
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006 1249

Relaxing Dynamic Programming
Bo Lincoln and Anders Rantzer, Fellow, IEEE

Abstract—The idea of dynamic programming is general and very
simple, but the “curse of dimensionality” is often prohibitive and
restricts the fields of application. This paper introduces a method to
reduce the complexity by relaxing the demand for optimality. The
distance from optimality is kept within prespecified bounds and the
size of the bounds determines the computational complexity. Sev-
eral computational examples are considered. The first is optimal
switching between linear systems, with application to design of a
dc/dc voltage converter. The second is optimal control of a linear
system with piecewise linear cost with application to stock order
control. Finally, the method is applied to a partially observable
Markov decision problem (POMDP).

Index Terms—Dynamic programming, nonlinear synthesis,
optimal control, switching systems.

I. INTRODUCTION

A. Motivation

Since the 1950s, the idea of dynamic programming [3], [5]
has propagated into a vast variety of applications. This includes
as diverse problems as portfolio theory and inventory control
in economics, shortest path problems in network routing and
speech recognition, task scheduling in real time programming
and receding horizon optimization in process control.

The use of dynamic programming is however limited by the
inherent computational complexity. The need for approximative
methods was therefore recognized already in the early works
by Bellman. Approximative value functions have since been
introduced in a variety of ways. One approach is neuro-dynamic
programming, described in [6]. Also, [10] and [15] present
methods where the approximate value function is parameterized
as a linear combination of a set of basis functions. Techniques
for formal verification of nonlinear or hybrid systems are related
to this work. For example, the toolbox HYTECH, presented in
[11], calculates over- and under-approximations of a reachable
set. This can be viewed as calculating upper and lower bounds
of a value function. The main contribution of this paper is to
give a new simple method to approximate the optimal value
function , which guarantees that the suboptimal solution
is within a prespecified distance from the optimal solution. A
major part of the paper is devoted to application of this method
for some important problem classes where standard value
iteration gives a finite description of , whose complexity
grows rapidly with iteration number . Using the new method,

Manuscript received January 15, 2003; revised May 21, 2004 and May 23,
2005. Recommended by Associate Editor A. Bemporad. This work was sup-
ported by the Swedish Research Council and by the EU/ESPRIT project Com-
putation and Control (CC).

The authors are with the Department of Automatic Control, LTH, Lund
University, SE-221 00 Lund, Sweden (e-mail: lincoln@control.lth.se; rantzer@
control.lth.se).

Digital Object Identifier 10.1109/TAC.2006.878720

instances for which dynamic programming has previously been
considered hopeless can here be practically solved.

This paper first introduces some background, followed by the
main relaxation method in Section II. Then, three different ap-
plications are presented in the following sections. For further de-
tails on the theoretical foundations, the reader is referred to [13].

B. Dynamic Programming

Let be the state of a given system at time , while
is the value of the control signal. The system evolves

as

For a given cost function

(1)

such that with equality only if , we would like
to find an optimal control policy , such that the cost is
minimized from every initial state. For a fixed control policy
the map from initial state to the value of (1) is called a value
function . The optimal value function is denoted

and is characterized by the “Bellman equation”

A common method to find the optimal value function is value
iteration, i.e., to start at some initial , for example ,
and update iteratively

(2)

It is well known that value iteration converges under mild condi-
tions. For easy reference, a formal statement of this fact is given
as follows.

Proposition 1: (Convergence of Value Iteration) Suppose the
inequality holds uniformly for some

and that . Then, the sequence defined
iteratively by (2) approaches according to the inequalities

(3)

A proof is given in the Appendix. Notice that the constant
gives a measure on how “contractive” the optimally controlled

0018-9286/$20.00 © 2006 IEEE

1250 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006

Fig. 1. In value iteration, the cost from the state at one time instant is expressed
in terms of the cost from the state at the next time instant.

Fig. 2. Piecewise quadratic value function V (x).

system is, i.e., how close the total cost is to the cost of a single
step. The smaller is, the faster convergence.

For a more extensive treatment of basic dynamic program-
ming theory, see, e.g., [5].

C. An Example

Many applications of dynamic programming become in-
tractable because of the fact that the value function gets
increasingly hard to represent for each iteration. Consider the
following example: Let and be two system matrices and
let a discrete-time dynamical system evolve as

The goal is to find a control law, that given the current state
assigns an (i.e., system matrix) so as to minimize

Let us consider value iteration for this problem, starting with
. At each time step, there are two choices; use or

(see Fig. 1). This leads to a sequence of functions of
the form

where is a set of positive matrices (see Fig. 2 for an illus-
tration). Typically, the number of matrices in grows expo-
nentially with due to the two choices in each time step. In the
following section we present a method of finding an approxi-
mate value function for this problem.

Fig. 3. Illustration of two different value functions V (x) converging to the
close-to-optimal-set.

II. RELAXED DYNAMIC PROGRAMMING

This section will describe a method to find a which
fulfills and

(4)

for all and (see Fig. 3). Iterative application of the inequal-
ities gives

(5)

for every initial state such that the minima are finite. Moreover,
the control law with

achieves

In particular, is a stabilizing feedback law because the lower
bound in (4) implies that is a Lyapunov function for the
closed-loop system.

Usually and are chosen to satisfy
, for example

(6)

(7)

With this relaxation of Bellman’s equation, we can search for a
solution which is more easily parameterized than .

LINCOLN AND RANTZER: RELAXING DYNAMIC PROGRAMMING 1251

A. Relaxed Value Iteration

Given satisfying

(8)

define and according to

(9)

and

(10)

The expressions for and are generally more com-
plicated than for . From this, a simplified which
satisfies

(11)

is calculated. This satisfies

(12)

and the procedure can be iterated. In particular, the lower bound
shows that grows with at least as fast as standard value
iteration with the step cost .

The iteration of (9)–(11), which we call relaxed value itera-
tion, can often be used to find a solution of (4).

The ’s (and the ’s) are chosen as a tradeoff between com-
plexity (time and memory) and accuracy. If and are close
to 1, then the iterative condition (11) becomes close to ordinary
value iteration (2), which gives high accuracy and high com-
plexity. On the other hand, if the fraction is very big, then
the accuracy drops, but (11) can be satisfied with less complex
computations. This will be demonstrated in examples later.

Note that if is chosen as in (6) and (7), then the relative error
in the value function defined by and is independent of the
number of iterations.

B. Stopping Criterion

If the value function at iteration satisfies (4) for
, then it also satisfies (5), and a solution to the in-

finite horizon problem has been found. If the iteration is stopped
before (4) holds, it is possible to calculate and for
which it does hold and thus test for which relaxation the current

holds as a solution.
Remark: This method of calculating the slack to optimality

can be used no matter how was obtained. For example,
a finite-time obtained by solving a multiparameteric QP
(see [4]) for a certain horizon could be used. The upper and
lower bound in the inequalities (4) can be calculated by solving
the problem for horizon using and for the first time-step.

C. Bounded Complexity for Modified Algorithm

An alternative to (11) is to use the following implicit upper
bound:

(13)

in the value iteration. Iterative application of the second in-
equality in (13) implies that

Note that the upper bound (13) is implicit, i.e., cannot be calcu-
lated before the search for a simplified . In the applications
in this paper, the more explicit condition (11) will therefore be
used. Nevertheless, (13) defines a convex condition on
(since every value of gives a linear condition on) and is,
therefore, computationally tractable. Moreover, unlike the orig-
inal relaxation (11), the implicit relaxation (13) has a simple cri-
terion for feasibility: Assume there exists a which satisfies

Then, starting with , satisfies inequality (13)
at every iteration, so the “complexity” of gives an upper
bound on the complexity of that needs to be considered
during the iteration. Further discussion of the implicit algorithm
is given in [13].

D. Parameterization of

The value function approximations considered in this paper
will all have the form

select

where is a set of (simple, e.g. linear or quadratic) functions
on , and the “select” operator selects one of the functions ac-
cording to some criterion (e.g., “maximum”, “minimum”, or
“feasible region”). Moreover, it is essential that also and
will have the same form.

We define the complexity of the representation as , i.e.,
the number of elements in the set . If

we will denote the value function “minimum-type.” Note that
adding a new function to decreases (or leaves unchanged)

for all if is minimum-type. This observation will be
used in the next section.

1252 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006

E. A Simple Algorithm to Calculate

So far, we have not discussed how to calculate to sat-
isfy (11). Doing this in an optimal way with respect to com-
plexity of the optimization may be a very hard problem. In this
section, we present a simple and efficient (albeit not optimal) al-
gorithm to obtain for the minimum-type (and conversely
maximum-type) parameterization defined in the previous sec-
tion. The algorithm is described in Procedure 1.

Procedure 1 (From to , minimum-type)

1. Calculate and from :

Define and such that

2. Let and .
3. If possible, find such that

If not, satisfies (11) Done.
5. Let

and add to the set .
4. Define

and go to step 3.

The algorithm simply adds elements from the lower bound
until the resulting value function satisfies the

upper bound . The resulting value function
satisfies (11) by construction. Naturally, the algorithm can be
made more efficient by changing details such as removing
functions in once they have been tested as nonactive. It
is, however, crucial that the expressions defining and

give functions of the right form.
Procedure 1 can be iterated until (4) or some other stopping

criterion is satisfied. For maximum-type value functions the pro-
cedure is simply changed to add from until the lower
bound holds.

III. APPLICATION 1: SWITCHED LINEAR SYSTEMS WITH

QUADRATIC COSTS

In this section, a linear system switching problem will be de-
scribed. Given a set of alternative system matrices for a linear
system, the problem is to find a control law both for the contin-
uous inputs and for switching between system matrices at each
time step. All switches are initiated by the control law; there is
no autonomous switching.

In other words, for the triples of system matrices
consider the linear system

and the step cost . The problem
is to find a feedback control law

such that the closed-loop system minimizes the accumulated
cost.

A. Value Function

We assume at iteration to be on the form

(14)

where is a set of non-negative, symmetric matrices. To
obtain a relaxed value function, the procedure in Section II is
used with and (and, thus, is our relaxation pa-
rameter). The upper and lower bounds and , with
corresponding sets and , are easily calculated as defined
in (9) and (10), respectively. These are on the same form as

and, thus, we can theoretically continue the value it-
eration. The sizes of the sets and can however be up
to , so worst-case complexity of grows expo-
nentially with . This is why the proposed relaxed dynamic pro-
gramming is needed.

The two sets of matrices and are stored as ordered sets

and sorted so that

for all

After that, use Procedure 2 (which is a special case of Procedure
1) to calculate .

LINCOLN AND RANTZER: RELAXING DYNAMIC PROGRAMMING 1253

Fig. 4. Setup for the switched dc/dc-converter.

Procedure 2 (Relaxed , switched system).

1. Define

and take initially , .
2. If , then stop, else let .
3. If there exists a convex combination of elements in

such that , then go to step 2. (This is the
S-procedure test [16] to check if .)

If not, then add to and go to 3.

Remark: The sorting of on trace ensures that small ’s
are added first to . In practice it means that more ’s can be
discarded and, thus, a smaller set is found.

B. Example—A Switched Voltage Controller

A naturally switched control problem is the design of a
switched power controller for dc to dc conversion. The idea is
to use a set of semiconductor switches to effectively change
polarity of a voltage source, and the controller has to decide
which polarity to use each time slot (at a high frequency) so that
the load voltage and current are kept as constant as possible.
See Fig. 4 for the setup. This kind of dc/dc-converter is used
in practice, often with a pulse width modulation control for the
switch. The problem can also be extended to an ac/dc-converter
by making it time-varying.

1) Modeling: Except for the switch, all components in the
power system can be viewed as linear. For the purpose of control
optimization, the load is modeled as a constant current sink.
To make the controller work well for varying loads as well, an
integrator is added. The model becomes

(15)

(16)

where is the sign of the switch as set by the controller. To
obtain integral action in the controller, a third state is added as
the integral of the voltage error

Using the affine extension

and a sample period of s, the model can be described in dis-
crete time as

where is a 4 4 matrix due to the integral state and the affine
extension of the state vector.

2) Cost Function: The objective of the controller is to keep
the voltage as constant as possible at . To avoid constant
errors, but also strong harmonics, a combination of average,
current and derivative deviations are punished. This is done by
using the step cost

With the extended state vector this can also be written on stan-
dard form .

The switching controller will never be able to bring the
system to a steady state at the set-point. Therefore, the standard
cost function will grow indefinitely. In this example, a “forget-
ting factor” is introduced in the cost function to cope
with this problem

3) Finding a Controller: The previous example is now on
standard form, and the algorithm in this section can be used to
find a controller. Generally, a forgetting factor simplifies the
problem solution a lot, but also disqualifies as a Lyapunov
function. The example has been tried with in the range 0.95
to 1, and for ’s less than 1, the value function complexity sta-
bilizes on a reasonable level. We set the parameters to

and again note that the is only nominal and will change in
the simulation later. The value iteration is done for 140 steps.
For all steps, the complexity of the value function, i.e., number
of quadratic functions, stays below 40, as can be seen in Fig. 5.

The controller defined implicitly by is used in the
simulation shown in Fig. 7. The explicit controller, evaluated
each time step, is

and is simply a table lookup mapping one specific
member of to a switch position (1 or 1). See Fig. 6.
Note that evaluating this expression online is not very compu-
tationally intensive, compared to solving the offline dynamic
programming.

1254 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006

Fig. 5. Complexity of the value function in the power controller example.

Fig. 6. Resulting switching feedback law is monotonous in the current x (by
observation) and, therefore, it can be plotted in 3-D. The plot shows at which
current x the switch from s(n) = +1 to s(n) = �1 takes place for varying
voltages x and integral states x . Note that the gridding is only for plotting
purposes.

Fig. 7. Simulation of the power system example with the obtained controller.
At n = 100, the load current I is changed from its nominal 0.3 to 0.1 A, at
n = 200, to �0.2 A and at n = 300 back to the nominal 0.3 A.

In the simulation in Fig. 7, the load current is changed at
several points in time, but the controller keeps the voltage well
thanks to the integral action.

C. Example

Consider the classical inverted pendulum. Because the system
is unstable, the controller needs to give the system constant at-
tention to stabilize it. Assume there are several pendulums to be
controlled by one controller simultaneously. If the controller has
limited computing or communication resources and can only
make one control decision per time unit, an obvious problem
is to choose which pendulum to control each time.

We can pose such a problem based on a linearized model of
a rotating inverted pendulum (“the Furuta pendulum”) from our
teaching laboratory in Lund.

The step cost matrix is set to

A reasonable sample period for this pendulum is around 20–50
ms. Because several pendulums are to be controlled, the con-
troller “time-slot” is set to . The sampled system ma-
trices are denoted and . We assume that a pendulum which
does not get attention in the current time slot holds its previous
control signal. This increases the system order.

For the two-pendulum-problem, the system matrices become

which is essentially the augmented system consisting of two
pendulums plus states for holding the control signal.

For the two pendulum problem, it is possible to do value iter-
ation with , i.e., with only 1% slack to the op-
timal solution. The resulting complexity-over-iterations graph
can be seen in the upper plot of Fig. 8. As the system is unstable
and also sampled quite fast, the value iteration takes about 30
steps to converge. As can be seen, the complexity stays under
25 for all iterations, though. The lower graph is obtained if the
demand for accuracy is relaxed even further, to .

Extending the problem to three pendulums, the dynamic pro-
gramming gets harder. Setting , the problem
is still solvable, and the resulting complexity graph can be seen
in Fig. 9. Note that the state–space for this problem is 15-di-
mensional (or, effectively, 14-dimensional). The Matlab code
for the voltage converter and the pendulum examples is avail-
able from [1].

LINCOLN AND RANTZER: RELAXING DYNAMIC PROGRAMMING 1255

Fig. 8. Complexity of the value function for the example of controlling two
Furuta pendulums (ten continuous states). The upper diagram was obtained with
� = 1:01 using 233 s CPU-time on an Intel Pentium 1600-MHz processor. The
lower diagram shows the value iteration complexity with � = 1:5 and required
14.7 s.

IV. APPLICATION 2: LINEAR SYSTEM WITH PIECEWISE

LINEAR COST

This section will describe an optimal control problem. The
plant to be controlled is a linear time-invariant (LTI) system,
and the cost to be minimized is piecewise linear. This makes
it possible to punish states in more elaborate ways than the
usual quadratic cost. For example, it is possible make the
cost asymmetric such that negative states are more costly than
positive.

A. Problem Formulation

The controlled system is LTI

Fig. 9. Complexity of relaxed value iteration for the example of three Furuta
pendulums (15 continuous states) with � = 1:5. The calculations used 4790 s
CPU-time on an Intel Pentium 1600 MHz.

Fig. 10. Piecewise linear cost function l(x; u).

where , and and are polyhedra. The cost
function is on the form (1), with

where is a vector and is a finite set of vectors. See Fig. 10.
Hence, is piecewise linear, convex, and of “maximum-
type” (see Section II-D). The goal of the controller is to mini-
mize the cost.

B. Value Function

Assume the value function at some time is on
the form

(17)

where is a finite set of vectors. Bellman’s equation is used
to calculate

1256 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006

For the iteration to work, we need to rewrite this on the form
(17). This can be done by rewriting as the linear program

where the constraints and are implicit. Solving
this for any initial position yields a value function that can
again be written on the form (17). The solution can either
be found by solving a multiparametric linear programming
(MPLP) problem (see, e.g., [7]), or by doing explicit enumera-
tion of the dual extreme points as is shown later.

Introducing Lagrange multipliers , we rewrite as

where the last equality is due to strong duality for linear pro-
gramming [9]. From this, we see that

(18)

and

where the set is defined by and (18).
As is linear in , the maximum can be found in one of

the extreme points of . is a dimensional set bounded
by hyperplanes and, thus, we can find at most

extreme points. This can be done by selecting all pairs of
, setting all other , , . If

and have positive solutions in (18), the resulting is an
extreme point in . Note that the extreme points do not depend
on the state .

The extreme points of form the new set of vectors , and
again the value function is on the form

(19)

C. Parsimonious Representation

can usually be represented by a much smaller set than
the obtained by the aforementioned extreme point enumera-
tion. A set is called a parsimonious rep-
resentation, if only the members of which are ever active
(achieve the maximum for some state) are included. Such a set
can be obtained from Procedure 3 (which is well known, and,
again, a special case of Procedure 1).

Procedure 3 (Parsimonious)

1. Let and .
2. If , then stop, else let .
3. If there exists a convex combination of elements in

such that

then go to step 2.
If not, then add to and go to 3.

Note that after this procedure, naturally

D. Relaxed Value Function

To be able to use the proposed relaxed dynamic program-
ming, we define the relaxed cost

(20)

(21)

where and . Choosing is of course only
meaningful if , . The procedure in Section II
will now be used to find a relaxed . Assume sat-
isfies (8). Doing one value iteration from this the costs

are calculated.
Now, finding a in between and is done by

adding one element from at a time according to Procedure 4
(which is again a special case of Procedure 1, but for maximum-
type).

LINCOLN AND RANTZER: RELAXING DYNAMIC PROGRAMMING 1257

Fig. 11. Stock controlling the orders u to the manufacturer and the consumer
controlling orders v from the stock in the example. As seen from the stock, u is
the control signal and v is a disturbance.

Procedure 4 (Relaxed)

1. Let .
2. Pick one . Find a state where

, .

3. If such an exists, find the with the highest

cost .

Add to .
4. If no such exists, remove from .
5. Repeat from 2 until is empty.

E. Example—Stock Order Control

To illustrate the capability to have nonsymmetric cost func-
tions, this section presents an example of a stock of some
product. The control problem is to meet customer demand
while not storing too many products nor running out of prod-
ucts when there is customer demand.

The system is modeled in discrete time, where the sample
period is one day. In one sample period, the stock controller
can order from 0 to 0.5 units of the product and anything in
between. The order control signal is denoted at day . It
takes three days for the order to arrive at the stock. See Fig. 11.

After the stock order has been placed, the consumers buy
units of the product from the stock (and the products are re-
moved immediately, without delay). at day is random
and independent with the following probabilities:

with probability 0.1
with probability 0.2
with probability 0.7.

The cost of the system is a sum of the backlog cost when the
stock is negative and the storing cost when the stock is positive.
For each day with negative stock , the cost is . For
each day with positive stock, the cost is (see Fig. 12).

Problem Formulation: This problem can be written as

The step cost is

Fig. 12. Step cost for the stock example. Negative stock (backlog) is more ex-
pensive than storing.

Fig. 13. Complexity of the value function for the stock example over iterations.

and the objective is to minimize the cost

where the “forgetting factor” . This factor ensures a fi-
nite value function, and, loosely speaking, weighs future versus
immediate costs.

Solution: The method in Section IV-D is used to solve for a
steady-state value function (and thus a control law). The random
action of the consumer is accounted for by starting each iteration
by forming

The values and turns out to be a good
tradeoff between solution complexity and accuracy for this
problem. With these parameters, our solution is guaranteed to
have

for each iteration . The value function has been iterated 32
times and the resulting complexity plot is shown in Fig. 13. As
can be seen, at this level of accuracy, the value function can be
described by less than 30 hyperplanes for all iterations. Using

1258 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006

Fig. 14. Relaxed value function and corresponding control law for the stock
control problem. This curve corresponds to x = x = 0, i.e., there are no
units in the “pipeline.”

Fig. 15. Example POMDP Markov graph with a set of transition matrices
�(u), one for each control action u.

as the infinite-time horizon solution, it can be
shown to obey

by iterating the lower bound one more step and checking which
gives , (in this case,).

As the problem is 3-D, the resulting value function is some-
what hard to visualize. In Fig. 14, the two delay-states have been
set to zero, resulting in a 1-D value function in “units-in-stock”

. Apparently, with no units in the delay pipeline, a stock of
about 1 unit is good.

V. APPLICATION 3: POMDPS

The problem of partially observable Markov decision pro-
cesses (POMDPs) has been around for a long time (see e.g. [2],
[12]). Lately, it has mostly been investigated in the AI/robotics
fields, e.g. robot navigation problems where limited sensor in-
formation is available. A POMDP is a control problem where
the state–space is finite, as is the control signal (or action)
space and observation space . The dynamic programming
procedure for this problem is very similar to the piecewise linear
cost application in Section IV.

The state is a Markov state and, and the dynamics is
specified by transition matrix , where element denotes
the probability to move to state if the system is currently in
state . This probability can be controlled by . See Fig. 15 for
an illustration.

A specific observation will be obtained with
probability

where is the observation probability vector. Thus, the con-
troller never really knows exactly in which state the process is
(if it was, the problem would be an MDP and easily solved).
To be able to use dynamic programming, the state is changed to
the belief state . Note that state
space is closed as , and . The
dynamics of the belief state is linear

and for each observation , our belief state is changed
according to Bayes’ rule

Thus, the expected state over all possible observations is

The cost in a POMDP problem is usually replaced by a re-
ward, so we will stick to that. The reward is defined as

where is a vector of rewards of using control signal
for each Markov state , and .

For each time step, the controller has to make a control deci-
sion based on the current belief state . After the con-
trol decision, an observation based on and is ob-
tained. We would like to find an optimal control policy
which maximizes the reward for any initial state . As it turns
out, again the value function is of the form

(22)

where is a finite index set and is a vector. Thus, the value
function is piecewise linear in the state .

LINCOLN AND RANTZER: RELAXING DYNAMIC PROGRAMMING 1259

If the value function is known and in the form (22),
we can calculate the value from Bellman’s equation

Note that the “raw” size of is significantly larger than
(actually, , where denotes the number of
elements in).

A. Parsimonious Representation

Just like for the control problem in Section IV-C, the set is
often unnecessarily large and may be pruned without changing
the value of . Procedure 3 can be used to obtain a parsi-
monious representation.

B. Relaxed Value Function

Analogous to Section IV-D, a modified pruning procedure
can be used to obtain an -optimal value function. The relaxed
step cost is the same as in (20) and (21).

C. Example

There is a wide variety of reference POMDP problems de-
fined in literature. In this section, we focus on the 4 3 Maze
problem found in [8], which is a modified version from [14].
The state is a position in a square 4 3 Maze where one state
is inaccessible, and therefore the state space has size 11 (is
11-dimensional). consists of six observations, and there are
four actions in . The immediate reward is

if good
if bad
otherwise.

After reaching the “good” or “bad” state, the state is reset. The
problem is solved over an infinite horizon using value iteration
with a discount factor .

Running POMDP-SOLV from [8] with incremental pruning
and searching for the optimal solution fails to return within a
reasonable time as the set grows too fast (after ten iterations
and 36 CPU-minutes on a fast PC the complexity is 3393).

Setting and , the algorithm keeps a value
function of complexity (set size) of about 150 after reaching
steady state. The algorithm was run with a finite horizon of 50
time steps, and the resulting average value (for random initial
states) is 1.7. Using our and the discount factor , we can
bound the optimal value by

A smaller produces a larger search and a tighter bound, and
vice versa.

VI. CONCLUSION

A novel method for reduction of the computational complexity
in dynamic programming has been presented. Applications to
three well-known classes of optimal control problems show that
the method has a potential for significant improvement compared
to other approaches. Most likely, the same is true for many other
application areas which still remain to be investigated.

APPENDIX

PROOF OF CONVERGENCE

A. Proof of Proposition 1

The assumption gives

The lower bound in (3) is obtained by repeating the argument
times.

REFERENCES

[1] [Online]. Available: http://www.control.lth.se/publications/extra/min-
quadsolver.zip

[2] K. J. Åström, “Optimal control of Markov processes with incomplete
state information I,” J. Math. Anal. Appl., vol. 10, pp. 174–205, 1965.

[3] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton
Univ. Press, 1957.

[4] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[5] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Belmonth, MA: Athena Scientific, 2000.

[6] D. P. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Bel-
mont, MA: Athena Scientific, 1996, 1-886529-10-8.

[7] F. Borrelli, A. Bemporad, and M. Morari, “A geometric algorithm for
multi-parametric linear programming,” J. Optim. Theory Appl., vol.
118, no. 3, pp. 525–540, 2003.

[8] A. R. Cassandra, Tony’s POMDP page [Online]. Available: http://
www.cs.brown.edu/research/ai/pomdp/

[9] G. B. Danzig, Linear Programming and Extensions. Princeton, NNJ:
Princeton Univ. Press, 1963.

[10] D. P. de Farias and B. Van Roy, “Approximate dynamic program-
ming via linear programming,” in Advances in Neural Information
Processing Systems. Cambridge, MA: MIT Press, 2002, vol. 14.

[11] T. A. Henzinger, H. Pei-Hsin, and H. Wong-Toi, “HYTECH: The next
generation,” Proc. 16th IEEE Real-Time Systems Symp. pp. 55–65,
IEEE Comput. Soc. Press, 1995.

[12] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol.
101, pp. 99–134, 1998.

[13] A. Rantzer, “On relaxed dynamic programming in switching systems,”
Proc. Inst. Elect. Eng. Control Theory Appl., Sep. 2006, to be published.

[14] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

1260 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006

[15] P. J. Schweitzer and A. Seidmann, “Generalized polynomial approxi-
mations in Markovian decision processes,” J. Math. Anal. Appl., vol.
110, no. 2, pp. 568–582, Sep. 1985.

[16] V. A. Yakubovich, S-procedure in nonlinear control theory Vestnik
Leningrad Univ., pp. 62–77, 1971, (English translation in Vestnik
Leningrad Univ. 4:73–93, 1977).

Bo Lincoln received the M.Sc. degree from
Linköping University, Linköping, Sweden, in 1999,
and the Ph.D. degree in the areas of optimal control of
switched systems and control systems with varying
delays from the Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden, in
2003.

He is with Combra AB, Lund, Sweden.

Anders Rantzer (S’90–M’91–SM’97–F’01) was
born in 1963. He received the Ph.D. degree from
KTH, Stockholm, Sweden.

After postdoctoral positions at KTH and the
University of Minnesota, Minneapolis, he joined
Lund University, Lund, Sweden, in 1993. In 1999,
he was appointed professor of Automatic Control.
His research interests are in modeling, analysis
and synthesis of control systems, with particular
attention to robustness, optimization and distributed
control.

Prof. Rantzer was a winner of the 1990 SIAM Student Paper Competition
and the 1996 IFAC Congress Young Author Prize. He has served as Associate
Editor of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL and several other
journals.

