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SUMMARY

The main objective of this research is to efficiently execute learning (model training)

of modern machine learning (ML) applications. The recent explosion in data has led to

the emergence of data-intensive ML applications whose key phase is learning that requires

significant amounts of computation. A unique characteristic of learning is that it is iterative-

convergent, where a consistent view of memory does not always need to be guaranteed such

that parallel workers are allowed to compute using stale values in intermediate computa-

tions to relax certain read-after-write data dependencies. While multiple workers read-and-

modify shared model parameters multiple times during learning, incurring multiple data

communication between workers, most of the data communication is redundant, due to

the stale value tolerant characteristic. Relaxing coherence for these learning applications

has the potential to provide extraordinary performance and energy benefits but requires

innovations across the system stack from hardware and software.

While considerable effort has utilized the stale value tolerance on distributed learning,

still inefficient utilization of the full performance potential of this characteristic has caused

modern ML applications to have low execution efficiency on the state-of-the-art systems.

The inefficiency mainly comes from the lack of architectural considerations and detailed

understanding of the different stale value tolerance of different ML applications. Today’s

architecture, designed to cater to the needs of more traditional workloads, incurs high and

often unnecessary overhead. The lack of detailed understanding has led to ambiguity for the

stale value tolerance thus failing to take the full performance potential of this characteristic.

This dissertation presents several innovations regarding this challenge.

First, this dissertation proposes Bounded Staled Sync (BSSync), hardware support for

the bounded staleness consistency model, which accompanies simple logic layers in the

memory hierarchy, for reducing atomic operation overhead on data synchronization in-

tensive workloads. The long latency and serialization caused by atomic operations have

xiv



a significant impact on performance. The proposed technique overlaps the long latency

atomic operation with the main computation. Compared to previous work that allows stale

values for read operations, BSSync utilizes staleness for write operations, allowing stale-

writes. It reduces the inefficiency coming from the data movement between where they are

stored and where they are processed.

Second, this dissertation presents StaleLearn, a learning acceleration mechanism to re-

duce the memory divergence overhead of GPU learning with sparse data. Sparse data

induces divergent memory accesses with low locality, thereby consuming a large fraction

of total execution time on transferring data across the memory hierarchy. StaleLearn trans-

forms the problem of divergent memory accesses into the synchronization problem by repli-

cating the model, and reduces the synchronization overhead by asynchronous synchroniza-

tion on Processor-in-Memory (PIM). The stale value tolerance makes possible to clearly

decompose tasks between the GPU and PIM, which can effectively exploit parallelism be-

tween PIM and GPU cores by overlapping PIM operations with the main computation on

GPU cores.

Finally, this dissertation provides a detailed understanding of the different stale value

tolerance of different ML applications. While relaxing coherence can reduce the data com-

munication overhead, its complicated impact on the progress of learning has not been well

studied thus leading to ambiguity for domain experts and modern systems. We define the

stale value tolerance of ML training with the effective learning rate. The effective learn-

ing rate can be defined by the implicit momentum hyperparameter, the update density, the

activation function selection, RNN cell types, and learning rate adaptation. Findings of

this work will open further exploration of asynchronous learning including improving the

findings laid out in this dissertation.

xv



CHAPTER 1

INTRODUCTION

1.1 The Problem: Data Communication Overhead of Learning

The recent explosion in data has led to the emergence of machine learning (ML). Multi-

ple real-world problems have effectively been modeled into ML applications such as self-

driving cars [1], voice recognition [2], and even the arts [3]. ML applications are expected

to become more popular in the future; thus research efforts on efficiently processing ML

applications have gained significant importance.

The key phase of ML is learning (model training). ML applications inductively for-

mulate models by examining the patterns in a data set rather than using the hypothetical-

deductive method. The learning starts with some guess as to the problems solution and

proceeds through some iterations until the computed solution converges. The data-centric

learning is the most performance limited phase. Learning requires significant amounts of

computation processing large quantities of data, and thus easily takes several days or even

months with sequential execution on a single node.

Therefore, a considerable amount of efforts [4, 5, 6, 7, 8, 9, 10, 11] has focused on

distributed learning to shorten the training process. Most computations in learning are

performed on each data item in the training data set, utilizing high-performance of hundreds

of machines. Thanks to those efforts, training an approximate learning app is easier and

efficient than developing an exact solution. Many easy-to-use tools [4, 12, 13, 14] have

accelerated the domain experts to develop specific applications based on the frame.

Although these efforts have helped the wide application of ML applications, there still

exists inefficiency with the significant amount of data communications during learning.

The irregular and data-intensive nature of learning lead to high and often unnecessary data

1



communication overhead under-utilizing the performance potential of parallel learning.

In this dissertation, we focus on reducing the data communication overhead of learn-

ing applications, which can provide extraordinary performance and energy benefits. The

solution to the data communication bottleneck of modern learning applications is to utilize

the stale value tolerant characteristic of iterative-convergent learning. The key property of

learning is that parallel workers are allowed to compute using stale values in intermediate

computations to relax certain read-after-write data dependencies without hurting the con-

vergence guarantee or the final solution quality. While multiple workers read-and-modify

shared model parameters multiple times during learning, incurring multiple data commu-

nication between workers, most of the data communication is redundant.

While considerable effort [15, 16, 17, 18, 19, 20] has utilized the stale value tolerance

on distributed learning trying to reduce the inter-node synchronization cost among multi-

ple nodes, still inefficient utilization of the full performance potential of this characteristic

has caused modern ML applications to have low execution efficiency on the state-of-the-art

systems. The inefficiency mainly comes from the lack of architectural considerations and a

systematic method to understand the different stale value tolerance of different ML appli-

cations. Today’s architecture, designed to cater to the needs of more traditional workloads,

is not perfectly suited for learning applications. The lack of systematic method has caused

the ambiguity on this characteristic thus limiting the scalability of learning with lots of data

communications, most of which is redundant due to the stale value tolerance.

1.2 The Contributions

In this dissertation, we propose to utilize the stale value tolerant characteristics from the

architectural perspective and provide a detailed understanding of the different stale value

tolerance of different ML applications. Utilizing the stale value tolerance requires careful

designs across the system stack from hardware and software. We design a set of mecha-

nisms for a variety of performance challenges. The highlights of the proposed techniques

2



are as follows.

1.2.1 Atomic Operation Overhead Reduction

First, we observe that the significant performance inefficiency for modern learning appli-

cations comes from a data synchronization overhead, which is implemented with atomic

operations on a single-node machine such as shared memory processors. In parallel learn-

ing applications, atomic operations are typically used to ensure the convergence of lock-

free algorithms. However, atomic operations occupy a large portion of overall execution

time and become the biggest inefficiency within a node. The inefficiency comes from non-

overlapped synchronization with the main computation thus wasting computing time.

For reducing atomic operation overhead, this dissertation proposes Bounded Staled

Sync (BSSync), an effective hardware mechanism for the bounded staleness consistency

model [21], which accompanies simple logic layers in the memory hierarchy. BSSync re-

duces the overhead of non-overlapped data communication, the serialization, and cache

utilization inefficiency. The proposed technique overlaps the long latency atomic operation

with the main computation. The overlapping is only achievable by utilizing the iterative-

convergent characteristic. Compared to previous studies that allow staleness for read op-

erations, BSSync utilizes staleness for write operations, allowing stale-writes. BSSync re-

duces the inefficiency coming from the data movement between where they are stored and

where they are processed. With BSSync, atomic operations are asynchronously executed

in parallel with the main computation.

1.2.2 GPU Memory Divergence Reduction

Second, we focus on the divergent memory accesses of GPU learning with sparse data.

While the GPU is widely used for learning applications due to the enormous amount of

parallelism available in data-centric learning [22, 23, 24, 25, 26, 27], the current system

does not perfectly utilize the full performance potential of the state-of-art GPU architecture

3



for learning applications with sparse data. Real-world data is sparse in nature, so the values

are scattered in the memory. The memory access pattern of the GPU learning is divergent

with low temporal locality, thus leading the GPU to suffer from the low utilization of GPU

compute units waiting for memory.

Although a considerable effort has been devoted to reducing the divergent memory

overhead of GPU, the stale value tolerance of learning provides a unique opportunity to

achieve the full potential in modern GPUs. This dissertation presents StaleLearn, a learn-

ing acceleration mechanism to reduce the memory divergence overhead of GPU learning

by rearranging the memory access pattern based on the stale value tolerant characteristic.

Based on the stale value tolerance, StaleLearn transforms the problem of divergent memory

accesses into the synchronization problem by replicating the model, and reduces the syn-

chronization overhead by asynchronous synchronization on Processor-in-Memory (PIM).

The stale value tolerance enables a clear task decomposition between the GPU and PIM,

which can effectively exploit parallelism between PIM and GPU cores by overlapping PIM

operations with the main computation on GPU cores.

1.2.3 Systematic Method to Define the Stale Value Tolerance

Finally, we observe that the lack of detailed understanding of the different stale value tol-

erance of different ML applications has led to ambiguity for domain experts and modern

systems. The current ML training suffers from low scalability thus leading to inefficient

utilization of millions of computing machines that are currently available in the era of cheap

compute. Reducing data communication affects the progress of parallel learning such that

different ML applications exhibit different stale value tolerance. The stale value tolerance

is determined by the complex function of multiple factors and the complicated impact has

led today’s learning applications to suffer from large data communication overhead. For

efficient execution of learning applications, a thorough investigation to define the different

stale value tolerance of different ML learning applications is needed.
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This dissertation presents a methodology to provide a detailed understanding of the

stale value tolerance. We propose to define the stale value tolerance of ML application

with the effective learning rate. The effective learning rate is different from the explicit

learning rate specified by the programmer and can be changed by multiple design choices

of training neural network. The effective learning rate is affected by i) the accumulated

number of local updates from all workers when performing reduction operations that form

implicit momentum update, ii) the different update density on different model parame-

ters and different learning rates on different model parameters depending on iii) activation

function selection, vi) RNN cell types, and v) learning rate adaptation.

1.3 Thesis Statement

Relaxing coherence for modern learning applications based on stale value tolerant char-

acteristic can increase the execution efficiency, which can be effectively exploited with

low-cost architectural modifications and the detailed understanding of the stale value toler-

ance.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides the back-

ground of modern ML applications and summarizes related work. Chapter 3 discusses

BSSync, a practical hardware support for reducing atomic operation overheads. Chapter 4

proposes StaleLearn, a learning acceleration mechanism that transforms divergent memory

accesses to more GPU-friendly regular/sequential accesses without the data synchroniza-

tion overhead. Chapter 5 proposes our systematic method to define the stale value tolerance

of different ML applications considering different application characteristics. Chapter 6

concludes this dissertation.

5



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we first provide a background of the stale value tolerance convergence of

modern ML applications (Section 2.1). We then describe the prior state of the art utilizing

the characteristic (Section 2.2) and the bounded staleness consistency model we utilize in

this dissertation (Section 2.3). After discussing proposals on learning to have the better

quality solution (Section 2.4), we then discuss prior work on memory optimization for

data-intensive applications (Section 2.5), and processor-in-memory (Section 2.6).

2.1 Stale Value Tolerant Convergence

Most learning applications can be mapped into linear algebra with matrices and vectors.

Equation 2.1 shows the general formula of learning using the loss function L [9, 7, 28].

Assuming learning a model for classification, x (matrix) and y (vector) represent the input

data for training, and w is the computed model. Each row of the x matrix represents dif-

ferent data points corresponding to multiple features (column) and the y vector represents

the classification result. The loss function captures the quality of the model based on the

error between the predictions and the ground truth on the y vector. The further away the

prediction from the ground truth is the larger the penalty. The output of the training is w∗,

the best model that minimizes the loss function.

w∗ = argmin
w

N

∑
i=1

L( fw(xi),yi) (2.1)

Most learning approaches are iterative, which start with some guess as to the prob-

lem’s solution and proceed through a number of iterations until the computed solution
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converges. Figure 2.1 shows an example of the iterative execution of stochastic gradient

descent (SGD) [7]. Learning starts with selecting a training data point from the training

data x. Learning computes ∆w based on the current value of model w. Then, the model up-

date is performed applying the computed ∆w to the model w via read-modify-write (RMW)

operation that is mostly implemented with atomics. Convergence check decides whether

the solution is converged by analyzing the loss function value. Although Figure 2.1 does

not show explicitly, there are data dependencies among training data points. w is continu-

ously updated after computing ∆w, which results in computing ∆w being dependent on the

value of w, the outcome of previous data points.

Repeat	until	convergence:

• Draw	a	training	sample	xi from	input	x

• Compute	!wi =	F(w,	xi)

• Read-modify-write	w	=	w +	!wi

Figure 2.1: Iterative execution of stochastic gradient descent (SGD).

Since real-world learning involves big data with many data points, data parallel im-

plementation where each worker works on its own data partition while sharing model pa-

rameters, is widely used. The iterative-convergent characteristic allows parallel workers in

data parallel implementation to compute using stale values in their intermediate computa-

tions, without requiring that all workers always have a consistent view of memory [15, 16,

17, 18, 11]. The stale value tolerant characteristic is widely used in parallel learning that

parallelizes inherently-sequential learning algorithms such as SGD.

In parallel SGD, each worker partitions training data and reads and modifies the shared

model parameter. Read accesses to the current model parameter w and updates to w are

overlapped without serializing them thus allowing data races. When multiple workers con-

currently access the same model parameter w, w might not have the latest updates, and ∆w

is computed using a stale value of w. Unlike classical applications that are transaction-

centric and deterministic with strict consistency requirements, a transient error in parallel
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SGD does not affect the convergence guarantee, and the solution quality.

The stale value tolerant convergence is discovered not only on ML applications but also

on multiple graph algorithms, which are known to require the exact computation. Multiple

studies [20, 29, 30, 4] have utilized the stale value tolerance of iterative graph algorithms.

For instance, in single source shortest path (SSSP) algorithm that computes the shortest

path from a given source vertex to each vertex in a graph, the solution converges to the cor-

rect solution when updated values of costs to reach vertices by each worker are eventually

observed by other workers.

2.2 Utilizing Stale Value Tolerance

Multiple studies [9, 7, 19, 20, 14, 8, 28, 8] have proven the loss of intermediate accuracy

(or missing some updates) during learning does not affect the convergence guarantee and

the solution quality. Zinkevich et al. [9] prove that stale values do not degrade the solution

quality of convex problems. Agarwal and Duchi [7] prove that in smooth stochastic prob-

lems, the accuracy loss due to stale values is negligible. SSP [19] proves that the progress

of convex problems is not affected much when bounding staleness degree with the itera-

tion count granularity and the steps taken during each iteration are small enough. Recht et

al. [8] propose Hogwild!, a lock-free updating scheme performing SGD updates in paral-

lel without locking the parameters for sparse data, utilizing the findings that most gradient

updates modify only small parts of the decision variables.

The stale value tolerant characteristic of learning has been mainly utilized in distributed

learning to reduce the inter-node communication overhead [15, 16, 17, 18, 19, 20]. The

stale value tolerant design is used because it is infeasible to guarantee the consistent view

of the entire model on large-scale clusters. Multiple distributed learning platforms focus

on throughput, including the Map-Reduce frameworks such as Hadoop [31], Spark [32],

and graph-based platforms such as GraphLab [4]. Low et al. [6] focus on special com-

munication patterns and propose Distributed GraphLab. GraphLab programs structure the
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computation as a graph, where data can exist on nodes and edges in which all commu-

nication occurs along the edges. They utilize the findings that if two nodes on the graph

are sufficiently far apart, they may be updated without synchronization. Ahmed et al. [5]

propose a parallel framework for inference in latent variable models utilizing a best-effort

model for updating shared data. ASPIRE [20] proposes a relaxed consistency model and

consistency protocol coordinating the use of a best-effort refresh policy. Tensorflow [14]

extends DistBelief [28] with an asynchronous stochastic gradient descent procedure and

distributed batch optimization procedures for large scale deep neural network learning.

2.3 Bounded Staleness Consistency Model

The bounded staleness consistency model [21] is a variant of the relaxed consistency mod-

els in which data read by a worker may be stale, missing some recent updates. The degree

of staleness, the delay between when an update operation completes from a worker and

when the effects of that update are visible to other workers, is defined under the user-

specified threshold. The bounded staleness consistency model allows reads to use stale

values unless they are too stale. The staleness is bounded so that it cannot be larger than

the user-specified threshold. The bounded staleness consistency model has been widely

used for its combined benefits of communication latency tolerance and minimization of the

negative impact of stale values on convergence on multiple-node configurations [15, 16,

17, 18, 19, 20, 11].

Staleness can be measured in multiple ways. Interweave [33] supports delta coherence

that keeps track of the number of modifications (versions). The Stale Synchronous Parallel

(SSP) model [19] defines version numbers in terms of the number of iterations. The version

number v of a datum represents that the value of a particular datum has been read by the

worker at iteration v. In the SSP model, staleness is defined using the version number and

the current iteration of the worker. If the worker is at iteration i, the staleness of the data

with version number v is equal to i− v.
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The bounded staleness consistency model changes the validity of the data and defines

stale-hit/miss [20]. Stale-hit means that the staleness is less than or equal to the staleness

threshold, and stale-miss refers to the case when the staleness is larger than the thresh-

old. The bounded staleness consistency model affects the behavior of the read operation.

Different workers can have different views of a shared datum; the read operation is only

guaranteed to obtain the value whose staleness is less than or equal to the staleness thresh-

old s. In the SSP model, when a worker reads a shared datum d at iteration i, the worker is

guaranteed to see the effect of all updates on d from the first iteration to iteration i− s.

Most parallel learning methods concurrently process a certain number of training ex-

amples that forms a batch (an iteration). The number of missing updates within a batch is

different depending on learning methods even with the same staleness degree in the SSP

model. There are three variants of gradient descent method that compute the gradient with

different amount of training data: batch gradient descent (BGD), stochastic gradient de-

scent (SGD), and mini-batch gradient descent (MBGD). In BGD method, the gradient is

computed by processing entire training dataset, while the gradient is computed by pro-

cessing each training example in SGD method. MBGD method computes the gradient for

every mini-batch of training examples. The number of missing updates within a batch is

the largest when using SGD method, and the smallest when using BGD method.

2.4 Solving the Difficulty of Training

Lots of ML efforts have targeted to solve the difficulty of training of deep neural network

(DNN). Sutskever et al. [34] analyze the impact of weight initialization and the momentum

schedule in momentum-based stochastic gradient descent on DNN. Glorot and Bengio [35]

propose to utilize non-squashing activation functions to reduce the saturating gradient prob-

lem. Pascanu et al. [36] suggest a gradient norm clipping strategy dealing with exploding

gradients and maintaining a soft constraint for the vanishing gradients problem. Recent

studies suggest residual learning [37, 38] for the training of networks that are substantially
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deeper than previously used, which learns residual functions regarding the layer inputs. On

residual learning, each layer fine tunes the output from a previous layer by adding a learned

residual to the input. The same inputs do travel through paths and a different number of

layers so that the inputs of a lower layer is made available to a node in a higher layer.

Some number of studies propose different methods for learning instead of back-

propagation. Compared to back-propagation based learning, where all layers of the net-

work are locked waiting for other layers before they can be updated, they try to transform

this synchronous execution into the asynchronous execution of different layers. Baxter and

Bartlett [39] propose a reinforcement learning algorithm for computing approximated gra-

dient of the average reward from a single sample path of a controlled partially observable

Markov decision process. The method of auxiliary coordinates (MAC) [40] replaces the

original problem involving a deeply nested function with a constrained problem dealing

with a different function in an augmented space without nesting. Ollivier and Charpiat [41]

propose the NoBackTrack algorithm utilizing an unbiased random estimate of the gradi-

ent of the loss function. The recent work by Jaderberg et al. [42] offers decoupled neural

interfaces (DNI). DNI uses the synthetic gradient produced using only local information

in place of true back-propagated error gradients. DNI decouples the sub-graphs, and the

update of them can be performed independently and asynchronously.

2.5 Memory Optimization

The irregular and data-intensive nature of learning often lead to memory bottleneck with

long memory latency. To reduce the memory latency, several prefetching mechanisms have

been proposed. Ryoo et al. [43] suggest binding prefetch on GPUs. Yan et al. [44] propose

a compiler-based approach performing software-based prefetching on registers with a fixed

prefetch distance. Lee et al. [45] implement the Many-Thread Aware Prefetcher (MTAP), a

hardware prefetcher performing intra-warp and inter-warp prefetching. Lakshminarayana

and Kim [46] propose a tag-based hardware prefetcher that identifies target load pair and
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injects prefetch instruction to prefetch data into spare registers with a dynamic prefetch

distance.

While the GPU is widely used for learning applications due to the enormous amount

of parallelism available data-centric learning, the current system does not perfectly utilize

the full performance potential of the state-of-art GPU architecture for learning applications

with sparse data. A considerable effort has been done to mitigate the overhead of divergent

memory accesses from GPU applications with a sparse data structure. Tarjan et al. [47]

propose diverge on miss, allowing individual threads in a warp to continue while other

threads are waiting for memory. Meng et al. [26] propose dynamic warp subdivision to

create warp-splits, extra schedulable entities that do not require extra register file space in

the case when there are not enough warps to hide memory latency. Chatterjee et al. [48]

propose warp-aware scheduling schemes that coordinate scheduling decisions across multi-

ple memory channels to reduce the DRAM latency divergence on irregular GPU workloads.

Rhu et al. [49] propose LAMAR that adjusts access granularity depending on the locality

of GPU applications to reduce the memory bandwidth utilization inefficiency.

Data reorganization is a widely used operation to reduce the overhead of scattered mem-

ory accesses. Wu et al. [50] perform a complexity analysis of data reorganization to min-

imize non-coalesced memory accesses on GPUs and proposed new data reorganization

methods. Greathouse and Daga [51] address the challenge of irregular memory access on

SpMV applications due to the CSR format by streaming data into the local scratchpad mem-

ory and then dynamically assigning rows to each compute unit. To increase efficiency, mul-

tiple studies have proposed hardware-assisted data reorganization [52, 53, 54] and recent

efforts [55, 56] utilize PIM technology. Dymaxion [52] allows programmers to optimize

memory mappings and uses GPU’s high memory bandwidth to overlap with slow PCI-E

transfer. Gou et al. [54] propose the extended Single-Affiliation Multiple-Stride (SAMS),

a parallel memory scheme to maintain multiple layouts of the same data for SIMD pro-

cessors. Micro-pages [53] co-locates chunks of cache blocks from different OS pages in
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a row-buffer. HAMLeT [55] is a 3D-stacked accelerator that performs data layout trans-

formation by exploiting the locality and parallelism within the 3D-stack. Akin et al. [56]

propose a permutation-based mathematical framework for data reorganization.

Although these efforts can be used to reducing the memory bottleneck of learning, still,

the lack of architectural consideration of the stale value tolerance has led to under-utilizing

the unique opportunity to achieve the full performance potential of multi-threaded archi-

tecture for learning applications. So, in this dissertation, we propose several architectural

innovations that reduce the unnecessary hardware data communication overhead between

computing units and memory.

2.6 Processor-in-Memory

The recent emergence of 3D-stacking technology enabled high performance by incorporat-

ing different technologies: a logic and memory layer that are manufactured with different

processes [57, 58, 59]. So, multiple vendors such as Micron, are revisiting the concept of

processing data where the data lives, utilizing processor-in-memory (PIM) [60] technol-

ogy. Hybrid Memory Cube technology [61] has simple in-memory atomic operations. The

Automata processor [62] directly implements non-deterministic finite automata in hard-

ware to implement complex regular expression. Chu et al. [63] propose a high level, C++

template-based programming model for processor-in-memory that abstracts out low-level

details from programmers. Nai and Kim [64] evaluates instruction offloading for graph

traversals on HMC 2.0. Kim et al. [65] study the energy aspect of processor-in-memory for

HPC workloads.

Scatter/gather operations are one of the popular operations on PIM and already have

been implemented in hardware [66]. Several studies utilize the operations to reduce the

overhead of remote memory accesses. Ahn et al. [67] propose the scatter-add mechanism,

which scatters a set of data values to a set of memory addresses and adds each data value to

each referenced memory location for parallel global accumulation. Fang et al. [68] propose
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the active memory operation, in which select operations can be sent to and executed on the

home memory controller of data to reduce remote memory access. Erez et al. [69] develop

techniques for mapping the applications onto a stream processor whose memory system

supports complex addressing modes including scatter/gather.
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CHAPTER 3

BSSYNC: REDUCING ATOMIC OPERATION OVERHEADS

3.1 Overview

In this chapter, we propose Bounded Staled Sync (BSSync), hardware support integrating

logic layers on the memory hierarchy to reduce the atomic operation overhead in parallel

learning applications. BSSync offloads atomic operations onto logic layers on memory

devices to fully utilize the performance potential of parallel learning applications. Atomic

operations are now overlapped with the main computation to increase execution efficiency.

BSSync revisits the hardware/software interfaces to exploit parallelism.

We identify and quantify the bottleneck of atomic operations and evaluate how our pro-

posal increases the execution efficiency. In summary, the key contributions in this chapter

are as follows:

1. We evaluate parallel learning applications within a single node, unlike previous

works that focus on communication latency between nodes.

2. We observe that the atomic operation overhead causes inefficiencies within a single

node for parallel learning applications. We quantify how much the overhead con-

tributes to the overall execution time.

3. Compared to previous works that utilize staleness only for read operations, BSSync

utilizes staleness also for writes, allowing stale-writes that accompany simple logic

layers at the memory hierarchy.

4. We propose hardware support that reduces the atomic operation overhead. Our eval-

uation reveals that our proposal outperforms a baseline implementation that utilizes

the asynchronous parallel programming model by 1.33x times.
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3.2 Background: Asynchronous Parallelism

Exploiting asynchronous parallelism has the benefit of addressing the issue of workload

imbalance between threads that introduce a significant overhead for iterative-convergent

learning applications [19]. For the Bulk Synchronous Parallel (BSP) model [70], all threads

must execute the same iteration at the same time, and barrier synchronization is used at

every iteration to guarantee that all running threads are in the same phase of execution.

On the contrary, with asynchronous execution, threads can perform computation instead of

waiting for other threads to finish [71].

Thread 4

Thread 3

Thread 2

Thread 1

Barrier Barrier

Figure 3.1: Straggler problem of the BSP model.

Figure 3.1 illustrates the problem of wasted computing time for the BSP model due

to straggler threads. The white arrows represent the wasted computing time and the gray

arrows represent when each thread performs computation. With barrier synchronization,

each thread waits for the others at every iteration. As such, even when only a single strag-

gler thread has not reached the barrier, other threads must stay idle as they wait for the

straggler thread to finish before they can start the next iteration, thereby leading to wasted

computing time. Relaxing the barrier can reduce the stall time, which leads to significant

speedups for a variety of iterative-convergent learning applications.

The performance of iterative-convergent learning applications is determined by how

much the solution has progressed within a certain time, which is the product of both 1)

the number of iterations per time and 2) the progress per each iteration. A small iteration
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difference between threads can lead to the large progress per iteration. Relaxing the barrier

yields more iterations per time but lowers the progress per iteration, therefore increasing

the number of iterations required to converge to the final solution.1

while true:
# start new iteration i
…

# read operation
d1 = read(…)
d2 = read(…)
…

# compute new value
d1_new = compute(d1, d2, …)   
…

# atomic update operation
update(d1_new, …)
…

# synchronization operation
synchronize(…) 
…

# check convergence 
if converged:
break

# end of loop

BSP (s = 0) : Wait for all threads 
finish iter i
SSP (s > 0) : Wait for all thread finish 
at least iter i ‐ s

New value depends on other values

Figure 3.2: Stages of iterative-convergent workloads.

The Stale Synchronous Parallel (SSP) model [19] is a type of programming/execution

model that makes use of asynchronous parallelism. Figure 3.2 shows a pseudo-code ex-

ample of parallel iterative-convergent learning applications utilizing the SSP model. At a

high level, a loop iteration consists of five stages of operation. First, a loop iteration starts

with read operations fetching inputs (stage 1), followed by the computation on the inputs

to generate new data (stage 2). The read operations may fetch stale values, and the stale

values can be used for computation. Then, after executing an atomic update operation to

store a new computation result (stage 3), a synchronization operation is performed (stage

4). Unlike the barrier operation in the BSP model, the synchronization operation is used to

guarantee that the iteration counts of different threads are within the specified ranges. With

the user-specified staleness threshold s, the fast thread should stall if not all threads have

1 Iterative-convergent applications continue to iterate while the computed solution keeps changing from

iteration to iteration. Convergence check determines whether or not the solution has converged (unchanged).
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progressed for enough iterations; the thread should wait for slower threads until they finish

iteration i− s. At the end of the iteration, a convergence check is performed (stage 5). If the

values have not converged, the threads proceed to another iteration. The computed results

from the iteration are used as inputs for the other threads and for the later iterations from

the thread. This process continues until the computed values converge.

The SSP model provides the benefit of both the BSP and asynchronous execution mod-

els for iterative-convergent learning applications. It alleviates the overhead of straggler

threads because threads can perform computation instead of waiting for other threads to

finish. At the same time, the bound on staleness enables a faster progress toward the final

solution within an iteration. We utilize the SSP model in our evaluation for asynchronous

parallel workloads. Figure 3.3 compares the performance of the BSP model and the SSP

model with a staleness threshold of two. The staleness threshold is selected through our

experiments to find the value that provides the best speedup. Figure 3.3 shows that the SSP

model outperforms the BSP model by 1.37x times.
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Figure 3.3: Speedups of the SSP model over the BSP model.

3.3 Motivation: Atomic Operation Overhead

Atomic read-modify-write operations capable of reading, modifying, and writing a value

to the memory without interference from other threads are frequently used in workloads

where threads must sequentialize writes to a shared variable. They provide serializability
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so that memory access appears to occur at the same time to every thread. Atomic operations

affect how threads see updates from other threads for the shared memory address.

Atomic update operations are used in parallel learning applications for reduction oper-

ations. Reduction is used to combine the result of computation from each thread. Atomic

operations enable different threads to update the same memory address in parallel code. For

example, to implement Matrix Factorization, atomic-inc/dec operations are used. Atomic-

inc/dec reads a word from a memory location, increments/decrements the word, and writes

the result back to the memory location without interference from other threads. No other

thread can access this address until the operation is complete. If atomicity is not provided,

multi-threaded systems can read/write in shared memory thus inducing the data race. The

data race can lead to reduction operation failure, which can slow down progress per itera-

tion and even break the convergence guarantee.
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Figure 3.4: Portion of each pass on the BSP Model.

While previous studies show that exploiting asynchronous parallelism could improve

performance significantly by reducing inter-node communications, the atomic operation

overhead also has a huge impact on performance within a single node. Figures 3.4 and 3.5

show the execution breakdown of the BSP model and the SSP model with a staleness

threshold of two on a single node. We measure the execution time of different stages

from each thread and use the sum of all threads as the execution time of that stage for the
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Figure 3.5: Portion of each pass on the SSP Model.

workload.2

On the BSP models, a major portion of the execution time is not spent on the main com-

putation; only 58% is spent for the main computation, 16% for atomic update operations,

and 26% for stall time. As previously explained, stall occurs because of the imbalanced

progress of each thread in terms of iterations. The main reason for the thread imbalance

is due to the sparse nature of the data and value-dependent computation in ML workloads;

that is, different threads have non-uniform workload distributions. For example, in Breadth

First Search (BFS), each vertex has a different number of neighbors. The task is typically

partitioned so that each thread processes a disjoint subset of vertices; therefore different

threads can execute a different number of instructions.

The stall time is reduced on the SSP model by allowing asynchronous execution; on

the SSP model as an average, stall time is reduced to 7% from 26% of the execution time

on the BSP model. The atomic update operation overhead now becomes the dominant

performance bottleneck on the SSP model. On average, the atomic operation overhead

consists of 23% of execution time on the SSP model. Still, 30% of the time is wasted, not

performing the main computation.

Figure 3.6 shows the pseudo-code of atomic update operations using the compare-and-

swap (CAS) operation.3 The CAS operation is provided as a single instruction in many

2See Section 3.5 for detailed explanations of workloads and the hardware.
3We omit the Load-Linked/Store-Conditional (LL/SC) implementation that incurs similar cost as CAS
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architectures such as x86. The atomic operation consists of four steps. First, a normal

memory load operation is performed. This load operation does not allow reading the stale

value unlike the load operation fetching the value for the main computation (stage 2 in Fig-

ure 3.2). Second, the new value to store (new val) is calculated by the program using the

value computed from the main computation (val) and the loaded value (old). Third, a check

operation is performed to decide whether to perform a CAS operation. Fourth, the CAS

operation for the same memory location is performed, which compares the memory con-

tents with the original loaded value. Only when the values match, does the swap operation

occur, updating memory.

vo id a t o m i c o p e r a t i o n ( i n t ∗ a d d r e s s , i n t v a l ) {
/ / normal memory l o a d o p e r a t i o n

i n t o l d = ∗ a d d r e s s ;

/ / compute new v a l u e t o s t o r e

i n t new va l = compute ( old , v a l ) ;

i n t assumed ;

do {
assumed = o l d ;

/ / d e c i d e whe the r t o pe r fo rm CAS o p e r a t i o n

i f ( g o o d t o c o m p a r e a n d s w a p ( assumed , new va l ) ) {
/ / CAS o p e r a t i o n

o l d = compare and swap ( a d d r e s s , assumed , new va l ) ;

} e l s e {
r e t u r n ;

}
}w h i l e ( assumed != o l d ) ;

}

Figure 3.6: Pseudo code of atomic update operation.

The memory-intensive atomic operation incurs high overhead with non-overlapped

multiple transactions on the lower level of the memory hierarchy. The transactions of

reading, modifying, and writing a value back to memory are done by the core, and the data

movement is not overlapped with the main computation, thus increasing execution time.

Fetching data from the lower level of the memory hierarchy to the L1 cache increases the

latency of the atomic operation, which can become worse with large data since the data

should be fetched from DRAM rather than shared cache. Other cores trying to modify the

implementation for brevity.
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same cache line can cause the repetition of the memory load and CAS operation, which

increases the L1 access, which will be mostly cache misses.

The increased latency resulting from invalidation also increases the overhead, and the

invalidation traffic will also be problematic on the shared cache with many cores. When

multiple threads try to modify the same line, a lot of invalidations result since different

threads will send the invalidation.

Also, all threads that try to access the same location are sequentialized to assure atom-

icity. Possible collisions can cause poor performance as threads are sequentialized. As the

atomics serialize accesses to the same element, the performance of atomic instructions will

be inversely proportional to the number of threads that access the same address. As more

cores become available on-chip, performance degradation resulting from serialization will

increase.

While overlapping atomic operations with computation are possible with launching

extra workers, launching a background thread is neither realistic nor beneficial for par-

alell learning applications since launching more threads for computation is typically more

helpful than launching background threads. When executing highly parallel data-intensive

applications on many cores, despite the reduced stall time with asynchronous parallelism,

strict consistency with atomic operations has caused slow execution. Therefore, we con-

clude that the performance of learning applications is atomic operation bound.

3.4 Solution

Now, we propose BSSync, hardware support for offloading the atomic update operation

onto logic layers on memory devices. After we describe the key idea of our proposal, we

explain how data communication is performed with our hardware implementation.
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3.4.1 Key Idea

BSSync reduces the atomic update operation overhead by utilizing the characteristic of the

iterative-convergent learning applications that allows the use of stale values in the compu-

tation. Compared to previous studies utilizing the characteristic only for read operations,

BSSync utilizes the characteristic also for write operations to allow stale-writes to mini-

mize the adverse impact of long latency atomic operations. BSSync is based on the fol-

lowing two ideas regarding the iterative-convergent algorithms and state-of-art hardware

implementations.

• First, atomic update operations in iterative-convergent learning applications are for

other threads to see the updates within a certain staleness bound. The atomic update

stage is separate from the main computation, and it can be overlapped with the main

computation. Since learning applications do not enforce strict data dependence con-

straints (threads can miss a certain number of updates to use stale values), the update

operation can be performed asynchronously.

• Second, atomic update operations are a very limited, pre-specified set of operations

that do not require the full flexibility of a general-purpose core. The hard-wired

implementation of atomic update operations on the memory hierarchy can be more

efficient.

A key observation is that offloading atomic update operations to asynchronously exe-

cute in parallel with the CPU core can eliminate the overhead of atomic update operations.

The atomic update operation in Figure 3.6 can be offloaded, and the operation can be im-

mediately retired from the core side but the logic layer can guarantee the atomicity. Atomic

operations only need to guarantee the atomicity of the update. Assuming the atomicity is

provided, that is, if the update from a core is not over-written by other updates, it is all right

when the atomic update operation is performed asynchronously so that other threads can

observe the recent value later.
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Asynchronous execution of atomic operations reduces the overhead of long latency

reading the value from the lower level of the memory hierarchy. It reduces the overhead

by transforming blocking operations into non-blocking operations. The CPU core does not

wait for the atomic operations to finish but proceeds to the main computation, enabling high

performance. Asynchronous execution of atomic operations also reduces the overhead of

redundant computation for retrying in the case of conflict and the serialization overhead

that blocks cores from proceeding for computation.

Instead of general-purpose cores, BSSync utilizes simple logic layers at the memory

hierarchy to perform atomic operations. The CMOS-based logic layer can provide an effi-

cient implementation for atomic operations and can help the CPU core to be latency toler-

ant. While the atomic operation is basically read-modify-write, reading the value from the

thread performing the atomic operation is not needed since the value will not be used by the

thread. The read can probably incur fetching the value from the lower level of the memory

hierarchy. Since the data will be invalidated before being used, it is inefficient to fetch

the data to be located near the core expecting short latency with a cache hit. The second

generation of Hybrid Memory Cube (HMC) also supports simple atomic operations [61].

The implementation is quite straight-forward without the requirement of full flexibility of

the CPU core so that it can be a hard-wired implementation.

We use the staleness definitions of the SSP model [19]. The version number v represents

that the value of a particular datum has been read by the thread at iteration v. The staleness

of the data with version number v is defined as i− v, if the thread is at iteration i. We

redefine the meaning of a cache hit/miss as in ASPIRE [20]. With the user-defined staleness

threshold s, the read request to a datum can be

• Stale-hit: datum in cache and staleness ≤ s

• Stale-miss: datum in cache and staleness > s

• Cache-miss: datum not in cache
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3.4.2 Structure
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Figure 3.7: Hardware extension of BSSync.

Figure 3.7 shows the hardware extension of BSSync. Each core is extended with a

region table, control registers (one iteration register and one threshold register per core),

and an atomic request queue (ATRQ). The cache hierarchy consists of per-core private L1

data caches and an inclusive shared L2 cache. The traditional directory-based coherence

mechanism is extended to control the degree of coherence. Logic layers are extended on

each level of memory hierarchy: L1 data cache, L2 cache, and DRAM.4

BSSync changes the conventional hardware/software interfaces to exploit parallelism

between the host core and the logic layer at the memory hierarchy. The programmer needs

to define the staleness threshold, specify the loop that is associated with the staleness of

data, and provide the thread progress in terms of iteration counts of the loop. The program-

mer also needs to modify the code to invoke the assembly-level atomic instruction and

annotate the shared memory object that allows bounded staleness consistency. While this

requires certain changes, these changes are mostly straight forward so they can be easily

4 To coordinate atomic operation execution on DRAM, DRAM controller is extended.
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done by the programmer.

The information provided by the programmer is used by the BSSync hardware. The

region table for each core contains the address range of annotated memory objects, one

entry for each memory object. The iteration register tracks the progress of each thread

storing the iteration count that the core is currently executing. The threshold register stores

the staleness threshold, which is provided by the programmer.

ISA is extended to pass the programmer-provided information to the BSSync hardware.

BSSync includes the special instructions to set and clear the region table, the threshold reg-

ister, and the iteration register. During the initialization phase of the learning application,

the special instruction inserted by programmer is called to set the region table, and the

threshold register. Before starting a new iteration, each thread calls the special instruction

that updates the iteration register for the thread with the iteration number that the thread

will start. The value stored in the region table and control registers are cleared when the

special instruction inserted by programmer is called during the termination phase of the

learning application.

BSSync also includes the fixed-function atomic instructions executing on the logic

layer. We extend the opcode to encode the atomic operation. The format of the atomic

instruction follows the format of the current load and store instructions where the size of

the operation is encoded.5

Progress 
Table Shared Data

RBuf
C1

WBuf
C1

RBuf
C2

WBuf
C2

State LRU TagVersion DataMode

 

Private L1 Cache Line

Figure 3.8: Cache tag extension of private L1 data cache line.

BSSync utilizes different cache protocols, depending on the type of memory object.

The decision for which protocol to use is made at the cache line granularity on the private

L1 data cache. Figure 3.8 shows the cache tag extension of the L1 cache line. The tag

5 While we consider the bounded operand as the single word of data, the operation might operate on

multiple words using pre-defined vectors as SIMD extensions are supported, which is straight-forward.
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entry for each L1 cache line is extended to include additional bits for tracking (a) coher-

ence mode, and (b) version number of the cache line. The mode bit is used to define the

coherence mode of the cache line. The coherence mode is bi-modal: Normal (N = 0), and

Bounded staled (B = 1). The normal line follows the conventional coherence protocols:

write-back policy with write-allocate, and the MESI coherence protocol, but the bounded

staled line follows a different protocol described in later sections. The version bits in the

L1 cache line are used to track the time until this cache line is valid, provide the time when

the cache line should be invalidated and get the new update from the lower level of the

memory hierarchy.

The ATRQ decouples the atomic operations from the conventional coherence tracking

structures. The ATRQ is for the computing unit to send the atomic operation requests to

logic layers at the memory hierarchy. It is placed between the computing units and the

logic layer on the L1 data cache. It is also connected to the shared L2 cache and DRAM

through an interface to the interconnection network. This interface is similar to the one in

many cache bypass mechanisms. The ATRQ shares an interface to the core’s MMU and

uses the physical address translated from the MMU to send the request to the logic layers

of the shared L2 cache and DRAM.

3.4.3 Differentiating Memory Instructions

In BSSync, there are two different ways to handle memory instruction: memory accesses

for normal memory objects and memory accesses for objects allowed to read stale values.

The CPU core identifies the memory access type by using a region table and sends the

memory request to different memory units.

The normal memory accesses are handled the same way as conventional directory-

based MESI protocols. When a L1 cache miss occurs, a new miss status-holding register

(MSHR) entry and cache line are reserved for the line if there is no prior request to the same

cache line. The MSHR entry is released when the cache line arrives from the L2 cache.
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When invalidation occurs, the invalidation requests are sent to all sharers and the L1 cache

tag array and MSHR table are read upon receiving the request.

On the contrary, memory accesses for the objects allowed to read stale values do not

follow conventional protocols. The accesses are further decomposed into the memory read

requests for the objects, and the atomic reduction operation requests for those objects.

3.4.4 Handling Read Requests

The data that are modified through atomic operations are also read by each thread for com-

putation. Each thread needs to fetch recent changes on the shared data into each thread’s

private L1 data cache. When a core makes a read request for the data on its private L1 cache,

it checks whether the data is too stale (the staleness is larger than the staleness threshold).

The version number of the cache line is used to decide stale-hit/miss; therefore it is used

to define the limit until the line is used. If it is a stale-hit, no further action is required; the

core keeps accessing the line in the L1 cache.

On the contrary, in the case of a stale-miss, the read request is blocked and the line in

the lower level of the memory hierarchy should be fetched into the private L1 cache even

if the line resides in the L1 cache. The cache line is invalidated from the L1 cache and the

fetch request is sent to the shared L2 cache.6 The version bit in the tag array is updated

with the current iteration count that is stored in the iteration register of the core.

When the data is not cached in the L1 cache, thus incurring a cache miss, the core

brings the data from the lower level of the memory hierarchy into the private L1 cache and

updates the mode bit to one (bounded staled) and updates the version bit with the current

iteration count. The behavior is same as if the version number in the L1 cache were -∞.

6The fetch request goes to the L2 cache directly instead of looking for the cache line in other core’s L1

cache, since the shared L2 cache accumulates more number of updates than thread-private L1 caches. This

design choice helps CPU threads to observe the recent value earlier than fetching the value from other L1

caches. The detailed explanation of how atomic operation is handled is provided in later sections.
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3.4.5 Handling Atomic Operation Requests

Figure 3.9 shows how BSSync handles the atomic request. First, the core issues an atomic

operation request into the ATRQ (1). In BSSync, the ATRQ holds the information of the

requests that are not completed. The atomic reduction operation is a non-blocking operation

when there exists available ATRQ entry so that the operation completes immediately after

the core simply puts the request into the ATRQ.7 The logic layers on the cache and the

DRAM perform atomic operations and notify the ATRQ to release its entry when the atomic

operation is finished (2).

Logic Layer

CPU Core

L2 Cache

Computing Units

L1 CacheATRQ

DRAMLogic Layer

Interconnection Network

Logic 

Layer

(1)
(2b)

(2a),	(2b)

(2a)

Figure 3.9: Handling atomic operation request.

The processing of the atomic operation request depends on whether or not the datum

resides in the L1 data cache. In the case of an L1 cache miss (2a), the ATRQ diverts the

atomic operation requests to bypass the L1 D-cache and directly sends requests through the

interconnection network into the lower level of the memory hierarchy. If the line resides

in the L2 cache, the logic layer in the L2 cache performs the atomic operation, sets the L2

cache line as ”dirty” (changing the state bits as ”modified”) and notifies the ATRQ. In the

case of an L2 cache miss, the logic layer on the DRAM performs the operation and notifies

the ATRQ.

When the line resides in the L1 cache (2b), the ATRQ sends the atomic operation re-

7The core stalls when ATRQ is full.
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quest to both logic layers on the private L1 cache and the shared L2 cache. Since we assume

inclusive cache, the line resides on the L2 cache if it resides on the L1 cache. The state

bits of the L1 cache line still remain as ”clean,” unlike conventional coherence protocols,

but changes only the state bits on the L2 cache line. The ATRQ entry is released when the

logic layer at the L2 cache notifies the ATRQ after finishing the atomic operation.

Baseline

: Compute : Read : CAS : Atomic Request

L1	Cache	Miss

CAS	Fail

Time
BSSync

Time Saved

Figure 3.10: Comparison to conventional protocol

Figure 3.10 compares how BSSync changes the way the atomic operation is handled.

While the atomic operation is completed by sending the atomic operation request into the

ATRQ with BSSync, conventional implementation requires memory load and the CAS

operation. The memory load can miss on the L1 cache, thus fetching the cache line from the

lower level of the memory hierarchy. The CAS operation can fail incurring the repetition

of the memory load and CAS.

BSSync supports two different types of atomic operations: atomic-inc/dec and atomic-

min/max. The value accompanied by the atomic operation request is different depending

on the type. For atomic-inc/dec, the ATRQ entry holds the delta for inc/dec, and the logic

layer performs the inc/dec operation with the delta. For atomic-min/max, the logic layer

compares the value for the datum in the request and the one in the memory hierarchy and

stores the minimum/maximum value from the comparison.

It should be noted that our mechanism is different from the studies that bypass the pri-

vate L1 cache to reduce the contention at the private L1 cache. Bypassing can help since it

can reduce the contention of invalidation and serialization resulting from multiple writers
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and reduce cache thrashing that evicts the lines that may be reused shortly. However, by-

passing loses the opportunity of the shorter access latency when the requested data resides

in the L1 cache. When only fetching data from the L2 cache, the latency of accessing data

will increase. On the contrary, BSSync increases the reuse at the private L1 cache reduc-

ing cache thrashing and invalidation by allowing multiple values for the same data and not

using the L1 cache for the no-reuse data.

Our mechanism is also different from write-through policy where all writes directly go

to the shared cache. BSSync eliminates the memory load within atomic operations for the

low-reuse data, not the store operation, which is required for whatever policy is used for

write.

3.4.6 Handling Evictions

BSSync changes how eviction is handled. When eviction occurs, the memory hierarchy

uses the dirty bit (state bit as modified) to identify if write-back needs to be performed.

Since the state bits of the L1 cache line of annotated memory objects are always ”clean,”

the line is just evicted from the private cache without performing write-back on the L2

cache. Since we assume inclusive cache and perform atomic operation on both the L1 and

L2 caches for L1 cache hit (Figure 3.9 (2b)), the updated value on the L1 cache should have

already been applied to the L2 cache.

When the cache lines in the shared L2 cache are evicted, BSSync performs similar

tasks as in the conventional protocol. The dirty lines on the L2 cache are written back to

the DRAM. The atomic operation performed on the L2 cache sets the L2 cache line as

”dirty”, so that the new value can be stored onto DRAM when eviction occurs.
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3.5 Experimental Methodology

3.5.1 Benchmarks and Inputs

We evaluate five data-intensive applications with different inputs: Least Squares Matrix

Factorization (MAT), LASSO regression (LASSO), Latent Dirichlet Allocation (LDA),

Breadth First Search (BFS), and Single Source Shortest Path (SSSP). MAT, LASSO, and

LDA are from Petuum [19] and utilize the atomic-inc/dec operation. BFS and SSSP are

taken from implementations provided by Harish et al. [72, 73] and utilize the atomic-min

operation. MAT learns two matrices, L and R, such that L ∗ R is approximately equal to an

input matrix X . Given a design matrix X and a response vector Y , LASSO estimates the

regression coefficient vector β , where coefficients corresponding to the features relevant to

Y become non-zero. LDA automatically finds the topics, and the topics of each document

from a set of documents using Gibbs sampling. BFS expands the Breadth First Search

tree from a given source node, and SSSP calculates the shortest path for each vertex from

the given source vertex. We port original workloads into pthread workloads utilizing all

available threads.

Tables 3.1 and 3.2 show the input for our evaluation. Each data set has varying proper-

ties. For each workload, we measure the workload completion time. Each thread iterates

on a loop until the solution converges. We sum the execution time of each iteration and use

it for performance comparison.

Table 3.1: Inputs for MAT, LASSO, and LDA from Petuum [19].

Workload Input

Matrix Factorization (MAT)
729 X 729 matrix

rank : 9 (1), 27 (2), 81 (3)

LASSO Regression (LASSO)
50 samples X 1M features

lambda : 0.1 (1), 0.01 (2), 0.001 (3)

Latent Dirichlet Allocation (LDA)
20-news-groups data set

topics : 4 (1), 8 (2), 16 (3)
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Table 3.2: Input graphs for BFS, and SSSP from DynoGraph [74].

Graph Vertices Edges Characteristic

coAuthorsDBLP (1) 299067 977676 Co-authorship network generated by DBLP

PGPgiantcompo (2) 10680 24316 PGP trust network

cond-mat-2003 (3) 30460 120029
Co-authorship network of

condensed matter publications

ny sandy (4) 44062 77348 Live Twitter event

3.5.2 Hardware Configurations

Table 3.3: Baseline hardware configuration.

Number of x86 cores 64

x86 core
x86 instruction set(user space)

Out of order execution, 2.4 GHz

On-chip caches

MESI coherence, 64B line, LRU replacement

L1I cache: 16 KB, 8-way assoc, 3 cycles

L1D cache: 16 KB, 4-way assoc, 2 cycles

L2 cache: 2 MB, 4 bank, 16-way assoc, 27 cycles

DRAM

Single controller, 4 ranks/channel, 8 banks/rank

Closed page policy

Latency : 100 cycles

For evaluating our hardware mechanism, we utilize ZSIM [75]. Table 3.3 shows the

baseline hardware configuration on the ZSIM simulator. Not just the core but also the

memory model are modeled in detail. Each core runs x86 instructions and consists of the

execution pipeline, the private L1 instruction and data caches. In BSSync, each core is also

extended to include the region table, and the control registers. The coherence mode and

version number for each cache line are integrated by extending tag arrays to track the status

of the cache line in the caches. The caches use the LRU replacement policy. A simple logic

layer performing atomic operations is integrated on the caches and DRAM. We assume the

single-cycle latency of performing the atomic operation when the request reaches the logic

layer and assume the same cache access latency for the baseline and BSSync.8

8While the hardware extension of BSSync can potentially increase the latency of atomic operation and

cache accesses, our evaluation revealed that the benefit of reducing contention by far transcends the overhead.
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The overhead of the hardware extension of BSSync is negligible. The region table has 4

entries whose size depends on the number of annotated memory objects. In many iterative-

convergent learning applications, these regions are contiguous memory regions and not

many objects exist in most applications. The length for control registers and version bits on

L1 cache tag arrays is set to 4 bits, which depend on the maximal staleness threshold with

the use of modulo operation, which incurs negligible overhead. The ATRQ has 64 entries

per core and we did not see resource contention for the ATRQ in the evaluation.

3.6 Experimental Results

3.6.1 Overall Performance
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Figure 3.11: Speedup of BSSync.

Figure 3.11 shows the speedup of BSSync with the BSP model and the SSP model

with a staleness threshold of two.9 Not only with the SSP model, but also with the BSP

model, BSSync reduces the atomic operation overhead. On average, BSSync outperforms

the baseline implementation of SSP model by 1.83÷1.37 = 1.33x times and the one of the

BSP model by 1.15x times.

BSSync shows greater benefit on the SSP model for two reasons. First, it is because the

portion of the atomic operation for overall execution time is greater on the SSP model. On

9The number after application name corresponds to different inputs shown in Tables 3.1 and 3.2.
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the BSP model, stall time still consumes a large portion of the execution time and has less

benefit. Second, it is because BSSync can better overlap atomic operation execution with

the main computation on the SSP model than on the BSP model. On the BSP model, the

computation result of an iteration should be visible to other threads before starting the next

iteration, so atomic operations are not fully overlapped with the main computation.

The benefit of BSSync varies depending on workloads with regard to words per instruc-

tions. In general, if a thread touches more shared data per instruction, the degree of benefit

from BSSync increases. MAT and LDA show a higher ratio for atomic operations than

LASSO; therefore, they have more benefit with BSSync. LDA shows greater benefit with

increasing topic counts. BFS and SSSP show the highest benefit with coAuthorsDBLP (1)

input, which is the largest graph in our input sets.

3.6.2 Analysis
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Figure 3.12: Portion of each pass on the BSP Model with BSSync.

Figures 3.12 and 3.13 show the reduced portion of the atomic pass in total execution

time. Figure 3.12 shows that the atomic operation overhead consists of 5% of the execution

time on the BSP model with BSSync. In Figure 3.13, the atomic operation overhead is

reduced to 2.3% from 23% of the baseline implementation of the SSP model. Now, 89%

of the time is spent on the main computation with BSSync for the SSP model.

A major portion of performance improvement of BSSync can be attributed to reduced
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Figure 3.13: Portion of each pass on the SSP Model with BSSync.

number of memory loads. Performing atomic operations at the core incurs a large number

of memory loads, which inefficiently handles data with high contention. Contention from

multiple cores can incur the repetition of atomic operations and therefore more memory

loads. Figure 3.14 shows how BSSync reduces the number of memory loads by offloading

atomic operations to the logic layer for the SSP model with a staleness threshold of two.

BSSync reduces the number of loads by 33%. Benchmarks such as LDA show less than

half the number of memory loads from the baseline with BSSync.
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Figure 3.14: Reduced memory loads on the SSP model.

Contention from multiple cores to write the same cache line increases memory access

latency. The memory latency is increased due to the round trip time to invalidate other

cores and receive their acknowledgments, and for requesting and receiving synchronous

write-backs. BSSync reduces memory access latency by reducing on-chip communication,

reduces the upgrade misses by reducing exclusive request, and reduces sharing misses by

reducing invalidations. Figure 3.15 shows the reduced invalidation traffic with BSSync for
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the SSP model with a staleness threshold of two. Invalidation traffic is reduced to 43%

of baseline implementation. On the majority of the benchmarks, the invalidation traffic is

reduced more than 50% from the baseline, which translates into a lower completion time.
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Figure 3.15: Reduced invalidation traffic on the SSP model.

BSSync also increases the L1 private cache utilization efficiency. Performing atomic

operations at the core can incur a large number of accesses to the lower level of the memory

hierarchy due to memory loads for data accessed in atomic operation. Unnecessary fetches

of a word that will be invalidated before being used can lead to reducing effective L1

cache size and the cores can suffer from expensive communication to the lower level of the

memory hierarchy such as the L2 cache and DRAM. Access to the L2 cache and DRAM is

costly since there is additional latency due to the time spent in the network, and the queuing

delays.
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Figure 3.16: Reduced L2 cache read accesses with BSSync.

Figures 3.16 and 3.17 show a reduced number of read accesses to the L2 cache and

DRAM. While BSSync involves accesses for atomic operations bypassing to the L2 cache
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Figure 3.17: Reduced DRAM read accesses with BSSync.

or DRAM, BSSync reduces the capacity misses of the L1 cache thus reducing evictions of

the other L1 cache lines to reduce read accesses to the L2 cache and DRAM. In Figures 3.16

and 3.17, BSSync reduces the number of L2 cache read accesses by 40% and reduces

DRAM read accesses to 42% of the baseline implementation. Benchmarks like MAT and

LDA benefit by reduced L2 cache read accesses and DRAM read accesses. BFS and SSSP

also benefit from lower L2 cache access frequency with coAuthorsDBLP (1) input.
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Figure 3.18: Total memory waiting cycles on the SSP model.

Here, we model how BSSync reduces memory waiting cycles at the cores. An appli-

cation’s execution time can be partitioned into computing cycles, memory waiting cycles,

and synchronization cycles. The speedup of BSSync comes from overlapping atomic op-

erations with the main computation, thus reducing execution time. Figure 3.18 shows how

memory waiting cycles are reduced with BSSync. On average, the memory waiting cycles

are reduced by 33%.
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3.6.3 Discussion

Comparison with Other Studies: Compared to other studies focusing on inter-node com-

munication latency, BSSync tries to improve execution efficiency within a single node. The

atomic operation overhead due to contention has a huge impact on performance within a

single node, while it is less important on distributed platforms thus leading most distributed

learning studies only to focus on stale-reads. To reduce the atomic operation overhead

within a single node, BSSync also utilizes the stale value tolerant characteristic for writes.

BSSync can easily be combined with other studies to further improve overall performance.

Thread Migration: So far we have assumed that a thread executes on a pre-defined

physical core and that the thread is not switched to other cores so that each physical core

tracks the iteration count. If a thread migrates between cores, modification is required such

that all hardware should use the thread id instead of the physical core id. However, overall,

it is a minor modification and will not affect the benefit of our mechanism.

3.7 Summary

The importance of parallel learning applications for various application domains has been

growing in the big data era. While previous studies focus on communication latency be-

tween nodes, the long latency and serialization caused by atomic operations have caused

the workloads to have low execution efficiency within a single node.

In this chapter, we propose BSSync, an effective hardware mechanism to overcome

the overhead of atomic operations consisting of non-overlapped data communication, se-

rialization, and cache utilization inefficiency. BSSync accompanies simple logic layers at

the memory hierarchy offloading atomic operations to asynchronously execute in parallel

with the main computation, utilizing staleness for write operations. The performance re-

sults show that BSSync outperforms the asynchronous parallel implementation by 1.33x

times.
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CHAPTER 4

STALELEARN: LEARNING ACCELERATION WITH ASYNCHRONOUS

SYNCHRONIZATION BETWEEN MODEL REPLICAS ON PIM

4.1 Overview

Many GPU learning application have low execution efficiency due to sparse data. Sparse

data induces divergent memory accesses with low locality, thereby consuming a major

fraction of total execution time on transferring data across the memory hierarchy. The

learning involves applying simple computation for a massive amount of data, leading to a

high data-to-compute ratio. The divergent memory accesses leads the GPU to suffer from

the low utilization of GPU computing units waiting for memory. Although considerable

effort has been devoted to reducing the divergent memory overhead, iterative-convergent

learning provides an unique opportunity to achieve full potential in modern GPUs allowing

different threads to continue computation using stale values.

We find that relaxing the consistency can play a pivotal role in parallel GPU learning.

While considerable effort [15, 16, 17, 18, 19, 20] has utilized the stale value tolerance on

distributed learning trying to reduce the inter-node synchronization cost among multiple

nodes, there has been no work that brings the characteristic to reduce the hardware com-

munication cost between the GPU and the memory. The lack of architectural considerations

has led modern GPU learning to have low execution efficiency.

The stale value tolerance enables to utilize existing PIM technology [60] for the mem-

ory bottleneck of GPU learning. The recent advance in the 3D-stacking technology has

led to a variety of PIM proposals [57, 58, 59, 76, 62, 77] as a technique for addressing the

memory bottleneck. Despite its potential for memory bottleneck, the difficulty of task de-

composition between the GPU and PIM has led to the inefficient utilization of the potential.
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The stale value tolerance enables clear task decomposition, which can effectively exploit

parallelism between PIM and GPU cores.

Therefore, we propose StaleLearn, a learning acceleration mechanism that reduces the

memory divergence overhead by trans f orming the problem into the synchronization prob-

lem. Based on the stale value tolerant characteristic of learning, StaleLearn transforms

divergent memory accesses of GPU learning into more GPU-friendly regular/sequential

accesses by model replication and asynchronous synchronization on PIM. The stale value

tolerance enables the memory access pattern conversion and overlapping low locality syn-

chronization operation on PIM with the main computation on GPU cores.

We demonstrate the benefit of the proposed scheme for representative GPU learning

applications with sparse data. We identify and quantify the memory bottleneck of GPU

learning and evaluate how our proposal increases the execution efficiency of learning on

the GPU architecture. In summary, the key contributions of our work are as follows:

1. We observe that the divergent memory accesses in GPU learning are the major cause

of low execution efficiency. We find that the stale value tolerant characteristic pro-

vides a unique opportunity to increase the performance of the memory-bound GPU

learning with the reduced synchronization requirement.

2. We propose StaleLearn, the first work utilizing the stale value tolerance to reduce

the divergent memory access overhead of GPU learning. Unlike distributed learning

studies focusing on inter-node synchronization, our solution brings the stale value

tolerant characteristic to reduce the hardware communication cost between the GPU

and the memory.

3. StaleLearn is the first work to reduce the memory divergence of GPU learning with

existing PIM operations. StaleLearn transforms the problem of divergent memory

access into data synchronization problem by model replication and reduces the syn-

chronization overhead by asynchronous synchronization on PIM.
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4.2 Transforming Memory Divergence into Data Synchronization

4.2.1 Categories of ML applications

GPU learning has become popular with a large amount of parallelism found in learning.

Data-centric learning requires significant amounts of computation. Therefore, considerable

efforts have focused on shortening the learning time by utilizing an enormous amount of

parallelism of learning and utilizing GPUs [22, 23, 24, 25, 26, 27].

However, GPU is not the best choice for all ML applications. The best hardware for

learning is different depending on the characteristic of training data. Different ML applica-

tions utilize training data with the different degree of parallelism and sparsity of features.

Figure 4.1 shows the scatter plot of LIBSVM dataset [78] and UCI machine learning repos-

itory [79], where the x-axis represents the degree of parallelism and the y-axis represents

the degree of sparsity. The degree of parallelism is defined as the number of data points.

The degree of sparsity is defined as the number of features divided by the average number

of features in each data point, such that the large degree of sparsity represents when each

data point has only a small subset of features.
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Figure 4.1: Categories of ML applications.

We categorize ML applications into three categories as shown in Figure 4.1: a small

degree of parallelism (A-category), a large degree of parallelism with a small degree of
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sparsity (B-category), a large degree of parallelism with a large degree of sparsity (C-

category). For A-category applications, GPU is not the best hardware for learning since

the degree of the parallelism is low. On the contrary, for B-category applications, the GPU

is effective for exploiting regular parallelism with thousands of threads and large memory

bandwidth.1 Most GPU learning platforms [13, 80, 14] have focused on this category

of ML applications, such as the image classification task where the convolutional neural

network (CNN) is heavily used [81].

However, little effort has been devoted to applications in the C-category. Figure 4.1

shows a non-negligible number of ML applications fall into this category. While the num-

ber of features is large in multiple real-world problems such as the natural language pro-

cessing having more than millions of features [82, 83], the training data is typically sparse

on these problems. While the large degree of parallelism leads to consider GPUs for these

applications, the large degree of sparsity of data has prevented GPUs from perfectly utiliz-

ing the performance potential of the state-of-art GPU architecture. The increasing interest

in the analysis of sparse data such as those in social networks mandates to solve the in-

efficiency of GPU learning for these applications. So, in this chapter, we focus on GPU

learning with sparse data.

4.2.2 Memory Bottleneck of Sparse Data

While a large number of features are widely used to achieve more precise results, in mul-

tiple real-world ML applications, data is sparse in nature, where each data point has only

a small subset of features. Due to the sparsity, sparse data representations are used in

many implementations. Assuming learning a model for classification, x (matrix) repre-

sents the training data, and w is the computed model. Figure 4.2 shows an example of a

sparse data representation, the compressed sparse row format for the learning application.

Here, each row can be mapped as a data point, and columns can be mapped as features.

1Chapter 3 covers applications in this category.
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Instead of maintaining a matrix whose values are mostly empty, three vectors are main-

tained: row offset vector, column index vector, and data vector. The data vector stores the

valid features from the x matrix. Integer values are used for indexing memory objects so

that the column index vector stores the column indices of all the valid columns, and the

row offset vector stores the index of the column index vector where the first valid column

index of each row is stored. The model w is represented as a weight vector whose size is

proportional to the number of features.

w0 w1 w2 w3 w4

0 3 6 7 9 10

1 2 3 0 3 4 0 0 1 1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

# rows +1

row_offset

column_index

data

weight

Training data

Model

Figure 4.2: Compressed sparse row format.

In many ML applications, the GPU suffers from the divergent memory accesses on the

weight vector during learning. Figure 4.3 shows an example of weight vector accesses for

widely used data parallel implementation, where the data structure is organized to make

each thread process a disjoint subset of data. In this example, each thread is assigned to

one row (i.e., one element in row offset vector) and each thread iterates the column for

the given row reading the dedicated region of the column index vector to find the row’s

valid columns. Weight vector accesses are dependent on column index vector accesses,

which leads to scattered, divergent accesses. Figure 4.3 shows that the thread processing

row 1 accesses the weights w0, w3, and w4. While the column index vector accesses are

sequential accesses, weight vector accesses are dependent on the column index vector and

become divergent accesses.
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weight

Figure 4.3: Weight vector access pattern.

The divergent weight vector access cause the GPU cores to stall while waiting for the

low locality data to be fetched from the lower level of memory hierarchy. Fetching these

data with no temporal/spatial locality only results in frequent capacity misses and high

DRAM accesses. GPU learning cannot take the benefit the large memory bandwidth of

GPU if GPU generates only divergent memory accesses.
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Figure 4.4: Cache line usage before eviction.

To evaluate the memory divergence during learning, we evaluate the ratio of how much

cache space is wasted to bring unused data within a cache block.2 Divergent memory

accesses cause only a small portion of the cache line to be used, and most of the fetched

data is not used at all before being evicted without exploiting spatial locality. Figure 4.4

shows that only 18% of data within a cache line is used before eviction, thus wasting 82%

of cache space.
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column_index

weight

Figure 4.5: Model replication.

4.2.3 Model Replication

We propose to transform divergent memory accesses of GPU learning into more GPU-

friendly sequential accesses using model replication. Model replication creates multiple

replicas of a single weight, such that each GPU thread maintains its private copy of a single

weight. Figure 4.5 shows an example of the model replication. The programmer defines an

additional vector, the replicated weight vector, which is the replica of the weight vector in

Figure 4.3. The replication of the weight is performed along the column index vector. So,

the single weight at index 0 on the weight vector is replicated into multiple locations on the

replicated weight vector, whose indices are the same as the column index vector entries

with the value of 0.

row_offset

replicated_weight

0 3 6 7 9 10

w1 w2 w3 w0 w3 w4 w0 w0 w1 w1

Replicated	along	column_index

Figure 4.6: Memory access pattern conversion.

Model replication enables the memory access pattern that improves the locality of GPU

memory accesses to increase cache utilization, which results in reducing the long latency

of data transfer from DRAM. The scattered accesses to the weight vector from the thread

processing the row 1 in Figure 4.3 become the sequential accesses to replicas on the repli-

cated weight vector as shown in Figure 4.6 so that the GPU core performs sequential mem-

2Detailed configuration for the evaluation is provided in Section 4.4.
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ory accesses instead of divergent memory accesses.

However, model replication introduces the new overhead of data synchronization be-

tween model replicas. While replication has the advantage of reducing the memory diver-

gence overhead, this new overhead can reduce the benefit. In fact, model replication can

suffer from a large number of synchronizations during the iterative execution. The same

weight value is replicated in multiple places and they have to be updated together, whenever

the weight value is changed. Iterative learning application produces hundreds of intermedi-

ate results, which means hundreds of data synchronization. Even worse, conventional strict

consistency prevents from reading different values from a single weight, which results in

serializing all GPU threads.

4.3 Solution

4.3.1 Utilizing Stale Value Tolerance

We find that relaxing the consistency can play a pivotal role in improving the performance

of iterative GPU learning. The iterative-convergent characteristic allows GPU threads to

use stale values in their intermediate computations, without requiring that all threads al-

ways have a consistent view of memory [15, 16, 17, 18, 11]. Unlike classical applications

that are transaction-centric and deterministic with strict consistency requirements, using

stale values in iterative GPU learning does not affect the correctness of applications, thus

relaxing strict read-and-write data dependencies.

Our proposal, StaleLearn, takes advantages of this stale value tolerant characteristic

of GPU learning to reduce the data synchronization overhead of model replication. The

stale value tolerant characteristic allows multiple replicas to have different intermediate

values, relaxes synchronization requirement, thereby allowing them to synchronize in the

coarse-grained manner. Here, the coarse-grained synchronization effectively eliminates the

biggest downside of model replication.

The coarse-grained synchronization enables clear task decomposition between the GPU
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and PIM. StaleLearn takes advantages of existing PIM technologies for the coarse-grained

synchronization and exploits parallelism between PIM and GPU cores. GPU threads do

not need to stall during the data synchronization on PIM; instead, they can continuously

access the stale replicated data and continuously learn. The synchronization is not on the

GPU execution critical path, enabling high performance.

4.3.2 Mechanism Overview

The key ideas of StaleLearn are 1) the thread local computation with stale model repli-

cas, and 2) the asynchronous synchronization on PIM. The asynchronous synchronization

consists of 1) non-blocking atomic RMW operation on the original weight and 2) replica

synchronization that applies the recent value of original weight to the replicas.

Initialization:

• Read	training	data
• Allocate	memory	objects

Iterate	batches	until	convergence:

Launch	GPU	kernel	for	batch	n

• For	each	training	sample	xi
• Thread	local	computation	 :	Dwi =	F(wi ,	xi)

• Atomic	RMW :	wi =	wi +	Dwi

Termination:

• Store	learned	model	to	files
• Deallocate	memory	objects

Figure 4.7: Learning of the baseline GPU implementation.

Figures 4.7 and 4.8 compare how StaleLearn changes the GPU learning for the exam-

ple of the parallel SGD (highlighted in red). GPU learning iteratively invokes GPU kernel,

where each kernel invocation forms a batch (iteration). For StaleLearn, the initialization

phase of learning involves additional memory allocation for model replicas, and the final-

ization phase involves deallocating this model replica memory object. Following provides

the overview of how iterative learning phase changes with StaleLearn.
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Initialization:

• Read	training	data
• Allocate	memory	objects

• Allocate	model	replicas

Iterate	batches	until	convergence:

Launch	GPU	kernel	for	batch	n
• For	each	training	sample	xi
• Thread	local	computation	 :	Dwi =	F(wrepl

i ,	xi)

• Non-blocking	atomic	RMW :	wi =	wi +	Dwi

Replica	synchronization	(gather)	for	batch	n	+	1

• For	each	replica	wrepl
j in	the	batch	n	+	1

• Apply	recent	value	of	original	weight	:	wrepl
j=	wj

Termination:

• Store	learned	model	to	files
• Deallocate	memory	objects

• Deallocate	model	replicas

GPU

PIM

PIM

Figure 4.8: Learning of StaleLearn.

1. Thread local computation: Each thread in the GPU kernel calculates ∆w by accessing

the its own replicated weight, wrepl . The divergent accesses on the original weight, w,

are replaced by the sequential accesses to the thread-private replicated weight, wrepl .

2. Non-blocking atomic RMW: The non-blocking atomic RMW updates the original

weight w using the calculated delta ∆w. The GPU kernel offloads the atomic RMW

to PIM with an instruction granularity.

3. Replica synchronization: Replica synchronization is a sequence of gather operations

that applies the recent values on the original weight to replicas for the next batch.

The programmer offloads the gather operation to PIM with a function granularity.

The operation is overlapped with GPU kernel execution instead of waiting for the

completion of the GPU kernel similar to software pipelining.3

3To simplify the example, we do not show the prologue and epilogue of the replica synchronization.
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4.3.3 Utilizing PIM Technology

StaleLearn offloads the atomic RMW operation and the gather operation to PIM, which are

handled by the atomic unit [61] and the gather unit [66]. The memory system consists of

multiple channels, and each channel has dedicated atomic units and gather units. Memory

controllers, atomic units, and gather units are located on the logic layer of the 3D stacked

memory.

The communication of GPU and PIM is performed by extending the memory command

with PIM commands as in most PIM proposals [84, 57, 85, 86]. The possible PIM com-

mand types are atomic, gather read, and gather write. All PIM commands contain 1) the

command type, and 2) the size of the memory object. The size of the memory object is

maintained since the granularity of the memory command is the cache line granularity.

4.3.4 Non-blocking Atomic RMW

On StaleLearn, the model update is performed by atomic RMW operations on the original

weight. While divergent memory accesses during thread local computation are eliminated

by accessing thread-private replicas, performing RMW operation on the original weight

on the GPU is still expensive since it involves divergent memory accesses.4 StaleLearn

utilizes that the atomic RMW operation can be overlapped with GPU computation for the

same reason as asynchronously updating replicas. Since reads from GPU threads are per-

formed on stale model replicas, the atomic operation is not on the GPU execution critical

path, which enables to perform the atomic operation asynchronously so that other threads

can observe the recent value later. RMW operations are mostly memory operations with

very simple computation, they can be easily offloaded to PIM. On StaleLearn, the RMW

operation on the original weight w is non-blocking, such that GPU threads do not wait for

the completion of the operation on PIM.

4We perform RMW operations on the original weight since it reduces the amount and the complexity

of data synchronizations than performing the operation on replicas. A detailed discussion is provided in

Section 4.3.7.
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Programming Interface: On StaleLearn, the programmer modifies the code to call

the new non-blocking atomic RMW builtin PIMAtomic. Here, T refers to the data type

(e.g., double). The builtin function takes three arguments. The argument dest defines the

destination of the RMW operation. The argument op defines the type of RMW operation

to be performed, and the argument val defines the value to be used when performing the

RMW operation.

PIMAtomic(T* dest, OP op, T val)

Available op argument values (enum OP) are as follows.

• INC/DEC: Increase/decrease the value at dest by val.

• MIN/MAX : When val is smaller/larger than the value at dest, store val at dest.

Figure 4.9 shows an example of GPU kernel modification for the example of parallel

SGD. The code modification is negligible, which provides an easy integration of existing

GPU code to utilize the PIM technology.

//	Replicas	are	stored	along	the	column	from	“start”	to	”end”

for (int i	=	start	;	i	<	end	;	++i)	{
…

//	Compute	w_delta using	the	replicated	weight

doublew_delta =	compute_delta(w_repl[i]	,	…)	;
…

int c_id =	column_index[i]	;

//	Non-blocking	RMW	on	the	original	weight
PIMAtomic(&(w[c_id])	,	INC	,	w_delta)	;

}

Figure 4.9: GPU kernel modification for StaleLearn.

PIM Offloading: The non-blocking atomic RMW operation is initiated by GPU ISA

extension. The compiler changes the PIMAtomic builtin into the new PIM atomic instruc-

tion. Instead of being executed on the GPU core, the PIM atomic instruction is offloaded
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by sending the atomic command to the memory.5 The PIM atomic instruction retires just

after sending the atomic command to the memory without waiting for the completion of

the atomic operation, thereby decoupling the PIM execution from GPU computation via

fire-and-forget.

4.3.5 Atomic RMW and Replica Synchronization

0 1 0 40

w0 w1 w2
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w0 w1 w0 w40replicated_weight
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0replicated_weight

…

…
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…

Replica	Synchronization		Batch	“n	+	1”

Figure 4.10: Coordination of non-blocking atomic RMW and replica synchronization.

Figure 4.10 shows how non-blocking atomic RMW and replica synchronization are co-

ordinated. Each GPU batch reads the portion of the column index vector thus the portion

of the replicated weight vector and performs atomic RMW on the original weight vector.

In Figure 4.10, within the GPU batch ”n”, different GPU threads read thread-private stale

model replicas for the batch regardless of the updates performed on the original weight

during the batch. The original weight accumulates deltas from non-blocking atomic RMW

5Our baseline GPU system maintains write-no-allocate/write-evict L1 cache and supports write-

back/write-through for shared L2 cache. Atomic commands are enqueued utilizing write-through on the

L2 cache.
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operation such that the values of original weights, w0, w1 and w40 are updated to the new

values, w∗
0, w∗

1 and w∗
40. After the GPU batch ”n” is over, the replica synchronization writes

the value of the original weight to replicas for the next batch. So the value of multiple

replicas replicating the same original weight become consistent again, such as w∗
0 in Fig-

ure 4.10.

4.3.6 Replica Synchronization

Programming Interface: On StaleLearn, the replica synchronization is a sequence of

gather operations that applies recent changes on the original weight to replicas. StaleLearn

provides PIMGather API to offload the replica synchronization to PIM by passing the

range of column index vector for the next batch.

Figure 4.11 shows a pseudo code of the PIMGather API that performs a sequence of

gather operations. A gather operation can be broken into three memory operations. First,

the operation accesses the column index vector to find the index on where the original

weight is located. Then, the operation reads the value of the original weight. Lastly,

the operation writes the recent value of the original weight into the replica on the repli-

cated weight vector.

//	Column	indices	and	replicas	are	stored	

//	between	“batch_start”	to	”batch_end”
for (int i	=	batch_start ;	i	<	batch_end ;	++i)	{

//	1.	Read	the	column_index

int c_id =	column_index[i]	;

//	2.	Read	the	original	weight

doublew_value =	w[c_id]	;

//	3.	Write	to	the	replica

w_repl[i]	=	w_value ;

}

Figure 4.11: Replica synchronization.

Gather Operation on PIM: Gather operation is one of the popular operations on PIM

and already has been implemented in hardware [66]. Here, we explain how the gather unit
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performs the replica synchronization.

The gather unit performs the replica synchronization by sending memory commands to

the corresponding channel. It utilizes the start address of 1) the weight, 2) the replicated

weight, and 3) the column index vector to identify the destination channel to send the mem-

ory command. The range of column index vector given by the programmer is partitioned

into each gather unit that has the column index vector entries on its own channel. When

multiple gather units are allocated for a single channel, they partition the address range of

each channel.

The gather operation is performed by executing a sequence of memory commands:

read, gather read and gather write commands. The gather read command maintains the

addresses of 1) the replicated weight and 2) the original weight. The gather write command

maintains 1) the address of the replicated weight and 2) the value of the original weight.

Following explains the memory command sequence for the gather operation.

1. The gather unit first sends the read command to its own channel that has the col-

umn index vector entries to find the locations of the original weight. The address

of the original weight is computed using 1) the start address of the original weight

vector, 2) the size of each weight value depending on the data type, and 3) the index

value in the column index vector.

2. After identifying the addresses of the original weight, the gather unit sends the

gather read command (with the replica address) to the channel where the original

weight is located.

3. The channel that receives the gather read command reads the value of the origi-

nal weight and send back the gather write command (with the value of the orig-

inal weight) to the channel that holds the replica. The channel that receives the

gather write command writes the replicated weight with the value of the original

weight.
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Overlapping PIM execution with GPU: In a naive implementation, the program-

mer can sequentially perform replica synchronization for batch n + 1, after the GPU ker-

nel launch for batch n. Simply offloading the replica synchronization on PIM can reduce

the benefit of our proposal and cause GPU cores to wait for the completion of the PIM

execution. In order to reduce PIM execution latency, StaleLearn exploits parallelism be-

tween PIM and GPU cores and overlaps the replica synchronization on PIM with the main

computation on GPUs. The overlapped execution enables effective latency hiding of PIM

execution, and GPU cores can continuously perform computation without waiting for the

synchronization to finish.

For asynchronous synchronization, StaleLearn utilizes the bounded staleness consis-

tency model [21], which has been widely used in distributed learning by guaranteeing the

reasonable progress within an iteration with a user-defined staleness threshold. The stale-

ness threshold is used to control the degree of staleness such that the GPU cores can access

the recent updates on model weights. We define the degree of staleness with batch count,

similar to the study by Lee et al. [87]. The staleness degree is equal to m when all the repli-

cas for the batch n are synchronized with all updates until the batch n - m. The staleness

degree 1 means that the replicated weights for the current batch are synchronized with the

previous batch’s update to the original weight.

Time

GPU(n – 2) GPU(n – 1) GPU(n)

RS(n)

GPU(n – 2) GPU(n – 1) GPU(n)

RS(n)

GPU(n – 2)

RS(n – 1)

GPU(n – 1) GPU(n)

RS(n)

RS(n – 1)

S = 2

wait

S = 3

S = 1

wait

wait

Figure 4.12: Overlapping replica synchronization.

Figure 4.12 shows how StaleLearn overlaps the replica synchronization (RS) on PIM
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with different staleness thresholds. The GPU performs computation for the new batch only

when the replica synchronization for the batch is finished. With the staleness threshold

s, StaleLearn starts the replica synchronization for the batch n after finishing execution of

the batch n - s. The larger threshold can reduce GPU’s waiting time, while it can lead to

missing more number of updates.

4.3.7 Discussion

RMW Operation on the Original Weight: We perform RMW operations on the original

weight since it reduces the amount and the complexity of replica synchronization than

performing the operation on replicas. When performing RMW operations on replicas, the

replica synchronization for the new batch requires accessing all replicas replicating the

same weight from all previous batches, since the updates for the same weight are scattered

across multiple replicas. Compared to that, the replica synchronization for the new batch

only needs to access the original weight when performing RMW operation on the original

weight.

Performing RMW operations on replicas also increases the complexity of replica syn-

chronization. Since each replica should know the location of other replicas, it requires

maintaining a book-keeping structure storing this information, which increases the mem-

ory footprint. When performing RMW operations on the original weight, each replica only

needs to know the location of the original weight, which is already available from the col-

umn index vector in the compressed sparse row format.

Memory footprint of Replication: The decision of maintaining replicas clean helps

to reduce the memory footprint cost of replication. Not all replicas need to be allocated on

memory since all updates are accumulated on the original weight. StaleLearn requires only

replicas for s batches to be allocated with the staleness threshold of s, which leads to the

negligible memory footprint overhead from replication as we will discuss in later sections.
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4.4 Experimental Methodology

4.4.1 Workloads

Table 4.1 shows our evaluated workloads. We categorize several learning applications into

two main categories: parallel gradient descent and graph primitives.6 Three applications

are evaluated for the gradient descent method, a popular method in supervised learning

and recommender systems: binary classification (BC), linear regression (LR), and low-rank

matrix factorization (MF). BC and LR learn weight vectors for high dimensional data with

a large number of features. MF learns two matrices, L and R, such that LR is approxi-

mately equal to an input matrix X. We also evaluate popular graph primitives that share

multiple characteristics with model learning: connected component (CC), graph coloring

(CLR), breadth first search (BFS), single source shortest path (SSSP), and number of path

(NP). Multiple studies [20, 29, 30] have proven the stale value tolerance of iterative graph

primitives including GraphLab [4] that transforms ML applications into graph algorithms.

Table 4.1: Evaluated workloads.

Workload Learning Algorithm Input

BC SGD, Mini-batch GD news20.binary [88]

LR SGD, Mini-batch GD news20.binary [88]

MF [19] SGD news20.binary [88]

CC [20] Single writer, Multiple writer LBDC-1000K [89]

CLR [46] Single writer coAuthorsDBLP [74]

BFS [72] Single writer, Multiple writer LBDC-1000K [89]

SSSP [72] Single writer, Multiple writer LBDC-1000K [89]

NP [20] Single writer coAuthorsDBLP [74]

We focus on data-parallel implementations of these applications: MF is parallelized

across non-zero features, and other applications are parallelized across training data points

(or vertices). For BC and LR, we evaluate both stochastic gradient descent (S) and mini-

batch gradient descent (M) with the batch size of 2048 that equals to the number of available

6The OpenMP version of applications are available at https://github.com/gthparch/stale workload, which

can be downloaded and be used for other evaluations.
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GPU threads. For CC, BFS, and SSSP we evaluate both single writer implementations (S)

and multiple writer implementation using atomics (M). Multiple writer implementation can

reduce the number of iterations before convergence than single writer implementation by

performing more writes per iteration.

We use real data sets with the compressed sparse row format. coAuthorsDBLP has

5.03 columns per row and 388788 weight values. LBDC-1000K has 28.8 columns per row

and 1000000 weight values. news20.binary has 456 columns per row and 1355192 weight

values.

4.4.2 Hardware Configuration

For evaluating our proposal, we utilize an in-house execution-based simulator. We have de-

veloped a lightweight simulator to evaluate how utilizing stale value affects convergence,

completion time of learning, and the solution quality. We (have to) execute the applica-

tion until it converges to see the final value, which forbids us from using a conventional

cycle-level simulator. The simulator is a combination of an execution-based functional

simulator with a timing model mimicking NVIDIA-like GPU: 32 threads in a warp execute

in lockstep, branch/memory divergence is modeled, and GPU cores execute multiple warps

in a round-robin fashion while other warps are waiting for memory. Both the core and the

memory hierarchy are modeled in detail.

Table 4.2 shows the hardware configuration. Each core consists of the execution

pipeline and the private L1 data cache.7 The L2 cache is shared by all cores and supports

both write-through and write-back policies. Both the L1 and L2 cache are non-blocking

and utilize LRU replacement policy. The memory model is based on the HBM model [90]

with the timing parameters from Ramulator [91]. Both the logic layer and the memory layer

operate at a 0.5 GHz cycle. The memory access granularity and cache block size are 64

bytes. The logic layer of HBM has four atomic units and four gather units per channel. The

7We assume infinite instruction cache without cache misses and L2 cache contention.
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Table 4.2: hardware configuration.

GPU core
8 GPU core, 1.6 GHz

8 32-wide warps, 32-wide SIMD width

L1 D cache
16 KB, 2-way assoc, 2 cycles

Write-no-allocate/write-evict

L2 cache
128 kB, 16-way assoc, 16 cycles

Write-no-allocate, write-back/write-through

Main Memory

HBM, 0.5 GHz, 64B access

8 channels, 1 rank per channel

1000 MT/s, 119.2 GB/s, CL-RCD-RP : 7-7-7

PIM units 4 atomic/gather units per channel

LAMAR [49]
4 sectors per cache block, 4 sub-ranks

Static decision by programmer

ISA extension is modeled by special instructions to call functions on the simulator.

We compare StaleLearn against LAMAR [49] with the sector cache [92] and the sub-

ranked memory system [93], which adjusts access granularity depending on the locality

of memory accesses to increase the memory bandwidth utilization efficiency. The sector

cache partitions cache block into four sectors and the sub-ranked memory reduces the min-

imum DRAM access granularity by four times. We implement LAMAR on the baseline

HBM memory model. In our evaluation, LAMAR performs fine-grained accesses on model

parameters, while it performs coarse-grained access for other memory objects, which is the

optimal access granularity regarding memory bandwidth utilization.

4.4.3 Measurement

The iterative learning is a fine-tuning procedure to gain better-quality solutions, which re-

quires StaleLearn to guarantee the same quality solution of the baseline implementation.

For each workload, we measure the learning completion time,8 which is defined as the time

until the solution converges to the same quality solution to that of the baseline implemen-

tation. We execute the baseline implementation until there is no progress regarding the

solution quality.

8The execution time of inference is determined by the size of the model and input, which is not affected

by our proposal.
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4.5 Experimental Results

4.5.1 Overall Performance Improvement
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Figure 4.13: Speedup of LAMAR and StaleLearn.

StaleLearn significantly improves the performance of GPU learning. Figure 4.13 shows

the performance improvement with LAMAR and StaleLearn for all evaluated workloads

with the best staleness threshold for each workload. On average, StaleLearn outperforms

the baseline implementation by 3.17 times, while LAMAR only improves the performance

by 1.05 times.9 The large IPC10 improvement by StaleLearn (4.29 times as shown in Fig-

ure 4.13) leads to the overall speedup even though the loss of intermediate accuracy by

allowing stale values slightly increases the number of iterations before converging to the

same quality solution of the baseline implementation. (discussed in Section 4.5.3).

While the optimal staleness threshold is different for each workload, Figure 4.14 shows

that StaleLearn can achieve similar benefit with a single staleness threshold across all work-

loads. The average benefit of using the same staleness threshold 3 is 3.07, which is similar

to 3.17 with a different staleness threshold for each workload.

4.5.2 Reducing Data Communication Cost

Reducing Cache Misses: StaleLearn reduces the hardware data communication cost be-

9In the chapter, for all workloads, the baseline is the original workload, but still using HBM as main

memory.
10The IPC is the number of warp instruction per cycle.

60



0

1

2

3

4

5

BC(S) BC(M) LR(S) LR(M) MF CC(S) CC(M) 

S
p
e
e
d
u
p

StaleLearn(S	=	1) StaleLearn(S	=	2)

StaleLearn(S	=	3) StaleLearn(S	=	4)

0

1

2

3

4

5

CLR BFS(S) BFS(M) SSSP(S) SSSP(M) NP GEOMEAN

S
p
e
e
d
u
p

StaleLearn(S	=	1)	:	2.77	 StaleLearn(S	=	2)	:	2.98

StaleLearn(S	=	3)	:	3.07 StaleLearn(S	=	4)	:	3.01

Figure 4.14: Speedup of StaleLearn with different staleness thresholds.

0% 

20% 

40% 

60% 

80% 

100% 

P
e
rc
e
n
ta
ge

L1(Baseline) L1(LAMAR) L1(StaleLearn)

Baseline/LAMAR/StaleLearn	:	62.8/68.6/29.4	%

0% 

20% 

40% 

60% 

80% 

100% 

P
e
rc
e
n
ta
ge

L2(Baseline) L2(LAMAR) L2(StaleLearn)

Baseline/LAMAR/StaleLearn	:	50.6/55.0/23.1 %

Figure 4.15: Comparison of cache miss ratio of different implementations.
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tween the GPU core and memory by better cache utilization. StaleLearn reduces the num-

ber of cache misses by reducing the number of divergent memory accesses. Figure 4.15

compares the cache miss ratio of different implementations. On average, StaleLearn re-

duces the L1/L2 cache miss ratio from 62.8/50.6% of the baseline to 29.4/23.1%, while

LAMAR increases the cache miss ratio to 68.6/55.0%. Unlike LAMAR that under-utilizes

the spatial and temporal locality of cache (while it is small so that reducing access gran-

ularity can potentially increase bandwidth utilization efficiency), StaleLearn increases the

locality of the cache accesses, causing subsequent cache accesses to be cache hits. Each

GPU thread has an inner loop accessing different locations of the weight vector. With

replication, the inner loop accesses are transformed from scattered memory accesses to se-

quential accesses. Therefore, when the inner loop advances to the next memory location,

the required cache line will be present in the cache from the previous access, resulting in a

cache hit.

Reducing Cache Accesses: Transforming divergent memory accesses into sequential

accesses not only reduces the cache miss ratio but also leads to better coalescing. Since

the size of the weights accessed by a GPU thread is mostly smaller than a cache line size,

with StaleLearn, the memory locations that neighboring threads in a warp access reside

in the same cache line, resulting in a coalescing degree increase.11 Figure 4.16 shows the

reduced number of cache accesses with StaleLearn. Unlike LAMAR that increases the

L1/L2 caches accesses to 105.8/115.5% of the baseline by under-utilizing cache locality,

better coalescing enabled by StaleLearn reduces the number of L1 cache accesses to 70.7%

of the baseline. StaleLearn also reduces the L2 cache accesses to 52.3% of the baseline

implementation with a reduced L1 cache miss ratio and better coalescing.

Reducing DRAM Traffic: The reduced number of cache accesses and misses lead to

the overall DRAM traffic reduction. Figure 4.17 shows that StaleLearn reduces the amount

of DRAM traffic to 53.2% of the baseline implementation while LAMAR only reduces it

11The coalescing degree is the average of #active threads / #memory events per warp load instruction.

E.g., 32 active threads that are satisfied by 8 cache transactions would have a degree of 4.
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Figure 4.16: Reduction of cache accesses with StaleLearn.

to 79.3%. While StaleLearn involves additional DRAM transactions with asynchronous

synchronization, the amount of the DRAM traffic for synchronization on PIM (33.2%) is

smaller than the reduced amount of DRAM traffic from the GPU (100 - 19.1 = 80.9 %),

thus reducing overall DRAM traffic.
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Figure 4.17: DRAM traffic reduction with StaleLearn.

Overlapping PIM execution with GPU: The reduction of hardware data communi-

cation cost is enabled by asynchronous synchronization. Overlapping PIM execution with

GPU execution enables hiding the long synchronization operation latencies. Figure 4.18
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shows the reduced replica synchronization time via overlapping the replica synchronization

with GPU computation. We set the total execution time of the baseline implementation as

100%. Even though the GPU execution time is increased from 18.4% of the baseline to

23.3% via overlapping due to contention on memory, the replica synchronization time is

reduced to 0.2% from 8.4% of non-overlapped execution of replica synchronization. Thus,

the overall execution time is reduced from 26.8% to 23.5% by overlapping.
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Figure 4.18: Reduced replica synchronization time via overlapping.

4.5.3 Stale Value Tolerance

While utilizing stale values can potentially lead to performance degradation by increasing

the number of iterations before convergence, our evaluation reveals that the increase of

iteration count is minimal. Figure 4.19 shows that the iteration count is only increased by

5% on average, with the best staleness threshold for each workload. For different staleness

thresholds from one to four, StaleLearn only requires 5/9/10/13% more iterations before

converging to the same quality solution of the baseline implementation.
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The small increase is due to the limited number of missing updates with sparse model

updates. The sparse nature of training data leads each iteration to access and modify only a

fraction of the entire model. As it is unlikely GPU will miss a large number of updates, the

progress per iteration is not affected much. Figure 4.20 compares the number of missing

updates per weight of the baseline implementation and that of StaleLearn with the staleness

threshold of four, for all evaluated workloads except BC (S) and LR (S). On average, the

number of missing updates per weight is only increased from 0.42 to 1.29.12 The sparsity

is also found on multiple writer implementations of CC, BFS, and SSSP that perform more

writes per iteration than single writer implementation. This sparse characteristic has been

utilized in multiple parallel learning studies [15, 16, 17, 18, 19, 20] such as Hogwild! [8]

that performs lock-free model updates. Hogwild! assumes that useful information will not

be overwritten by other threads due to this sparse nature of model updates.
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Figure 4.20: Comparison of the number of missing updates per weight.

12The baseline also misses updates due to parallel execution.
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We also find that the number of iteration is not much affected for the SGD implemen-

tations of BC, and LR that miss more updates than other workloads. For BC(S)/LR(S), the

number of missing updates is increased from 54.4/53.8 of the baseline implementation to

110.6/111.7 of StaleLearn with the staleness threshold four. The small increase of iteration

count for these workloads is due to the convex property of the problem [9], which has been

widely utilized in distributed learning studies [7, 19, 94, 95, 96].

4.5.4 Comparison
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Figure 4.21: Speedup of SWSync and PIMAtomic.

While a software-only mechanism utilizing helper kernels for replica synchronization is

also possible. it is neither realistic nor beneficial for improving the performance of learning.

Figure 4.21 shows that the software-only approach performing the replica synchronization

on GPU only improves the performance by 1.11 times. It is because the replica synchro-

nization itself is memory intensive with low locality causing GPU cores to stall. The GPU

needs to fetch different memory objects from memory only to write back the values in a

different order, which can further increase the cache contention and lead to under-utilizing

GPU resources.

Our evaluation also reveals that simply offloading atomic RMW operation to PIM does

not help performance much. Figure 4.21 shows that non-blocking atomic RMW operation

without replication (PIMAtomic) only improves the performance by 1.03 times. For most

evaluated workloads, the performance bottleneck is the memory access to the current model
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parameter, not the RMW operation for the model update. The memory access during RMW

operation would be a cache hit, while it would be a cache miss for the memory access to the

current model parameter. Also, just offloading atomic RMW operation to PIM can increase

the amount of DRAM traffic for the workload such as BFS and SSSP where the update

is not always performed, while StaleLearn can check replicas to identify if the update is

needed.

4.5.5 Energy Reduction

We also model the energy consumption of StaleLearn. The power and energy consumption

of different architecture components is summarized in Table 4.3. We use the modeling

equations from the study by Kim et al. [65], which we omit for brevity. We decompose the

overall energy consumption into five categories: GPU Logic, GPU Cache, HBM Logic,13

HBM Memory Static, and HBM Memory Dynamic.14

Table 4.3: Power and energy parameters for each component.

Host

GPU core active power 10 W per core

GPU uncore power 1 W per channel

SRAM leakage power 32.4 nW per byte

L1 access energy 0.494 nJ per access

L2 access energy 3.307 nJ per access

Memory

HBM logic(core) power 640 mW per channel

HBM logic(uncore) power 2.890 W

HBM memory background power 0.479 W

HBM memory access energy 28.034 nJ per access

Transfer TSV XFER energy 0.624 pJ per byte

Figure 4.22 compares the energy consumption of each application. The energy con-

sumption is normalized to the baseline implementation. Each bar further details the energy

consumed by each architectural component. The energy savings are realized across all

evaluated workloads with StaleLearn. On average, StaleLearn greatly reduces the over-

all energy consumption to 43.2% (16.1/5.1/5.4/0.3/16.2%) of the baseline implementation,

13HBM logic(core) power is turned on only for StaleLearn.
14TSV data transfer energy is included.
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while LAMAR only reduces the energy to 92.0% (50.0/9.1/6.0/1.0/25.8%).
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Figure 4.22: Energy consumption of different implementations normalized to the baseline.

The energy saving is obtained by the reduced execution time and reduced DRAM ac-

cesses. The reduced execution time of StaleLearn clearly reduces the static energy con-

sumption. Even though the amount of work is increased by allowing stale values as repre-

sented by the increased iteration count as shown in Figure 4.19, because the overall execu-

tion time is reduced significantly, the overall energy consumption is reduced. StaleLearn

also reduces the dynamic energy of HBM Memory since it reduces the amount of overall

68



DRAM traffic as shown in Figure 4.17.

4.5.6 Discussion

Application to DNN: Multiple ML applications suffer from low locality memory accesses

during learning. While we evaluate relatively simple kernels due to simulation time con-

cern, these kernels are found in multiple state-of-art ML applications such as the deep

neural network (DNN). In fact, the sparse model access is universal on the embedding

layer of DNN. The embedding layer maps a large number of low-level features to the small

number of high-level features, and this mapping is also learned during learning. On mul-

tiple domains, a large number of low-level features are used such as the recurrent neural

network (RNN) based language model [2, 97] that maintains the embedding layer whose

size equals to the number of vocabularies. The memory access for this layer during learn-

ing is divergent since each sentence only holds a limited number of words. Multiple ML

studies utilize the sparse characteristic such as Hogwild! [8], a lock-free updating scheme

assuming non-overlapped access to the same model parameter from different threads.

Staleness Threshold Selection: While the staleness threshold is set by programmers,

it does not increase the programmer’s burden too much. With sparse data, the increase

of the iteration count with StaleLearn is minimal due to the limited number of missing

updates. So, the staleness threshold can be easily determined by simple profiling to measure

replica synchronization time. Our evaluation also revealed that StaleLearn still achieves

large benefit with a single staleness threshold across all workloads.

Even when the progress per iteration is affected by utilizing stale values, the program-

mer’s burden is minimal. Since many ML applications share the common learning pattern

with minor differences (i.e. only differing on the model size), the staleness threshold for a

new application can be easily computed with simple projection from other applications.

In fact, ML algorithms are rarely hyperparameter-free. ML algorithms already require

careful tuning of a large set of hyperparameters such as the learning rate, and the regulariza-
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tion strength of a gradient-based optimization, which significantly affect the convergence

of ML applications. This hyperparameter tuning is considered as the optimization of an

unknown black-box function, and it often requires a time-consuming grid search proce-

dure [98, 99, 100]. Lots of efforts have been devoted to efficient hyperparameter selection

including the work by Bergstra and Bengio [101] proposing the random search for hy-

perparameter optimization. Multiple proposals propose to utilize bayesian optimization to

automate the hyperparameter selection [102, 103, 104, 105, 106].

Replication Overhead: The overhead of replication on memory footprint is negli-

gible. We replicate only the model parameter suffering from divergent memory accesses.

For example, we replicate only the weight vector, not the training data, for BC/LR. For

these objects, the number of replicas is proportional to the number of valid features of each

training data point, which is limited due to the sparse nature of real-world data. Not all

replicas need to be allocated on memory, but only replicas for s batches need to be allo-

cated with the staleness threshold of s. In our evaluation, the memory footprint is increased

only by 1.7/3.4/5.1/6.7% from the baseline implementation when we sequentially increase

the staleness threshold from one to four. Most ML applications involve multiple properties

that are not replicated, such as user profile, which we exclude in our evaluation.

Code Modification: The code modification is simple only requiring to change the

weight vector access in GPU kernel and call PIMGather API function for replica synchro-

nization. Multiple ML applications share similar memory access patterns so that the code

modification will be similar to them. As most ML applications utilize common framework,

the code modification only needs to be done for the framework, and multiple applications

can benefit from StaleLearn without any code modification.

4.6 Summary

GPU learning is memory bound with divergent memory accesses, thus causing GPU cores

to stall. While considerable effort has been devoted to reducing the overhead of divergent
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memory accesses, inefficient utilization of the unique, stale value tolerant characteristic of

learning applications has prevented previous studies from achieving the full performance

potential of the GPU architecture.

In this chapter, we propose StaleLearn, an effective learning optimization to overcome

the memory divergence overhead. StaleLearn replicates the model and performs asyn-

chronous synchronization on PIM. The efficient task decomposition between the GPU and

PIM enables StaleLearn to exploit parallelism between PIM and GPU cores. Our evalu-

ation shows that StaleLearn accelerates representative GPU learning applications by 3.17

times with existing PIM proposals.
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CHAPTER 5

SYSTEMATIC METHOD TO REDUCE REDUNDANT COMMUNICATIONS

UTILIZING STALE VALUE TOLERANCE

5.1 Overview

The stale value tolerant characteristic allows parallel workers to execute asynchronously

by reducing redundant data communications to improve the scalability of modern data-

intensive learning. However, the current learning suffers from low scalability thus leading

to inefficient utilization of millions of computing machines that are currently available in

the era of cheap compute.

The current ML studies lack the detailed understanding of how utilizing stale values

affects the progress of parallel learning. Different ML applications exhibit different degrees

of stale value tolerance, and the stale value tolerance is determined by the complex function

of multiple factors. The complicated impact of utilizing stale values on the progress and

the solution quality of parallel learning has caused previous studies to make ambiguity for

domain experts thus limiting the scalability of parallel learning.

For this challenge, this dissertation proposes a systematic method to define the stale

value tolerance of ML application. We study the stale value tolerance of the recurrent neu-

ral network (RNN), which is becoming a standard of deep learning. Our proposal defines

the stale value tolerance with the effective learning rate, which is different from the ex-

plicit learning rate specified by the programmer and can be changed by multiple design

choices of training neural network. Definition of the stale value tolerance of different ML

applications with the effective learning rate can provide insights and lead to potential soft-

ware optimizations with further benefit to future hardware choices. In summary, the key

contributions in this chapter are as follows:

72



1. We observe that the redundant data communications in parallel learning have reduced

the scalability. We find that, while maintaining model replicas with relaxed synchro-

nization has the potential to improve the scalability, the ambiguity regarding how it

affects the progress of learning has led to inefficient utilization of this potential.

2. We devise a systematic methodology to define the stale value tolerance of differ-

ent ML applications with the effective learning rate. The effective learning rate is

decided by i) implicit momentum hyperparameter, ii) the update density, iii) the ac-

tivation function selection, iv) RNN cell types, and v) the learning rate adaptation.

5.2 Reducing Redundant Communication

In this section, we provide the necessary background on reducing redundant communica-

tions with the example of the RNN. First, we provide the background of RNN. Then, we

discuss the gradient-based back-propagation through time (BPTT). After discussing how to

reduce data communication utilizing the stale value tolerance, we examine the performance

potential and challenge of reducing data communications.

5.2.1 RNN Basic

Developing an efficient ML model has become a hot topic recently. RNN is becoming a

standard of deep learning due to its equal representation power as long layer sequence of

DNN, and the benefit of less number of weights that helps to reduce the memory footprint.

RNN is now widely used not only in the domain where it has been used such as NLP and

speech [34, 97] but also in computer vision where the deep convolutional neural network

(CNN) has been widely used [107, 108, 109].

Figure 5.1 shows the diagram of RNN for the language model. It consists of three lay-

ers: x (input), s (recurrent), and y (output) layers. The hidden layer s is recurrent and un-

folded multiple times in the time sequence to have the comparable representation strength

73



as DNN. Here, sigmoid activation function is used at the recurrent layer and softmax func-

tion is used for the output layer. During learning, three weight vectors are learned: U , W ,

and V vector. U is the weight vector for the relationship between the input and hidden

layer, and V is the weight vector for the relationship between the hidden and output layer.

Without the recurrent weights W , this model would be a bi-gram neural network language

model.
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Figure 5.1: RNN for language model and recurrence.

Figure 5.2 represents the dimension of layers and weights of the RNN shown in Fig-

ure 5.1. The size of the input layer x and the output layer y is proportional to the vocabulary

size C (usually around 10K - 200K). Hidden layer s is orders of magnitude smaller (H, usu-

ally around 50 - 1000 neurons). The size of U and V weight vectors is RC×H , and the size

of W weight vector is RH×H . So the RNN learning needs to learn 2HC+H2 parameters.

For the case of English Penn Treebank benchmark (PTB) [110] with C = 10000 and H =

256, the size of U and V vector is 20 MB, and the size of W vector is 512 KB. Limited

vocabulary is usually a good idea since it helps to have enough training data points for each

word.

The model weights in RNN are learned by SGD-based back-propagation through time

(BPTT). BPTT is the same as SGD-based back-propagation for DNN, except that the re-

current layer is unfolded multiple times. After unfolding, RNN looks quite similar to a
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Figure 5.2: Dimension of layers and parameters of RNN.

regular multi-layer feed-forward network. The only difference is that each layer has two

different inputs (the previous state and the current input), and the recurrent weight w is

shared between each layer.

5.2.2 Stale Value Utilization via Replication

The problem of parallel RNN learning is the significant data communication overhead.

While the training data is partitioned, multiple workers access (read-and-modify) common

model parameter. The iterative learning produces hundreds of intermediate results which

leads to hundreds of data communication between parallel workers thus leading to coher-

ence overhead on coherent systems: lots of invalidation traffic is incurred increasing the

memory access latency. Collisions with different workers can cause serialization, thus re-

ducing the benefit of parallelization.

However, the most of the data communication is redundant due to the stale value toler-

ant characteristic of iterative-convergent ML training. The stale value tolerant characteris-

tic enables to reduce the number of data communication, which has led a lot of distributed

learning proposals [4, 5, 6, 7, 8, 9, 10, 11] to utilize the characteristic by model parameter

replication.

Figure 5.3 shows how replication reduces the redundant communication for learning

performed in a map-reduce manner. The parallel RNN learning that partitions training
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data consists of three stages: local update, reduce, and scatter. During the local update

stage, each worker computes and updates local copies of model replicas. While the model

parameter values are continuously modified, the updates are performed on local model

replicas without data communication between workers. After processing partitioned data,

the updates from different workers are aggregated and reduced(gathered) to the global copy

of parameters during the reduce stage. Then, the scatter stage scatters the new model values

with aggregated results to model replicas for further learning.
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Figure 5.3: Data communication reduction via replication.

It should be noted that there is no data communication between workers between re-

duction operations, so each worker accesses the stale value of model parameters missing

updates from other workers. The multiple data communications accessing the same data

with the strict consistency requirement are now transformed into single reduction operation

with the relaxed consistency requirement.

5.2.3 Motivation: Performance Potential of Reducing Redundancy

The reduced data communication can increase the scalability of parallel RNN learning.

Here, we evaluate the performance implication on coherence overhead on NUMA system.

We evaluate the parallel RNN implementation with the PTB [110] training data.1 The eval-

uation was done on a multi-core computing platform, consisting of AMD Opterons 6370P

1 Detailed configuration will be provided in Section 5.3.
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with 64 threads on 8 NUMA nodes. We measure execution time per iteration. Since we

focus on iterative execution of parallel model training, we ignore initial sequential execu-

tion time and file I/O time. For the memory stats, we use performance counter to measure

socket-to-socket communication.

Figure 5.4: Better scalability with replication.

Figure 5.4 shows the better scalability with replication: replicating all vectors and W

vector improves the performance by 13.4 and 16.7 times respectively with 64 threads, while

the baseline implementation only improves the performance by 5.6 times.2 The better scal-

ability leads to the larger speedup with parallelization: for 64 threads, replicating all vectors

improves the performance by 2.4 times and replicating W vector improves the performance

by 3.0 times over baseline implementation.

The better scalability is due to the reduced coherence traffic. Figure 5.5 compares

the number of cache block commands3 of different implementations, which represent the

number of requests made to the system for cache line transfers or coherency state changes.

For the baseline implementation, the number is increased to 61.8 times when the number

2The better scalability of replicating W vector over replicating all vectors is due to the increased working

size of replicating all vectors, while most of frequent data communication comes from the dense updates on

W vector.
3The value of NBPMCx0EA performance counter
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Figure 5.5: Reduced cache block commands.

Figure 5.6: Reduced CPU to DRAM request.

of threads only reaches 4. Compared to that, for the implementations with replication, the

number is only increased to 3.0 times (All), and 2.7 times (W) when the number of threads

is 64. Figure 5.6 compares the number of CPU to DRAM requests (all DRAM reads and

writes generated by cores),4 which represents the processor data affinity in NUMA systems.

While the value is increased for the baseline implementations, the number is unaffected

4The value of NBPMCx1E0 performance counter
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with replications.

5.2.4 Challenge: Impact of Replication on Progress

While replication can reduce the redundant data communication, the errors in intermediate

calculations should be limited. Too much reduction of data communication can lead to

slower progress per each iteration thus increasing the number of iterations before converg-

ing to the same quality solution of the baseline implementation without model replicas.

Due to the iterative execution characteristic, the performance of learning is the product

of both 1) the number of iterations per time and 2) the progress per each iteration, which

means how much the solution has progressed within a certain time. Thus, we evaluate how

replication can affect the progress of learning.

Figure 5.7: Slower progress with more number of replicas.

Unfortunately, the replication significantly affects the progress of deep RNN learning.

Figure 5.7 shows the slower progress with more number of replicas, where the x-axis rep-

resents the iteration, and they y-axis represents the entropy of the RNN. Here, the lower en-

tropy means higher solution quality and we apply arithmetic mean of replica values across

all workers on the reduction phase. Not just the progress per iteration is reduced, but also
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the final solution quality can be affected since most of the learning methods decide whether

the solution is converged by looking at the progress of last iterations. Further, when the

progress is small, most learning methods lower the learning rate, which can further lower

the progress rate and the final solution quality.

Figure 5.8: Different stale value tolerance on different model parameters.

To make the problem more complex, different weights have different stale value toler-

ance even within a single neural network. Figure 5.8 compares the different stale value tol-

erance on different layers in RNN. While replicating V vector can reach to similar solution

quality to that of the baseline, replicating U and W vector only reaches to the significantly

lower quality solution. The finding implies that we need to understand the stale value tol-

erance based on application characteristic. So for this challenge, we devise a systematic

method to understand stale value tolerance in learning.

5.3 Understanding Stale Value Tolerance

In this section, we devise the systematic method to define the stale value tolerance of dif-

ferent learning applications. We use RNNLM implementations of faster-rnnlm [111] that

supports flexible configuration such as different activation functions, different RNN cell
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types, and the learning rate adaptation. The implementation supports data parallel learn-

ing with p-threads. Instead of decaying the learning rate, we use the fixed learning rate,

whose value equals to the initial learning rate of baseline implementation (0.1). For other

parameters, we use default parameters unless specified otherwise.

wnew = wold +
n

∑
i=1

∆wi (delta reduction)

wnew =
1

n
×

n

∑
i=1

wi (average reduction)

where n is worker count, and ∆wi = wi −wold

(5.1)

For reduction operation, we control the reduction frequency by performing reduction

after each worker processes n sentences (whose values are 1, 5, 40, 100, 200, 400), instead

of performing reduction after processing all partitioned data. We evaluate two reduction

method: delta and average reduction as shown in Equation 5.1. Delta reduction accumu-

lates delta from each worker and adds to shared model parameter, where delta is computed

by comparing old value(wold) to new value on each replica (wi). For average reduction,

arithmetic mean of weights on all workers is calculated and applied at reduction phase.

Average reduction reduces the learning rate by the ”number of workers” from delta reduc-

tion.
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Figure 5.9: Progress of solution quality.

To understand the stale value tolerance, we compare the progress of solution qual-

ity (entropy). We measure how much the solution quality has been improved with the
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same number of iteration from different implementations. Figure 5.9 shows how we define

progress. When the entropy is reduced from e0 to e2 for the baseline implementation and

the entropy is reduced from e0 to e1 for the implementation ”A”, the progress of the imple-

mentation ”A”” is defined as e0−e1

e0−e2
. The large entropy reduction means larger progress, such

that ”progress = 1” means the same entropy reduction as the baseline, and the ”progress =

0” means learning nothing.

LRe f f = δ ×LRorig (5.2)

In this study, we define the stale value tolerance of model parameter replication with

the effective learning rate (LRe f f ). As shown in Equation 5.2, the model parameter repli-

cation changes the original learning rate of the baseline (LRorig). The δ value is decided

by multiple factors of learning and replication. In this study, we evaluate how δ is changed

depending on each factor of learning.
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Learning	rateLRorig LReff1 LReff2

Figure 5.10: Progress and learning rate.

Figure 5.10 shows our assumption regarding progress and learning rate. The effective

learning rate affects the progress of neural network learning. For the first case (LRe f f 1), the

larger learning rate with replication increase the progress. However, too large learning rate

leads to learning nothing with fluctuations (LRe f f 2). With this assumption, by measuring

progress, we find how much the learning rate is changed. While this assumption can be too

naive, our empirical evaluation revealed that this simple method works surprisingly well
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providing reasonable explanations regarding the different stale value tolerance of different

ML applications and even different model parameters within a single neural network.

To verify our findings are consistent with different inputs, we use two inputs. We per-

form model fitting for different neural network configurations with the English Penn Tree-

bank [110], whose training data has 10k words of vocabulary with 929589 training words

(represented as lines). We measure the progress of different implementations and each ex-

ecution of RNN learning is considered as a single data point in model fitting. For testing

to verify the consistency of our findings, we use the One Billion Word Benchmark [112],

with around 0.8 billion words in the training corpus and 793471 words in the vocabulary

(represented as dots).

5.3.1 Effect of the Accumulated Number of Local Updates

Reducing redundant communication by performing reduction operation between replicas

can be viewed as performing implicit momentum updates regardless of whether or not the

objective function is convex [113]. Momentum update [114] is widely used on multiple

learning problems due to its stability, unlike conventional gradient descent update that suf-

fers from fluctuation with high variance. In this section, we call conventional momentum

updates as explicit momentum updates to differentiate it from implicit momentum updates

with replication.

wt+1 −wt = µ(wt −wt−1)+α∇L(wt)

where µ =
n−1

n

(5.3)

Equation 5.3 shows the formula of explicit momentum update for the weight w at the

iteration t +1 for the loss function L with the momentum hyperparameter µ and learning

rate α . The momentum hyperparameter µ is to increase updates for dimensions whose

gradients consistently point in the same directions, which is defined by the number of ac-
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cumulated updates (gradient) when performing the update, n. In other words, µ effectively

multiplies the learning rate by 1
1−µ times by accumulating 1

1−µ SGD updates. Different

from the SGD update, where the gradient directly integrates the position, the gradient only

directly influences the velocity with momentum updates. By smoothing the weight updates,

momentum makes deep learning with SGD both more stable and faster.

Similarly, we can define the implicit momentum hyperparameter. We use the same

Equation 5.3 but with the different definition of n. Here, n represents the accumulated

number of local updates performed on model replicas from all workers between reduction

operations. For example, when two workers are executed in parallel, and each worker mod-

ifies the specific model parameter by two times between reduction operations, the value of

n becomes four. The implicit momentum hyperparameter can be adjusted by changing

the reduction operation frequency, such that more frequent reductions reduce the momen-

tum hyperparameter by reducing the accumulated number of local updates n. Our def-

inition of implicit momentum hyperparameter extends the similar definition in the work

from Mitliagkas et al. [113] that defines the hyperparameter with the number of replicas to

provide a better understanding of stale value tolerance of different model parameters with

different update frequency.

Out evaluation revealed that the implicit momentum update affects the progress of RNN

similar to the explicit momentum update. Figures 5.11 and 5.12 show the similar behav-

ior of explicit and implicit momentum updates (performing delta reduction with different

reduction frequency). For the W vector, the solution quality fluctuates for the explicit mo-

mentum hyperparameter of 0.99. Similar fluctuation is found for implicit momentum when

performing reduction after each worker processes more than 200 sentences. Replicating the

U vector exhibits similar behavior, exhibiting same progress with the baseline implemen-

tation when performing frequent reduction, and exhibiting slower progress after a certain

threshold (100).

The slower progress and fluctuation with infrequent reduction is due to too large learn-
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Figure 5.11: The effect of momentum updates on progress for W vector.

ing rate with the large momentum. Too large learning rate is problematic for progress since

it brings too much kinetic energy, unable to settle down into the deeper part of the loss func-

tion, which hinders progress and cause the loss function to fluctuate chaotically or even to

diverge. So the programmer needs to control the learning rate by frequent reduction since

infrequent reduction leads to too large delta when performing reduction operation.

Even with the same reduction frequency, the number of local updates per weight be-

tween reduction operations is different depending on vectors as shown in Table 5.1 The

number of local update for U vector is limited due to sparse accesses on this vector, while

that of W vector is large even with frequent reduction operations due to dense accesses.
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Figure 5.12: The effect of momentum updates on progress for U vector.

Table 5.1: Accumulated number of local updates with the different reduction frequency.

Sentence W vector U vector V vector

1 1351 0.14 1.34

5 6753 0.71 6.69

40 54021 5.66 53.49

100 135053 14.15 133.72

200 270107 28.29 267.44

400 540214 56.58 534.89

5.3.2 Effect of Update Density

While implicit momentum hyperparameter provides a metric to understand the effect of

reducing data communication on progress of RNN learning, the same implicit momentum

hyperparameter can also exhibit totally different progress behavior when replicating dif-
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Figure 5.13: The effect of update density on progress with delta reduction.

ferent layers of the neural network. Figure 5.13 shows that the stale value tolerance when

replicating U and V vectors is much worse than when replicating W vector: while replicat-

ing W vector does not degrade the progress until the accumulated number of local updates

from all workers become 105, replicating U and V vector degrade the progress when the

accumulated number is relatively small. This behavior is counter-intuitive when we only

consider the implicit momentum update.

The effective learning rate when performing reduction operations depends on the up-

date density on each layer of the neural network. The effective learning rate is inversely

proportional to the update density on the vector. While more number of accumulated local

updates might represent increasing the learning rate to result in saturation of the vector, the

contribution of each update on the effective learning rate is different on different vectors

with the different update density. For W vector, where the dense update is performed, the

importance of each update is reduced, while the importance is increased for U and V vector

where the sparse update is performed.

The different update density affects the reduction granularity. Figure 5.14 shows how

the reduction granularity affects the progress when performing the delta reduction, where
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Figure 5.14: The effect of reduction granularity on progress with delta reduction.

100% means performing reduction after processing entire training data, and lower value

represents more frequent reduction operation. While the replicating W vector accumulates

more number of local updates than other vectors with the same reduction granularity, the

programmer can maintain similar reduction granularity as other vectors. This finding is op-

posite to the assumptions of previous distributed learning proposals such as Hogwild! [8],

that relaxes synchronization assuming non-overlapped accesses due to sparse model ac-

cesses.

5.3.3 Effect of Activation Functions

Figures 5.13 and 5.14 show that the stale value tolerance of replicating V vector is much

worse than replicating U vector, which cannot be explained only considering the implicit

momentum hyperparameter and update density. This different effect can be understood by

different learning rates of different layers in the neural network. Different learning rates

increase the difficulty of learning with increasing number of layers and have limited the

number of layers on many so-called deep neural network. While more number of layers

should help to have a more accurate model [115], the larger learning error with more layers
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has led the solution quality to become lower after a certain number of layers.

The different learning rates of different layers in the neural network is a fundamental

characteristic introduced by back-propagation [35]. Let’s assume a multi-layer network

with a single neuron in each layer with n as the layer length, w as the weight, b as the bias,

and L as the loss function. The output of each layer, o j is σ(z j), where z j = w jo j−1 + b j.

In this case, the gradient for the first bias ( δL
δb1

) becomes σ ′(z1)×∏
n
i=2 wσ ′(zi)×

δL
δon

. The

gradient for the first bias includes the product of w j and σ ′(z j) from all the later layers.

Since the value of w j and σ ′(z j) are different on different layers, the back-propagation

naturally leads to different learning rates of different layers in the deep neural network.

Different activation functions affect the learning rates of different layers in different

ways. Activation function in a neural network is used to approximate functions universally,

by producing non-linear combinations of the weighted inputs. The selection of activation

function plays a critical role in learning rates of different layers since the derivatives of

activation functions affect the magnitude of gradients.

To evaluate the effect of the activation function for the effective learning rate, we eval-

uate three different activation functions: sigmoid (baseline), Rectified Linear Unit (ReLU),

and truncated ReLU (ReLU-trunc). Figure 5.15 shows how the activation function affects

the progress of RNN learning when performing the delta reduction. The effect of activation

function on progress is different on different layers. While the similar progress behavior is

exhibited for W vector (The reduction frequency dominates progress), the behavior is quite

different for U and V vectors. While ReLU and ReLU-trunc activation functions require

the less frequent reduction operations than sigmoid when replicating the V vector, they

require more frequent reduction operation when replicating the U vector.

Different learning rates due to activation function selection significantly affect the re-

duction frequency to maintain reasonable progress per iteration. When using sigmoid acti-

vation function that squashes the input space into a small region, early layers learns slower

than the later layer since gradient contributions from ”far away” steps vanishes as proceed-
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Figure 5.15: The effect of activation function on progress with delta reduction.

ing to early layers during back-propagation. So the large delta with delta reduction for

the V vector leads to the output vector saturation, substantially slowing down learning and

affecting progress [35]. When the output vectors are saturated, the sigmoid activation func-
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tion has the zero gradient and drives other gradients in previous layers towards zero, thus

learning nothing. ReLU and ReLU-trunc activation functions work better than sigmoid

activation since ReLU and ReLU-trunc activation functions reduce the vanishing gradient.

Compared to sigmoid activation, early layers learn at faster learning rate when using ReLU

activation function, since the derivative of the activation function is a constant of either 0

or 1.

On the contrary, when replicating the U vector, sigmoid activation enables better

progress than ReLU and ReLU-trunc. When using ReLU and ReLU-trunc activation func-

tions, the large delta with delta reduction for the U vector can lead to input vector satura-

tion making too large steps thus slowing down progress [116]. The reduced learning rate of

early layers with sigmoid activation function helps to reduce the reduction frequency since

it reduces the large delta coming from the delta reduction than ReLU and ReLU-trunc ac-

tivation functions.

The progress with average reduction can also be understood with different learning rates

depending on activation functions. Figure 5.16 shows how the activation function affects

the progress when performing the average reduction. When replicating the V vector, the

average reduction enables similar progress behavior regardless of activation function, since

the small α of the average reduction reduces the V vector saturation by balancing the

learning rate of V vector to those of other vectors. On the contrary, when replicating the

U vector, ReLU and ReLU-trunc function activation functions enable better progress (1.2)

than baseline, while the quality is lowered with sigmoid activation (0.9). It is because they

maintain faster learning rates on the U vector, the early layer of the neural network.

In summary, the effect of activation function on the learning rate is different depending

on the location of the layer: whether it is the early layer or the later layer in the neural

network. Following summarizes the findings.

• The activation function affects the learning rates of different layers of the neural

network in different ways. The sigmoid activation function reduces the learning rates
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Figure 5.16: The effect of activation function on progress with average reduction.

of early layers, while the ReLU and ReLU-trunc activation increase the learning rates

of early layers.
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• When replicating the model weights, the programmer needs to control the size of

delta (effective learning rates) to enable balanced learning on different layers. The

delta reduction can lead to too large deltas thus slowing down learning. While ReLU

activation can reduce the vanishing gradient problem on early layers when replicating

the weight vector at later layers, the larger step than sigmoid activation when repli-

cating the weight vector at early layers can also slow down learning, so programmer

needs to balance the effective learning rate on both early layers and later layers.

5.3.4 Effect of RNN Cells

Considerable efforts have been made to reduce the unstable gradient problem on deep RNN

by replacing basic RNN cells with different types of RNN cells including Long short-term

memory (LSTM) [117] and Gated Recurrent Units (GRU) [118] architectures. These RNN

cells enable to learn longer dependencies; which is hard with simple RNN cells that suffer

from different learning rates of different layers in the deep RNN.

z = sigmoid(xtU
z + st−1W z)

r = sigmoid(xtU
r + st−1W r)

h = tanh(xtU
h +(st−1 ◦ r)W h)

st = (1− z)◦h+ z◦ st−1

(5.4)

Equation (5.4) shows the equation of GRU gating mechanism. A GRU cell has two

gates, an update gate z and a reset gate r. They are called gates because they maintain the

weighted average of the new value and the previous value instead of completely replacing

cell contents. The update gate defines how much to keep the previous hidden state value,

and the reset gate determines how to compute the candidate hidden state h based on the

current input and the previous hidden state. The candidate state h is computed using a

similar equation as in vanilla RNN with same parameters U and W. However, instead of
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directly using the previous hidden state value, the product of the value of reset gate and the

previous hidden state value is used when calculating h. Given the candidate hidden state,

the output hidden state st is computed, which is the weighted average of h and st−1, with

the ratio defined by the value of the update gate z.

To evaluate the how different RNN cell types affect the progress of RNN learning when

performing reduction operation, we evaluate four different RNN cell types: basic RNN

cells with sigmoid activation and three different GRU cell types (GRU, GRU-bias, GRU-

insyn). GRU is the GRU cell that uses identity matrices for input transformation without

bias. GRU-bias is GRU with bias terms. GRU-insyn [119] follows the equation of Equa-

tion (5.4).

GRU cells balance the learning rate of different layers in a neural network. Figures 5.17

compares how the different RNN cells affect the progress when performing the delta reduc-

tion. On many cases, the behavior of GRU cells is similar to that of the ReLU activation

function, which is intuitive since both proposals target to reduce the saturating (vanishing)

gradient problem of the deep RNN. Similar to the RNN with ReLU activation, when we

replicate the U vector and perform delta reduction, the RNN with the GRU cell requires

more frequent reduction operation than the RNN with sigmoid activation. It is because the

combination of delta reduction and GRU cells lead to too strong gradient on the U vector,

which is similar to the behavior of the RNN with ReLU activation function.

But, there are also unique characteristics coming from GRU cells. Different GRU cells

have different learning rates: GRU-insyn with the largest learning rate, GRU in the middle,

and the GRU-bias with the lowest learning rate. It is because the input transformation ma-

trix increases the learning rates while the bias term reduces the learning rate by increasing

the symmetric bias. Figure 5.17 shows that when replicating the V vector, the low learning

rates of GRU-bias reduces the output vector saturation thus requiring less frequent reduc-

tion operations, while the higher learning rate of GRU-insyn requires frequent reduction

operations. Figure 5.18 shows that GRU-insyn always exhibits the highest progress when
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Figure 5.17: The effect of RNN cells on progress with delta reduction.

performing the average reduction on U vector due to the higher learning rate.

It should be noted that the balanced learning of GRU cells can also lead to too large

deltas when performing the reduction operation on early layers. While the balanced learn-
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Figure 5.18: The effect of RNN cells on progress with average reduction on the U vector.

ing of GRU-bias enables better progress than sigmoid activation when performing delta

reduction for the V vector, GRU-bias performs worse when performing delta reduction for

the U vector as shown in Figure 5.17. In fact, the small learning rate of U vector due to

vanishing gradient of sigmoid activation function reduces the delta when performing delta

reduction for the U vector.

Following shows the how the different RNN cells affect the progress behavior regarding

reduction operations.

• GRU cells reduce saturating gradient problem via gating, thus balancing the learning

rates of different layers.

• The different RNN cells have different learning rates. The input matrix on GRU-

insyn cell increases the learning rate while the bias term reduces the learning rate.

5.3.5 Effect of Learning Rate Adaptation

The basic SGD method mostly reduces the learning rate by initializing the learning rate to

a relatively large value and dropping it when the loss begins to reach an apparent plateau.

While it is simple, the approach has a downside of getting trapped in saddle points where
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the gradient is zero in all dimensions. The monotonic learning rate decay can lead deep

learning to be trapped and stop learning too early. The optimal magnitude of the gradient

can be very different for different weights and can change during learning, which makes it

hard to choose a single global learning rate. Therefore, multiple studies propose to adapt

learning rate for each individual parameter.

E[g2]t = γE[g2]t−1 +(1− γ)gt
2

wt+1 = wt +α
gt

√

E[g2]t + ε

(5.5)

Equation 5.5 shows the equation of RMSProp [120], a popular, adaptive learning rate

method. Given the computed gradient gt for a weight, RMSprop computes the moving

average of squared gradients for that weight (E[g2]t) with decay rate γ whose value is

typically set as [0.9, 0.99, 0.999]. RMSprop divides the learning rate for the weight by

the moving average, so the weight that receives high gradients will have the learning rate

reduced, while the weight that receives small updates will have the learning rate increased.

RMSprop will increase the learning rate, enabling to escape from the saddle point. The

smoothing term ε avoids division by zero.

Figure 5.19 shows that RMSprop increases the learning rate when performing the aver-

age reduction for the W vector. It is because each worker adapts learning rate well, adjust-

ing delta size on reduction operation. RMSProp limits the too large delta per each reduction

operation and increases the learning rate for the weights that receive small updates.

5.3.6 Usage and Future Work

Usage: With a large amount of data examined during learning, parallel learning is impera-

tive to reduce the learning time. As a result, multiple distributed learning studies utilize the

stale value tolerant characteristic to reduce data communications between parallel workers.

Most of ML application domains can benefit from the stale value tolerance since they share
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Figure 5.19: The effect of RMSProp on progress with average reduction for W vector.

the same learning method, the gradient-based learning method.

As shown in our study, utilizing stale values reduces the data communication overhead

of parallel learning but may also lower the progress of each iteration. Any parallel learning

framework should take this trade-off into account. However, conventional parallel learning

studies implicitly select a staleness degree by try and error without considering the tradeoffs

from different staleness degrees. Due to the vast decision space between gains and losses

of different staleness degrees, a naive selection of the staleness degree can potentially lead

to an unacceptable slowdown of progress. In particular, the optimal selection of design

choices for neural network learning with a single worker can yield slower progress when

the application is deployed for the real usage, which requires utilizing multiple workers for

faster learning.

Compared to previous efforts, our study provides a metric to understand the different

stale value tolerance with a single term, the learning rate and suggests a limit for stale

value utilization. With this simple term from our study, we can build an optimizer that

would tune the degree of staleness by navigating the tradeoffs to deliver high performance

while lowering the loss of progress. The optimizer can dynamically identify whether each

individual data communication reduction will lead to an undesirable slowdown of progress.
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Furthermore, our study enables to statically predict the performance and the progress

of parallel learning based on the progress of single worker even before parallelization. The

prediction can be used for deciding the optimal number of parallel workers without wasting

computing resources. Also, the prediction can even be used to change the design choices of

neural network learning before deploying the application to run on multiple nodes, which

significantly reduces the application development time.

Future Work: The metric provided in this study is simple and can be easily verified

with examining different types of ML applications. While we expect the similar behavior

of what we observed from RNN, different ML applications can potentially exhibit totally

different behavior to suggest new interesting models. In the future work, we will examine

other types of neural network architecture and different application domain for verification

of our findings.

5.4 Summary

Efficient execution of modern ML training has gained significant importance. While con-

siderable effort has focused on distributed platforms utilizing the stale value tolerant char-

acteristic of training, the lack of a systematic method to define the stale value tolerance on

different applications has caused ambiguity for domain experts thus limiting the scalabil-

ity of parallel learning. For this challenge, we define the stale value tolerance of model

parameter replication with the effective learning rate, which is proportional to delta size

when performing reduction operations. While different training data might exhibit differ-

ent progress with the same effective learning rate, we assume that degree of the learning

rate change is consistent depending on the design choices of training neural network. In

summary, the key findings in this chapter are as follows:

1. The effective learning rate is proportional to the accumulated number of local updates

and inversely proportional to the update density on the model parameters.
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2. Different stale value tolerance of neural network with different activation functions

is due to different learning rates of different layers depending on activation function

selection. The sigmoid activation function reduces the learning rates of early layers,

while the ReLU and ReLU-trunc activation increase the learning rates of early lay-

ers. When performing reductions with replicated model parameters, the programmer

needs to control the effective learning rates to enable balanced learning on different

layers.

3. Different RNN cells affect the stale value tolerance in different ways. GRU cells

reduce saturating gradient problem via gating, thus balancing the learning rates of

different layers. While the balanced learning of GRU cells can lead to faster progress

with large learning rate, it can also lead to too large deltas when performing the re-

duction operation on the model weights at early layers. The input transformation

matrix in GRU cells increases the learning rate while the bias term reduces the learn-

ing rate by increasing the symmetric bias.

4. The learning rate adaption can increase the stale value tolerance with replication,

since it limits the too large delta per each reduction operation, and increases the

learning rate for the weights that receive small updates.
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CHAPTER 6

CONCLUSION

The key phase of ML is learning that is iterative-convergent. Iterative-convergent learning

allows the consistent view of memory does not need to always be guaranteed, allowing

different threads to compute using stale values. Relaxing coherence for these learning

applications has the potential to provide extraordinary performance and energy benefits.

So, in this dissertation, we have proposed several innovations for efficient utilization of the

full performance potential of the stale value tolerance. We focus on the major performance

challenges of parallel learning: the atomic operation overhead with dense model updates,

and divergent memory access overhead with sparse model updates. We also reduce the

ambiguity for the stale value tolerance that has limited utilizing this characteristic. Here is

the summary of the techniques proposed in this dissertation.

1. Chapter 3 provides Bounded Staled Sync (BSSync), an effective hardware mecha-

nism to overcome the overhead of atomic operations on iterative-convergent machine

learning training. BSSync reduces the overhead of non-overlapped data communi-

cation, the serialization, and cache utilization inefficiency. The proposed technique

overlaps the long latency atomic operation with the main computation. Compared

to previous work that allows staleness for read operations, BSSync utilizes staleness

for write operations. Atomic operations are asynchronously executed in parallel with

the main computation. The performance results show that BSSync outperforms the

asynchronous parallel implementation by 1.33x times.

2. Chapter 4 presents StaleLearn, an effective learning optimization to overcome the

memory divergence overhead of the GPU learning with sparse data. We find that

relaxing the coherence can play a pivotal role in parallel GPU learning by transform-
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ing memory divergence problem into synchronization problem. StaleLearn performs

model replication and asynchronous synchronization on PIM. The reduced synchro-

nization requirement enables StaleLearn to exploit the parallelism between PIM and

GPU cores by overlapping PIM operations with the main computation on GPU cores.

StaleLearn accelerates representative GPU learning applications by 3.17 times with

existing PIM proposals.

3. Chapter 5 presents a systematic methodology providing a detailed understanding of

the different stale value tolerance of different ML application. While reducing data

communication can reduce the redundancy of data communication, it can reduce the

progress of learning. We define the stale value tolerance with the effective learning

rate, which is proportional to the size of delta when performing reduction opera-

tions. The effective learning rate, the delta size is dependent on the reduction method

and reduction frequency, the type of model parameter, and multiple design choices

of training neural network. While different training data might exhibit different be-

havior regarding progress since the optimal learning rate is different depending on

training data, we assume that the design choices of training neural network affect the

effective learning rate in a consistent direction. Our empirical evaluation revealed

that this simple method works well providing reasonable explanations regarding the

different stale value tolerance of different ML applications.

The trend of increasing amount of data and increasing number of ML applications will

increase the importance of reducing learning time via parallel learning. To efficiently re-

duce the learning time with parallel execution, utilizing the stale value tolerance of learning

is imperative. This dissertation serves as a starting point to investigate techniques to utilize

this unique characteristic for more accurate and wider ML applications.
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[118] K. Cho, B. Van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for

statistical machine translation,” in EMNLP ’14, 2014.
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