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Relaxation Time of a Chiral Quantum R-L Circuit
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We report on the GHz complex admittance of a chiral one-dimensional ballistic conductor formed by
edge states in the quantum Hall regime. The circuit consists of a wide Hall bar (the inductor L) in series
with a tunable resistor (R) formed by a quantum point contact. Electron interactions between edges are
screened by a pair of side gates. Conductance steps are observed on both real and imaginary parts of the
admittance. Remarkably, the phase of the admittance is transmission independent. This shows that the
relaxation time of a chiral R -L circuit is resistance independent. A current and charge conserving
scattering theory is presented that accounts for this observation with a relaxation time given by the

electronic transit time in the circuit.
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Violation of classical electrokinetic laws is a hallmark of
quantum transport. In the dc regime, it is well known that
transport is nonlocal over the electronic coherence length.
This leads to the nonadditivity of parallel conductances [1]
and to quantum composition laws to relate impurity scat-
tering to resistance. Recently a similar manifestation of
quantum coherence has been reported by Gabelli et al.
[2,3] in the ac regime where the resistance which deter-
mines the RC-charge relaxation time of a mesoscopic ca-
pacitor is found to be quantized at half of a resistance quan-
tum. This observation, in agreement with predictions of
Biittiker, Thomas, and Prétre [4,5], establishes the concept
of a charge relaxation resistance [6] different from the stan-
dard dc Landauer resistance. A second fundamental dy-
namical time scale is the L/R time of a mesoscopic circuit
which in macroscopic conductors is determined by the
ratio of the inductance and the resistance of the sample.

Here we investigate a series combination of an inductive
and resistive element and demonstrate that macroscopic
kinetics does not account for the correct ac response. In this
case, chirality is responsible for the observed nonclassical
behavior. The inductive conductor is made of the kinetic
inductance of electrons in edge states [7-9] of a 2D
electron gas (2DEG) quantum Hall bar [10]. The resistive
element is a quantum point contact (QPC) [11]. Theory
[12] predicts that edge channels that connect two reservoirs
contribute to the impedance inductively due to kinetic
effects, whereas reflected edge channels contribute capaci-
tively. Importantly, in the present setup, the interedge
coupling is reduced due to the large bar width and further
minimized by using side gates strongly coupled to the edge
states. Our main result is that the relaxation time of the
quantum R-L circuit is not the classical L/R time but the
electronic transit time of the circuit.

In our work the sample is still short compared to the
wavelength of an edge magnetoplasmon. Previous experi-
mental investigations of the electromagnetic response of

0031-9007/07/98(16)/166806(4)

166806-1

PACS numbers: 73.23.Ad, 73.43.Cd, 73.43.Fj, 73.63.—b

Hall bars [13-16] have addressed the regime where the
response is well accounted for by collective excitations
called edge magnetoplasmons [17] with wavelength short
compared to the dimensions of the sample. Referen-
ces [13,15] have extensively studied the time domain and
Ref. [16] the frequency domain.

In this Letter we report on phase-resolved impedance
measurements of a quantum R-L circuit in the edge state
regime at GHz frequency and milliKelvin temperatures.
With increasing QPC transmission, dc-like conductance
steps are observed on both quadratures of the admittance.
Remarkably, the admittance phase is independent of the
number of transmitted modes and of their transmission.
This shows that the relaxation time of the chiral R-L circuit
is resistance independent. A current and charge conserving
scattering theory extending Ref. [12] is presented that
accounts for this observation with a relaxation time given
by the electronic dwell time in the circuit.

The sample is a 50 um long and 6 um wide Hall
bar made in a GaAs/AlGaAs electron gas of nominal
density n, = 1.3 X 10" cm~2 and mobility u = 3 X
10° cm®> V~!'s™!. A magnetic field of B = 0.224 T and
B =0.385 T is applied in the spin degenerate quantum
Hall regime (filling factors N = 24 and N = 14, respec-
tively) so that edge states are well developed. The bar is
interrupted in its middle by a pair of quantum point con-
tacts (inset of Fig. 1). Only the first QPC is active with a
negative voltage bias (V, ~ —1 V). Electron gas being
fully depleted beneath it, the gate to 2DEG capacitance is
small. The grounded gate of the second QPC widely over-
laps the electron gas. This results in a large gate 2DEG
capacitance ¢, ~ 30 fF (for a gate length /, ~ 10 wm)
which efficiently screens the interedge interactions. We
estimate ¢, > cy, with ¢y ~ 1 {F the edge-to-edge ca-
pacitance for the full Hall bar length. Long and wide non-
dissipative leads (not shown in Fig. 1) connect the sample
to the contact pads.
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FIG. 1 (color). Quantized steps in the dc conductance and rf
transmission of the circuit as a function of the QPC gate voltage.
The solid line has been shifted by +10 mV along the voltage
axis to avoid curve overlapping which otherwise obscures figure

clarity. Temperature and magnetic field are, respectively, 50 mK
and 0.224 T.

The sample is mounted between two impedance-
matched 50 () coplanar lines. Its impedance being large
(=10 kQ), the rf conductance G(w) is simply proportional
to the rf transmission of the setup. Phase is calibrated by
assigning a purely capacitive admittance (=40 fF) to the
sample at the pinchoff. This is corroborated by the vanish-
ing of the dc conductance.

Figure 1 shows the real part Re(G) at the opening of the
QPC. The large filling factor in the Hall bar (N = 24)
allows the QPC to control the transmission of a large
number of edge states. As can be seen in the figure, the
rf data are proportional to the dc one. In the following we
shall assign the value 2¢?/h to the Re(G) steps as a
calibration of our setup.

Figure 2 shows Re(G) and Im(G) at N = 14 for the
opening of the first three channels. Note that Im(G) < 0
denotes an inductive contribution. Re(G) and Im(G) show
similar regular steps as a function of QPC transmission.
The inductance step amplitude is =1 wH. In fact both
quadratures are mutually proportional, as can be seen in
the Nyquist plot of Fig. 3. This corresponds to a
transmission-independent phase factor, tan(¢) = —w7 =
Im(G)/Re(G). It is well explained by a constant relaxation
time 7, in strong contrast with the time constant (L/R o
Re(G)) of a classical circuit. As additional information, the
inset of Fig. 3 depicts the linear magnetic field dependence
of 7. These are the main results of our experiment. We
propose below an interpretation relying on the theory
developed by Christen and one of us [12] for the low
frequency admittance of chiral conductors.

In Ref. [12] the emittance E = Im(G/w) has been cal-
culated for the case of a Hall bar with fully transmitted and/
or fully reflected edge states. The calculation takes into
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FIG. 2 (color). Real and imaginary parts of the rf admittance of
the quantum Hall conductor as a function of the QPC voltage at
T = 50 mK. Both signals show steps at the opening of the first
conducting channel. The negative imaginary part corresponds to
a negative emittance which is characteristic of an inductive
behavior.

account both interedge coupling and coupling to side gates.
Here we consider the case of a quantum Hall bar coupled to
side gates in series with a quantum point contact which
controls the number of transmitted channels and their
transmission [see Fig. 4(a)]. Let N be the number of filled
Landau levels (for simplicity we do not take into account
spin degeneracy in the calculations), n be the number of
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FIG. 3 (color). Main frame: Nyquist representation of the data
of Fig. 2 showing that the admittance phase is constant as a
function of the number of transmitted channels and of their
transmission. Point accumulation corresponds to the admittance
plateaus in Fig. 2. Inset: similar measurements obtained at two
different magnetic fields showing the linear increase of the
admittance phase with magnetic field.
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FIG. 4. (a) Schematics of a quantum Hall bar with N edge

states in series with a quantum point contact (QPC) with n fully
transmitted channels and one partially transmitted channel.
Electrochemical equivalent circuit of a Hall bar in the limit of
weak edge to gate coupling (b) and weak interedge coupling (c).
Notations are specified in the text.

fully transmitted modes, and 7 the transmission of the
partially transmitted one so that (N-n-1) modes are totally
reflected. The length gate /, is small enough that propaga-
tion effects can be neglected. Thus charging of edge states
is uniform but might differ on the upper and lower branch
of the edge state. Thus we can assume that the edge states
on the left upper side (labeled +) of the sample experience
the same electrostatic potential U+ and all the edge states
on the left lower side (labeled —) experience the potential
U — . The upper and lower edge states on the left side are
equally coupled to side gates with capacitance c, and the
long range electrostatic interactions between the upper and
lower edges are described by a capacitance cp [see
Fig. 1(b)]. For simplicity, we take all left edge states to
have the same density of states, v = I,/hv ), where vy, is
the drift velocity. v, is the ratio of the confining electric
field to the applied magnetic field and is, therefore, >« N.
The quantum capacitance per channel is given by ¢, =
e*v = l,e*/hvp.

The low frequency response of the conductor is of the
form dI,(w)/dVg(w) = G,p — iwE,g + + -+, where a,
[ label current contact indices 1 and 2 and gate indices 3
and 4 [18]. G, # 0 only for current contacts. E,g is a
four terminal emittance matrix for the quantum conductor
with its gates. According to Ref. [12], the emittance is

ANois  dN
E. ,=¢ Aakp o ,
ap = ¢ k;[ dE  dE “"'ﬁ}

where dN 4 /dE is the partial density of states of carriers
injected in contact 8 that reach the upper edge kK = + (or
the lower edge k = —), and exit the sample through con-
tact . dNy/dE = Zg(dN 45/ dE) is the emissivity of
region k = = irrespective of the contact from which the

ey

carriers are incident. The characteristic potential u;z re-
lates the change of the electrostatic potential of conductor
k to that of the electrochemical potential of contact 3. In
our geometry the only nonzero partial density of states are

dNy +
dE
dN, 4 | _ dNy
dE dE

=[1-T)+N—(n+ 1]y,

= (T + n)v,

from which we find the emissivities dN,;/dE. We next
need to find the characteristic potentials u; g on the upper
and lower edges of the conductor k = = for each of the
four contacts 8 = 1, 2, 3, 4. To this end we follow closely
Ref. [12] and find the emittance matrix. The two-terminal
admittance measurement considered in this work is deter-
mined by the matrix element [19] £, = E. We find

(T + n) (T + n)?

E=—cy N nC#HTr (2)
where

Nc,c Nc,c

Cug =__498 Cunt =__aH (3)
cg T Neg, 2CH+NCq
1 1

Ui €]

T 1+ ¢,/Ney 1+ ¢,/Qcy + Ney)

are, respectively, the electrochemical capacitance between
one edge and its side gate and the mutual capacitance of the
edge states across the Hall bar. The coefficient n <1
vanishes for strong gate coupling (¢, > ¢,). Note that
vp « N, so that Nv, CuH> and Cug do not depend on N.

For our experiment where interedge coupling is weak
(cy K¢y = cg), E~—c, (T + n)/N, we obtain

_ . hocy

G(w) G(,(l iw 2N ), (5)
where G, = (n + T)e?/h is the Landauer dc conductance.
Remarkably G(w) exhibits a transmission-independent
phase in agreement with the experiment. Here the negative
bar emittance can be interpreted with the equivalent cir-
cuit in Fig. 4(c) in terms of leakage currents to the gate. It
can be shown that the classical addition of the Hall bar
and the QPC impedances gives a different result with a
transmission-dependent phase factor. This corresponds to
the situation where a fictitious reservoir is inserted between
the two components which amounts essentially to break
the chirality of the experiment. We thus observe a violation
of classical laws which is here a pure effect of chirality.
The phase factor is given by the transit time of electrons
through the Hall bar 7=1,/vp, where vy = vp +
(e2N l,/hc,) is the drift velocity which takes into account
the screening by the side gate. Note that vy, « N is in-
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versely proportional to the magnetic field. This magnetic
field dependence is clearly observed in the experiment
(inset of Fig. 3). From the slope (=~ —0,89) of the
Nyquist diagram obtained at B = 0.385 T (main frame),
and [, ~ 10 um, we estimate a drift velocity of @ ~
10° m/s in order of magnitude agreement with the num-
bers in the literature [15].

We consider now the opposite case of a nonchiral quan-
tum wire (i.e., a carbon nanotube) with strong interedge
coupling (¢, < ¢, = cy). We obtain

hZ

It corresponds to the lowest order development for the
admittance of the Landauer resistance 1/G, in series
with the Hall-bar electrochemical inductance L, =
(h*/e*)c,y/N?. In this nonchiral situation classical laws
are recovered. The negative Hall-bar emittance can be
interpreted with the equivalent circuit in Fig. 4(b), in terms
of displacement countercurrents proportional to frequency.
For very strong interedge coupling (¢ — ), L, reduces
to the usual kinetic inductance of a quantum wire, Ly;, =
(h?/€?)(v/2N) [20,21]. The signature of this regime would
be a linear variation of the admittance phase (i.e., 7) with
transmission, which corresponds to a circle arch in the
Nyquist diagram.

In conclusion, we have provided phase-resolved mea-
surements of the admittance of a quantum Hall bar coupled
to gates in series with a quantum point contact. This
realizes the simplest chiral quantum R-L circuit. We ob-
serve quantized steps in both the active and reactive
parts of the admittance with a remarkable transmission-
independent phase. The phase is directly related to the
transit time of the electrons in the Hall bar. This interpre-
tation is further supported by the expected magnetic field
dependence of the transit time. Our measurements are well
described by a scattering theory in the limit of strong side-
gate coupling, allowing for a direct determination of the
electronic transit time. Our work demonstrates that inter-
esting novel transport quantities such as the mesoscopic
analogs of the RC and L /R times become accessible in the
GHz range provided the measurement is carried out on a
sample with properties that can be tuned over a wide range,
for instance, as here with a QPC.
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