Rf(F ) ≤ c(1 + ‖F‖p), for all F ∈Mm×n, (3.1)
where c > 0.

Let us consider the functional on W 1,p(Ω;Rm) with values inR

I(u) :=
∫

Ω

f(∇u(x)) dx. (3.2)

We denote Ī its relaxed functional for the weak topology of W 1,p(Ω;Rm).
Let us now state our main result,

Theorem 3.1. Let f satisfy (H1), (H2) and (H3). Then the relaxed functional admits the integral representation

Ī(u) =
∫

Ω

Q[Rf ](∇u(x)) dx. (3.3)

Remarks. (i) Here the quasiconvex envelope that is computed is not that of f but that of the rank-one-convex
envelope of f . Indeed, the quasiconvex envelope may give rise to a non lower semi-continuous functional.
Moreover, when f is everywhere finite, we can easily see that Q[Rf ] = Qf , and we thus recover Acerbi and
Fusco’s relaxation theorem [2].

(ii) A prototype example, which derives from nonlinear elasticity, is the case of strings n = 1,m = 3 and mem-
branes n = 2,m = 3, where f takes the value +∞ only on the set of matrices F ∈Mm×n such that rank(F ) < n.

(iii) The upper semicontinuity hypothesis (H2) of the sequence of functions (Rif)i∈N∗ can be satisfied, even
if f fails to be upper semi-continuous on Mm×n. Indeed, only the upper semicontinuity of the restriction of
f to its effective domain De(f), together with some geometric considerations on the connected compenents of
this set, can be sufficient to obtain upper semicontinuity of the sequence of the Kohn and Strang algorithm.
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(iv) In the restrictive technical condition (H1) inequality is not strict, so the finiteness of ZV [Rif ] is not
required. It guarantees the strong density in W 1,p(Ω;Rm), of the class {u is Vitali piecewise affine;∇u(x) ∈
Of a.e. in Ω}. More precisely, we have

Lemma 3.2. Let (A)j∈J be a finite family of matrices on Mm×n, then for all η > 0 there exists a matrix
F ∈Mm×n with ‖F‖ < η , such that

Aj + F ∈ Of , for all j ∈ J.

Proof. Let (Aj)j∈J be a given family. We define for each j ∈ J , the open subset

Oj := −Aj +Of .

Since Of is dense on Mm×n, we infer that Oj is dense for each j ∈ J . Let us now consider the intersection
∩j∈JOj . Thus, using a standard topological argument, we conclude that it is also dense on Mm×n. And, in
particular 0 is one of its limit points. This yields that for all η > 0, their exists F ∈ ∩j∈JOj , such that ‖F‖ < η.
From the definition of (Oj)j∈J , we obtain that Aj + F ∈ Of for all j ∈ J .

Let us now give the proof of Theorem 3.1.

Proof. First of all, let us consider the functional

J(u) =
∫

Ω

Q[Rf ](∇u(x)) dx

defined for all u ∈W 1,p(Ω;Rm). It is easy to see that this functional is sequentially weakly lower semi-continuous
on W 1,p(Ω;Rm) and below I. Therefore,∫

Ω

Q[Rf ](∇u(x)) dx ≤ Ī(u), for all u ∈W 1,p(Ω;Rm). (3.4)

Due to this inequality, the proof of (3.3) will be complete once we have shown the reverse inequality

Ī(u) ≤
∫

Ω

Q[Rf ](∇u(x)) dx. (3.5)

The proof follows in five steps.

Step 1. We claim that

Claim 3.3. For every Vitali piecewise affine function u such that ∇u(x) ∈ Of a.e. in Ω, we have

Ī(u) ≤
∫

Ω

Rif(∇u(x)) dx, (3.6)

for all integers i.

Proof of the claim. The proof is by induction on i.
First, let us recall that for i = 0, R0f = f and there is nothing to show.
Now, let us assume that for some i ≥ 0, formula (3.6) holds for each Vitali piecewise affine function u, such

that ∇u(x) ∈ Of a.e. x ∈ Ω. Thus, we have to prove that it is still valid for i+ 1.
Let u be as above, we denote by (Aj)j∈J the values of the gradient of u, and (Ok)k∈K the partition of Ω

corresponding to u. We will also suppose that Ri+1f(Aj) < ∞, otherwise (3.6) is trivial. Let ε > 0 be fixed,
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From the definition of ZV [Rif ] and Proposition 2.8, it follows that there exists a family of Vitali piecewise affine
functions (φj)j∈J belonging to W 1,∞

0 (Q;Rm), where Q denotes the unit open cube of Rn, such that

1
meas(Q)

∫
Q

Rif(Aj +∇φj(x)) dx ≤ ZV [Rif ](Aj) + ε, for each j ∈ J. (3.7)

For each j ∈ J , we extend φj by periodicity to Rn and define the sequence (φj(r))r≥1 by

φj(r)(x) := r−1φj(rx),∀x ∈ Rn.

Now, for each fixed k ∈ K, we recall that u is affine on Ok, so there exists j ∈ J such that ∇u(x) = Aj for
almost all x ∈ Ok. By applying the Vitali covering theorem, we obtain that there exists a countable disjoint
family ask + αskQ of subsets of Ok, where ask ∈ Rn and 0 < αsk < 1, such that

meas

(
Ok \

⋃
s

(ask + αskQ̄)

)
= 0.

Let s be fixed, we consider on ask + αskQ the function

φsk,j(r)(x) := αskφj(r)
(
x− ask
αsk

)
·

Let us now introduce on Ω the sequence (φ(r))r∈N∗ , as the following:

φ(r)(x) :=
{
φsk,j(r)(x), if x ∈ ask + αskQ,

0, otherwise.

Let us denote by φ = φ(1), we remark that this constructed sequence of Vitali piecewise affine functions satisfies
for all r ∈ N∗ the following:∫

Ω

Rif(∇u(x) +∇φ(r)(x)) dx =
∫

Ω

Rif(∇u(x) +∇φ(x)) dx ≤
∫

Ω

ZV [Rif ](∇u(x)) dx+ εmeas(Ω). (3.8)

In addition, φ(r) ∗⇀ 0 in W 1,∞(Ω;Rm) when r → +∞.

Now, we use Lemma 3.2 to conclude that, for each η > 0 there exists a matrix Fη ∈ B(0, η) such that:

∇u(x) +∇φ(x) + Fη ∈ Of , a.e x ∈ Ω.

Let us denote by Lη the linear map Lη(x) := Fηx, and consider for each fixed r ∈ N∗, the Vitali piecewise affine
function ψη(r) := u+ φ(r) + Lη. The induction argument yields:

Ī(ψη(r)) ≤
∫

Ω

Rif(∇ψη(r)(x)) dx.

Since the right hand side is constant in r, and equal to
∫

Ω
Rif(∇u(x) +∇φ(x) + Fη) dx, we obtain that:

Ī(ψη(r)) ≤
∫

Ω

Rif(∇u(x) + φ(x) + Fη) dx.

By passing to the limit when r → +∞, we conclude that:

Ī(u+ Lη) ≤
∫

Ω

Rif(∇u(x) +∇φ(x) + Fη) dx,
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for all η > 0. Now, to pass to the limit when η → 0, we recall that for each fixed η > 0, ψη := u+φ+Lη is Vitali
piecewise affine satisfying ∇ψη ∈ Of a.e. x ∈ Ω. This implies that the right hand side of last inequality is a
convex combination whose members are the values of Rif on matrices belonging to Of . Thus, using hypothesis
(H2) on Rif , we conclude that:

Ī(u) ≤ lim inf
η→0+

Ī(u+ Lη) ≤ lim sup
η→0+

Ī(u+ Lη) ≤ lim sup
η→0+

∫
Ω

Rif(∇u(x) +∇φ(x) + Fη) dx

≤
∫

Ω

Rif(∇u(x) +∇φ(x)) dx.

This combined with (3.8), implies

Ī(u) ≤
∫

Ω

ZV [Rif ](∇u(x)) dx+ ε meas(Ω).

Now, let us recall that ∇u(x) ∈ Of for almost all x ∈ Ω, and in particular

ZV [Rif ](∇u(x)) ≤ Ri+1f(∇u(x))

for almost all x ∈ Ω. We thus conclude that

Ī(u) ≤
∫

Ω

Ri+1f(∇u(x)) dx + ε meas(Ω).

Now, due to the arbitrariness of ε, it follows that

Ī(u) ≤
∫

Ω

Ri+1f(∇u(x)) dx,

for each Vitali piecewise affine function u ∈W 1,∞(Ω;Rm), such that ∇u(x) belongs to Of for a.e. x ∈ Ω, which
completes the proof of the claim.

Step 2. Let u be as above, we assert that:

Ī(u) ≤
∫

Ω

Rf(∇u(x)) dx. (3.9)

Indeed, let u be such a function, we recall that Card{∇u(x), x ∈ Ω} is finite.
Now, taking account of this fact and the finiteness of the rank-one-convex envelope Rf , we deduce with the

use of the Kohn and Strang algorithm, that the decreasing sequence (Rif(∇u(.)))i∈N is everywhere finite from
some i0. Therefore, formula (3.9) follows by applying the Lebesgue monotone convergence theorem to (3.6).

Step 3. Let us now show that

Ī(u) ≤
∫

Ω

Rf(∇u(x)) dx (3.10)

for each Vitali piecewise affine function u.
Let u be such a function.
First, from Lemma 3.2 we infer that there exists a sequence of Vitali piecewise affine functions (us)s∈N with

∇us(x) ∈ Of a.e. x ∈ Ω and us
s→+∞−→ u in W 1,∞(Ω;Rm).
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Second, by the previous step, we have

Ī(us) ≤
∫

Ω

Rf(∇us(x)) dx,

for all s ∈ N.
To conclude, since Rf is everywhere finite and rank-one-convex, it follows with the use of a standard argument

of convex analysis, that it is continuous, and thus

Ī(u) ≤
∫

Ω

Rf(∇u(x)) dx.

Step 4. We claim that formula (3.10) holds for all u ∈W 1,p(Ω;Rm).
Indeed, the growth assumption on the rank-one-convex envelope Rf

Rf(F ) ≤ c(1 + ‖F‖p), for all F ∈Mm×n

implies that the right hand side of (3.10) is continuous on W 1,p(Ω;Rm) endowed with its strong topology.
To conclude, we thus only have to use the density of the class of Vitali piecewise affine functions in

W 1,p(Ω;Rm) together with the dominated convergence theorem.

Step 5. The proof of formula (3.5) is an immediate consequence of Acerbi and Fusco’s relaxation theorem
applied together with the dominated convergence theorem, to the functional

u 7→
∫

Ω

Rf(∇u(x)) dx.

�

Remarks. Let us make a few more comments about the hypotheses of the theorem.
(i) Since for the range i = 1, the proof of formula (3.6) is the same as of the preceeding, without the use of

hypothesis (H2), so in hypothesis (H1) one can take Of as the following:

int{F ∈Mm×n;Zf(F ) ≤ R1f(F )} ∩ int{F ∈Mm×n;ZV [Rif ](F ) ≤ Ri+1f(F ) for each i ≥ 1},

where Zf denotes Dacorogna’s function.
(ii) Hypothesis (H2) is not needed if Of is equal to Mm×n.

4. The one-dimensional case

Let us take n = 1 and p > 1, and consider a Borel measurable function f : Rm →R, such that its convex
envelope is everywhere finite and satisfies for some c, c0 > 0 the bound from below and growth assumption:

−c0 ≤ f∗∗(z) ≤ c(1 + |z|p), for all z ∈ Rm. (4.1)

Here, since n = 1, we do not need to impose the restrictive conditions (H1) and (H2), to apply our relaxation
result, and we thus generalize Acerbi et al.’s result.

Now, we give a more general result. Let us consider a Borel measurable function f : Rm −→R, such that its
convex envelope f∗∗ satisfies for some fixed 1 < q ≤ p, the following growth and coercivity hypotheses:

c′|z|q − c0 ≤ f∗∗(z) ≤ c(1 + |z|p), (4.2)
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where c, c′, c0 > 0 are a given constants. As in Marcellini [24] and Fonseca [17], we introduce:

Ĩ(u) = inf
{

lim inf
s→0

∫ 1

0

f(u′s(x)) dx|us ∈W 1,p(]0, 1[;Rm), us ⇀ u in W 1,q(]0, 1[;Rm)
}
· (4.3)

Let us state the main result of this section:

Theorem 4.1. Let f be as above, then the relaxed functional admits the integral representation:

Ĩ(u) =
∫ 1

0

f∗∗(u′(x)) dx, for all u ∈W 1,q(]0, 1[;Rm). (4.4)

Remarks. (i) Here the relaxation is given with respect to the exponent of coerciveness, which is coherent
with the corresponding minimization problem.

(ii) The result obtained here is a special case of a more general one etablished by Fonseca and Malý in [18 ].
Before proving the theorem, we first consider the functional:

J(u) :=
∫ 1

0

f∗∗(u′(x)) dx, (4.5)

defined for every u ∈W 1,q(]0, 1[;Rm).
Following Marcellini [24], we have:

Proposition 4.2. If (4.2) holds, then for each u ∈W 1,q(]0, 1[;Rm), we have

J(u) ≤ lim inf
s→+∞

J(us),

whenever (us)s∈N ⊂W 1,p(]0, 1[;Rm), such that us → u in W 1,q(]0, 1[;Rm) as s→ +∞.

As an immediate consequence of the last proposition, we obtain that∫ 1

0

f∗∗(u′(x)) dx ≤ Ĩ(u), (4.6)

for all u ∈W 1,q(]0, 1[;Rm).
Thus, the proof of the theorem is complete once we show:

Proposition 4.3. Let f be as above, then:

Ĩ(u) ≤
∫ 1

0

f∗∗(u′(x)) dx, (4.7)

for each u ∈W 1,q(]0, 1[;Rm).

The proof of formula (4.7) is based on the following lemma:

Lemma 4.4. Let h : Rm −→ R be convex and bounded below. Then, for each u ∈ W 1,1(]0, 1[;Rm) satisfying∫ 1

0 h(u′(x)) dx is finite, there exists a sequence (us)s∈N∗ ⊂ C∞([0, 1];Rm), such that when s→ +∞:

‖us − u‖W1,1(]0,1[;Rm) −→ 0,
∫ 1

0

h(u′s(x)) dx −→
∫ 1

0

h(u′(x)) dx.
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See Ekeland et Temam [15] for the proof. Note that the conclusion of this lemma also holds in W 1,q(]0, 1[;Rm)
for each q ∈]1,+∞[.

Proof of Proposition 4.3. First of all, let u ∈W 1,p(]0, 1[;Rm) be fixed, we can easily see that:

Ĩ(u) ≤
∫ 1

0

f∗∗(u′(x)) dx.

Thus, by combining with formula (4.6), we infer that:

Ĩ(u) =
∫ 1

0

f∗∗(u′(x)) dx (4.8)

for all u ∈W 1,p(]0, 1[;Rm).
Let us now consider any u ∈ W 1,q(]0, 1[;Rm). Since in the case when

∫ 1

0
f∗∗(u′(x))

dx = +∞ there is nothing to show, we may also assume that
∫ 1

0
f∗∗(u′(x)) dx is finite. Following Lemma 4.3,

there exists a sequence (us)s∈N ∈ C∞([0, 1];Rm), such that when s→ +∞ the following holds:

‖us − u‖W1,q(]0,1[;Rm) −→ 0,
∫ 1

0

f∗∗(u′s(x)) dx −→
∫ 1

0

(u′(x)) dx.

From formula (4.8), we have:

Ĩ(us) =
∫ 1

0

f∗∗(u′s(x)) dx

for all s ∈ N.
By passing to the inferior limit, we obtain:

Ĩ(u) ≤ lim inf
s→+∞

Ĩ(us) = lim
s→+∞

∫ 1

0

f∗∗(u′s(x)) dx =
∫ 1

0

f∗∗(u′(x)) dx.

This implies that:

Ĩ(u) ≤
∫ 1

0

f∗∗(u′(x)) dx.

Finally, note that this generalization will be not true in the general multidimensional case n,m ≥ 2, see Ball
and Murat [5], Fonseca and Malý [18] and Bouchitté et al. [9].

5. Applications to nonlinear elasticity

Some nonlinear models for elastic thin structures were developed using variationals methods in the work of
Acerbi et al. [1] for strings, Anzellotti et al. [2], Le Dret and Raoult [21, 22] for membranes with finite energy,
Ben Belgacem [7, 8] for a generalization to more realistic cases.

Let W be the stored energy function of an homogeneous hyperelastic material. As is usual in nonlinear
elasticity, we assume that:

i) W : M3×3 →R is continuous and bounded below,
ii) W (F ) = +∞ if and only if detF ≤ 0 and W (F )→ +∞ when detF → 0+.
The latter restriction is imposed to prevent local interpenetration of matter. We now give two applications.
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5.1. Elastic membranes (n = 2, m = 3)
As in [21, 22] and [7, 8], we define for F ∈M3×2 the auxiliary function:

W0(F ) = inf
z∈R3

W ((F |z)), (5.1)

where (F |z) denotes the matrix of M3×3 whose third column is z.
From hypothesis ii) it follows that

W0(F ) = +∞ if and only if rank F < 2.

Which implies that that the effective domain of W0 is De(W0) = {F ∈ M3×2; rank F = 2}. The density of
the class of matrices of maximal rank in M3×2 implies that De(W0) is everywhere dense and condition (H1) is
satisfied with OW0 = De(W0).

Now, since W is continuous, it follows that W0 is upper semi-continuous on M3×2. This implies that RiW0

is upper semi-continuous for all i ∈ N and condition (H2) is satisfied.
To obtain the growth assumption on RW0, let us suppose that W satisfies the additional hypothesis for some

fixed p > 1:
∀δ > 0,∃Cδ > 0;∀F ∈M3×3 with detF ≥ δ,W (F ) ≤ Cδ(1 + ‖F‖p). (5.2)

This implies that W0 satisfies:

∀δ > 0,∃Cδ > 0;∀F ∈M3×2 with det(FTF ) ≥ δ,W0(F ) ≤ Cδ(1 + ‖F‖p). (5.3)

Now, after some elementary computation, we obtain that:

R2W0(F ) ≤ C(1 + ‖F‖p)∀F ∈M3×2,

for some fixed C > 0.
This yields, that RW0 satisfies:

RW0(F ) ≤ C(1 + ‖F‖p), for all F ∈M3×2.

Let us now consider the functional:

I(u) =
∫
ω

W0(∇u(x)) dx,

Using our relaxation result, we obtain that:

Ī(u) =
∫
ω

Q[RW0](∇u(x)) dx, (5.3)

which is the nonlinear membrane internal energy.

5.2. Elastic strings (n = 1 and m = 3)
Using the same approach as the case of membranes, we let

W0(z) = inf
a,b∈R3

W ((z|a|b)), (5.4)

and the nonlinear string energy is given by

Ī(u) =
∫ 1

0

W ∗∗0 (u′(x)) dx. (5.5)
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Now, we show how our relaxation result allow us to consider a large class of hyperelastic materials, such as
those of Ogden.

For a given matrix F ∈ M3×3, let us denote by 0 ≤ v1 ≤ v2 ≤ v3 its singular values. The stored energy
function of an Ogden material is as follows:

W (F ) :=
M∑
i=1

ai

vαi1 + vαi2 + vαi3 ) +
N∑
j=1

bj(v
βj
1 v

βj
2 + v

βj
1 v

βj
3 + v

βj
2 v

βj
3

+ Γ(v1v2v3),

where ai > 0, bj > 0, αi ≥ 1, βj ≥ 1 and Γ is convex.
Let us now restrict ourself to the simple case; M = 1, N = 1 and Γ(t) = t−γ for some constant γ > 0. An

easy computation will lead to the following bound below and growth assumptions:

∃c, c0 > 0; c‖F‖α − c0 ≤W (F ), ∀F ∈M3×3
+ ,

and
for each δ > 0,∃C(δ) > 0;W (F ) ≤ C(δ)(1 + ‖F‖α + ‖F‖2β) whenever detF ≥ δ.

The auxiliary function W0 should satisfy a similar assumptions with the same exponents. Thus, the exponents
of growth and coerciveness for W0 that we obtain are different in general. However, our Theorem 4.1 works for
such functions.

I would like to thank Professor H. Le Dret for useful discussions and his encouragements during the completion of this

work.
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Paris (1996).
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tridimensionnelle. C. R. Acad. Sci. Paris Sér. I Math. (1993) 221-226.

[22] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of three-dimensional nonlinear elasticity. J.
Math. Pures Appl. 74 (1995) 549-578.

[23] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51
(1985) 1-28.

[24] P. Marcellini, On the definition and weak lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré 3
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