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Abstract

Regularized linear representation learning has led to in-

teresting results in image classification, while how the ob-

ject should be represented is a critical issue to be inves-

tigated. Considering the fact that the different features in

a sample should contribute differently to the pattern repre-

sentation and classification, in this paper we present a novel

relaxed collaborative representation (RCR) model to effec-

tively exploit the similarity and distinctiveness of features.

In RCR, each feature vector is coded on its associated dic-

tionary to allow flexibility of feature coding, while the vari-

ance of coding vectors is minimized to address the similarity

among features. In addition, the distinctiveness of differ-

ent features is exploited by weighting its distance to other

features in the coding domain. The proposed RCR is sim-

ple, while our extensive experimental results on benchmark

image databases (e.g., various face and flower databases)

show that it is very competitive with state-of-the-art image

classification methods.

1. Introduction

Inspired by the sparse coding (or sparse representation)

mechanism of human vision system [18] [23], and with the

rapid development of l1-norm minimization techniques in

recent years, the sparse coding methods have been success-

fully used in various image restoration applications [13].

Many efforts have also been made to apply sparse coding

methods to pattern classification tasks, such as signal clas-

sification [7], face recognition (FR) [25] and image classi-

fication [26], etc. Though interesting classification results

have been achieved, more investigations need to be made

in order for a clearer understanding about the relationship

between object representation and classification.

In the application of FR, which is one of the most active

research topics in computer vision and pattern recognition

[30], sparse representation based algorithms [25][27] have

achieved much superior performance (i.e., robustness to il-

lumination changes, random pixel corruption, block occlu-

sion and real disguise, etc.) to representative FR methods,

such as Eigenface [1], Nearest Subspace [10] and SVM [6],

etc. In the pioneer work of sparse representation based clas-

sification (SRC) [25], the query face image is coded as a

sparse linear combination of all the training samples via l1-

norm minimization; particularly, in SRC an identity matrix

can be introduced to code the outlier pixels, making SRC ro-

bust to face occlusion and corruption. The success of SRC

boosts the research of sparsity based pattern classification,

and many works have been consequently reported, for ex-

amples, l1-graph for clustering and subspace learning [3],

sparse image classification [26], and robust sparse coding

for FR [27], etc.

Despite the wide use of sparse representation for clas-

sification, recently researchers have begun to question the

role of sparsity in classification [29] [20]. In [29], it has

been shown that it is the collaborative representation (i.e.,

representing the query image collaboratively by samples

from all the classes) but not the l1-norm sparse represen-

tation that makes SRC effective for pattern classification.

Using the non-sparse l2-norm to regularize the representa-

tion coefficients could lead to similar FR results to l1-norm

regularization but this can significantly speed up the algo-

rithm. The robustness to outliers (e.g., occlusion and cor-

ruption) in query face image actually comes from the spar-

sity constraint on coding residuals but not on the coding

coefficients.

Without considering the robustness to outlier pixels in

face images, both SRC [25] and collaborative representa-

tion based classification (CRC) [29] can be regarded as the

regularized linear regression problem:

min
α

∥y −Dα∥
2
2 + λ ∥α∥lp (1)

where y = [y1; y2; · · · ; yn] is the query image vector or its

feature vector, D is the dictionary whose columns are the

training image vectors or their feature vectors, and λ is a

scalar constant. When p = 1 or p = 2, Eq. (1) becomes the

coding model of SRC or CRC, respectively. If we write D

as D = [r1; r2; · · · ; rn], where ri is the ith row of dictio-

nary D, then Eq. (1) could be rewritten as

min
α

∑n

i=1
(yi − riα) + λ ∥α∥lp (2)



From Eq. (2) we can clearly see that in SRC and CRC,

all the feature elements yi are enforced to share the same

coding vector α over their associated sub-dictionaries (i.e.,

ri). However, this requirement is too strong and it ignores

the fact that the feature elements in a pattern share similar-

ities but also have differences. Therefore, the feature ele-

ments should have similar coding coefficients so that they

can jointly represent the same pattern, while their coding

coefficients should have some diversity to reflect the dis-

tinctive property of different features (e.g., pixels in differ-

ent spatial locations, different frequency features, the Ga-

bor features along different orientations or scales, etc.). For

instance, one can imagine that the occluded part of a face

image should have very different coding coefficients com-

pared to those of the non-occluded facial parts.

How object representation should be learned is a very

important issue to patter classification tasks. In some re-

cent works which employ multiple types of features (say

K types) for joint sparse representation and recognition

[12][17][28], the mixed-norm regularization is adopted to

optimize the coding coefficients. Two widely used mixed-

norm regularizations are the l1,2-norm
∑

i

∥

∥αi
∥

∥

2
and the

l1,∞-norm
∑

i

∥

∥αi
∥

∥

∞
, where αi is the ith row of the coding

coefficient matrix Λ = [α1,α2, · · · ,αK ] with αj being

the coding vector of the jth feature vector yj over its associ-

ated dictionary. Although the l1,2-norm and l1,∞-norm reg-

ularizations do not require the coding vectors αj to be the

same but require that the coding vectors are similar, they as-

sume that every feature has the same contribution to coding,

as well as to classification. Intuitively, the distinctiveness of

different features should be considered in the coding pro-

cess for a more robust recognition. The coding coefficients

will be more discriminative if the different importance of

the features can be exploited in the coding phase, which

will consequently benefit the final classification accuracy.

In this paper, we propose a relaxed collaborative repre-

sentation (RCR) model, which considers both the similarity

and distinctiveness of different features in coding and clas-

sification stages. In the coding stage, apart from requiring

that each feature can be well represented by its associated

dictionary, which allows the diversity of coding vectors for

different features, a weighted regularization term is intro-

duced to enforce that the coding vectors from different fea-

tures have a small variance, which accounts for the similar-

ity between features. Meanwhile, the weights are optimized

simultaneously with the coding to address the distinctive-

ness of different features. In the classification stage, we

assign the query sample to the class which yields the lowest

weighted coding residual. In addition, if the weights can be

learned offline, then a closed-form solution of RCR could

be obtained. Our extensive experiments on face recogni-

tion and object categorization show that the proposed RCR

scheme has very competitive performance with state-of-the-

arts while having a low time complexity.

The rest of this paper is organized as follows. Section 2

briefly reviews some related works. Section 3 presents the

model of RCR and its optimization algorithm. Section 4

makes some discussions. Section 5 performs experiments,

and Section 6 concludes the paper.

2. Brief review of related works

The sparse representation based classification (SRC)

method was presented in [25] for robust face recognition

(FR). Denote by A = [A1,A2, · · · ,Ac] the matrix formed

by original training samples, where Ai is the sub-set of

training samples from class i, and c is the number of classes.

Let y be a query sample to be classified. In SRC, first y is

sparsely coded on A via l1-minimization

α̂ = argmin
α

∥y −Aα∥
2
2 + λ ∥α∥1 (3)

where λ is a scalar constant. Then classification is made by

identity (y) = argmin
i

{ei} (4)

where ei = ∥y −Aiα̂i∥2, α̂ = [α̂1;α̂2; · · · ; α̂c] and α̂i is

the coefficient vector associated with class i.

Though it was claimed in [25] that the l1-norm sparsity

imposed on coding coefficient α is the key for the success of

SRC, recently it has been shown in [29] that it is the collabo-

rative representation based classification (CRC), but not the

l1-norm sparsity on α, that truly makes SRC effective for

face classification. Using l2-norm to regularize α leads to

similar FR results. The robustness to outliers in SRC actu-

ally comes from using l1-norm to model the coding residual,

i.e., α̂ = argmin
α

∥y −Aα∥1 + λ ∥α∥1. Without consid-

ering the robustness to outliers, the coding model of CRC

is

α̂ = argmin
α

∥y −Aα∥
2
2 + λ ∥α∥

2
2 (5)

The classification of CRC is performed by checking which

class yields the minimal regularized reconstruction error,

which is similar to that of SRC.

With multiple types of input features, a multi-task

joint sparse representation based classification (MTJSRC)

method was proposed in [28]. Suppose each sample has

K different modalities of features. Denote by yk the

kth modality of feature vector to be coded, by Ak the

dictionary of the kth modality of feature and by αk =
[

αk
1 ;α

k
2 ; · · · ;α

k
c

]

the coding vector of yk over Ak, where

αk
j is the sub-vector associated with class j. Let αj =

[

α1
j ,α

2
j , · · · ,α

K
j

]

. The MTJSRC with l1,2-norm regular-

ization is formulated as [28]

min
α

k

∑K

k=1

∥

∥

∥
yk −Akαk

∥

∥

∥

2

2
+ λ

∑c

j=1
∥αj∥2 (6)



which expects that αk
j for different modalities k are sim-

ilar, and those αj for different classes j are sparse. The

classification of MTJSRC is performed by checking which

class yields the minimal overall reconstruction error of K

modalities.

3. Relaxed collaborative representation

3.1. Relaxed collaborative representation model

It is reasonable to assume that the different features ex-

tracted from one sample, as well as their corresponding sub-

dictionaries extracted from the whole dictionary, may share

some similarity. Therefore one can assume that the repre-

sentation coefficients of those features over their associated

sub-dictionaries should be similar. This can make the rep-

resentation stable. On the other hand, those different fea-

tures (e.g., features of different spatial locations, frequency

bands, orientations, scales and modalities) can be very dis-

tinctive from each other, so that we should allow their repre-

sentations over the associated dictionaries have enough di-

versity. This can make the representation flexible. Overall,

a good balance between stability and flexibility will lead to

a stable and accurate representation for accurate recognition

tasks.

To achieve the above goal and exploit the distinctiveness

of different features in linear regression, we propose the fol-

lowing term to regularize the coding vectors of different fea-

tures over their associated dictionaries:

min
αk

∑K

k=1
ωk ∥αk − ᾱ∥

2
2 (7)

where αk, k = 1, 2, · · · ,K is the coding vector of the kth

feature vector yk over the kth dictionary Dk, ᾱ is the mean

vector of all αk, and ωk is the weight assigned to the kth

feature. It is easy to see that Eq. (7) aims to reduce the

variance of coding vectors αk, making them similar to each

other; at the same time, the weight ωk is used to indicate

the distinctiveness of feature yk. It is easy to see that group

coding [2] or joint coding [12][17][28] can only reduce the

variance of coding vectors αk but ignore these features’ dis-

tinctiveness, which is very important for classification (e.g.,

FR with disguise). Intuitively, if yk is more similar to other

features, ωk should be bigger to enforce αk closer to the

mean ᾱ; if yk is less similar to other features, ωk should be

smaller so that αk can vary more from others.

With the regularizer in Eq. (7), the proposed relaxed col-

laborative representation (RCR) is

min
αk,ωk

K
∑

k=1

(

∥yk −Dkαk∥
2
2 + λ ∥αk∥

2
2

+τωk ∥αk − ᾱ∥
2
2

)

s. t. prior {ωk}

(8)

where λ and τ are positive constants and prior {ωk} means

the prior made on weights ωk. Note that in Eq. (8) we use

l2-norm to regularize αk since it has been shown in [29]

that the l1-norm sparsity on αk is not necessary but makes

the coding complexity high.

According to prior we impose on ωk, RCR has three spe-

cial cases.

1) RCR with strong prior. In this case, the weights ωk

can be pre-learned by using a validation dataset, and then

Eq. (8) can have a closed-form solution since all the terms

are of l2-norm.

2) RCR with moderate prior. In this case, the values

of these weights are unknown beforehand. However, some

prior information of these weights (e.g., ωi > ωj for some

i ̸= j) could be known empirically. To reduce the risk of

overweighting some features while ignoring other features,

we regularize the weights based on the maximum entropy

principle (here we assume that the weight ωk is normalized

in [0, 1]). Let ω = [ω1, ω2, · · · , ωK ]T . We set the prior of

weights as






−
∑K

k=1 ωk lnωk > σ

ul ≤ Φω ≤ uc

0 ≤ ω

(9)

where the matrix Φ reflects the relative relation between

ωk. For instance, if ω2 ≥ ω1 ≥ 0 when there are two

feature vectors, then Φ = [1,−1], uc = 0, ul = −∞.

3) RCR with weak prior. No prior information about the

weights is known except that we regularize their entropy:

−
∑K

k=1
ωk lnωk > σ (10)

3.2. Optimization algorithm

In the case of RCR with strong prior, since the weights

ω are pre-learned, we only need to solve αk and a global

optimum can be reached, as given in Eq. (12). For the other

two cases, the objective function in Eq. (8) can be solved by

alternatively optimizing ω and αk, i.e., updating the coding

vector αk by fixing the weights ω, and updating the weights

ω by fixing αk. Such a process is iterated until the solutions

of ω and αk converge to some local minimum.

First, if the weights ω are known, the optimization of Eq.

(8) becomes

min
αk

∑K

k=1
∥yk −Dkαk∥

2
2 + λ ∥αk∥

2
2 + τωk ∥αk − ᾱ∥

2
2

(11)

from which a closed-form solution for k = 1, 2, · · · ,K
could be derived:

αk = α0,k + τ
ωk

∑K

η=1 ωη

P kQ
∑K

η=1
ωηα0,η (12)

ᾱ =
∑K

k=1
ωkαk

/

∑K

k=1
ωk (13)



where P k = (DT
kDk + I(λ+ τωk))

−1, α0,k =

P kD
T
k yk, Q = (I −

∑K

η=1 ϖηP η)
−1

, ϖη =
τω2

η∑
K
k=1

ωk
.

For a detailed derivation, please refer to Appendix A.

Once the coding vectors αk are obtained by Eq. (12),

the coding weights ω can then be updated. For RCR with

moderate prior, the objective function in Eq. (8) is reduced

to:

min
ωk

∑K

k=1 τωk ∥αk − ᾱ∥
2
2 + γ

∑K

k=1 ωk lnωk

s. t. ul ≤ Φω ≤ uc;0 ≤ ω
(14)

which could be solved effectively by the toolbox MOSEK

(www.mosek.com). Here γ > 0 is the Lagrange multi-

plier. For RCR with weak prior, the objective function in

Eq. (8) is reduced to

min
ωk

∑K

k=1
τωk ∥αk − ᾱ∥

2
2 + γωk lnωk (15)

and the weights could be directly updated as

ωk = exp
{

−1− τ ∥αk − ᾱ∥
2
2

/

γ
}

(16)

The algorithm of RCR optimization is summarized in

Algorithm 1. The RCR solution converges since the two

alternative optimizations in it are both convex.

Algorithm 1 Algorithm of Relaxed Collaborative Repre-

sentation (RCR)

1: Input: Dictionary Dk and feature vectors yk of the

query sample, k = 1, 2, · · · ,K. An initialization of the

weight vector ω(0).

2: While not converged do

3: updating coding vectors Eq. (12);

4: updating weights via Eq.(14) or (16);

5: checking convergence condition:
∥

∥ω(t+1) − ω(t)
∥

∥

2

/
∥

∥ω(t)
∥

∥

2
< δω

where ω(t) is the weight vector in the tth iteration.

6: end while

7: Output: αk, k = 1, 2, · · · ,K and ω.

3.3. Classification

The classification of RCR is based on the overall coding

error for each class. For the query sample y, the overall

coding error by class i is computed as

ei =
∑K

k=1
ωk

∥

∥yk −Di
kα

i
k

∥

∥

2

2
(17)

where Di
kis the sub-set of the dictionary Dk associated

with class i, and αi
k the coefficient vector αk associated

with class i. So the classification is done via

identity (y) = argmin
i

{ei} (18)

4. Discussion of RCR

4.1. Feature

To obtain the feature vectors yk of the query sample y,

one straightforward way is to divide the image into multiple

blocks, and stretch each block to a vector yk for RCR. This

multi-block RCR simply uses the intensity in each block as

the feature to identify the identity of the query image. In

[25] [29] and [8], the face image is partitioned into 8 blocks

to do FR with disguise. However, these methods process

the 8 blocks independently without considering their rela-

tionships. Better performance could be achieved by multi-

block RCR because it considers the relationship between

the different blocks in coding and classification.

Another way to obtain yk is applying different feature

extractors to y, and the output of each feature extractor

is taken as one yk. Compared with multi-block RCR,

this multi-feature RCR can be used to do more challeng-

ing tasks, for examples, large-scale and real-world FR and

object category, where using only a single type of features

often cannot accomplish the task satisfyingly. In MTJSRC

[28], multiple features are employed for joint sparse repre-

sentation via l1,2-norm, but it does not consider the distinc-

tiveness of different features in the coding. Multi-feature

RCR could overcome this limitation by balancing automat-

ically the similarity and distinctiveness of different features.

4.2. Weight

In RCR, the weights ω could be learned online, or

learned offline via a validation set. Multi-block RCR could

be categorized as the case of RCR with weak prior for

that it is hard to learn the weight for each spatial region.

The weight should be adaptively determined when dealing

with a query sample. Such an online weight learning in

multi-block RCR is effective to handle the occlusions in FR.

Multi-feature RCR could be categorized as the case of RCR

with strong or moderate prior for that it is possible to know

the effectiveness of a specific feature to a certain task. With

a validation dataset, the weight of multi-feature RCR could

be learned by the algorithm of RCR with moderate prior.

Then the weights used in the testing set could be simply set

as

ωk =
∑nv

i=1
ωi
k

/

nv k = 1, 2, · · · ,K (19)

where ωi
k is the weight of the kth feature vector for the ith

validation sample, and nv is the total number of validation

samples.

4.3. Analysis of complexity

When the weight values of different features are known

or pre-learned, RCR will have a closed-form solution of

coding vector αk as shown in Eq. (12), where the projection



matrices could be computed offline. Suppose that the size

of Dk is nk × mk, the time complexity of coding is only

O(
∑K

k=1 (3m
2
k +mknk)), where computing all P kD

T
k yk

has complexity O(
∑K

k=1 (m
2
k +mknk)) and computing all

P kQ
∑K

η=1 ωηα0,η has complexity O(
∑K

k=1 2m
2
k).

When the weights need to be updated online, the time

complexity of RCR increases due to the iterative optimiza-

tion, which involves the operation of matrix inverse. Fortu-

nately, we find that it affects little the performance of RCR

if P k and Q are predefined in the iteration. In that case,

the complexity of RCR with learning weight online is only

O(q
∑K

k=1 (3m
2
k +mknk)), where q is the iteration num-

ber.

The experimental running speed of RCR is also very fast.

For instance, its running time on the AR database (refer to

Section 5.1) is 0.015 second (with known weights), 0.05

second (updating weights online with predifined P k and

Q), or 0.9 second (updating weights and P k and Q online),

respectively.

5. Experiments

To evaluate the effectiveness of our proposed RCR,

we apply it to FR in controlled/uncontrolled environments

and multi-class object recognition. For FR in controlled

environment, multi-block RCR is employed. There are

three parameters in multi-block RCR: λ, τ and γ (the La-

grange multiplier of the entropy constraint). In our ex-

periments, λ and τ are set as 0.0005 and 0.005, respec-

tively; γ is set as 0.1 for FR without occlusion and 0.001

for FR with disguise. For more challenging tasks such as

FR in uncontrolled environment and object categorization,

multi-feature RCR is employed, and the parameters, i.e.,

λ , τ and the weights ω, are learned from the validation

set. The source code of this paper can be downloaded at

www4.comp.polyu.edu.hk/˜cslzhang/code.htm.

5.1. FR in controlled environment

In this section, we perform FR without and with occlu-

sion on two benchmark face datasets captured in controlled

environments: the Extended Yale B [5][9] and a subset of

AR [14]. The Extended Yale B database contains about

2414 frontal images (cropped to 54×48) of 38 individuals;

and the subset of AR contains two-session data of 50 male

and 50 female subjects (each person has 26 pictures with

the normalized size as 60×43).

a) FR without occlusion: The SVM (linear kernel) is

used as the baseline, and the methods of SRC [25], CRC

[29], MTJSRC [28] and LRC [8] are used to compare with

the proposed RCR. The multi-block RCR is used here, and

we simply divide the face image into 1× 4 blocks.

For each subject of Extended Yale B, we randomly se-

lected Ntr images for training with the remaining images

for testing. The recognition rates of different methods

versus training number are shown in Table 1. RCR and

MTJSRC [28] have the highest recognition rates in all cases.

Consistant with [29], almost the same recognition rates

are achieved by SRC and CRC, both of which are better

than LRC. The best recognition rates of SRC, CRC, LRC,

SVM, MTJSRC and RCR are 92.0%, 92.4%, 89.0%, 88.1%

93.6% and 93.6%, respectively. In addition, the average

variance of coding coefficients for all testing samples, i.e.,
1
4

∑4
k=1 ∥αk − ᾱ∥

2
2, of RCR and MTJSRC are 0.534 and

0.540, respectively, when Ntr = 25, and are 0.692 and

0.710, respectively, when Ntr = 20, which shows that RCR

achieves higher stability.

For each subject of AR, the images only with illumina-

tion and expression changes are selected for experiments.

The samples from Session 1 are used for training and that

from Session 2 for testing. The recognition rates of all the

competing methods are listed in Table 2. It can be seen

that RCR outperforms all the other methods (except for

MTJSRC) by more than 2%. Similar to the results in Ex-

tended Yale B, the performance of RCR and MTJSRC is

similar. The reason may be that each block in face images

has similar weight (or contribution) to FR without occlu-

sion.

b) FR with real face disguise: As in [25][29], 800 im-

ages (about 8 samples per subject) with only expression

changes selected from the subset of AR are used for train-

ing, while two separate subsets (with sunglasses or scarf)

of 200 images (1 sample per subject per Session, with neu-

tral expression, as shown in Fig.1(a)) for testing. Here the

images were resized to 83×64, and partitioned into 4×2

blocks (refer to Fig.1(b)) as [25] for all the competing meth-

ods (i.e., MTJSRC, RCR, the block versions of SRC, CRC

and LRC). The recognition rates of these five methods are

listed in Table 3. RCR gets the best performance, with 2%,

4%, 2.5%, and 12% average improvement over SRC, CRC,

LRC and MTJSRC, respectively. Compared to SRC, CRC,

and LRC, which separately represent each block and fuse all

blocks’ results via voting or minimal reconstruction error,

RCR could jointly represent the blocks for more discrimina-

tive coding. Compared to MTJSRC, which treats each block

equally and uses the mixed l1,2-norm to enforce the simi-

larity between features, RCR automatically learns weights

to distinguish the importance between occluded and non-

occluded blocks and minimizes the variance of coding vec-

tors to enforce similarity. The results clearly show that RCR

is much more robust than MTJSR in FR with occlusion.

5.2. FR in uncontrolled environment

In this section, we evaluate the performance of multi-

feature RCR in large-scale and real-world face databases:

FRGC 2.0 [19] and LFW-a [24]. Four features, i.e., inten-

sity value, low-frequency Fourier feature [21], Gabor mag-



Ntr 10 15 20 25

SVM 60.0% 67.1% 76.5% 88.1%

SRC 84.6% 84.2% 91.3% 92.0%

CRC 84.8% 84.7% 91.2% 92.4%

LRC 82.4% 81.8% 87.0% 89.0%

MTJSRC 87.3% 87.4% 91.5% 93.6%

RCR 86.8% 87.2% 92.3% 93.6%

Table 1. Face recognition rates on the Extended Yale B database.

SVM SRC CRC LRC MTJSRC RCR

87.1% 93.7% 93.3% 76.4% 95.8% 95.9%

Table 2. Face recognition rates on the AR database.

(a) (b)

Figure 1. (a) The testing samples with sunglasses and scarves in

the AR database; (b) partitioned testing samples.

Method Sunglasses Scarf

SRC 97.5% 93.5%

CRC 91.5% 95%

LRC 95.5% 94.5%

MTJSRC 80.5% 90.5%

RCR 98.5% 96.5%

Table 3. Recognition rates by competing methods on the AR

database with disguise.

(a) (b) (c) (d)

Figure 2. Samples of FRGC 2.0 and LFW. (a) and (b) are samples

in target and query sets of FRGC 2.0; (c) and (d) are samples in

training and testing sets of LFW.

nitude [11] and LBP [22], are used for all the competing

methods, SRC, CRC, LRC, MTJSRC and RCR. For each

feature, we adopt a ”divide and conquer” strategy: first

extract the discrimination-enhanced feature in each block

(each image is partitioned into 2 × 2 blocks) via LDA [1],

and then concatenate all blocks’ features as the final feature

vector.

a) FRGC: FRGC version 2.0 [19] is a large-scale face

database designed with uncontrolled indoor and outdoor

setting. We use a subset (352 subjects having no less than

15 samples in original target set) of Experiment 4, which is

the most challenging data set in FRGC 2.0 with large light-

ing variations, aging and image blur, as shown in Figs. 2(a)

Nta SRC CRC LRC MTJSRC RCR

15 94.9% 94.4% 95.1% 94.3% 95.3%

10 88.0% 87.4% 87.3% 87.7% 88.4%

5 83.3% 82.9% 82.9% 84.7% 85.3%

Table 4. Face recognition rates on FRGC2.0 Exp 4.

and 2(b). The selected target set contains 5280 samples,

and the query set has 7606 samples. We use half of original

validation set to learn projection of LDA [1] and the weight

values of RCR. For MTJSRC, we also learn the weights to

weight the coding error for better classification.

Three tests with the first Nta (e.g., 5, 10, and 15) target

samples per subject are performed. The recognition rates of

SRC, CRC, LRC, MTJSRC and RCR using the combina-

tion of four features are listed in Table 4. RCR outperforms

all the other methods although the improvement is not so

large since there are no occlusion, misalignment and pose

variations in the query set. It can also be seen that when

the number of target samples is high enough (i.e., 15 sam-

ples per subject), all the methods could achieve good per-

formance (more than 94% recognition accuracy).

b) LFW: Labeled Faces in the Wild (LFW) is a large-

scale database of face photographs designed for uncon-

strained FR with variations of pose, illumination, expres-

sion, misalignment and occlusion, etc (shown in Figs. 2(c)

and 2(d)). Two subsets of aligned LFW [24] are used used

in the experiments. In subset 1 which consists of 311 sub-

jects with no less than 6 samples per subject, we use the

first 5 samples as training data and the remaining samples

as testing data. In subset 2 which consists of 143 subjects

with no less than 11 samples per subject, we use the first

10 samples as training data and the remaining samples as

testing data.

We use the learned weights in FRGC dataset for RCR

and MTJSRC here. Table 5 lists the results by different

methods on the two subsets. RCR has at least 6% and

7% improvements over SRC, CRC, and LRC in subset 1

and subset 2, respectively, which demonstrates that it is

not effective to let different features of a sample share the

same representation coefficients. Compared with MTJSRC,

which allows different features to have different but simi-

lar representation coefficients, and uses the weighted cod-

ing error to do classification, RCR has more than 6% (3%)

higher rate than it in subset 1 (subset 2). This validates that

the proposed RCR model can more effectively exploit the

similarity and distinctiveness of different features for cod-

ing and classification.

5.3. Object categorization

At last, let’s validate the effectiveness of the pro-

posed method on multi-class object categorization.

The two Oxford flower datasets [15][16] are used



SRC CRC LRC MTJSRC RCR

subset 1 53.0% 54.5% 48.7% 54.8% 61.0%

subset 2 72.2% 73.0% 60.5% 77.4% 80.6%

Table 5. Face recognition rates on LFW.

(a) (b)

Figure 3. Samples from Oxford flower data sets. (a) Some samples

of ’daffodil’ in 17 category; and (b) some samples of ’water lily’

in 102 category.

here, some samples of which are show in Figs.3(a)

and 3(b). For these two data sets, we adopt the de-

fault experimental settings provided on the website

(www.robots.ox.ac.uk/˜vgg/data/flowers),

including the training, validation, and test splits and the

multiple features. It should be noted that these features are

only extracted from flower regions which are well cropped

by preprocessing of segmentation.

For a fair comparison with MTJSRC [28], we also ex-

tended RCR to its kernel versions for the experiments on

these two datasets. In the case of direct kernel version,

it is easy to see that the two terms in Eq.(12), P k =
(DT

kDk + I(λ+ τωk))
−1 and α0,k = P kD

T
k yk could

be transformed into P k = (Gk + I(λ+ τωk))
−1

and

α0,k = P khk , where Gk = ϕk(Dk)
T
ϕk (Dk), hk =

ϕk(Dk)
T
ϕk (yk), and ϕk is the kernel mapping function

for the kth modality of feature. Another kernel version of

RCR is column generation, where we directly replace the

kth modality training data and testing data as their associ-

ated kernel matrices: Dk = Gk, and yk = hk. Here

the kernel matrices are computed as exp
(

−χ2 (x, x′)
/

µ
)

, where µ is set to be the mean value of the pairwise χ2

distances on the training set. We denote the direct kernel

version of RCR as RCR-DK, and the column generation

version of RCR as RCR-CG.

a) 17 category data set: This set contains 17 species of

flowers with 80 images per class. As in [28], we directly

use the χ2 distance matrices of seven features (i.e., HSV,

HOG, SIFTint, SIFTbdy, color, shape and texture vocabu-

laries) as inputs, and perform the experiments based on the

three predefined training, validation, and test splits. The

results (mean and variance) of RCR compared with other

state-of-the-arts are presented in Table 6. We can see that

both MTJSRC and RCR have much improvement over other

methods (with about 2% improvement), while MTJSRC is

slightly better than RCR.

Methods Accuracy (%)

SRC Combination 85.9 ± 2.2

MKL [4] 85.2 ± 1.5

CG-Boost [4] 84.8 ± 2.2

LPBoost [4] 85.4 ± 2.4

MTJSRC-RKHS [28] 88.1 ± 2.3 (86.8 ± 1.8)

MTJSRC-CG [28] 88.9 ± 2.9 (88.2 ± 2.3)

RCR-DK 87.6 ± 1.8 (87.4 ± 1.3)

RCR-CG 88.0 ± 1.6 (87.9 ± 1.8)

Table 6. The categorization accuracy on the 17 category Oxford

Flowers data set. The results in bracket are obtained under equal

feature weights.

Methods Accuracy (%)

SRC Combination 70.0

MKL [16] 72.8

MTJSRC-RKHS [28] 73.8 (71.5)

MTJSRC-CG [28] 74.1 (71.2)

RCR-DK 74.1 (71.1)

RCR-CG 75.0 (72.6)

Table 7. The categorization accuracy on the 102 category Oxford

Flowers data set. The results in bracket are obtained under equal

feature weights.

b) 102 category data set: This set consists of 102 flower

classes with 8198 images in total (40-250 images per class).

As in [28], the χ2 distance matrices of four features (i.e.,

HSV, HOG, SIFTint, and SIFTbdy) along with a prede-

fined training, validation and test split, are directly used in

the experiment. The comparison of RCR with other com-

peting methods is shown in Table 7. It can be seen that

RCR achieves the best performance, followed by MTJSRC.

Specifically, RCR-CG has about 1% improvement over

MTJSRC-CG. In addition, the learned feature weights are

very beneficial to the final classification, 3% improvement

for RCR-DK and 2.4% improvement for RCR-CG. The

learned weights for RCR-DK (RCR-CG) are 0.2, 1.6, 1.5

and 0.9 (0.7, 1.6, 1.3 and 0.7), which show that the features

of HOG and SIFTint are more discriminative.

6. Conclusion

In this paper, we proposed a relaxed collaborative rep-

resentation model (RCR) for pattern classification, which

effectively exploits the similarity and distinctiveness of dif-

ferent features for coding and classification. While allowing

each feature vector to be flexibly coded over its associated

dictionary, a novel regularization term was introduced to en-

force the coding vectors having a small variance, and dis-

tinguish the distinctiveness of different features by adaptive

weighting. Algorithms to optimize the proposed RCR were

presented, and the experimental results on face recognition

in controlled and uncontrolled environments and multi-class



object categorization clearly demonstrated the competitive-

ness of RCR to many state-of-the-art methods.
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Appendix A: The closed-form solution of Eq.(11):

Let P k = (DT
kDk + I(λ+ τωk))−1 and α0,k =

P kD
T
k yk, where I is an identity matrix. By optimizing

Eq.(11), we could get ᾱ =
∑K

k=1 ωkαk

/

∑K

k=1 ωk and

αk = α0,k + τωkP k

∑K

k=1 ωkαk

/

∑K

k=1 ωk.

By summig ωkαk, k = 1, 2, · · · ,K − 1, we could get
∑K−1

η=1 ωηαη =
∑K−1

η=1 ωηα0,η + ωK

∑K−1
η=1 ϖηP ηαK

+
∑K−1

η=1 ϖηP η

∑K−1
k=1 ωkαk

,

where ϖη = ωητωη

/

∑K

k=1 ωk.

Then we have (I −
∑K−1

η=1 ϖηP η)
∑K−1

η=1 ωηαη =
∑K−1

η=1 ωηα0,η + ωK

∑K−1
η=1 ϖηP ηαK , with which

we could put
∑K−1

η=1 ωηαη in αK = α0,K +
τωK∑
K
k=1

ωk
PK(

∑K−1
η=1 ωηαη + ωKαK).

After some derivations, we could get

αK = α0,K + τωK
K∑

η=1

ωη

PK(I −
K
∑

η=1
ϖηP η)

−1
K
∑

η=1
ωηα0,η

Similarly, all the representation coefficients are

αk = α0,k + τωk

K∑

η=1

ωη

P k(I −
K
∑

η=1
ϖηP η)

−1
K
∑

η=1
ωηα0,η

where k = 1, 2, · · · ,K.


