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Relaxed stability and performance LMI conditions
for Takagi-Sugeno fuzzy systems with polynomial

constraints on membership function shapes
Antonio Sala,Member, IEEE,and Carlos Ariño

Abstract—Most LMI fuzzy control results in literature are
valid for any membership function, i.e., independent of the
actual membership shape. Hence, they are conservative (with
respect to other nonlinear control approaches) when specific
knowledge on the shapes is available. This paper presents relaxed
LMI conditions for fuzzy control which incorporate such shape
information, in the form of polynomial constraints, generalizing
previous works by the authors. Interesting particular cases are
overlap (product) bounds and ellipsoidal regions. Numerical
examples illustrate the achieved improvements, as well as the
possibilities of solving some multi-objective problems. The results
also apply to polynomial-in-membership TS fuzzy systems.

Index Terms—Takagi-Sugeno fuzzy control, LMI, relaxed
condition, quadratic stability, parallel distributed com pensation,
polynomial fuzzy systems

I. I NTRODUCTION

L INEAR Matrix Inequality (LMI) techniques, introduced
by [1] in the fuzzy community, have become the tool

of choice [2], [3] in order to design controllers for Takagi-
Sugeno (TS) models [4]. Most LMI control design techniques
are based on proving positiveness (or negativeness) of a
so-called double fuzzy summation [1], in expressions such
as
∑r

i=1

∑r
j=1 µiµjx

T Qijx > 0, where µi are denoted
as membership functions. Other settings may require higher
summation dimension, see Section II-C.

Early sufficient conditions for positivity of the above double
fuzzy summation wereQii > 0, Qij + Qji > 0 [1]; widely-
used less conservative conditions are those in [5], improved by
[6]. The conditions can be further generalized, until asymp-
totically necessary and sufficient conditions are obtained[7].

The above cited conditions are independent of the “shape”
of the membership functions: sufficient conditions are stated
via properties ofQij (disregarding any property thatµi might
have other thanµi ≥ 0,

∑

i µi = 1). Shape-independence is
a source of conservativeness: for instance, the systemẋ =
µ1(z) · x + (1− µ1(z)) · (−x) cannot be proved stable for an
arbitraryµ1, as it is unstable forµ1(z) = 1. However, it is an
exponentially stable system for, say,µ1 = 0.25 + 0.2sin(x).
As a conclusion from the above, “pure nonlinear” strategies
[8] on an original nonlinear model may find better solutions
than fuzzy ones on an equivalent fuzzy TS model.
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In summary, there is a “gap” between fuzzy and nonlinear
control caused by shape-independence. Indeed, in an actual
application, when explicit expressions of the memberships
as a function of some variables are known, some zones of
the possible membership space can be excluded (onlyfor
that particular application, of course). If the set where the
membership functions take values is reduced, the family of
models described by the TS expressions gets smaller; in this
way, less conservative conditions are possible.

The problem of shape-dependent information in fuzzy con-
trol LMIs has only been partially addressed in [9], [10] (for
non-PDC control) and [11] for PDC control with known
bounds on the product of two membership functions.

This contribution focuses on the PDC case, and presents
results generalizing [11]. Indeed, [11] discusses constraints
such asµi ≤ βi, with βi known, in order to prove shape-
dependent stability of open-loop fuzzy systems and constraints
in the form µiµj ≤ βij , with βij known, in order to prove
closed-loop shape-dependent stability. In this work the above
cited procedures will be generalized and recent results from
[7] will be incorporated. In this way, simple methodologies
will allow for any polynomial constraint on the membership
shapes, such asµ2

1−µ3
2µ3−4µ2µ4−0.1 ≥ 0, to be incorporated

in the LMIs in order to relax conservativeness based on shape
information.

In summary, this paper presents general polynomial shape-
dependent relaxations of [5]–[7]. Interestingly, the results
apply seamlessly to polynomial-in-membership fuzzy systems,
i.e., those described by, say,̇x = p1(µ)(A1x + B1u) +
· · · + ps(µ)(Asx + Bsu), where pi are polynomials in the
membership functions.

Furthermore, the ideas in this work allow a new type of
fuzzy multi-objectivedesigns (complementary to those in, for
instance, [12], [13]) to be accomplished, so different control
performance criteria may be specified in different regions of
the operation space, as outlined via an example in Section V.

The structure of the paper is as follows: next section will
discuss previous literature results, polynomial-in-membership
fuzzy systems, and it will set the notation for fuzzy summa-
tions. Section III will discuss how to incorporate membership-
shape information (in the form of polynomials of degree 2) to
obtain shape-dependent relaxations for TS and polynomial-
in-membership fuzzy systems. Section IV will generalize the
results to fuzzy summations and polynomials of arbitrary
degree. Numerical examples will illustrate the achieved im-
provements in Section V; some possibly interesting multi-
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objective problems will also be discussed there. A conclusion
section closes this paper.

II. PRELIMINARIES AND NOTATION

A. Double fuzzy summations

In many situations, Lyapunov-based conditions for stability
or performance of a fuzzy control system may be expressed
in the form

Ξ(t) =
r
∑

i=1

r
∑

j=1

µi(z(t))µj(z(t))x(t)T Qijx(t) > 0 ∀ x 6= 0

(1)
wherez(t) are denoted as premise variables (usually measur-
able) andr denotes the number of fuzzy “rules” or “local
models”. Symmetry ofQij and a fuzzy partition condition

r
∑

i=1

µi(z(t)) = 1 µi(z(t)) ≥ 0 (2)

are assumed to hold. Notationµi will be used as shorthand
for µi(z(t)). Also, in most cases, “positive” in the text below
should be understood as shorthand for “positive forx 6= 0”.

Widely-used sufficient conditions for (1) are:
[5, Theorem 2]. Expression (1) under fuzzy partition

condition holds if there exist matricesXij = XT
ji such that:

Xii ≤ Qii (3)

Xij + Xji ≤ Qij + Qji i 6= j (4)

X =







X11 . . . X1r

...
. . .

...
Xr1 . . . Xrr






> 0 (5)

The above conditions have been recently relaxed in [6,
Theorem 5], and in [7]; see Section IV for further discus-
sion on shape-dependent versions of them (shape-independent
formulation omitted for brevity).

One of the simplest, well-known, examples in which the
above arises is quadratic decay-rate performance of a Takagi-
Sugeno fuzzy system

ẋ =

r
∑

i=1

µi(Aix + Biu) (6)

Indeed, following [1], we have:

Qij = −(AiX + XAi
T − BiMj − MT

j BT
i + 2αX) (7)

whereX > 0 andMi are LMI decision variables. There are
many other situations (see [1]–[3], [14], [15] and references
therein for details) giving rise to differentQij , contemplating
H2, H∞, etc. performance measures, as well as uncertainty
and delay, for both continuous-time and discrete fuzzy sys-
tems.

B. Previous shape-dependent conditions in literature

As discussed in the introduction, the problem of shape-
dependent conditions has been addressed in literature only
recently.

PDC case (1): To the authors’ knowledge, the shape-
dependent PDC case (1) has been considered only in [11],
assuming that a bound on the overlap between fuzzy sets
defined byµk andµl, for k 6= l, is expressed as:

µkµl ≤ γkl (8)

[11, Theorem 3] Consider an antecedent fuzzy partition
fulfilling the overlap bounds (8). Expression (1) holds if there
exist matricesXij = XT

ji and symmetricRij , i ≤ j, such that:

Xii ≤ Qii + Rii − Λ (9)

Xij + Xji ≤ Qij + Qji + Rij − 2Λ (10)

X =







X11 . . . X1r

...
. . .

...
Xr1 . . . Xrr






> 0, Rij ≥ 0 (11)

where

Λ =
r
∑

k=1

∑

k≤l≤r

βklRkl

Also, the conditions in [16] may be considered to be
shape-dependent, exploiting the particular product structure
present in many TS obtained from the sector-nonlinearity
modelling technique [1]; however, albeit slightly less powerful,
the relaxations in [11] are significantly less computationally
demanding than [16] when applied to the same problem.

Non-PDC case:The non-PDC case, withu =
∑r

i=1 ηiFix,
a model (6), and shape information in, for instance, the form
ρm

i ≤ ηi/µi ≤ ρM
i is considered in [9], [10]. As the objective

of this paper is the PDC case (1) and its multi-dimensional
generalizations (see below), the reader is referred to the cited
works for details on shape-dependent issues for non-PDC
controllers. Anyway, the conditions in those works are always
more conservative than the PDC ones, so they are not useful
to accomplish the objectives of this paper.

C. Multi-dimensional fuzzy summations

As a generalisation of (1), other fuzzy control results
require positiveness of ap-dimensional fuzzy summation,i.e.,
checking

Ξ =

r
∑

i1=1

r
∑

i2=1

· · ·
r
∑

ip=1

µi1(z)µi2(z) . . . µip
(z)xT Qi1i2...ip

x ≥ 0

(12)
The casep = 2 reduces to (1).

1) Takagi-Sugeno systems with output equations:Condi-
tions with p = 3 for TS systems are, for instance, the fuzzy
dynamic controllers in [1], [12], usingQijk = Eijk + ET

ijk,
where, for suitableA,B,C,D,

Eijk =

(

AiQ11 + BiCjk Ai + BiDjCk

Aijk AiP11 + BijCk

)

< 0 (13)

Triple sums appear also in output-feedback settings [6], [17].
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2) Polynomial-in-membership fuzzy systems:Multi-
dimensional summations in fuzzy control problems may
also be obtained whenpolynomial-in-membershipprocesses
or controllers are used (see [18] for the latter case). A
continuous-time polynomial-in-membership TS system is
defined as:

ẋ =
s
∑

i=1

πi(µ)(Aix + Biu) (14)

beingµ the vector ofr membership functions, andπi a poly-
nomial inµ. The definition of a discrete system is analogous.
Repeatedly multiplying by

∑r

i=1 µi, all polynomials can be
made homogeneous (see Section IV).

For instance, letsin z be fuzzified assin z = µ1 ∗ (−1) +
µ2 ∗ (+1), with µ1 = 0.5(1 − sin z), µ2 = 1 − µ1; consider
the system:

(

ẋ1

ẋ2

)

=

(

(sin z)x1 + u
(sin z)2x1 − x2

)

(15)

and replacesin z = (µ2 − µ1) · (µ2 + µ1) = µ2
2 − µ2

1 and
(sin z)2 = (µ2−µ1)

2 = µ2
2+µ2

1−2µ1µ2. Then, a double-sum
TS model

∑2
i=1

∑2
j=1 µiµj(Aijx+Biju) is readily obtained,

with Bij = (1 0)T and

A11 =

(

−1 0
1 −1

)

, A12 = A21 =

(

0 0
−1 −1

)

, A22 =

(

1 0
1 −1

)

Considering also a quadratic-in-membership (QPDC) con-
troller u = −∑2

k=1

∑2
l=1 µkµlFklx, decay rate performance

would be proved if a 4-dimensional sum (12) were positive
with Mkl = FklX and

Qijkl = −(AijX+XAij
T −BijMkl−MT

klB
T
ij +2αX) (16)

for which the shape-independent results in [7] readily apply, as
well as the shape-dependent ones in Section IV in this paper.

D. Multi-dimensional index notation

In order to streamline notation in multi-dimensional sum-
mations (12), the following notation, from [7], will be usedto
handlep-dimensional vectors of natural numbers (denoted by
boldfaced variables), and its associatedp-dimensional summa-
tions:

Ip = {(i1, i2, . . . , ip) | 1 ≤ ij ≤ r, j = 1, 2, . . . , p}
∑

i∈Ip

γi =

r
∑

i1=1

r
∑

i2=1

· · ·
r
∑

ip=1

γi1i2...ip
(17)

for some suitably defined multidimensionalγi = γi1i2...ip

(γi1i2...ip
will be either a number or a matrix),i.e., boldface

symbol i will denote a multi-index in ap-dimensional
index set Ip (Ip has rp elements). For instance, triple-
summations in a four-rule fuzzy system will be spanned
by a multi-index i ∈ I3, where I3 has 64 elements:
{1, 1, 1}, {1, 1, 2}, . . . , {1, 1, 4}, {1, 2, 1}, . . . , {4, 4, 4}. The
following subset ofIp will also be later used:

I
+
p = {i ∈ Ip | ik ≤ ik+1, k = 1 . . . , p − 1}

For instance, the elements ofI+3 are 20 (6!/(3!3!)):
{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 1, 4}, {1, 2, 2}, . . . , {4, 4, 4}.

By convention, the cartesian product of several multi-
indices, resulting in a higher-dimensional one, will be sym-
bolized by parentheses:

i ∈ Ip, j ∈ Iq, . . . ,m ∈ It ⇒ (i, j, . . . ,m) ∈ Ip+q+···+t

(18)
and sometimes by mere juxtaposition, such as inγi1...ip

in
(17). One-dimensional indices, sayj ∈ I1 are ordinary integer
index variables: they will be typed in italic typeface asj,
1 ≤ j ≤ r when its one-dimensionality should be emphasized.

The purpose of multi-index notation is to compactly repre-
sent multi-dimensional fuzzy summations, as follows.

First, let us define the following notation, specific for
membership functions as a shorthand for a product:

µi =

p
∏

l=1

µil
= µi1µi2 . . . µip

i ∈ Ip (19)

For instanceµ(3,4,1,1) = µ3µ4µ
2
1 will be the membership asso-

ciated to the termQ3411 in a 4-dimensional fuzzy summation.
Note that ift = (i,k), µt = µiµk. With the above notation,p-
dimensional fuzzy summations (12) may be written as follows:

Ξ(t) =
∑

i∈Ip

µix
T Qix (20)

where the basic membershipsµ = {µ1, . . . , µr} from which
µi stem fulfill the add-1 partition condition.

1) Permutations:Given a multi-indexi ∈ Ip, let us denote
by P(i) ⊂ Ip the set of permutations (with, possibly, repeated
elements) of the multi-indexi. For instance,i = (3, 3, 1, 1) has
4!/(2!2!) = 6 elements in its set of permutations. Of course
if i ∈ P(j), then j ∈ P(i). The permutations will be used to
group elements in multiple fuzzy summations which share the
same antecedent: it’s an evident fact thatj ∈ P(i) ⇒ µj = µi.

III. I MPROVED SHAPE-DEPENDENT POSITIVITY

CONDITIONS FOR DOUBLE FUZZY SUMMATIONS

Denote byµ(z) the column vector of membership functions
µ(z) = (µ1(z), µ2(z), . . . , µr(z))T in a fuzzy model. On
the sequel, the shorthand notationµ will be used instead of
µ(z), as previously introduced for the individual membership
components.

Assume that knowledge of:

• the specific shape of the membership functions,
• the set of valuesΩ taken by premise variablesz,

allows to set up a bound in the form:

µT Sµ + wµ + v ≤ 0 ∀ z ∈ Ω (21)

whereS, w and v are, respectively, a matrix (of dimensions
r × r, with elementssij), a row vector (1 × r, with elements
wi) and a scalar. AllS, w andv are assumed known.

The left-hand side term in (21) is a second-order polynomial
in the membership functions. Particular examples are, for in-
stance, knowledge on degrees of membership function overlap
(say,µ1µ2 < 0.15, µ1µ3 = 0, (µ1+µ2)∗µ4 ≤ 0.4), ellipsoidal
sets (such as(µ1 − 0.9)2 + 2(µ2 − 0.1)2 ≤ 0.052) or drilling
ellipsoidal “holes” (such as(µ1−0.9)2+2(µ2−0.1)2 ≥ 0.052);
see section III-A for further discussion.
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Proposition III.1 If the membership functions conform a
fuzzy partition, then the matrixB whose elements, denoted
by βij , are defined as

βij = (sij + wi + v) (22)

fulfills:
µTBµ ≤ 0 (23)

Proof: Indeed, using the partition condition (2),

0 ≥ µT Sµ + wµ + v =

r
∑

i=1

r
∑

j=1

µiµjsij +

r
∑

i=1

wiµi + v =

=

r
∑

i=1

r
∑

j=1

µiµjsij +

r
∑

i=1

r
∑

j=1

µiµjwi +

r
∑

i=1

r
∑

j=1

µiµjv =

=

r
∑

i=1

r
∑

j=1

µiµj(sij + wi + v) =

r
∑

i=1

r
∑

j=1

µiµjβij (24)

Hence, any second-order polynomial restriction on the mem-
bership shape can be written as an homogeneous form.

Theorem III.1 Assume knowledge about the particular mem-
bership function shape is available via a constraint matrixB,
with elementsβij , fulfilling (23). Then, expression(1) is proved
if there exists a symmetric matrixR ≥ 0 so that the condition:

Ξ′(t) =

r
∑

i=1

r
∑

j=1

µiµjx
T Q′

ijx > 0 ∀ x 6= 0 (25)

holds, whereQ′
ij = Qij + βijR, i.e., Qij is replaced in(1)

by Q′
ij involving an additional matrix decision variable.

Proof: consider an arbitrary symmetric positive semi-
definiteR. Then, the term

H = xT Rx

r
∑

i=1

r
∑

j=1

µiµjβij =

r
∑

i=1

r
∑

j=1

µiµjx
T βijRx (26)

verifies H ≤ 0, because it is the product of a pos-
itive number, xT Rx, and a non-positive one,µTBµ.
Then, H may be added toΞ in (1) and, if the result-
ing sum is positive,Ξ will evidently be positive, i.e.,
Ξ ≥ Ξ + H =

∑r

i=1

∑r

j=1 µiµjx
T (Qij + βijR)x = Ξ′.

The numerical examples in Section V will prove that the
above result actually improves achievable performance over
previous literature ones.

Multiple restrictions can be incorporated by repeated appli-
cation of Theorem III.1,i.e.:

Corollary III.1 Assume that knowledge about the particular
membership function shape is available via a set of matrices
B[k], k = 1, . . . , nc, with elementsβ[k]

ij , wherenc denotes the
number of constraints. Expression(1) is proved if there exist
positive semi-definite matricesRk, k = 1, . . . , nc, so that the
condition (25) holds, with

Q′
ij = Qij +

nc
∑

k=1

β
[k]
ij Rk

Note that the above results adapt the basic idea behind
the well-known S-procedure [19] (sufficient conditions for
positivity of quadratic forms under quadratic constraints) to
the fuzzy restrictions in consideration here, by considering a
relaxation matrix instead of a scalar.

In order to check condition (25), usual expressions can
be used, such as [5] or the relaxations in [7]. For instance,
straightforward application of [5] and Corollary III.1 yields:

Theorem III.2 Consider an antecedent fuzzy partition fulfill-
ing a set of bounds in the form(21) or, equivalently,(23).
Expression(1), under shape constraintsB[k], k = 1, . . . , t,
holds if there exist matricesXij = XT

ji and symmetricRk ≥ 0
such that(5) holds and

Xii ≤ Qii +

nc
∑

k=1

β
[k]
ii Rk (27)

Xij + Xji ≤ Qij + Qji +

nc
∑

k=1

(β
[k]
ij + β

[k]
ji )Rk (28)

also do.

A. Particular cases

1) Membership function overlap [11]:Assume that a bound
on the overlap between fuzzy sets is available in the form (8).
Such bound is a particular case of (21) withw = 0 and

skl = slk =
1

2
, v = −γkl (29)

sij = 0 ∀ (i, j) 6= (k, l) (30)

resulting in βkl = βlk = 1
2 − γkl and, for (i, j) 6= (k, l),

βij = −γkl. The conditions of Theorem III.2 result in (5),
R ≥ 0 and

Xii ≤ Qii − γklR (31)

Xij + Xji ≤ Qij + Qji − 2γklR (i, j) 6= (k, l)(32)

Xkl + Xlk ≤ Qij + Qji + (1 − 2γkl)R (33)

By adding the restrictions for all possible pairs(k, l), the
results in Section II-B from [11] are obtained.

2) Ellipsoidal hole:The interior (or exterior) of any ellipse,
parabola or hyperbola can be considered via a suitableB. As
a simple example, let us assume that the condition

r
∑

i=1

(µi − ci)
2 ≥ δ2 (34)

is known to hold,i.e., the membership functions are known to
lie outside of a particular hyper-sphere.

Then,
∑r

i=1(µ
2
i + c2

i − 2ciµi) ≥ δ2, i.e.,

r
∑

i=1

µ2
i +

r
∑

i=1

r
∑

j=1

µiµj(−δ2+

r
∑

k=1

c2
k)−2

r
∑

i=1

r
∑

j=1

µiµjci ≥ 0

so we have, denoting byφ = −δ2 +
∑r

k=1 c2
k,

r
∑

i=1

µ2
i (1 − 2ci + φ) +

r
∑

i=1

r
∑

j=i+1

µiµj(2φ − 2ci − 2cj) ≥ 0
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Fig. 1. Ellipsoidal holes on the add-1 simplex inR
3.

Hence, the previous results apply with

βii = −(1 − 2ci) − φ (35)

βij = −φ + 2ci i 6= j (36)

In general, following a similar methodology, one may
specify that the membership functions are inside or outside
of an arbitrary ellipsoidal quadratic form with expressions in
the form:

µT Sµ + v ≤ 0 (37)

Details are left to the reader. A collection of such ellipsoids
may be used to exclude any zones which are known to lie out
of the range of the membership function vector (Figure 1).

B. Obtaining bounds in practice

As the shape of the membership functions is known in
PDC fuzzy control, obtaining the bounds for any second-order
polynomial in the form (21) may be cast as an optimization
problem. Indeed, choosing arbitraryS and w, maximising
J(z) = µ(z)T Sµ(z) + wµ(z) over the expected range of
values of the premise variablesz (previously denoted as
Ω), yields a valueJmax = maxz∈Ω J(z). Once Jmax is
available1, an expression in the form (21) can be obtained from
J(z)−Jmax ≤ 0, i.e., the polynomialµT Sµ+wµ−Jmax ≤ 0.

As an example, consider the fuzzy partition in Figure 2. In
this case, the boundsµ2 − 0.86 ≤ 0 andµ1µ3 − 0.0045 ≤ 0
may be easily computed by line-search on the one-dimensional
set where the premise variable takes values. In fact, following
a similar optimization approach, higher order polynomial
bounds may be obtained; for instance, maximizingµ1µ2µ3:
This idea inspires next section.

In other common cases, membership functions are the
cartesian tensor product of simpler ones, describing either
fuzzy partitions on individual variables or basic nonlinearities
in the system equations, following the modeling methodology
in [1]. In that case, it can be shown that certain products of
memberships can be bounded by a power of0.25 (because
µ(1 − µ) ≤ 0.25). For instance, consider “high” and “low”
to be contrary concepts defined on pressure and temperature

1The optimization onΩ can be carried out by using any optimization
technique; even a brute-force approach evaluating the memberships on a
dense-enough grid onz may suffice. Note, however, that the approach may
find difficulties with highly nonlinear memberships or a large number of
premise variables inz.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ1 µ2

µ3

z(t)

M
em

b
er

sh
ip

Fig. 2. Fuzzy partition with limited overlap.

universes. If a membershipµ1 is “temperature islow and
pressure islow”, and other membershipµ2 is “temperature
is high and pressure ishigh”, then µ1µ4 ≤ 0.252. Details of
these situations appear in [11], [16].

IV. GENERALISATION TO HIGHER DIMENSIONS.

Consider also the possibility that a restriction on the shape
of the membership functions is given by a multivariate poly-
nomial of degreed, for instance

µ4
1 − 2µ3 + µ1µ2 − 0.3 < 0 (38)

with d = 4, where monomials of degree four, one, two and
zero appear. As another example, the memberships in Figure
2 fulfill µ1µ2µ3 − 0.0039 ≤ 0.

Now, choose any arbitrary integerq fulfilling q ≥ d.
By multiplying each of the atomic monomials of degreedi

(0 ≤ di ≤ d) by (
∑r

i=1 µi)
q−di (which is identically equal

to one), any polynomial of degreed can be converted to an
homogeneous polynomial of degreeq. For instance, the above
(38) gets converted in

µ4
1 − 2µ3(

4
∑

i=1

µi)
3 + µ1µ2(

4
∑

i=1

µi)
2 − 0.3(

4
∑

i=1

µi)
4 < 0 (39)

So, let us restate a generalized version of Theorem III.1 for
higher-degree homogeneous polynomial constraints, usingthe
notation in Section II-D.

Consider a degree-q homogeneous polynomial constraint in
memberships:

∑

i∈Iq

µiβi ≤ 0 (40)

The coefficientsβi may be considered elements of a multi-
dimensional array (i.e., a tensor [20])B, generalising the
matrix appearing in (23). Note that any polynomial of degree
lower or equal toq may be expressed as an homogeneousq-
dimensional summation (40), by following the methodology
used to obtain (39).

Theorem IV.1 Consider a p-dimensional fuzzy summation
condition (12), jointly with shape-dependent knowledge ex-
pressed as constraints of degreeq (40). Choose any arbitrary
integern so thatn ≥ max(p, q). The positivity condition(12)
(in the region determined by the constraints(40)) is fulfilled if
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there exists a positive definite matrixR so that the condition
∑

i∈In
µix

T Q′
ix ≥ 0, i = (i1, i2, . . . , in), holds with:

Q′
i = Qi1i2...ip

+ βi1i2...iq
R (41)

The integern will be denoted as the complexity parameter.

Proof: As
∑r

k=1 µk = 1, it’s straightforward that:

∑

i∈Ip

µix
T Qix ≥

∑

i∈Ip

µix
T Qix + (xT Rx) · (

∑

i∈Iq

µiβi) =

= (

r
∑

k=1

µk)n−p
∑

i∈Ip

µix
T Qix+(

r
∑

k=1

µk)n−q
∑

i∈Iq

µix
T βiRx =

=
∑

i∈In

µix
T Q′

ix (42)

so positivity of the last term implies positivity of the firstone.

Note that an extension tonc constraints of degreeqk, k =
1, . . . , nc, is straightforward, by using:

Q′
i = Qi1i2...ip

+

nc
∑

k=1

β
[k]
i1i2...iqk

Rk (43)

with i ∈ In, n ≥ max(p, q1, . . . , qnc
), for some to-be-

determined positive-definiteRk associated to each constraint
tensorB[k] (details omitted for brevity). As there is no loss
of generality in assumingq = maxk qk (by multiplying by a
suitable power of

∑r

i=1 µi), only a uniqueq will be considered
in the sequel.

Once the newQ′
i are defined in (43), any sufficient condition

to prove positivity of ann-dimensional fuzzy summation may
be used. For instance,n = 3 may be handled by adapting the
conditions in [6, Theorem 5].

Corollary IV.1 Given a set ofnc degree-3 polynomial restric-
tions, expressed asnc homogeneous forms(40), and anyQijk

expressing some fuzzy control requirements, the 3-dimensional
summation

∑r

i=1

∑r

j=1

∑r

k=1 µiµjµkxT Qijkx is positive (in
the region determined by the constraints) if there existXijk,
Rl so that, beingQ′

ijk = Qijk +
∑nc

l=1 β
[l]
ijkRl:

R ≥ 0 Xijk = XT
ikj (44)

Q′
iii ≤ Xiii (45)

Q′
iij + Q′

iji + Q′
jii ≤ Xiij + Xiji + Xjii i < j (46)

Q′
ijk + Q′

ikj + Q′
jik + Q′

jki + Q′
kij + Q′

kji ≤
Xijk + Xikj + Xjik + Xjki + Xkij + Xkji i < j < k (47)







Xi11 . . .Xi1r

...
. . .

...
Xir1 . . .Xirr






> 0 ∀i (48)

And any complexity parametern ≥ 2 may be handled by
using Theorems 4 and 5 in [7], replacing the originalQi by
Q′ from (43):

Corollary IV.2 A sufficient condition for positivity ofΞ in
(12), under as set ofnc constraints in the form(40), is the
positivity condition below, forn ≥ max(p, q):

∑

k∈In−2

µkξT







X(k,1,1) . . . X(k,1,r)

...
. . .

...
X(k,r,1) . . . X(k,r,r)






ξ > 0 (49)

if there exist matricesXj, j ∈ In, and positive-definiteRl,
l = 1, . . . , t, so that, for alli ∈ I

+
n

∑

j∈P(i)

(Qj1j2...jp
+

nc
∑

l=1

β
[l]
j1j2...jq

Rl) ≥
∑

j∈P(i)

1

2
(Xj + XT

j ) (50)

As the above corollary is the most general statement in this
work, its proof is included for readability, even if it is a trivial
adaptation of that in [7].

Proof:

Ξ =
∑

i∈In

µix
T Q′

i1i2...ip
x =

∑

i∈I
+
n

µi

∑

j∈P(i)

xT Q′
j1j2...jp

x (51)

Hence, if (50) holds, asµi ≥ 0,

∑

i∈I
+
n

µi

∑

j∈P(i)

xT Q′
j1...jp

x ≥
∑

i∈I
+
n

µi

∑

j∈P(i)

xT 1

2
(Xj+XT

j )x =

=
∑

i∈I
+
n

µi

∑

j∈P(i)

xT Xjx =
∑

i∈In

µix
T Xix =

=
∑

k∈In−2

r
∑

i=1

r
∑

j=1

µkµiµjx
T X(k,i,j)x =

=
∑

k∈In−2

µkξT







X(k,1,1) . . . X(k,1,r)

...
. . .

...
X(k,r,1) . . . X(k,r,r)






ξ (52)

whereξ = (µ1x
T µ2x

T . . . µrx
T )T . Hence, if (49) and (50)

hold, (12) also does.

The number of decision variables can be reduced by assum-
ing X(k,i,j) = XT

(k,j,i) with no loss of generality, and practical
application forn > 3 requires setting up a recursive procedure:
given a starting value ofn, it provides sufficient conditions
for the positivity of then-dimensional sum expressed as an
(n − 2)-dimensional one. Hence, repeated application of the
theorem is needed until: (a) 2-dimensional fuzzy summations
are obtained (using Theorem 2 in [5] as a last step) when
starting from an evenn; (b) in the odd-n case, one-dimensional
fuzzy summations are obtained, stating then the condition that
each of the elements in the sum must be positive. The reader
is referred to [7] for details.

V. EXAMPLES

Examples showing the usefulness of the particular case
of known bounds on products of two memberships (Section
III-A), appear in [11]. This section will present examples
which allow to take into account some spherical shapes and
higher-order products of memberships.
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µ1µ1

µ2µ2 µ3µ3

Fig. 3. Example 1: (left) case 1, (right) case 2. Shaded area denotes possible
values of membership functions inside the triangle{µ1 + µ2 + µ3 = 1,
µi ≥ 0}. Isometric projection.

A. Example 1 (quadratic constraints)

Consider the system (6), withr = 3 and

A1 =

(

−0.74 0.61 0.87

0.39 −0.26 0.56

0.99 0.05 −0.16

)

B1 =

(

0.99 0.65

0.2 0.87

0.76 0.12

)

A2 =

(

0.69 0.07 0.35

0.48 0.86 0.37

0.1 0.31 0.3

)

B2 =

(

0.96 0.36

0.76 0.17

0.04 0.20

)

A3 =

(

0.28 0.39 0.58

0.32 0.13 0.20

0.68 0.34 0.19

)

B3 =

(

0.32 0.02

0.72 0.15

0.29 0.06

)

The fastest decay rate2 with a state feedback PDC law
provable by Theorem 2 in [5], using theQij in (7), is
α = 0.51. The procedures in this paper will be applied to
achieve improved decay rates, when some knowledge about
the membership function shape is available. Let us consider
below three illustrative cases:

1) Case 1:Assume that, for a particular system, the mem-
bership vectordoes notlie inside a sphere centered at the
origin (ci = 0 in (34)) with radiusδ (Figure 3-left), and that
fact is known to the designer to take advantage of it.

Then, conditions (35) and (36) in Theorem III.2 result in
the shape-dependent LMI conditions:

Xii ≤ Qii + (δ2 − 1)R (53)

Xij + Xji ≤ Qij + Qji + 2δ2R i < j (54)

Note that, for0 ≤ δ ≤ 1, the conditions are progressively less
conservative asδ increases, because the right-hand-side terms
above add the positive termsδ2R and2δ2R.

Let us check different cases forδ with the above system.
In particular, values ofδ > 1/

√
2 produce faster decay rates

than the case with arbitrary memberships: forδ = 0.72 the
fastest decay rate for which the LMI solver found a feasible
solution isα = 0.96; for δ = 1 (only vertices) it isα = 3.4,
almost 7 times faster than the conventional shape-independent
conditions3 from [5].

2Note that the chosen performance measure has been decay rate, for
simplicity; other features such as robustness margins orH∞ bounds may
be tested by selecting a differentQij , as discussed in Section II.

3The caseδ = 1 indicates that only the canonical vertices(µ1, µ2, µ3) ∈
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} are possible values of memberships (corre-
sponding, for instance, to a switching linear system). In this case, conditions
(53) and (54) result in:{Xii ≤ Qii, Xij +Xji ≤ Qij +Qji +2R}. Hence,
with a large enoughR, Xij = 0 for i 6= j can be made to be a solution,
i.e., (1) holds ifQii > 0, which is a well-known result in “crisp” switching
linear systems.

2) Case 2: Using expressions (35)-(36) as before, the
knowledge that the membership vector lies outside of a sphere
with center (0, 0.5, 0.5) and radius 0.4 (see Figure 3-right)
is cast into the LMIs via (35)–(36). The result is a decay
α = 0.62. If a sphere with center (0,0,1) and radius 0.49 is
used, the achievable decay isα = 0.56. With both circles and
two relaxation variablesR1, R2, the achievable decay rate is
α = 0.66. All of the results are, as expected, better than the
decay0.51 with the standard shape-independent conditions.

3) Case 3: Multi-objective design (dual specifications):
Consider the problem of achieving different levels of specifi-
cations in different regions of the working space4. For instance,
only stability may suffice for certain infrequent cases whereas
a faster decay may be desired at particular operation region,
given by a particular polynomial constraint on the membership
functions.

Under these assumptions, the LMI conditions for mere
stability (stated for an unrestricted membership shape), may be
adjoined with the decay rate ones incorporating membership
shape information which would apply to a particular region.

Consider designing a regulator which achieves stability for
the TS model under consideration, and simultaneously triesto
achieve the fastest decay rate when when the distance of the
membership vector to the point(1, 0, 0) is smaller than 0.75.
Then, conditions in [5, Theorem 2] withQij in (7) with α = 0
must be set up (with additional decision variablesXij), as well
as those withQ′

ij given by suitableβij from (35)–(36), using
another set of decision variablesX ′

ij , evidently.
The result is thatα = 1.11 is the fastest “local” decay rate

which can be proved feasible with the proposed setup, which
more than doubles the one obtainable with a PDC on the whole
operating space. Note, however, that faster fuzzy controllers
might exist: on one hand, a source of conservativeness (well-
known in multi-criteria LMI synthesis) is the shared Lyapunov
function; on the other hand, the conservativeness inherentin
the use of [5, Theorem 2] may be relaxed by using the results
in [7].

B. Example 2 (cubic constraints)

Consider a 3-rule 2nd-order TS system with:

A1 =

(

1.59 −7.29
0.01 0

)

B1 =

(

1
0

)

A2 =

(

0.02 −4.64
0.35 0.21

)

B2 =

(

8
0

)

A3 =

(

−a −4.33
0 0.05

)

B3 =

(

−b + 6
−1

)

4The above multi-objective design is different, and complementary, to the
usual approach in literature of achieving different sorts of performance bounds
on all the state space (mixedH2/H∞, H∞ plus decay rate, etc. [12], [21]);
as an alternative approach, thesameperformance type but with different level
in different regions is suggested here. Note also that some definitions are
needed in order to rigorously define the meaning of “local” decay rate in
terms of basins of attraction and Lyapunov level sets. The definition of, say,
a “local” H∞ norm would also be cumbersome. These issues are, however,
omitted for brevity as they are not the main objective of the paper. In the
example in consideration, in a set of premise variablesΩl ⊂ Ω, a “local”
decay rateα will be said to have been proved when a Lyapunov function is
found fulfilling V̇ (x) ≤ −2αV (x) for all z ∈ Ωl (indeed,z may include
some or all of the components ofx, as usual in TS modeling [1]).
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−0.5 0 0.5 1 1.5 2 2.5 3 3.5
5

5.5

6

6.5

7

7.5

Fig. 4. Feasible points (example 2) under different restrictions with Theorem
IV.2, n = 3. ‘⊗’: βijk = 0; ‘*’: µ1µ2µ3 ≤ 0.0004; ‘+’ µ1µ2µ3 = 0.
Horizontal axis denotes parametera, vertical axis denotes parameterb.

A stabilizing PDC controller is to be designed. The ranges
of values fora and b yielding a feasible LMI are tested for
several methods, in the grida ∈ [−0.5, 3.25], b ∈ [5.25, 7.25].

The procedure in [5, Theorem 2] does not yield any fea-
sible value in this parameter range. Even with no restriction
(βi = 0), Corollary IV.1 (i.e., [6]), produces feasible stabilising
regulators for the values ofa and b indicated by the “cart
wheel” symbol in Figure 4.

When the restrictionµ1µ2µ3 ≤ 0.0004 is enforced, a few
more feasible points appear (indicated by a star).

The restrictionµ1µ2µ3 = 0 produces a larger set of feasible
points; the+ sign on the figure pinpoints those combinations
of parameter values yielding feasible controllers only under
the last restriction. In all cases, the LMI solver was Matlab
LMI Toolbox with default options.

VI. CONCLUSIONS

This paper presents results which relax stability and per-
formance conditions for (possibly polynomial-in-membership)
fuzzy control systems if knowledge of membership function
shape is available. Such knowledge must be in the form
of polynomial constraints. Particular cases are membership
function overlap bounds (product of two or more member-
ship functions) and ellipsoidal constraints (i.e., incorporating
knowledge about the membership functions lying either inside
or outside of a particular ellipsoid). However, any polynomial
in the membership functions, with arbitrary degree, is allowed.

Furthermore, multi-objective designs can be accomplished
so that different control performance criteria may be specified
in different regions of the operation space. This idea may be
interesting in practical gain-scheduling applications.

As a result, more freedom in guaranteeing control require-
ments is available in any particular application with explicitly
known membership functions; such situation is indeed the case
when actually implementing PDC controllers.
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