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Abstract—Most LMI fuzzy control results in literature are
valid for any membership function, i.e., independent of the
actual membership shape. Hence, they are conservative (luit
respect to other nonlinear control approaches) when spectfi
knowledge on the shapes is available. This paper presentdazed
LMI conditions for fuzzy control which incorporate such shape
information, in the form of polynomial constraints, generalizing
previous works by the authors. Interesting particular case are
overlap (product) bounds and ellipsoidal regions. Numerial
examples illustrate the achieved improvements, as well ahé
possibilities of solving some multi-objective problems. fie results
also apply to polynomial-in-membership TS fuzzy systems.

Index Terms—Takagi-Sugeno fuzzy control, LMI, relaxed
condition, quadratic stability, parallel distributed com pensation,
polynomial fuzzy systems
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I. INTRODUCTION

In summary, there is a “gap” between fuzzy and nonlinear
control caused by shape-independence. Indeed, in an actual
application, when explicit expressions of the memberships
as a function of some variables are known, some zones of
the possible membership space can be excluded (foly
that particular application of course). If the set where the
membership functions take values is reduced, the family of
models described by the TS expressions gets smaller; in this
way, less conservative conditions are possible.

The problem of shape-dependent information in fuzzy con-
trol LMIs has only been partially addressed in [9], [10] (for
non-PDC control) and [11] for PDC control with known
bounds on the product of two membership functions.

This contribution focuses on the PDC case, and presents
results generalizing [11]. Indeed, [11] discusses coimta
such asu; < f;, with 5; known, in order to prove shape-

INEAR Matrix Inequality (LMI) techniques, introduced gependent stability of open-loop fuzzy systems and coinssra
by [1] in the fuzzy community, have become the tog},

the form u,;; < B;5, with 8;; known, in order to prove

of choice [2], [3] in order to design controllers for Takagi¢|osed-loop shape-dependent stability. In this work thevab
Sugeno (TS) models [4]. Most LMI control design technique§ieq procedures will be generalized and recent results fro
are based on proving positiveness (or negativeness) of7 will be incorporated. In this way, simple methodologies

so-called double fuzzy summation [1],

in_expressions suGhl| aliow for any polynomial constraint on the membership

r r T
as > i1 > j1 Hitj Qijw > 0, where y; are denoted ghapes such ag—idus—4paps—0.1 > 0, to be incorporated
as membership functions. Other settings may require highfine | Mis in order to relax conservativeness based on shape

summation dimension, see Section II-C.

Early sufficient conditions for positivity of the above ddeb

fuzzy summation were&);; > 0, Q;; + Q;; > 0 [1]; widely-

information.
In summary, this paper presents general polynomial shape-
dependent relaxations of [5]-[7]. Interestingly, the t&su

used less conservative conditions are those in [5], impttye apply seamlessly to polynomial-in-membership fuzzy syste

[6]. The conditions can be further generalized, until asymp

totically necessary and sufficient conditions are obtai7éd

The above cited conditions are independent of the “sha
of the membership functions: sufficient conditions areestat

via properties of});; (disregarding any property that might

those described by, say, = p1(n)(Aiz + Biu) +
— -+ ps(u)(Asz + Bsu), wherep; are polynomials in the

Pfembership functions.

Furthermore, the ideas in this work allow a new type of
fuzzy multi-objectivedesigns (complementary to those in, for

have other thani; > 0, 3, i = 1). Shape-independence ispgiance, [12], [13]) to be accomplished, so different coint

a source of conservativeness: for instance, the system

performance criteria may be specified in different regiohs o

p(2) -z + (1= m(2)) - (—2) cannot be proved stable for ane gneration space, as outlined via an example in Section V.

arbitrary 11, as it is unstable fop;(z) = 1. However, it is an
exponentially stable system for, say, = 0.25 + 0.2sin(z).
As a conclusion from the above, “pure nonlinear”

The structure of the paper is as follows: next section will
discuss previous literature results, polynomial-in-mership

strategigg,,y systems, and it will set the notation for fuzzy summa-

[8] on an original nonlinear model may find better solutiongons Section 111 will discuss how to incorporate membépsh

than fuzzy ones on an equivalent fuzzy TS model.
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shape information (in the form of polynomials of degree 2) to
obtain shape-dependent relaxations for TS and polynomial-
in-membership fuzzy systems. Section IV will generalize th
results to fuzzy summations and polynomials of arbitrary
degree. Numerical examples will illustrate the achieved im
provements in Section V; some possibly interesting multi-



objective problems will also be discussed there. A conolusi PDC case(1): To the authors’ knowledge, the shape-

section closes this paper. dependent PDC case (1) has been considered only in [11],
assuming that a bound on the overlap between fuzzy sets

A. Double fuzzy summations

In many situations, Lyapunov-based conditions for stgbili
or performance of a fuzzy control system may be expressed [11, Theorem 3] Consider an antecedent fuzzy partition
in the form fulfilling the overlap bounds (8). Expression (1) holds iéta

roor exist matricesX;; = X}; and symmetrid?;;, i < j, such that:
() =D ()i (z(0)x()" Qija(t) >0 V& #0
i=1 j=1 Xii < Qi+ Ry — A (9)

(1) X4 Xoii < Qi LR —2A 10
wherez(t) are denoted as premise variables (usually measur- iy £ Xji S Qg+ Qi+ I (10)

et < Yk (8)

(1]

able) andr denotes the number of fuzzy “rules” or “local X Xy
models”. Symmetry of);; and a fuzzy partition condition X = oo >0, Ri; 20 (11)
T Xrl er
Donilz(t) =1 pi(x(t) 20 (2)
i=1 where
are assumed to hold. Notatigny will be used as shorthand A= B R
for p;(z(t)). Also, in most cases, “positive” in the text below =1 k<l<r
should be understood as shorthand for “positiveifgt 0.
Widely-used sufficient conditions for (1) are: Also, the conditions in [16] may be considered to be

[5, Theorem 2]. Expression (1) under fuzzy partitionshape-dependent, exploiting the particular product &irec
condition holds if there exist matrice§;; = X, such that: ~ present in many TS obtained from the sector-nonlinearity
modelling technique [1]; however, albeit slightly less @wul,

Xii = Qi () the relaxations in [11] are significantly less computatliyna
Xij+X;i < Qij+Qji#7 (4) demanding than [16] when applied to the same problem.
X ... Xir Non-PDC case:The non-PDC case, with = Zle n; Fix,

(5) a model (6), and shape information in, for instance, the form
pm < n;/u; < pM is considered in [9], [10]. As the objective
of this paper is the PDC case (1) and its multi-dimensional
The above conditions have been recently relaxed in [generalizations (see below), the reader is referred toited c
Theorem 5], and in [7]; see Section IV for further discusworks for details on shape-dependent issues for non-PDC
sion on shape-dependent versions of them (shape-independentrollers. Anyway, the conditions in those works are gisva
formulation omitted for brevity). more conservative than the PDC ones, so they are not useful
One of the simplest, well-known, examples in which thto accomplish the objectives of this paper.
above arises is quadratic decay-rate performance of a Fakag
Sugeno fuzzy system

X =

V
o

D, CS TV, ¢

C. Multi-dimensional fuzzy summations

T = Z“i(AierBi“) (6) As a generalisation of (1), other fuzzy control results
=1 require positiveness of gedimensional fuzzy summationg.,
Indeed, following [1], we have: checking

Qij = —(AiX + XA;" — BiM; — M Bl +2aX) (7) .o . ]
=3NS @ (2) -y (2)2T Qi iy 2 0

where X >0 and M; are LMI decision variables. There are ‘= /= =
many other situations (see [1]-[3], [14], [15] and referenc (12)
therein for details) giving rise to differei;;, contemplating The casep = 2 reduces to (1).

‘Ha, Heo, €tc. performange measures, as vyell as uncertaintyl) Takagi-Sugeno systems with output equatioBsndi-
and delay, for both continuous-time and discrete fuzzy sy§ons withp = 3 for TS systems are, for instance, the fuzzy

[1]

tems. dynamic controllers in [1], [12], usin@ix. = Eijx + Ejj;,
where, for suitabled,B,C,D,
B. Previous shape-dependent conditions in literature
_ p P _ _ B AiQu + BiCjr  Ai + B;D;Cy, 0 (13
As discussed in the introduction, the problem of shape- ~ijk = Ak APy + B;Cy, < (13)

dependent conditions has been addressed in literature only
recently. Triple sums appear also in output-feedback settings [6]].[1



2) Polynomial-in-membership fuzzy systemsMulti- By convention, the cartesian product of several multi-
dimensional summations in fuzzy control problems mandices, resulting in a higher-dimensional one, will be sym
also be obtained whepolynomial-in-membershiprocesses bolized by parentheses:
or controllers are used (see [18] for the latter case). A,

continuous-time  polynomiak-in-membership TS system is: € p» J € Lo m €l = (ij,....m) € Hp+q+"'+t18
defined as: . . . . ( ) )
s and sometimes by mere juxtaposition, such asyin. ;, in
&=y m(u) (A + Biu) (14)  (17). One-dimensional indices, sy I; are ordinary integer
=1

index variables: they will be typed in italic typeface gs
being 1. the vector ofr membership functions, ang a poly- 1 < j < r when its one-dimensionality should be emphasized.
nomial in x. The definition of a discrete system is analogous. The purpose of multi-index notation is to compactly repre-
Repeatedly multiplying by>~"_, 4, all polynomials can be sent multi-dimensional fuzzy summations, as follows.
made homogeneous (see Section V). First, let us define the following notation, specific for
For instance, letin z be fuzzified assinz = u; * (—1) + membership functions as a shorthand for a product:
pz2 * (+1), with 1 = 0.5(1 — sinz), pu2 = 1 — pp; consider

p
the system: i = | [ i, = misptin - i, i€, (19)
. . =1
1\ (sinz)z1 +u
( T2 ) B ( (sin 2)%x1 — 22 ) (15) Forinstanceus 4.1,1) = pspap? Will be the membership asso-

) ) ) ciated to the ternd)s4;; in a 4-dimensional fuzzy summation.
and replacesinz = (u2 — p1) - (p2 + 1) = p3 — 1 and  Note that ift = (i, k), g = pijue. With the above notation-

: 2 __ 2 _ 2 2
(sin 2)” = (”22 _”12 = pa 4 =2 pi2. Then, a double-sum gimensional fuzzy summations (12) may be written as follows
TS modely 7, > 5, pipi(Aijz+ Biju) is readily obtained,

with B;; = (1 0)7 and E(t) =Yz’ Qi (20)
A11:(_11 31)7A12:A21:(l31 B1)7A22:(} fl) €l
where the basic memberships= {u1, ..., u-} from which
Considering also a quadratic-in-membership (QPDC) cop; stem fulfill the add-1 partition condition.
troller u = — >3, 7| pruFrx, decay rate performance 1) Permutations:Given a multi-indexi € I, let us denote
would be proved if a 4-dimensional sum (12) were positivey P(i) I, the set of permutations (with, possibly, repeated
with My, = Fi X and elements) of the multi-indei For instancei = (3, 3,1, 1) has

41/(2!12!) = 6 elements in its set of permutations. Of course
if i € P(j), thenj € P(i). The permutations will be used to
for which the shape-independent results in [7] readily gpgd  group elements in multiple fuzzy summations which share the
well as the shape-dependent ones in Section IV in this papgame antecedent: it's an evident fact thatP (i) = 15 = .

Qijit = —(A; X+ X Ay;" — Bij My — M, B, +2a.X) (16)

IIl. | MPROVED SHAPEDEPENDENT POSITIVITY
CONDITIONS FOR DOUBLE FUZZY SUMMATIONS

D. Multi-dimensional index notation
In order to streamline notation in multi-dimensional sum- . )
mations (12), the following notation, from [7], will be uséal Denote byu(z) the column vector of membership functions

_ T ;
handlep-dimensional vectors of natural numbers (denoted B{?) = (k1(2),p2(2), ..., i(2))" in @ fuzzy model. On

boldfaced variables), and its associatedimensional summa- the sequel, the shqrthand notatipnwill_be_ ‘_Jsed instead Of_
u(z), as previously introduced for the individual membership

tions:
components.
I, = {(i1,d2,...,0p) [ 1<4; <rj=1,2,...,p} Assume that knowledge of:
LA s « the specific shape of the membership functions,
Z n= Z Z o Z Yiviz..ip (17) « the set of value$? taken by premise variables
iel, i1=liz=1  ip=1

allows to set up a bound in the form:
for some suitably defined multidimensions) = vi,4,..i, .
(Yiris...i, Will be either a number or a matrix).e., boldface pSptwpt+v<0 Vzel (21)

symbol i will denote a multi-index in ap-dimensional \yhere s, w andv are, respectively, a matrix (of dimensions
index setl, (I, hasr” elements). For instance, triple-;. x ;- with elementss;;), a row vector { x r, with elements
summations in a four-rule fuzzy system will be spanne,gi) and a scalar. AllS, w andv are assumed known.
by a multi-index i € I3, where I3 has 64 elements: Tpe |eft-hand side term in (21) is a second-order polynomial
{L,1,13,{1,1,2}, ..., {1,1,4},{1,2,1},...,{4,4,4}.  The iy the membership functions. Particular examples are,rfor i
following subset ofl,, will also be later used: stance, knowledge on degrees of membership function gverla
I = {iel, |ir<ipg, k=1....p—1 (say,u1p2 < 0.15, prps = 0, (u1+pe)*ps < 0.4), ellipsoidal
p =€l i Stin p-b sets (such agu; — 0.9)2 + 2(u2 — 0.1)2 < 0.052) or drilling
For instance, the elements of; are 20 ¢!/(3!3!): ellipsoidal “holes” (such a&u; —0.9)242(u2—0.1)% > 0.052);
{1,1,1},{1,1,2},{1,1,3},{1,1,4},{1,2,2},...,{4,4,4}.  see section Ill-A for further discussion.



Proposition IIl.1 If the membership functions conform a Note that the above results adapt the basic idea behind
fuzzy partition, then the matri8 whose elements, denotedhe well-known S-procedure [19] (sufficient conditions for
by 5;;, are defined as positivity of quadratic forms under quadratic constrgirtts

the fuzzy restrictions in consideration here, by consitga

Bij = (1 + wi + ) (22)  relaxation matrix instead of a scalar.
fulfills: In order to check condition (25), usual expressions can
pIBu <0 (23) be used, such as [5] or the relaxations in [7]. For instance,

straightforward application of [5] and Corollary 111.1 yiks:
Proof: Indeed, using the partition condition (2),

roor r Theorem IIl.2 Consider an antecedent fuzzy partition fulfill-
0> p ' Sp+wp+v= Z Zuiujsij + sz‘m +o= ing a set of bounds in the forrf21) or, equivalently,(23).
e — Expression(1), under shape constraint8!*, &k = 1,....¢,
holds if there exist matriceX;; = Xﬁ and symmetrid?;, > 0

= wipgsi+ > > pipgwi+ Y Y pipv = such that(5) holds and

=1 j=1 =1 j=1 =1 j=1 e
L L. Xii < Qi + ﬁz[f]Rk (27)
=0 pipg(sig +wi +0) =D > By (24) 2::1
=1 j=1 =1 j=1
k k
Hence, any second-order polynomial restriction on the mem- Xij + Xji < Qij + Qji + Z M+ ﬁj['i])Rk (28)
bership shape can be written as an homogeneous #@rm. k=1

also do.

Theorem IIl.1 Assume knowledge about the particular mem-

bership function shape is available via a constraint matsix A. Particular cases

with elementsy;;, fulfilling (23). Then, expressiofi)is proved 1) Membership function overlap [11]Assume that a bound

if there exists a symmetric matrik > 0 so that the condition: on the overlap between fuzzy sets is available in the form (8)

ror Such bound is a particular case of (21) with= 0 and
— Z ZmuijQ;jx >0 Ya#0 (25) 1
i=1 j=1 Skl = Sik = 2 = —Vkl (29)
holds, whereQ;;, = Qi; + 3i; R, i.e, Q;; is replaced in(1) si; =0 V (3, ) (k,1) (30)

by @’ involving an additional matrix decision variable. o o
’ resulting in B = B = % — yw and, for (i,5) # (k,0),

Proof: consider an arbitrary symmetric positive semif;; = —vi. The conditions of Theorem 111.2 result in (5),
definite R. Then, the term R >0 and
H— :CTRch Zﬂiﬂjﬁij _ Z ZMz‘MﬂTﬁinﬂf (26) Xii < Qi — R N (31)
i=1 j=1 i=1 j=1 Xij+Xji < Qi +Qji —2vuR  (i,7) # (k,1)(32)
verifies H < 0, because it is the product of a pos- Xk +Xu < Qij+Qji+ (1—-2y)R (33)

itve number, 2" Rz, and a non-positive oney’ By. By adding the restrictions for all possible paifk, i), the
Then, H may be added t&= in (1) and, if the result- roqyts in Section II-B from [11] are obtained.

ijg sum is po§itive,TE will e¥idently be pOSitil’le* e, 2) Ellipsoidal hole: The interior (or exterior) of any ellipse,
E2E+H =) Yo ikt Qi + By R)r =E'. m parabola or hyperbola can be considered via a suit&blas
The numerical examples in Section V will prove that th@ simple example, let us assume that the condition

above result actually improves achievable performance ove r

previous literature ones. > (i —ci)* > 67 (34)
Multiple restrictions can be incorporated by repeatediappl i=1

cation of Theorem lll.1j.e: is known to holdj.e., the membership functions are known to

lie outside of a partlcular hyper-sphere.
Corollary 1l.1  Assume that knowledge about the particular Then, S (2 42— 2c) > 6%, e,

membership function shape is avallable via a set of matrices
BH, k=1,...,n., with elements3!*’, wheren, denotes the L
1 9 (&) l_] ’ c 2
number of constraints. Expressi@h) is proved if there exist ZMH‘ZZMW —0 +Z 222’““3’@ =0
positive semi-definite matrice®;, k = 1,...,n., so that the =} i=175=1 i=175=1
condition (25) holds, with so we have, denoting by = —6% + Y, _, c2,

Qi _QU+Z@HR Zul (1—2¢+¢) +Z Z piti (2¢ — 2¢; — 2¢5) > 0

=1 j=i+1
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Fig. 1. Ellipsoidal holes on the add-1 simplex. Fig. 2. Fuzzy partition with limited overlap.
Hence, the previous results apply with universes. If a membership; is “temperature islow and

Bi=—(1-2¢)— ¢ (35) pressure idow”, and other membership, is “temperature
" v is high and pressure igigh”, then uip, < 0.252. Details of
Bij=—¢+2c i#] (36)  these situations appear in [11], [16].
In general, following a similar methodology, one may
specify that the membership functions are inside or outside |V. GENERALISATION TO HIGHER DIMENSIONS

of an arbitrary ellipsoidal quadratic form with expressdn

Consider also the possibility that a restriction on the shap
the form:

T of the membership functions is given by a multivariate poly-
pSptv=<0 (37)  nomial of degreel, for instance

Details are left to the reader. A collection of such elligkoi
may be used to exclude any zones which are known to lie out
of the range of the membership function vector (Figure 1). with d = 4, where monomials of degree four, one, two and
zero appear. As another example, the memberships in Figure
2 fulfill papeps — 0.0039 < 0.

Now, choose any arbitrary integer fulfiling ¢ > d.

y multiplying each of the atomic monomials of degrée

< d; <d) by (31, )% (which is identically equal
one), any polynomial of degreé can be converted to an
mogeneous polynomial of degregeFor instance, the above
(38) gets converted in

pt = 23 + papiz — 0.3 <0 (38)

B. Obtaining bounds in practice

As the shape of the membership functions is known 'I§
PDC fuzzy control, obtaining the bounds for any second-ord
polynomial in the form (21) may be cast as an optimizatio
problem. Indeed, choosing arbitrary and w, maximising ho
J(z) = u(2)TSu(z) + wu(z) over the expected range of
values of the premise variables (previously denoted as
Q), yields a valueJ,,.e = max,co J(2). ONCe Jax iS 4 4 4
availablé, an expression in the form (21() gan be obtained fron#*1 — 2M3(Z i) + N1M2(Z pi)? — 0-3(2 pi)* <0 (39)
J(2) = Jmaz < 0, i.e, the polynomial” Sp+wp— Jpax < 0. =1 =1 =1

As an example, consider the fuzzy partition in Figure 2. In So, let us restate a generalized version of Theorem I11.1 for
this case, the bounds, — 0.86 < 0 and 143 — 0.0045 < 0 higher-degree homogeneous polynomial constraints, uhimg
may be easily computed by line-search on the one-dimerisionatation in Section II-D.
set where the premise variable takes values. In fact, filgw  Consider a degreghomogeneous polynomial constraint in
a similar optimization approach, higher order polynomiahemberships:
bounds may be obtained; for instance, maximizing,s: Zuiﬁi <0 (40)
This idea inspires next section. iel,

In other common cases, membership functions are th - _ _
}ﬁe coefficientss; may be considered elements of a multi-

imensional arrayif., a tensor [20])B, generalising the

atrix appearing in (23). Note that any polynomial of degree
ﬁwer or equal tog may be expressed as an homogenepus
dimensional summation (40), by following the methodology
» used to obtain (39).

cartesian tensor product of simpler ones, describing rith
fuzzy partitions on individual variables or basic nonlirigas

in the system equations, following the modeling methodplo
in [1]. In that case, it can be shown that certain products
memberships can be bounded by a powel0@5 (because
w(l — ) < 0.25). For instance, consider “high” and “low

to be contrary concepts defined on pressure and temperature ] ) ) )
Theorem IV.1 Consider ap-dimensional fuzzy summation

1The optimization onQ can be carried out by using any optimizationcondition (12), jointly with shape-dependent knowledge ex-
technique; even a brute-force approach evaluating the reehips on a nressed as constraints of degr@eé40). Choose any arbitrary
dense-enough grid oa may suffice. Note, however, that the approach ma§J L ..
find difficulties with highly nonlinear memberships or a largumber of [Nt€Jern so thatn > max(p, ¢). The positivity conditiorf12)
premise variables in. (in the region determined by the constraifd®)) is fulfilled if



there exists a positive definite matiik so that the condition
e, wirt Qix >0, i = (iy,42,...,i,), holds with:

Qi = Qiviy..iy + Birin..iy R

The integem will be denoted as the complexity parameter.

(41)

Proof: As >, _, ur = 1, it's straightforward that:

O mb) =

icl,

Z/le Qix > Z AT le +( TR:C

icl, icl,

Zﬂk ) pz,ulx Qir+ Zﬂk n qZMlx BiRx =

iel, i€l
= wma" Qi (42)

iel,

so positivity of the last term implies positivity of the firshe.
]

Note that an extension to. constraints of degreg., k =
1,...,n., is straightforward, by using:

Qi = Qiis.. wZﬁm (43)

k=1

with i € I,, n > max(p,qi,...,qn.), fOr some to-be-

determined positive-definit&; associated to each constraint
tensor BI*! (details omitted for brevity). As there is no loss

of generality in assuming = maxy, ¢ (by multiplying by a
suitable power ob "' _, 1;), only a unique; will be considered
in the sequel.

Once the new®); are defined in (43), any sufficient condition
to prove positivity of am-dimensional fuzzy summation may
be used. For instance,= 3 may be handled by adapting the

conditions in [6, Theorem 5].

Corollary IV.1 Given a set ofi. degree-3 polynomial restric-
tions, expressed as. homogeneous form(@0), and anyQ;;x
expressing some fuzzy control requirements, the 3-dimeaisi
summationd 7, >0y Yo pigtj ke’ Qijra is positive (in
the region determined by the constraints) if there exisf,

R, so that, beingQ’ ;. = Qijr + 31, @%Rl:

R>0 Xy = mj (44)
QZ’LZ — 71171 (45)
Qiij + Qiji + Qi < Xiij + Xiji + Xjir i < j (46)

Qijk + Qi + Qi + Qi + Qi + Qi <

Xijk + Xikg + Xjir + Xjpi + Xpij + Xpji 1 < j <k (47)
Xitn - Xir

St >0 Vi (48)
Xir1 oo Xirr

And any complexity parameter > 2 may be handled by
using Theorems 4 and 5 in [7], replacing the origigal by
Q' from (43):

Corollary IV.2 A sufficient condition for positivity OE in
(12), under as set ofi. constraints in the forn{40), is the
positivity condition below, fon > max(p, ¢):

Xk,1,1) X(k,1,r)

>0 (49)

> "

kel, 2

X(k,r1) X(k,r,r)

if there exist matricesX;, j € I, and positive-definite?;,
I=1,...,t so that, for alli € T}

Z Q“J? +Z£J1J2 Jq

JeP()

As the above corollary is the most general statement in this
work, its proof is included for readability, even if it is avial
adaptation of that in [7].

Proof:

> ma’Q

iel,

=D

JEP(D)

%(Xj +X{) (50)

E 1112 Zp - Z’ul Z :ETQJID jpx (51)

ielll  JeP®)

Hence, if (50) holds, ag; > 0,

S Y 2TQ sa=dm > —X+XT>

ier;  JeP() e, JEP()
Y Y X Y e X -
et JePQ icl,
kA T T B
Z ZZM{MMCC X ki)t =
kEl,_» i=1 j=1
Xk,1,1) Xk,1,r)
= > mt’ ¢ (52)
kel —2 X(k,'r‘,l) X(k,r,r)
where¢ = (u1o” pex” ... p2™)T. Hence, if (49) and (50)
hold, (12) also does. m

The number of decision variables can be reduced by assum-
ing Xx,ij) = X(:fc,j,i) with no loss of generality, and practical
application forn > 3 requires setting up a recursive procedure:
given a starting value of,, it provides sufficient conditions
for the positivity of then-dimensional sum expressed as an
(n — 2)-dimensional one. Hence, repeated application of the
theorem is needed until: (a) 2-dimensional fuzzy summation
are obtained (using Theorem 2 in [5] as a last step) when
starting from an even; (b) in the oddn case, one-dimensional
fuzzy summations are obtained, stating then the conditian t
each of the elements in the sum must be positive. The reader
is referred to [7] for details.

V. EXAMPLES

Examples showing the usefulness of the particular case
of known bounds on products of two memberships (Section
[lI-A), appear in [11]. This section will present examples
which allow to take into account some spherical shapes and
higher-order products of memberships.



H1 H1 2) Case 2: Using expressions (35)-(36) as before, the
i knowledge that the membership vector lies outside of a gpher
with center (0, 0.5, 0.5) and radius 0.4 (see Figure 3-right)
is cast into the LMIs via (35)-(36). The result is a decay
a = 0.62. If a sphere with center (0,0,1) and radius 0.49 is
used, the achievable decayas= 0.56. With both circles and
two relaxation variable®R,, R, the achievable decay rate is
a = 0.66. All of the results are, as expected, better than the
Fig. 3. Example 1: (left) case 1, (right) case 2. Shaded aeatds possible decay(.51 with the standard shape-independent conditions.
I’E'L‘Ze%}‘_’fl gfn”;?rfgsr?r'& Jé‘t?grt]'f’”s inside the triangle, + 2 + p3 = 1, 3) Case 3: Multi-objective design (dual specifications):
Consider the problem of achieving different levels of sfieci
cations in different regions of the working sp&cEor instance,
A. Example 1 (quadratic constraints) only stability may suffice for_ certain infrgquent cases veltaer .
Consider the system (6), with— 3 and a faster decay_ may be desm_ed at paru_cular operatlon_reg|on
given by a particular polynomial constraint on the membigrsh

—0.74 0.61 0.87 0.99 0.65 functions.
A = 0.39 —0.26 0.56 B = 0.2 0.87

ps [ N\ pe M3 L 142

099 005 016 NP Under these assumptions, the LMI conditions for mere
’ ' e ’ ' stability (stated for an unrestricted membership shapay;, oe

0.69 - 0.070.35 096 0.36 adjoined with the decay rate ones incorporating membership

Ay=| 048 0.86 0.37 By =| 0.76 0.17 . . ! . .

01 031 03 0.04 0.20 shape information which would apply to a particular region.

028 039 0.58 032 0.02 Consider designing a regulator which achieves stability fo
As = ( 032 013 020 ) Bs = ( 072 0.15 ) the TS model under consideration, and simultaneously tmies

0.68 0.34 0.19 0.29 0.06 achieve the fastest decay rate when when the distance of the
membership vector to the poilt,0,0) is smaller than 0.75.
The fastest decay rétewith a state feedback PDC lawThen, conditions in [5, Theorem 2] wit;; in (7) with o = 0
provable by Theorem 2 in [5], using th@;; in (7), is mustbe set up (with additional decision variahlég), as well
a = 0.51. The procedures in this paper will be applied tas those withQ;; given by suitable3;; from (35)—(36), using
achieve improved decay rates, when some knowledge abanbther set of decision variablés/ ., evidently.
the membership function shape is available. Let us considefThe result is thatt = 1.11 is the fastest “local” decay rate
below three illustrative cases: which can be proved feasible with the proposed setup, which
1) Case 1:Assume that, for a particular system, the menmore than doubles the one obtainable with a PDC on the whole
bership vectordoes notlie inside a sphere centered at th@perating space. Note, however, that faster fuzzy coetsll
origin (¢; = 0 in (34)) with radiusd (Figure 3-left), and that might exist: on one hand, a source of conservativeness-(well

fact is known to the designer to take advantage of it. known in multi-criteria LMI synthesis) is the shared Lyajpun
Then, conditions (35) and (36) in Theorem Il11.2 result ifunction; on the other hand, the conservativeness inhénent
the shape-dependent LMI conditions: the use of [5, Theorem 2] may be relaxed by using the results
in [7].
Xi < Qu+(*-1DR (53) L7l

Xij+Xji < Qi+Qj+28°R i<j (54) B. Example 2 (cubic constraints)

Note that, for) < & < 1, the conditions are progressively less COnsider a 3-rule 2nd-order TS system with:

conservative as increases, because the right-hand-side terms A — 1.59 —7.29 B 1

above add the positive terndi8 R and 25> R. = o001 o0 =L
Let us check different cases férwith the above system.

. 0.02 —-4.64 8

In particular, values of > 1/1/2 produce faster decay rates Ay = 035 021 By = 0

than the case with arbitrary memberships: fore= 0.72 the
fastest decay rate for which the LMI solver found a feasible Ay = ( —a —4.33 > By — < ~b+6 >
solution isa = 0.96; for 6 = 1 (only vertices) it isa = 3.4, 0 005 -1

almost 7 times faster than the conventional shape-indegrend

conditiong from [5] 4The above multi-objective design is different, and comgatary, to the

usual approach in literature of achieving different softgarformance bounds
on all the state space (mixel2/H, Hoo plus decay rate, etc. [12], [21]);
2Note that the chosen performance measure has been decayfarate as an alternative approach, tbemeperformance type but with different level
simplicity; other features such as robustness marging{gs bounds may in different regionsis suggested here. Note also that some definitions are
be tested by selecting a differe@t;;, as discussed in Section |I. needed in order to rigorously define the meaning of “localtajerate in
3The case’ = 1 indicates that only the canonical verticgs; , uz2, u3) €  terms of basins of attraction and Lyapunov level sets. THimitlen of, say,
{(1,0,0),(0,1,0),(0,0,1)} are possible values of memberships (correa “local” Ho, norm would also be cumbersome. These issues are, however,
sponding, for instance, to a switching linear system). Ia tase, conditions omitted for brevity as they are not the main objective of tleper. In the
(53) and (54) result in{ X;; < Qi;, X435+ X < Q5 +Qj; +2R}. Hence, example in consideration, in a set of premise varial§lgsC (2, a “local”
with a large enoughR, X;; = 0 for ¢ # j can be made to be a solution, decay raten will be said to have been proved when a Lyapunov function is
i.e., (1) holds ifQ;; > 0, which is a well-known result in “crisp” switching found fulfilling V (z) < —2aV (z) for all z € Q,; (indeed,z may include
linear systems. some or all of the components of as usual in TS modeling [1]).
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Fig. 4. Feasible points (example 2) under different retitris with Theorem
V2, n = 3.'®" Bijkx = 0, *1 pipzps < 0.0004; + pipsps = 0.
Horizontal axis denotes parametervertical axis denotes parameter

[71
- . . (8]
A stabilizing PDC controller is to be designed. The ranges
of values fora andb yielding a feasible LMI are tested for [°]

several methods, in the gride [—0.5,3.25], b € [5.25,7.25].

The procedure in [5, Theorem 2] does not yield any fe&-o]
sible value in this parameter range. Even with no restmctio
(6; = 0), Corollary IV.1 (.e., [6]), produces feasible stabilising
regulators for the values of and b indicated by the “cart [11]
wheel” symbol in Figure 4.

When the restrictions; puops < 0.0004 is enforced, a few [12]
more feasible points appear (indicated by a star).

The restrictionu; uo i3 = 0 produces a larger set of feasible
points; the+ sign on the figure pinpoints those combinationg
of parameter values yielding feasible controllers only emd
the last restriction. In all cases, the LMI solver was MatIaB4]
LMI Toolbox with default options.

VI. CONCLUSIONS [15]

This paper presents results which relax stability and per-
formance conditions for (possibly polynomial-in-memieps 1
fuzzy control systems if knowledge of membership function
shape is available. Such knowledge must be in the forAY]
of polynomial constraints. Particular cases are membgrshi
function overlap bounds (product of two or more member-
ship functions) and ellipsoidal constrainise( incorporating [18]
knowledge about the membership functions lying eithediasi
or outside of a particular ellipsoid). However, any polyriam
in the membership functions, with arbitrary degree, isvadid. [19]

Furthermore, multi-objective designs can be accomplished
so that different control performance criteria may be dpeti [20]
in different regions of the operation space. This idea may B&l
interesting in practical gain-scheduling applications.

As a result, more freedom in guaranteeing control require-
ments is available in any particular application with egiply
known membership functions; such situation is indeed tise ca
when actually implementing PDC controllers.
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