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Relaxed sequencing games have a nonempty core∗

Marco Slikker†

September 9, 2003

Abstract

We study sequencing situations with a fixed initial order and linear cost func-
tions. In these sequencing situations cost savings can be obtained by rearranging
jobs. When the jobs are owned by different players, next to the issue of finding an
optimal order, the division of these cost savings forms an additional issue. Cooper-
ative game theory studies this issue by taking into account that groups of players
have possibilities to obtain cost-savings. For sequencing situations, a common as-
sumption states that cooperation between players is restricted to groups that are
connected according to the initial order. The value of disconnected groups is then
defined as the sum of its connected components. In this paper we take a different
approach. We allow for disconnected coalitions to switch places in any way they
want as long as they don’t hurt the players not in the coalition under considera-
tion. The resulting games are called relaxed sequencing games and they have been
studied before. No general results on stable profit divisions have been derived so
far. In this paper we prove that relaxed sequencing games have a nonempty core,
i.e., they all have stable profit divisions.

Keywords: Cooperative Game Theory, Scheduling, Balancedness.

JEL classification: C71

1 Introduction

The analysis of sequencing situations from a game-theoretical point of view dates back

to Curiel et al. (1989). They consider sequencing situations with linear cost functions

for the jobs. Assuming that the jobs are placed according to some initial order and
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MB, Eindhoven. E-mail: M.Slikker@tm.tue.nl.
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owned by different customers, the problem of finding a cost-efficient processing order is

supplemented with the issue of dividing the cost-savings among the different customers.

The latter is one of the central issues in cooperative game theory and Curiel et al. (1989)

use concepts from this theory to analyze sequencing situations.

Consider a machine and 3 companies who each have a broken tool that has to be

repaired in order for the companies to restart production. Suppose that according to a

first-come-first-serve principle, the tool of company 1 will be repaired first, followed by

company 2, and, finally, company 3. Lost production in the different companies may

have different values per time unit and therefore, taking repair times into account as

well, reshuffling the order of the jobs can lead to cost savings. If we want to analyze

the division of cost savings from a game-theoretical point of view we need to take the

possibilities of subgroups of companies into account. Assume company 1 and 2 come

together to discuss their possibilities to achieve cost savings without the help of company

3. Obviously, they could switch positions without changing the time span in which the

job of company 3 is processed. Hence, the value that can be obtained by these two

companies equals zero if switching attains no (or negative) cost savings and it equals

the cost savings if they are nonnegative. A similar reasoning can be given for companies

2 and 3 together. The picture becomes less clear if we consider companies 1 and 3.

Company 2 might have the opportunity to prevent switching between companies 1 and

3. Or, it might that he can only veto this switch if the processing time of company 3

is larger than the processing time of company 1. Different perspectives on possibilities

of groups of companies that are not connected according to the initial order result in

different cost savings that can be obtained by such a group and, therefore, might result

in a different analysis from a game-theoretical point of view.

In the example just described, Curiel et al. (1989) take the perspective that companies

1 and 3 cannot switch positions without the cooperation of company 2. They follow

standard game-theoretical literature, refer to what we called companies as players, and

extend these switching possibilities to a general setting. The only switches they allow

are switches within components that are connected according to the initial order. They

study standard solution concepts from cooperative game theory in this setting, but they

also define and characterize an allocation rule for sequencing situations. They show that

this allocation rule is stable, which means that in any sequencing situation it ends up

with payoffs to the players such that any set of players together receive at least as much

as this group could obtain without the help of the other players. In cooperative game

theory such a payoff vector is called a core-element.

The work of Curiel et al. (1989) has had several follow-ups, which extend the basic

model by considering ready times, due dates, or multiple machines. A recent review
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can be found in Curiel et al. (2002), who also consider more possible rearrangements by

reviewing the work of van Velzen and Hamers (2003). They allow for one specific player

who is allowed to switch with another player in any coalition (even if these two players

have to jump over players outside the group under consideration), as long as the starting

times of the players that are not considered are not delayed. They prove nonemptiness

of the core for the associated sequencing games. This relaxation of the set of admissible

rearrangements is different from the four relaxations that were introduced in Curiel et al.

(1993). These relaxations are based on requirements on position in the queue (should

stay the same/might change) and starting time (should stay the same/is not allowed to

increase) for the players not under consideration. Results on nonemptiness of the core

are available for two of the four relaxations only: for at most 4 players the associated

relaxed sequencing games were proven to have a nonempty core (see Hamers (1988)).

In this work we focus on the strongest relaxation of Curiel et al. (1993). We will prove

for any sequencing situation with any number of players that the core of the associated

relaxed sequencing game is nonempty. This implies nonemptiness of the core for the

other three relaxations as well. From a practical point of view this is an important

result since in practice it might well be that players or companies that are not connected

directly are allowed to change places even without the help of the players in between.

The setup of this paper is as follows. We continue in section 2 with preliminaries on

sequencing situations and cooperative game theory. In section 3 we introduce the basic

sequencing games and the four types of relaxed sequencing games of Curiel et al. (1993).

In section 4 we prove our main result for situations with rational-valued processing times.

We extend this result to real-valued processing times in section 5.

2 Preliminaries

In this section we will introduce some notation and standard results on cooperative game

theory and sequencing situations.

A cooperative game with transferable utilities, TU-game, is a pair (N, v) with N

a set of players and v : 2N → IR the characteristic function, which assigns to every

coalition S ⊆ N its value v(S) with v(∅) = 0. The core Core(N, v) of a game (N, v)

consists of the payoff vectors x ∈ IRN that satisfy condition
∑

i∈S xi ≥ v(S) for all

S ⊆ N and
∑

i∈N xi = v(N). For a coalition S ⊆ N , v|S denotes the restriction of

the characteristic function v to the player set S, i.e., v|S(T ) = v(T ) for each coalition

T ⊆ S. The pair (S, v|S) is a cooperative game with player set S, called a subgame

of (N, v). A game is called balanced if it has a nonempty core and totally balanced if

all its subgames are balanced. We will use balancedness and nonemptiness of the core
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interchangeably. The terminology balanced is due to Bondareva (1963) and Shapley

(1967). They independently identified the class of games that have nonempty cores as

the class of balanced games. To describe this last class, we define for all S ⊆ N the

vector eS by eS
i = 1 for all i ∈ S and eS

i = 0 for all i ∈ N\S. A map κ : 2N\{∅} → [0, 1]

is called a balanced map if
∑

S∈2N\{∅} κ(S)eS = eN . Now, a game (N, v) is called balanced

if for every balanced map κ : 2N\{∅} → [0, 1] it holds that
∑

S∈2N\{∅} κ(S)v(S) ≤ v(N).

We will refer to this last condition as a balancedness condition and use that a game has

a nonempty core if it satisfies all balancedness conditions.

A coalitional game is convex if a player’s marginal contribution does not decrease if

he joins a larger coalition. Formally, coalitional game (N, v) is convex if for each i ∈ N

and for all S, T ⊆ N\{i} with S ⊆ T it holds that v(S∪{i})−v(S) ≤ v(T ∪{i})−v(T ).

If a game is convex then it is totally balanced.

In proving our results we will encounter permutation games, introduced by Tijs et al.

(1984). Let A = [aij]i∈N,j∈N be a square matrix and let Π(S) be the set of permutations

of coalition S ⊆ N . Then a permutation game (N, r) is defined by

r(S) = max
π∈Π(S)

∑
i∈S

[aii − aiπ(i)] for all S ⊆ N.

Tijs et al. (1984) prove that permutation games are totally balanced.

Finally, we will introduce the sequencing situations that were considered from a game-

theoretical point of view by Curiel et al. (1989). Without taking the game-theoretical

point of view these models were studied by Smith (1956) already. In a sequencing

situation there is a queue of agents, each with one job, in front of a machine. Each

agent has to have his job processed on this machine. The finite set of agents is denoted

by N = {1, . . . , n}. The nonnegative processing time pi of player i is the time the

machine takes to handle the job. It is assumed that each player has a linear cost function

ci : [0,∞) → IR defined by ci(t) = αit with αi > 0. This cost function describes that

player i has cost ci(t) if he stays in the system (i.e., has an unfinished job) for t time

units. The position of the players in front of the machine can be described by a bijection

σ : N → {1, . . . , n}. Here, σ(i) = j means that player i is in position j. We will denote

σ−1 = (σ−1(1), . . . , σ−1(n)). For example, σ−1 = (3, 1, 2) means that player 3 is first

according to σ, followed by player 1 and, finally, player 2. It is assumed that initially

there is some fixed order in front of the machine, which is denoted by σ0. A sequencing

situation is a tuple (N, σ0, p, α) with N the set of players, σ0 the initial order, p = (pi)i∈N

the processing times, and α = (αi)i∈N the weights of the players, all as described above.

Let (N, σ0, p, α) be a sequencing situation. We denote the set of all possible orders by

ΠN and let σ ∈ ΠN . With an order we can associate a unique schedule by considering

the associated semi-active schedule. A schedule is called semi-active if there is no idle
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time between the jobs. Note that a schedule is completely determined by the starting

times of the jobs, which will, for the semi-active schedule associated with σ, be denoted

by tσ. For i ∈ N we have

tσ,i =

{
0 if σ(i) = 1;

tσ,j + pj if σ(i) > 1,
(1)

where, if σ(i) > 1, j is right in front of i, i.e., σ(j) = σ(i)− 1.

For order σ ∈ ΠN the cost of player i are given by Ci(σ) = ci(tσ,i + pi) = αi(tσ,i + pi).

Hence, the total cost for all players equal CN(σ) =
∑

i∈N Ci(σ). Starting from initial

order σ0 cost savings might be obtained by processing the jobs in a different order. The

following theorem, due to Smith (1956) states that the order with lowest total cost (i.e.,

highest total cost savings) has its jobs ordered according to decreasing urgencies, where

the urgency of player i is given by ui = αi

pi
.

Theorem 2.1 Let (N, σ0, p, α) be a sequencing situation. Then σ∗ satisfies

CN(σ∗)− CN(σ0) = max
σ∈ΠN

(
CN(σ)− CN(σ0)

)
if and only if

u(σ∗)−1(1) ≥ u(σ∗)−1(2) ≥ . . . ≥ u(σ∗)−1(n).

We remark that an order being optimal does not depend on the initial order.

Besides determining the optimal cost savings, we would like to redistribute these cost

savings to the players. Here, we will use cooperative game theory. Thereby we need

a formal description of the possibilities of any group of players to obtain cost savings.

This description allows for different possibilities and will be the first subject of the next

section.

3 Sequencing games

In this section we will define several different sequencing games associated with a sequenc-

ing situation. The differences between the games consists of different sets of possibilities

for groups of players to obtain cost savings. We will first follow the line of Curiel et al.

(1989) and then consider four different approaches as described by Curiel et al. (1993).

Let (N, σ0, p, α) be a sequencing situation. The cost savings a coalition S ⊆ N can

obtain will in general depend on the possibilities of this coalition to make changes to the

initial order and/or its associated time schedule. Curiel et al. (1989) take the approach

that two players in S can switch positions if and only if all players in between these two
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players belong to S as well. Formally, let Π0
S(σ0) (or Π0

S if there is no confusion on σ0) be

the subset of orders of ΠN such that σ ∈ Π0
S if and only if for all i ∈ N\S it holds that

P (σ, i) = P (σ0, i), where P (σ, i) = {j ∈ N | σ(j) < σ(i)} denotes the set of predecessors

of i according to σ. Hence, no jumps over players outside S are allowed. Let (N, v0) be

the cooperative game that is constructed in this way, so v0(S) is the cost savings that

can be obtained by coalition S if no jumping over jobs outside S is allowed. Curiel et al.

(1989) show that (N, v0) is convex and, consequently, that it is balanced.

Curiel et al. (1993) introduce four types of relaxed sequencing games associated with

sequencing situation (N, σ0, p, α). In the first relaxation, players in a coalition S ⊆ N

are allowed to jump over players outside S but both the position and the starting time of

players outside S are not allowed to change. Hence, if the jobs have different processing

times, then the schedule that is optimal for a coalition need not be semi-active.

In the second relaxation, coalition S ⊆ N gets the additional possibility to decrease

the starting time of players not in S but coalition S is not allowed to change the position

in the queue of players not in S. It follows straightforwardly that for any S there exists

an optimal schedule that is semi-active.

The third relaxation puts no restrictions on the place in the queue of jobs outside

S ⊆ N , but requires that the starting time of jobs outside S remain unchanged only. As

with relaxation 1 the schedule that is optimal for a coalition need not be semi-active.

Finally, we consider the fourth relaxation. As in relaxation 2 coalition S ⊆ N gets the

possibility to decrease the starting time of players not in S and, as in relaxation 3, there

are no restrictions on the place in the queue of jobs outside S: for all j 6∈ S: tj ≤ t0j. As

with relaxation 2 it follows immediately that for any S there exists an optimal schedule

that is semi-active.

Consider sequencing situation (N, σ0, p, α) and let S ⊆ N . Furthermore, let σ ∈
ΠN . For any of the four relaxations we can then determine whether σ satisfies the

requirements and, if so, whether there exists a time schedule associated with σ such that

the requirements of the relaxation are satisfied.

To illustrate the four relaxations consider the following example, taken from Curiel

et al. (1993).

Example 3.1 Consider sequencing situation (N, σ0, p, α) with N = {1, 2, 3, 4}, σ0(i) = i

for all i ∈ N , p = (5, 3, 2, 1), and some unspecified weight vector. Consider S = {1, 3, 4}.
The components of S are {1} and {3, 4}. Hence, in the basic model a switch between

job 3 and job 4 is the only possible switch.

According to relaxation 1, coalition {1, 3, 4} can attain the schedule with σ−1 =

(4, 2, 1, 3) with respective starting times 0, 5, 8, 13.
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For relaxation 2 the same order is admissible for {1, 3, 4} but with respective starting

times 0, 1, 4, 9.

If we consider relaxation 3 then we have an admissible schedule with σ−1 = (4, 3, 2, 1)

with associated starting times 0, 1, 5, 8.

For relaxation 4, these starting times change to 0, 1, 3, 6. 3

For any S ⊆ N , denote the set of admissible orders, i.e., orders for which there exist

an admissible time schedule, for the four relaxations by Π1
S, Π2

S, Π3
S, and Π4

S. Denote

for any relaxation k ∈ {1, 2, 3, 4}, any S ⊆ N , any j ∈ S, and any admissible schedule

σ ∈ Πk
S

ck
S,j(σ) = αj(t

k
σ,j,S + pj),

where tkσ,j,S is the starting time of job j according to schedule σ that is obtained according

to relaxation k by coalition S.

Now, Ck
S and vk are defined as in the basic model. So, the cooperative games associ-

ated with a sequencing situation are denoted by (N, v1), (N, v2), (N, v3), and (N, v4) for

relaxations 1, 2, 3, and 4, respectively. The following result provides relations between

these four games.

Theorem 3.1 Let (N, σ0, p, α) be a sequencing situation. For the associated relaxed

sequencing games we have:

v1(N) = v2(N) = v3(N) = v4(N);

v1(S) ≤ v2(S) ≤ v4(S) ∀S ⊆ N ;

v1(S) ≤ v3(S) ≤ v4(S) ∀S ⊆ N.

Proof: Follows directly by definition of the admissible rearrangements/schedules of a

coalition. Note that there is no j 6∈ S if we consider S = N . 2

This theorem implies that any core-element of (N, v4) is a core-element of (N, v1),

(N, v2), and (N, v3) as well. Consequently, if (N, v4) has a nonempty core, then (N, v1),

(N, v2), and (N, v3) have a nonempty core as well. In this work we will prove that (N, v4)

has a nonempty core. For notational convenience, we will, from now on, denote (N, v4)

by (N, v) and refer to it as the relaxed sequencing game (associated with (N, σ0, p, α)).

Note that for relaxation 4 it is easy to determine whether an order is admissible and,

if so, its associated starting times. In sequencing situation (N, σ0, p, α) coalition S can

switch to order σ if and only if tσ,i ≤ tσ0,i for all i ∈ N\S. The associated (optimal)

starting times are then given by (tσ,i)i∈N .
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Previous work on relaxed sequencing games have taken a much more restrictive per-

spective. Hamers (1988) proved balancedness of sequencing games (N, v2) for |N | ≤ 4.

Van Velzen and Hamers (2003) study weak-relaxed sequencing games, in which only

one specific player has the opportunity to switch with any other player in the coalition

provided that the players outside this coalition do no suffer from this switch. They prove

balancedness of weak-relaxed sequencing games.

4 Nonemptiness of the core

In this section we will prove nonemptiness of the core of relaxed sequencing games, but

we restrict ourselves to situations with rational-valued processing times. We will extend

our result to sequencing situations with real-valued processing times in the next section.

Let S denote the set of sequencing situations. The subset of sequencing situations with

rational-valued processing times is denoted by SQ. The subset of sequencing situations

with each processing time equal to a natural number is denoted by SIN.

Let (N, σ0, p, α) ∈ SIN be a sequencing situation. We define the associated sequencing

situation (N, σ0, p, α) by

- N = N1 ∪N2 ∪ . . . ∪Nn with Ni = {j1
i , . . . , j

pi

i } ∀i ∈ N ;

- σ0(j
k
i ) = k +

∑i−1
r=1 |N(σ0)−1(r)| ∀i ∈ N and ∀k ∈ {1, . . . , pi};

- pk
i = 1 ∀i ∈ N and ∀k ∈ {1, . . . , pi};

- αk
i = αi

pi
∀i ∈ N and ∀k ∈ {1, . . . , pi}.

In this associated sequencing situation each original job has been split into a number of

(sub-)jobs such that each subjob has unitary processing time. The weight of the original

job is split over the subjobs as well. Finally, the new initial order respects the original

order, the subjobs of one (original) job together are processed throughout exactly the

same time span as the original job in the initial order. Note that all subjobs of a job are

the same and, hence, their relative initial order is not important.

Above we associated an order of all subjobs with the initial order of the original jobs.

We generalize this definition to introduce an order σ associated with any processing order

σ ∈ ΠN :

σ(jk
i ) = k +

∑σ(i)−1
r=1 |Nσ−1(r)| ∀i ∈ N and ∀k ∈ {1, . . . , pi}.

We illustrate the construction of the associated sequencing situation by means of an

example.
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Example 4.1 Let (N, σ0, p, α) ∈ SIN be a sequencing situation with N = {1, 2, 3},
σ0(i) = i for all i ∈ N , pi = (1, 3, 2), and α = (2, 9, 2).

The associated sequencing situation (N, σ0, p, α) is then represented by N =

{j1
1 , j

1
2 , j

2
2 , j

3
2 , j

1
3 , j

2
3}, σ0 is such that σ0

−1(1) = (j1
1 , j

1
2 , j

2
2 , j

3
2 , j

1
3 , j

2
3), pk

i = 1 for all jk
i ∈ N ,

and (α1
1, α

1
2, α

2
2, α

3
2, α

1
3, α

2
3) = (2, 3, 3, 3, 1, 1). 3

Since (N, σ0, p, α) is a sequencing situation we can consider its associated relaxed

sequencing game. We will denote this relaxed sequencing game by (N,w) and refer to

it as the relaxed unit sequencing game associated with the original sequencing situation

(N, σ0, p, α).

Since all processing times in (N, σ0, p, α) are equal (to one), the associated relaxed

sequencing game coincides with a permutation game, which is balanced. This is captured

in the following lemma.1

Lemma 4.1 Let (N, σ0, p, α) ∈ SIN be a sequencing situation. The associated relaxed

unit sequencing game (N,w) is balanced.

Proof: The relaxed unit sequencing game is the relaxed sequencing game associated

with sequencing situation (N, σ0, p, α). Since all processing times are equal (to 1), this

game coincides with a permutation game as already argued by Tijs et al. (1984). They

prove that all permutation games are balanced. 2

In the following lemma we will derive some relations between the relaxed sequencing

game and the relaxed unit sequencing game associated with a sequencing situation. For

any S ⊆ N will use S to denote ∪i∈SNi.

Lemma 4.2 Let (N, σ0, p, α) ∈ SIN be a sequencing situation. Then v(S) ≤ w(S) for

all S ⊆ N with equality for S = N .

Proof: Let i ∈ N . Define

∆i = piαi −
pi∑

k=1

kαk
i .

Note that

∆i = piαi −
pi(pi + 1)

2

αi

pi

= piαi −
1

2
(pi + 1)αi =

1

2
(pi − 1)αi.

1In fact, not only the relaxed sequencing game coincides with a permutation game, but it coincides
with the cooperative game associated with any of the other relaxations as well.
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Let S ⊆ N . We will prove that v(S) ≤ w(S). Let σ ∈ Π4
S be an admissible order for

S. Then σ is obviously admissible for S since for all jk
i 6∈ S we have that tjk

i
≤ t0jk

i
.2

Let τ ∈ ΠN be an order of the jobs and let i ∈ N . Then

Ci(τ) = αi

∑
k:τ(k)≤τ(i)

pk

= αipi + αi

∑
k:τ(k)<τ(i)

pk

= ∆i +

pi∑
k=1

k
αi

pi

+

pi∑
k=1

(αi

pi

∑
k:τ(k)<τ(i)

pk

)
= ∆i +

pi∑
k=1

Cjk
i
(τ).

Using this, we have for all S ⊆ N

CS(τ) = CS(τ) +
∑
i∈S

∆i.

Hence, with σS the optimal order for S, σS its associated schedule which is admissible

for S, and σS the optimal schedule for S we have

w(S) =CS(σ0)− CS(σS)

≥CS(σ0)− CS(σS)

=CS(σ0) +
∑
i∈S

∆i −

(
CS(σS) +

∑
i∈S

∆i

)
=CS(σ0)− CS(σS) = v(S).

Finally, consider N . Let σN be an optimal rearrangement for N . Consider the

associated order for N , i.e., σN . Let i1, i2 ∈ N , let k1 ∈ {1, . . . , pi1} and k2 ∈ {1, . . . , pi2}
be such that σN(jk1

i1
) < σN(jk2

i2
). Then

αk1
i1

pk1
i1

= αk1
i1

=
αi1

pi1

≥ αi2

pi2

= αk2
i2

=
αk2

i2

pk2
i2

, (2)

2Note that it need not be the case that σ can be obtained by a permutation of the jobs in S, since
jobs in N\S can have been moved forward. Hence, more cost savings can be obtained by S (not by
S) if they move the jobs in N\S back to their original position and, while leaving the order within S

unchanged, moving these jobs forward as much as possible. To prove that v(S) ≤ w(S) it suffices to
consider σ.
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where the inequality follows by optimality of σN and theorem 2.1. Using (2) it follows

by theorem 2.1 again that σN is optimal for N . Hence,

w(N) =CN(σ0)− CN(σN)

=CN(σ0) +
∑
i∈N

∆i −
(
CN(σN) +

∑
i∈N

∆i

)
=CN(σ0)− CN(σN) = v(N).

This completes the proof. 2

Using our results above, we can prove the first main result of this section.

Theorem 4.1 Let (N, σ0, p, α) ∈ SIN be a sequencing situation. Then its associated

relaxed sequencing game is balanced.

Proof: Let (yk
i )i∈N ;1≤k≤pi

be a core-element of (N,w), which exists by lemma 4.1. For

all i ∈ N define

xi =

pi∑
k=1

yk
i .

Then ∑
i∈N

xi = w(N) = v(N)

and ∑
i∈S

xi ≥ w(S) ≥ v(S),

where we make use of (yk
i )i∈N ;1≤k≤pi

∈ Core(N,w) and the (in-)equalities of lemma 4.2.

We conclude that (xi)i∈N ∈ Core(N, v). 2

In the following theorem we extend the result on nonemptiness of the core from

the class of sequencing games with natural-valued processing times to rational-valued

processing times.

Theorem 4.2 Let (N, σ0, p, α) ∈ SQ be a sequencing situation. Then its associated

relaxed sequencing game is balanced.

Proof: First, we prove that the theorem holds for all (N, σ0, p, α) ∈ SQ with pi > 0 for

all i ∈ N . Since pi ∈ Q for all i ∈ N we can write pi = ai/bi with ai, bi ∈ IN for all i ∈ N .

Let β =
∏

i∈N bi. Then βpi ∈ IN for all i ∈ N . Hence, (N, σ0, βp, α) ∈ SIN. Denote

11



the relaxed sequencing game associated with (N, σ0, p, α) by (N, v) and the relaxed

sequencing game associated with (N, σ0, βp, α) by (N, z). Let σ ∈ ΠN be an order of

the jobs. Obviously, if the processing times are multiplied by a factor β then the cost

of any player are multiplied by a factor β as well. Since this holds for any order and

since the set of admissible orders for a coalition S ⊆ N remains unchanged, we derive

z(S) = βv(S) for all S ⊆ N . By theorem 4.1 we know that (N, z) has a nonempty core,

which implies that (N, v) has a nonempty core as well.

Finally, allowing for players with zero processing times just means including dummy

players in the associated relaxed sequencing game. Hence, we can extend the balanced-

result to SQ. 2

5 Real-valued processing times

In this section we will extend the core-nonemptiness theorem from the class with rational

valued processing times to the class of real-valued processing times.

Taking into acccount the results of the previous section it seems obvious to approach

a sequencing situation with real-valued processing times by means of a series of sequenc-

ing situations with rational-valued processing times. Taking an arbitrary series is not

sufficient as is illustrated by the following example.

Example 5.1 Consider sequencing situation (N, σ0, p, α) with N = {1, 2, 3}, σ0(i) = i

for all i ∈ N , p = (e, 1, e), and α = (1, 2, 3). Obviously, v(1, 3) = 2 + 2e. Define

pm = ((1 + 1
m

)m, 1, (1 + 1
m

)m + 1
m

) for any m ∈ IN. Then limm→∞ pm = (e, 1, e) = p

but, with (N, vm) the sequencing situation associated with (N, σ0, p, α), we have that

vm(1, 3) = 0 for all m ≥ 1 since pm
1 < pm

3 . Hence, limm→∞ vm(1, 3) = 0 6= 2+2e = v(1, 3).

We conclude that we cannot use this series in an obvious way to establish balancedness

of (N, v). 3

This example illustrates that an arbitrary series of processing time vectors will not be

useful to prove balancedness of sequencing situations with real-valued processing times.

However, a careful choice of series of processing time vectors will prove to be useful.

To describe this approach, we first need to introduce some additional notation. Denote

the set of sequencing situations with positive processing times (pi > 0 for all i ∈ N) that

sum to 1 (
∑

i∈N pi = 1) by S0,1. Let (N, σ0, p, α) ∈ S0,1 be such a sequencing situation

and let δ ∈ Q be such that 0 < δ < mini∈N pi. Let pS =
∑

i∈S pi for any S ⊆ N .

12



Furthermore, define

U(p, δ) = {q ∈ IRN |
∑
i∈N

qi = 1;∀i∈N : qi ≥ δ;∀S,T⊆N : pS = pT ⇒ qS = qT ;

∀S,T⊆N : pS > pT ⇒ qS > qT}.

The closure of this set, which we denote by U(p, δ) is described by3

U(p, δ) = {q ∈ IRN |
∑
i∈N

qi = 1;∀i∈N : qi ≥ δ;∀S,T⊆N : pS ≥ pT ⇒ qS ≥ qT}. (3)

Since p ∈ U(p, δ) ⊆ U(p, δ) and since U(p, δ) is a subset of the N -dimensional simplex

we have that U(p, δ) is a bounded nonempty polyhedron. Hence, it is a polytope, and

we will denote its vertices by x1, . . . , xt.
4 Since all conditions in the description of

U(p, δ) have only rational coefficients and right-hand sides it follows that xi ∈ QN for

all i ∈ {1, . . . , t}.
Since p ∈ U(p, δ) we know that p is a convex combination of x1, . . . , xt. Let (ωi)

t
i=1 be

an arbitrary but fixed set of coefficients such that p =
∑t

i=1 ωixi. Note that some of the

ωi may be zero. For notational convenience, rename the vertices (and their associated

coefficients) such that ωi > 0 for i = 1, . . . , r and ωi = 0 for i = r + 1, . . . , t. So,

p =
∑r

i=1 ωixi with ωi > 0 for i = 1, . . . , r.

We will construct a sequence of vectors of processing times in U(p, δ) that converges

to p. For i = 1, . . . , r and any n ≥ 1 let ωm
i be the decimal representation of ωi

truncated after decimal position n, so ωm
i = int(10mωi)

10m , where int(a) is the integer part

of a. Obviously, ωm
i ∈ Q for all i = 1, . . . , r and all m ≥ 1. Let m∗ = min{m | ωm

i >

0 for all i ∈ {1, . . . , r}}. Note that m∗ is well-defined since ωi > 0 for all i ∈ {1, . . . , r}.
Furthermore, define for all m ≥ m∗ and all i ∈ {1, . . . , r}

βm
i =

ωm
i∑r

j=1 ωm
j

.

Note that, since all ωm
j ∈ Q we have that βm

i ∈ Q for all i = 1, . . . , r and all m ≥ m∗ as

well. Furthermore, note that for all m ≥ m∗ it holds that
∑r

i=1 βm
i = 1 and βm

i > 0 for

all i ∈ {1, . . . , r}. Finally, define pm =
∑r

j=1 βm
i xi. Since limm→∞ βm

i = ωi we have that

limm→∞ pm = p.

The following lemma shows that this sequence of processing vectors belongs to U(p, δ).

Lemma 5.1 For all m ≥ m∗ it holds that pm ∈ U(p, δ).

3Let A be the right-hand side of equation (3). Then it follows immediately that U(p, δ) ⊆ A. The
reverse relation holds since for any q ∈ A and any α ∈ [0, 1) one easily verifies that αq+(1−α)p ∈ U(p, δ).

4We suppress that the vertices depend on U(p, δ).
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Proof: Let m ≥ m∗. Since pm is a convex combination of x1, . . . , xr, which all belong to

U(p, δ) we have that
∑

i∈N pm
i = 1 and pm

i ≥ δ for all i ∈ N . Furthermore, by the same

reason it follows immediately for all S, T ⊆ N that pS = pT implies pm
S = pm

T . It remains

to show that for all S, T ⊆ N it holds that pS > pT implies pm
S > pm

T . Let S, T ⊆ N be

such that pS > pT . Then, (xi)S ≥ (xi)T for all i = 1, . . . , r since all xi belong to U(p, δ).

Since p =
∑r

i=1 ωixi and pS > pT there exists i∗ ∈ {1, . . . , r} such that (xi∗)S > (xi∗)T .

Using that βm
i∗ > 0 and βm

i ≥ 0 for all i ∈ {1, . . . , r} we derive that pm
S > pm

T . We

conclude that pm ∈ U(p, δ). 2

In the following lemma, we show that for any coalition it holds that two elements of

U(p, δ) allow for the same rearrangements. Since the set of admissible orders of coalition

S, Π4
S, may depend on p we denote it by Π4

S(p).

Lemma 5.2 Let (N, σ0, p, α) ∈ S0,1 be a sequencing situation and let δ ∈ Q be such

that 0 < δ < mini∈N pi. Let p∗ ∈ U(p, δ) and S ⊆ N . Then Π4
S(p) = Π4

S(p∗).

Proof: Let σ ∈ ΠN and let i 6∈ S. Then
∑

j∈P (σ,i) pj ≤
∑

j∈P (σ0,i) pj if and only if∑
j∈P (σ,i) p∗j ≤

∑
j∈P (σ0,i) p∗j . Hence, σ ∈ Π4

S(p) if and only if σ ∈ Π4
S(p∗). We conclude

that Π4
S(p) = Π4

S(p∗). 2

As a last intermediate step, we prove that the sequence of games (N, vm)m≥m∗ , with

(N, vm) the relaxed sequencing game associated with (N, σ0, p
m, α) converges to (N, v).

Lemma 5.3 Let (N, σ0, p, α) ∈ S0,1 be a sequencing situation and let δ ∈ Q be such

that 0 < δ < mini∈N pi. Let (N, vm)m≥m∗ be the sequence of relaxed sequencing games

with (N, vm) associated with pm =
∑r

j=1 βm
i xi Then limm→∞ vm = v.

Proof: Let S ⊆ N . For any σ ∈ ΠN and any m ≥ m∗ we have by lemma 5.2 that σ ∈
Π4

S(p) if and only if σ ∈ Π4
S(pm). For any σ ∈ Π4

S(p)(= Π4
S(pm)) it follows immediately

that CS(σ, pm), defined by CS(σ) with pm as its processing times, converges to CS(σ, p).

Combining these two facts we derive that vm(S) = CS(σ0, p
m) −minσ∈Π4

S(pm) CS(σ, pm)

converges to CS(σ0, p)−minσ∈Π4
S(p) CS(σ, p) = v(S). This completes the proof. 2

Using the results so far, we can easily proof the main result of this paper, which states

that all relaxed sequencing games have a nonempty core.

Theorem 5.1 Let (N, σ0, p, α) ∈ S. The associated relaxed sequencing game (N, v) has

a nonempty core.
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Proof: First, let (N, σ0, p, α) ∈ S0,1. Let (N, vm)m≥m∗ be the associated sequence of

relaxed sequencing games as in lemma 5.3. By lemma 5.3 we know that (N, vm) converges

to (N, v). For all m ≥ m∗, since (N, σ0, p
m, α) ∈ SQ we have that (N, vm) is balanced by

theorem 4.2. Hence, we derive that (N, v) satisfies all balancedness conditions as well.

Secondly, let (N, σ0, p, α) ∈ S with pi > 0 for all i ∈ N . By the first part of this proof

and a linearity-argument as in the proof of theorem 4.2 we derive balancedness of the

relaxed sequencing game (N, v).

Finally, allowing for players with zero processing times just means including dummy

players in the associated relaxed sequencing game. We conclude that the balancedness-

result can be extended to S. 2

Earlier, in theorem 3.1, we stated that proving nonemptiness of the core for the relaxed

sequencing games implies nonemptiness of the core for any of the four relaxed sequencing

games that were considered in section 3. Hence, we have the following corollary to

theorem 5.1.

Corollary 5.1 Let (N, σ0, p, α) ∈ S. Any of the associated relaxed sequencing games

(N, v1), (N, v2), (N, v3), and (N, v4) has a nonempty core.
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