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Abstract. Our ability to construct very large phy-
logenetic trees is becoming more important as vast
amounts of sequence data are becoming readily
available. Neighbor joining (NJ) is a widely used
distance-based phylogenetic tree construction method
that has historically been considered fast, but it is
prohibitively slow for building trees from increasingly
large datasets. We developed a fast variant of NJ
called relaxed neighbor joining (RNJ) and performed
experiments to measure the speed improvement over
NJ. Since repeated runs of the RNJ algorithm gen-
erate a superset of the trees that repeated NJ runs
generate, we also assessed tree quality. RNJ is dra-
matically faster than NJ, and the quality of resulting
trees is very similar for the two algorithms. The re-
sults indicate that RNJ is a reasonable alternative to
NJ and that it is especially well suited for uses that
involve large numbers of taxa or highly repetitive
procedures such as bootstrapping.
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Introduction

The relaxed neighbor joining (RNJ) algorithm is a
distance-based phylogenetic tree construction method
that is similar to the neighbor joining (NJ) algorithm

(Saitou and Nei 1987; Studier and Keppler 1988).
RNJ and NJ have the desirable property that they are
consistent estimators of phylogeny if the distances in
a dataset are purely additive (Waterman et al. 1977).
An additive dataset is one for which there exists a tree
with nonnegative branch lengths that perfectly rep-
resents all of the pairwise distances. In practice,
datasets are rarely additive, but NJ still works well as
long as distances are nearly additive (Saitou and
Imanishi 1989; Kuhner and Felsenstein 1994). NJ is
one of the more commonly used tree construction
methods, and in most cases it generates useful results.

NJ tree construction requires pairwise distances as
input. Users of NJ typically start by calculating the
magnitudes of differences between DNA sequences
for the taxa under consideration. Those magnitudes
are then treated as distances, and the NJ algorithm
attempts to construct a tree that encodes all of the
pairwise distances. The quality of results depends
heavily on the accuracy of the distances, and several
researchers have addressed this issue.

At the most basic level, distances can be corrected
to account for multiple mutations at the same DNA
site (Kimura 1980). Felsenstein (2004) uses a likeli-
hood-based model for calculating distances. The
Weighbor variant of the NJ algorithm reweights
distances in an attempt to improve results when dis-
tantly related taxa are included in the dataset (Bruno
et al. 2000). The BIONJ variant of NJ takes into
account the variances and covariances of the dis-
tances and minimizes these at each step during tree
construction (Gascuel 1997).

NJ is generally regarded as a fast reconstruction
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means that for large datasets, reconstruction is
impractical. Mailund and Pedersen (2004) have
developed QuickJoin, which implements a heuristic
method that avoids considering pairs of nodes when
they are known to fall outside bounds that are cal-
culated from previous passes through the matrix of
pairwise distances. Runtime results are good for this
heuristic, as is shown later, but substantial extra
space is required for auxiliary data structures, which
limits QuickJoin to approximately 8000 taxa on
modern 32-bit computer systems. As such, this heu-
ristic approach is only compelling for a limited range
of input sizes. Typical NJ implementations do not
make use of such heuristics. Their runtimes are pro-
portional to n3 for all inputs, and they require space
proportional to n2. RNJ typically requires time pro-
portional to n2lgn, without using any more space than
NJ.

Unlike simpler distance-based tree construction
methods, NJ is able to deal with varying rates of
evolution, so the resulting trees need not be ultra-
metric. This is accomplished by making join decisions
based on transformed distances that take all taxa into
consideration. A transformed distance TAB between
taxon A and taxon B is calculated as

TAB ¼ DAB �

Pn

i ¼ 1; i 6¼ B

DAi þ
Pn

i ¼ 1; i 6¼ A

DBi

n � 2

where Dxy is the distance between taxon x and taxon
y, and n is the total number of taxa. The fractional
sums represent the average distances from A and B to
all other taxa. Note that the divisor is n � 2 because
DAA and DBB are always zero, and DAB is excluded,
which means that two distances are effectively ex-
cluded from each sum.

There are two components that contribute to a
minimal transformed distance. A small absolute dis-
tance between A and B contributes, but it is also
important that, on average, A and B are farther from
other taxa than they are from each other. By joining
two taxa with globally minimal transformed distance
between them at each step of tree construction, NJ
builds the tree starting from the leaf nodes, without
risk of joining taxa that are not immediate neighbors.
Fig. 1 helps to illustrate why this is so. DCD is the
minimum pairwise distance, but TAB and TEF are the
minimal transformed distances. This is because C and
D are closer to the center of the tree than are the taxa
with minimal transformed pairwise distances.

We modified the NJ algorithm in order to improve
tree construction speed, with the additional goal of
maintaining the quality of generated trees. This paper
describes the algorithmic modifications that are the
basis of RNJ, then presents experiments that mea-
sured tree construction speed and tree quality. The

experimental results indicate that the RNJ algorithm
is very fast, and that RNJ trees are of very similar
quality to NJ trees.

Algorithm

Like NJ, RNJ uses transformed distances when
making join decisions, but rather than looking for a
minimum among all transformed distances, RNJ
looks for two taxa that have minimal transformed
distance between them as compared to their trans-
formed distances to all other taxa. Whereas NJ only
joins pairs of neighboring leaf nodes that are mini-
mally distant, RNJ can join any pair of plausible
neighboring leaf nodes. There are typically many
more pairs of neighboring leaf nodes than there are
neighboring leaf nodes with minimal transformed
distance, and RNJ is usually able to find such pairs
without having to calculate transformed distances for
all taxon pairs. We refer to the algorithm as ‘‘re-
laxed’’ NJ because it does not search for the globally
minimal transformed distance; RNJ employs a less
stringent, relaxed join criterion. Following is a
general description of the RNJ algorithm, which
operates on an input matrix of pairwise distances:

Fig. 1. Phylogenetic tree and corresponding patristic distance
matrix. Each matrix cell contains the absolute pairwise distance
(top) and transformed distance (bottom). DCD is the minimum
pairwise distance for this tree, but the associated transformed dis-
tance TCD is not minimal; TAB and TEF are minimal. The NJ
algorithm will first join A and B or E and F.
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Where R is the set of rows in the matrix of pair-
wise distances:

1. While Rj j > 2:

(a) Choose a row A 2 R.
(b) Choose a row B 2 R j B 6¼ Af g.
(c) Calculate the set of transformed distances

TA ¼ TAR8R 2 RjR 6¼ Af gf g.
(d) Calculate the set of transformed distances

TB ¼ TBR8R 2 RjR 6¼ Bf gf g.
(e) If TAB 2 min TAð Þf g and TBA 2 min TBð Þf g:

i Create a new node X, and join it to the nodes
represented by A and B.

ii Remove A and B from R.
iii Insert a row that corresponds to node X

into R.

2. Join the nodes represented by the remaining two
rows.

There is a situation in which RNJ could mistakenly
join two nodes, unless an additional check is per-
formed. For example, nodes C and D in Fig. 1 could
be mistakenly joined, since TCD is minimal compared
to the transformed distances in the matrix rows and
columns that correspond to nodes C andD. However,
there is a simple way to always recognize and avoid
such errant joins when distances are additive. (For
nonadditive distances, conflicting data lend partial
support to such joins, so they are not necessarily er-
rant.) Consider that if the path A M B includes an
internal branch, there exists a node R such that the
internal branch is a component of the path A M R. In
such a case, joining A and B would remove the
internal branch, which would change TAR. In fact, the
way that branch lengths are calculated during joins
changes the distance from A to all other nodes (except
B) if there should be an internal branch betweenA and
B. Therefore, when distances are additive, errant joins
can be avoided by making sure that TAR does not
change for an arbitrary choice of R other than B.

RNJ�s algorithmic complexity is O(n3), but typical
performance is much better. The runtime of RNJ tree
construction is primarily determined by the number
of transformed distances that must be calculated.

There is some probability that step (1a) of the RNJ
algorithm will choose a taxon that has an immediate
neighbor. That probability ranges from 4/n to 1; it is
minimal for pectinate (maximally deep) trees such as
that in Fig. 2 and maximal for perfect (fully bal-
anced) trees such as that in Fig. 3. For the extreme
case of pectinate trees, RNJ typically affords only a
constant (though substantial) speedup over NJ, but
for trees that are even somewhat balanced, RNJ
performs approximately proportional to n2lgn.

Experiments

We performed three experiments, which looked at (1)
algorithmic correctness, (2) speed, and (3) quality of
results. The correctness and speed experiments used
additive distance matrices as input, in order to make
validation possible and performance comparisons
fair.

The experiments used four distinct tree shapes,
and branch lengths were based on random sampling
from the gamma distribution. The gamma distribu-
tion was chosen because it provides a simple mecha-
nism for generating trees with varying degrees of
branch length variation, where all branches have
nonnegative lengths. In all cases, we chose parame-
ters such that k ¼ 1=a, where k is the scale param-
eter and a is the shape parameter, so that the expected
value was always 1. We chose values of a ‡ 2, so that
all distributions had the same basic shape.

Specifics of how trees of the four shapes were
generated follow:

Pectinate. A pectinate tree with x leaf taxa has
x ) 1 levels. For a given x, there is only one such tree
shape, assuming unordered node adjacencies (Fig. 2).
Each branch is assigned a length by summing the
results of iteratively multiplying some constant
branch length scalar C with a number that is drawn
from the gamma distribution:

PLmax

i ¼ Lmin
C � Di,

where Di  Cða; k ¼ 1=aÞ. Lmin and Lmax are the
minimum and maximum levels that the branch spans.
The root node is implicit, so the branch that contains
the implicit root has a length that is the sum of that
branch�s implicit component branches.

Fig. 3. A perfect tree with 2x = 2 leaf taxa. The tree has x = 2
levels, and all leaf taxa are x = 2 branches away from the root.

Fig. 2. A pectinate tree with x = 4 leaf taxa. The tree has
x � 1 ¼ 3 levels, and branches span from 1 to x � 1 ¼ 3 levels.
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Treezilla. Treezilla trees are based on a single
500-taxon tree that is based on data from Chase et
al. (1993). These trees differ only in their branch
lengths. Each branch is assigned a length by mul-
tiplying some constant factor with a number that is
drawn from the gamma distribution: C · D, where
D  Cða; k ¼ 1=aÞ.

Random. A random tree is generated via star
decomposition. Each branch is assigned a length
using the same procedure as for treezilla trees.

Perfect. A perfect tree always has 2x leaf taxa, for
some positive integer x. There are x levels of the tree,
and every leaf taxon is x branches away from the root
(Fig. 3). Each branch is assigned a length using the
same procedure as for treezilla trees. The root node is
implicit, so the branch that contains the implicit root
is on average twice as long as the other branches. For
purposes of tree generation, that branch�s length is
assigned as though it is two separate branches.

Correctness

We generated a total of 10 random trees for each of
the following numbers of taxa: 3 to 50, and 100x,
where x = [1..100]. Branch lengths were gamma-
distributed:  Cða ¼ 2; k ¼ 1=2Þ. For each of these
trees we generated the corresponding additive dis-
tance matrix, then used RNJ to reconstruct a tree. In
every case, RNJ succeeded in recovering the original
tree.

Speed

We generated trees of the two extreme shapes: pec-
tinate and perfect. Branch lengths were gamma-dis-

tributed:  Cða ¼ 2; k ¼ 1=2Þ. The trees had 2x

taxa, where x = [9..14]. From these trees, we gener-
ated additive distance matrices, which were randomly
shuffled in order to avoid inputs that favored a par-
ticular search order. We then compared the run-
time of RNJ to the runtimes of PHYLIP neighbor
(Felsenstein 2004), QuickTree (Howe et al. 2002), and
QuickJoin (Mailund and Pedersen 2004). The exper-
iments were run on an Intel Pentium-4 3 GHz Linux
system, and all four programs were compiled with the
same optimization flags. Fig. 4 summarizes the re-
sults.

Quality

We used Rose (Stoye et al. 1998) to simulate true
alignments and true trees for 512 taxa under the
F84 model of molecular evolution (Kishino and
Hasegawa 1989; Felsenstein and Churchill 1996) for
four tree shapes (pectinate, treezilla, random, and
perfect), ranges of sequence length (250 to 2500, in
increments of 250), divergence time (0.25 to 2.5, in
increments of 0.25), and level of evolutionary rate
heterogeneity (a = 2x for x from 1 to 10). Rose was
run with a mean mutation rate of 0.01342302.
Mutation rate is meaningful only in the context of
time; we chose the mutation rate and time intervals
such that the full range of useful divergence was
simulated. We used insertion/deletion thresholds of
5.0 · 10)6, and insertion/deletion function vectors of
[.2,.3,.4,.4,.3,.2,.1]. We chose these insertion/deletion
settings in order to add a level of biological realism
to the problem of calculating pairwise sequence
distances.

We used PHYLIP�s dnadist program to estimate
pairwise sequence distances according to the F84

Fig. 4. Speed comparison of tree
construction for two tree shapes (pectinate
and perfect) and varying numbers of taxa.
RNJ vastly outperforms the NJ
implementations of QuickJoin, QuickTree,
and PHYLIP neighbor for all tree shapes
and sizes.
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model. We used QuickTree to generate NJ trees and
used the Robinson-Foulds (1981) distance measure,
specifically as described by Moret et al. (2004), to
calculate the distance of each resulting tree from the
corresponding true tree. The Robinson-Foulds dis-
tance measure represents the proportion of branches
in two trees that induce bipartitions unique to one
tree or the other.

Experiments were replicated on two levels.

1. One hundred RNJ and 100 NJ trees were created
from each distance matrix, and the mean squared
error (MSE) was calculated for the resulting Rob-
inson-Foulds distances. The distance matrix was
randomly shuffled before each NJ replicate, so that
ties would be broken approximately randomly.

2. At a higher level, each experimental configuration
was replicated 100 times and the mean and vari-
ance of the value mentioned in (1) were calculated.
These two levels of replication were necessary in

order to avoid spurious results due to stochasticity
of RNJ, NJ, or the simulations. A total of 80
million trees were generated and analyzed in these
tests. All of the quality experiments were run on a
220-processor Beowulf supercomputer.

Due to the large volume of the raw results, we were
only able to fit representative samples here, along
with descriptions of the general trends. In general, the
quality of the RNJ and NJ results was very similar.
Both algorithms performed best on perfect trees,
nearly as well on random trees, somewhat worse on
treezilla trees, and very poorly on pectinate trees.

Fig. 5 shows one slice of the results for RNJ. We
do not present the variance of the mean squared error
because for all experiments, a lower mean equated to
a lower variance. The general patterns are very sim-
ilar for RNJ and NJ; the only differences are varia-
tions in magnitude. As sequence length increased,
results universally improved. Results were best for

Fig. 5. RNJ quality results (mean MSE of Robinson-Foulds distances) for all four tree shapes (pectinate, treezilla, random, and perfect),
where sequence length is 1500. The results are worst for pectinate trees and best for perfect trees.
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1:00 � time � 1:75, depending on the tree shape.
This was expected, because we chose the range of
time such that at the extremes, PHYLIP dnadist was
barely able to compute pairwise distances. As a in-
creased (molecular clock rate heterogeneity de-
creased), results generally improved. For pectinate
trees however, results were uniformly bad, regardless
of a; RNJ and NJ generated poor trees because the
variations in the long branches overwhelmed the
short branches along the ‘‘spines’’ of the trees. This is
an inherent aspect of pectinate trees, which calls into
question the general usefulness of RNJ and NJ on
pectinate trees. Nonetheless, we included pectinate
trees because they represent one of the two extreme
cases of tree topology, and because some previous NJ
quality experiments included them (Saitou and
Imanishi 1989).

Fig. 6 shows the relative performance of RNJ and
NJ for one slice of the quality experiments. With few
exceptions, NJ generated slightly better trees than
RNJ did for all configurations of the experiments that
were based on perfect, random, and pectinate trees.
For the treezilla-based experiments, however, NJ
only did slightly better for the shortest sequences, and
the RNJ trees quickly surpassed those of NJ as the
sequence length increased. It is important to note that
even in this case, the algorithms produced trees of
very similar quality.

Discussion

NJ favors joins for which there is maximal agreement
about whether the nodes under consideration are

Fig. 6. Quality results of RNJ versus NJ, for all four tree shapes (pectinate, treezilla, random, and perfect), where sequence length is 1500.
The plots depict relative quality using the formula log10 MMSENJ � log10 MMSERNJ, where MMSE is the mean MSE of the Robinson-
Foulds distances to the true trees. The formula calculates orders-of-magnitude differences between RNJ and NJ. Positive values mean that
RNJ performed better than NJ. For the dark cells in the perfect trees plot, NJ always recovered the true tree topology.
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neighbors, as evidenced by transformed distances.
RNJ treats all plausible joins as equally good. As
such, RNJ trees tend to vary more than NJ trees. NJ
is maximally greedy at each join, whereas RNJ is less
greedy. NJ�s greediness can cause systematic bias,
which leaves open the risk of uniformly poor results
for certain classes of input. Although RNJ is also
potentially prone to bias, that bias is of a less trou-
bling nature; all join operations for which the
distance matrix contains support are given approxi-
mately equal opportunity, whereas NJ may com-
pletely exclude potential joins for which support is
low. Were it possible to accurately quantify evidence
for potential joins, an unbiased algorithm would
randomly choose from the possibilities proportional
to their levels of support.

The quality experiments were constructed such
that the algorithm which performs better tends to
have lower variance, because outliers have a large
effect on the summary statistics. RNJ can construct a
superset of the trees that NJ can construct, and this
higher variance could be an advantage in some cases.
Consider that the simulations used the same model of
molecular evolution for both simulation and pairwise
distance estimation. There was no mismatch between
the true model and the inference model, so lower
variance generally meant better overall results, but if
there were a model mismatch, as is the case for bio-
logical data, RNJ�s higher variance would improve
the chances of capturing the true tree in its distribu-
tion of possible resulting trees. Thus RNJ is more
robust than NJ in such a case.

We demonstrated that RNJ is substantially faster
than NJ, which makes RNJ compelling for certain
uses. For example, heuristic searches for optimal trees
often start with NJ trees and try to improve from
there. For large datasets, the substantial time that
RNJ saves compared to NJ can instead be used for
the heuristic search, which should allow more starting
points to be considered in the same amount of time.
Another application is that of guide tree creation
for progressive multiple sequence alignment
(MSA), as implemented by programs such as Clustal
W (Thompson et al. 1994). NJ is the most algorith-
mically complex step of progressive MSA, so for
large numbers of sequences, using RNJ instead of NJ
can have a substantial impact on total program
runtime.

As for overall quality of results, neither algorithm
is clearly superior. NJ clearly produces better trees on
average for perfect trees, but RNJ produces better
trees on average for treezilla-based trees. That RNJ
does better than NJ for the experiments that were
based on biological data leaves us to wonder if this is
peculiar to the treezilla data or if RNJ will generate
better trees than NJ for a wide range of biologically
based data.

Availability

The Clearcut implementation of RNJ is available
upon request. Clearcut also includes an NJ imple-
mentation that is faster than any other nonheuristic
implementations that the authors are aware of.
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