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Abstract. After the introduction of drastic containment measures aimed at
stopping the epidemic contagion from SARS-CoV2, many governments have

adopted a strategy based on a periodic relaxation of such measures in the face
of a severe economic crisis caused by lockdowns. Assessing the impact of such

openings in relation to the risk of a resumption of the spread of the disease
is an extremely difficult problem due to the many unknowns concerning the
actual number of people infected, the actual reproduction number and infection
fatality rate of the disease. In this work, starting from a compartmental model
with a social structure and stochastic inputs, we derive models with multiple
feedback controls depending on the social activities that allow to assess the
impact of a selective relaxation of the containment measures in the presence of
uncertain data. Specific contact patterns in the home, work, school and other
locations have been considered. Results from different scenarios concerning

the first wave of the epidemic in some major countries, including Germany,
France, Italy, Spain, the United Kingdom and the United States, are presented
and discussed.

1. Introduction. It is now clear that the end of the pandemic will not immedi-
ately correspond to the disappearance of SARS-CoV2 and that until a vaccination
campaign is completed on a global scale we will have to deal with several measures
of social distancing and containment. This is why various intermediate phases have
been carefully considered, with some activities that can be resumed, regulating the
reintegration of workers, for example through indicators measuring the impact of
work activities on potential infections, increasing prevention measures, or through
so-called immunity passports. It is essential to build scenarios that will help us
understand how the situation might evolve in the future.
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2 GIACOMO ALBI AND LORENZO PARESCHI AND MATTIA ZANELLA

Among the many controversial aspects are, for example, the reopening of schools,
sport activities and other social activities at different levels, which, while having
less economic impact, have a very high social cost. Indeed, it is clear that it is
difficult for the population to sustain an excessively long period of lockdown. It
is therefore of primary importance to analyze the impact of relaxing the control
measures put in place by many countries in order to make them more sustainable
on the socio-economic front, keeping the reproductive rate of the epidemic under
control and without incurring health risks [18,23, 27, 49].

The problem is clearly very challenging, traditional epidemiological models based
on the assumption of homogeneous population mixing are inadequate, since the
whole social and economic structure of the country is involved [12, 25, 30–32, 34].
On the other hand, interventions involving the whole population allow to use math-
ematical descriptions in analogy with classical statistical physics drawing on the sta-
tistical characteristics of a very large system of interacting individuals [1–3,8,21,51].

A further problem that cannot be ignored is the uncertainty present in the offi-
cial data provided by the different countries in relation to the number of infected
people. The heterogeneity of the procedures used to carry out the disease positivity
tests, the delays in recording and reporting the results, and the large percentage of
asymptomatic patients (in varying percentages depending on the studies and the
countries but estimated by WHO at an average of around 80% of cases) make the
construction of predictive scenarios affected by high uncertainty [33, 41, 54]. As a
consequence, the actual number of infected and recovered people is typically un-
derestimated, causing fatal delays in the implementation of public health policies
facing the propagation of epidemic fronts.

In this research, we try to make a contribution to these problems starting from
a description of the spread of the epidemic based on a compartmental model with
social structure in the presence of uncertain data. The presence of a social character-
istic such as the age of individuals is, in fact, essential in the case of the COVID-19
outbreak to characterize the heterogeneity of the impact of infection in relation to
age. In addition, the model allows to take into account the specific nature of the
different activities involved through appropriate interaction functions derived from
experimental interaction matrices [6, 29, 43, 45] and to systematically include the
uncertainty present in the data [9, 11, 15, 33, 41, 47].

The latter property is achieved by increasing the dimensionality of the problem
adding the possible sources of uncertainty from the very beginning of the modelling.
Hence, we extrapolate statistics by looking at the so-called quantities of interest,
i.e. statistical quantities that can be obtained from the solution and that give some
global information with respect to the input parameters. Several techniques can
be adopted for the approximation of the quantities of interest. Here, following [4]
we adopt stochastic Galerkin methods that allow to reduce the problem to a set of
deterministic equations for the numerical evaluation of the solution in presence of
uncertainties [17, 44, 52].

The main assumption made in this study is that the control measures adopted by
the different countries cannot be described by the standard compartmental model
but must necessarily be seen as external actions carried out by policy makers in
order to reduce the epidemic peak. Most current research in this direction has
focused on control procedures aimed at optimizing the use of vaccinations and
medical treatments [5,7,14,16,20,37] and only recently the problem has been tackled
from the perspective of non-pharmaceutical interventions [4, 22, 24, 26, 38, 42]. For
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MODELLING LOCKDOWN IN EPIDEMIC OUTBREAKS WITH UNCERTAINTY 3

this purpose we derive new models based on multiple feedback controls that act
selectively on each specific contact function and therefore social activity. Based on
the data in [45] this allows to analyze the impact of containment measures in a
differentiated way on family, work, school, and other activities.

In our line of approach, the classical epidemiological parameters that define the
rate of reproduction of the infectious disease are therefore estimated only in the
regime prior to the first lockdown and define an estimate of the reproductive rate
in the absence of control. At this stage the estimation mainly serves to calibrate
the model parameters and its variability will then be considered in the intrinsic
uncertainty of these values. In particular, this makes it possible to introduce the
role of the asymptomatic population without adding additional compartments but
directly via the stochastic component in the number of infected persons. The control
action is then estimated in the first lockdown phase using the data available. On the
modelling front, we next focus our interest on the phase following the first lockdown
period, in which social characteristics become essential to quantify the impact of
possible government decisions.

This makes it possible to carry out a systematic analysis for different countries
and to observe the different behaviour of the control action in line with the dynamics
observed and the measures taken by different governments. Of course, a realistic
comparison between countries is an extremely difficult problem that would require
a complex phase of renormalization of the data according to the different recording
and acquisition methods used. In an attempt to provide comparative results altered
as little as possible by assumptions that cannot be justified, we decided to adopt
the same criteria for each country and therefore the scenarios presented, although
based on realistic values, maintain a primarily qualitative rather than quantitative
nature.

We present different simulation scenarios for various countries where the first
wave of the epidemic showed some similarities, including Germany, France, Italy,
Spain, the United Kingdom and the United States analyzing the effect of relaxing
the lockdown measures in a selective way on the various social activities. Although
the choice of which specific activities to reopen remains mainly a political decision,
numerical simulations show that a progressive loosening strategy in subsequent
phases, as adopted by some governments, may be capable to keep the epidemic
under control by restarting various productive activities.

The rest of the manuscript is organized as follows. In Section 2 we present com-
partmental models with social structure and with uncertainties where interaction
matrices depend on various social activities. Next, a selective control mimicking
containment measures in relation to a specific social activity and in presence of
model uncertainty is derived in Section 3. Finally, in Section 3.2 we propose vari-
ous numerical experiments based on several countries highlighting the importance
of the social structure to evaluate possible relaxations in relation to specific social
activities.

2. The epidemiological model. The starting model in our discussion is a SEIRD-
type compartmental model with a social structure and uncertain inputs. The pres-
ence of a social structure is in fact essential in deriving appropriate sustainable
control techniques from the population for a protracted period, as in the case of the
recent COVID-19 epidemic. In addition we include the effects on the dynamics of
uncertain data, such as the initial conditions on the number of infected people or the
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interaction and recovery rates. This permits to include the role of the asymptomatic
population directly in the uncertainty.

2.1. A socially structured compartmental model with uncertainty. The
heterogeneity of the social structure, which impacts the diffusion of the infective
disease, is characterized by a ∈ Λ ⊂ R+ representing the age of the individual
[30,31]. We assume that the rapid spread of the disease and the low mortality rate
allows to ignore changes in the social structure, such as the aging process, births and
deaths. Furthermore, we introduce the random vector z = (z1, . . . , zdz

) ∈ R
dz whose

components are assumed to be independent real valued random variables taking into
account various possible sources of uncertainty in the model. We assume to know
the probability density p(z) : Rdz → R

dz

+ characterizing the distribution of z.
We denote by s(z, a, t), e(z, a, t), i(z, a, t), r(z, a, t) and d(z, a, t) the densities

at time t ≥ 0 of susceptible, exposed, infectious, recovered and dead individuals,
respectively in relation to their age a and the source of uncertainty z. The density
of individuals of a given age a and the total population number N are deterministic
conserved quantities in time, i.e.

s(z, a, t) + e(z, a, t) + i(z, a, t) + r(z, a, t) + d(z, a, t) = f(a),

∫

Λ

f(a)da = N.

Hence, the quantities

S(z, t) =

∫

Λ

s(z, a, t) da, E(z, t) =

∫

Λ

e(z, a, t) da, I(z, t) =

∫

Λ

i(z, a, t) da,

R(z, t) =

∫

Λ

r(z, a, t) da, D(z, t) =

∫

Λ

d(z, a, t) da,

(1)

denote the uncertain fractions of the population that are susceptible, exposed, in-
fectious, recovered and dead respectively.

In a situation where changes in the social features act on a slower scale with
respect to the spread of the disease, the socially structured compartmental model
with uncertainties follows the dynamics

d

dt
s(z, a, t) = −s(z, a, t)

∑

j∈A

∫

Λ

βj(z, a, a∗)
i(z, a∗, t)

N
da∗

d

dt
e(z, a, t) = s(z, a, t)

∑

j∈A

∫

Λ

βj(z, a, a∗)
i(z, a∗, t)

N
da∗ − σ(z, a)e(z, a, t)

d

dt
i(z, a, t) = σ(z, a)e(z, a, t)− (γ(z, a) + α(z, a))i(z, a, t)

d

dt
r(z, a, t) = γ(z, a)i(z, a, t)

d

dt
d(z, a, t) = α(z, a)i(z, a, t)

(2)

with initial condition s(z, a, 0) = s0(z, a), e(z, a, 0) = e0(z, a), i(z, a, 0) = i0(z, a),
r(z, a, 0) = r0(z, a) and d(z, a, 0) = d0(z, a). In (2) we assume age-dependent con-
tact rates βj(z, a, a∗) ≥ 0, j ∈ A, representing transmission rates among individuals
related to a specific activity characterized by the set A, such as home, work, school,
etc., γ(z, a) ≥ 0 is the recovery rate which may be age dependent, σ(z, a) ≥ 0 is the
transition rate of exposed individuals to the infected class, and α(z, a) ≥ 0 is the
disease-induced death rate of infectious individuals.
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In the following, we introduce the usual normalization scaling

s(z, a, t)

N
→ s(z, a, t),

e(z, a, t)

N
→ e(z, a, t),

i(z, a, t)

N
→ i(z, a, t),

r(z, a, t)

N
→ r(z, a, t),

d(z, a, t)

N
→ d(z, a, t),

∫

Λ

f(z, a)da = 1,

and observe that the quantities S(t), E(t), I(t), R(t) and D(t) satisfy the uncertain
SEIRD dynamics

d

dt
S(z, t) = −

∑

j∈A

∫

Λ×Λ

βj(z, a, a∗)s(z, a, t)i(z, a∗, t) da∗da

d

dt
E(z, t) =

∑

j∈A

∫

Λ×Λ

βj(z, a, a∗)s(z, a, t)i(z, a∗, t) da∗da−

∫

Λ

σ(z, a)e(z, a, t)da

d

dt
I(z, t) =

∫

Λ

σ(z, a)e(z, a, t) da−

∫

Λ

(γ(z, a) + α(z, a))i(z, a, t) da

d

dt
R(z, t) =

∫

Λ

γ(z, a)i(z, a, t) da

d

dt
D(z, t) =

∫

Λ

α(z, a)i(z, a, t) da.

(3)

We refer to [25, 30–32] for analytical results concerning model (2) and (3) in a
deterministic setting.

Before entering the discussion of the control problem that formalizes the action
of a policy maker aimed at reducing the epidemic impact, we discuss the role of
the uncertainty in the model and how it relates to other compartmental models
including the asymptomatic population.

2.2. Relationship to compartmental models including undetected infec-

tious. One of the main difficulties in mathematical modelling of the COVID-19
epidemic is due to the presence of a large number of undetected (asymptomatic) in-
fected individuals. This has motivated the construction of various models in which
the infected population is subdivided into further compartments with different roles
in the spread of the disease [24,27,28,49]. To clarify the relationships to such models,
let us consider model (3) in absence of a social structure and social activities

d

dt
S(z, t) = −β(z)S(z, t)I(z, t)

d

dt
E(z, t) = β(z)S(z, t)I(z, t)− σ(z)E(z, t),

d

dt
I(z, t) = σ(z)E(z, t)− (γ(z) + α(z))I(z, t),

d

dt
R(z, t) = γ(z)I(z, t),

d

dt
D(z, t) = α(z)I(z, t),

(4)

and with a one-dimensional random input z ∈ R distributed as p(z). Furthermore,
for a function F (z, t) we will denote its expected value as F̄ (t) = E[F (·, t)]. Now,
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starting from a discrete probability density function

pk = P {Z = zk} ,
n
∑

k=1

pk = 1,

we have F̄ (t) =
∑n

k=1 pkFk, with Fk = F (zk). Taking the expectation in (4), we
can write

d

dt
S̄(t) = −S̄(t)

n
∑

k=1

β̃kpkIk(t)

d

dt
Ē(t) = S̄(t)

n
∑

k=1

β̃kpkIk(t)− Ē(t)
n
∑

k=1

σ̃kpk,

d

dt
Ī(t) = Ē(t)

n
∑

k=1

σ̃kpk −
n
∑

k=1

(γk + αk)pkIk(t),

d

dt
R̄(t) =

n
∑

k=1

γkpkIk(t),

d

dt
D̄(t) =

n
∑

k=1

αkpkIk(t),

(5)

with β̃k = Skβk/S̄, σ̃k = Ekσk/Ē, k = 1, . . . , n. For example, in the case n = 2,
by identifying Id = p1I1 and Iu = p2I2 with the compartments of detected and
undetected infectious individuals, assuming σ̃k = σ̃, and denoting p1 = ρ we can
write

d

dt
S̄(t) = −S̄(t)

(

β̃1Id(t) + β̃2Iu(t)
)

d

dt
Ē(t) = S̄(t)

(

β̃1Id(t) + β̃2Iu(t)
)

− σ̃Ē(t)

d

dt
Id(t) = σ̃ρĒ(t)− (γ1 + α1)Id(t),

d

dt
Iu(t) = σ̃(1− ρ)Ē(t)− (γ2 + α2)Iu(t),

d

dt
R̄(t) = γ1Id(t) + γ2Iu(t),

d

dt
D̄(t) = α1Id(t) + α2Iu(t),

(6)

which has the same structure of a SEIARD-type compartmental model including
the undetected (or the asymptomatic) class [27, 49].

3. Multiple control of structured compartmental model. In order to char-
acterize the action of a policy maker introducing a control over the system based on
selective containment measures in relation to a specific social activity we consider
the following optimal control setting

min
u∈U

J(u) :=

∫ T

0

R[ψ(S, I)(·, t)]dt+
1

2

∑

j∈A

∫ T

0

∫

Λ×Λ

νj(a, t)|uj(a, a∗, t)|
2da da∗dt, (7)
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where u = (u1, . . . , uL) is a vector of controls acting locally on the interaction be-
tween individuals of ages a and a∗, the function νj(a, t) > 0 is a selective penaliza-
tion term and R[·] is a suitable statistical operator taking into account the presence
of the uncertainties, and ψ(S, I), s.t. ∂Iψ(S, I) ≥ 0, is a function characterizing the
policy maker’s perception of the impact of the epidemic.

Examples of such operator that are of interest in epidemic modelling are the
expectation with respect to uncertainties

R[ψ(S, I)(·, t)] = E[ψ(S, I)(·, t)] =

∫

Rdz

ψ(S, I)(z, t) p(z)dz (8)

or relying on deterministic data which underestimate the number of infected

R[ψ(S, I)(·, t)] = ψ(S, I)(z0, t), (9)

where z0 is a given value such that I(z0, t) ≤ I(z, t), ∀ z ∈ R
dz and t > 0. Concern-

ing the perception function, in the sequel we will consider two relevant examples
given by a convex function underestimating the number of infected

ψ(S, I)(z, t) = C
Iq(z, t)

q
, q ≥ 1, (10)

and a concave function overestimating such number

ψ(S, I)(z, t) = C
ln(1 + τI(z, t))

τS(z, t)
, τ > 0, (11)

with C > 0 a suitable renormalization constant. The function in (10) has been in-
troduced in [4] and we will rely on the same arguments in deriving the corresponding
feedback controlled model, whereas the function in (11) permits to recover as feed-
back controlled models well-known epidemic models with nonlinear transmission
rates [26, 35].

In (7) the set U ⊆ R
L is the space of admissible controls uj , j ∈ A defined as

U =
{

u ∈ R
L | 0 ≤ I(uj)(a, t) ≤ min{M,min

z
I(βj)(z, a, t)}, ∀ (a, t), M > 0

}

,

where

I(uj)(a, t) =
1

I(z, t)

∫

Λ

uj(a, a∗, t)i(z, a∗, t) da∗,

I(βj)(z, a, t) =
1

I(z, t)

∫

Λ

βj(z, a, a∗)i(z, a∗, t) da∗.

Note that, here we are considering less restrictive conditions on the space of ad-
missible controls than in [4]. The above minimization is subject to the following
dynamics

d

dt
s(z, a, t) = −s(z, a, t)

∑

j∈A

∫

Λ

(βj(z, a, a∗)− uj(a, a∗, t))
i(z, a∗, t)

N
da∗

d

dt
e(z, a, t) = s(z, a, t)

∑

j∈A

∫

Λ

(βj(z, a, a∗)− uj(a, a∗, t))
i(z, a∗, t)

N
da∗

− σ(z, a)e(z, a, t)

d

dt
i(z, a, t) = σ(z, a)e(z, a, t)− (γ(z, a) + α(z, a))i(z, a, t),

(12)

where for simplicity we omitted the equations for r(z, a, t) and d(z, a, t) since they
do not affect directly the above system.
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Solving the above optimization problem, however, is generally quite complicated
and computationally demanding when there are uncertainties as it involves solving
simultaneously the forward problem (7)- (12) and the backward problem derived
from the optimality conditions [4]. Furthermore, the assumption that the policy
maker follows an optimal strategy over a long time horizon seems rather unrealistic
in the case of a rapidly spreading disease such as the COVID-19 epidemic.

3.1. Feedback controlled compartmental models with uncertainty. In this
section we consider short time horizon strategies which permits to derive suitable
feedback controlled models. These strategies are suboptimal with respect the orig-
inal problem (7)-(12) but they have proved to be very successful in several social
modeling problems [1–3, 21]. To this aim, we consider a short time horizon of
length h > 0 and formulate a time discretize optimal control problem through the
functional Jh(u) restricted to the interval [t, t+ h], as follows

min
u∈U

Jh(u) = R[ψ(S(·, t), I(·, t+h))]+
1

2

∑

j∈A

∫

Λ×Λ

νj(a, t)|uj(a, a∗, t)|
2dada∗, (13)

subject to

s(z, a, t+ h) = s(z, a, t)− hs(z, a, t)
∑

j∈A

∫

Λ

(βj(z, a, a∗)− uj(a, a∗, t)) i(z, a∗, t)da∗

e(z, a, t+ h) = e(z, a, t) + hs(z, a, t)
∑

j∈A

∫

Λ

(βj(z, a, a∗)− uj(a, a∗, t)) i(z, a∗, t)da∗

− hσ(z, a)e(z, a, t),

i(z, a, t+ h) = i(z, a, t) + hσ(z, a)e(z, a, t+ h)− h(γ(z, a) + α(z, a))i(z, a, t).

(14)

Recalling that the macroscopic information on the infected is

I(z, t+ h) = I(z, t) + h

∫

Λ

σ(z, a)e(z, a, t+ h) da− h

∫

Λ

(γ(z, a) + α(z, a))i(z, a, t) da

we can derive the minimizer of Jh computing ∇uJh(u) ≡ 0 or equivalently

∂Jh(u)

∂uj
= 0, j ∈ A.

Using (13) we can compute

R

[

∂ψ(S(·, t), I(·, t+ h))

∂uj

]

= νj(a, t)uj(a, a∗, t),

where we assumed ∂R [ψ(·, ·)]/∂uj = R [∂ψ(·, ·)/∂uj ], to obtain the following non-
linear identities

νj(a, t)uj(a, a∗, t) = h2R[σ(·, a)s(·, a, t)i(·, a∗, t)∂Iψ(S(·, t), I(·, t+ h))]. (15)

The above assumption on R[·] is clearly satisfied by (8) and (9). Introducing the
scaling νj(a, t) = h2κj(a, a∗, t) we obtain the instantaneous control

uj(a, a∗, t) =
1

κj(a, a∗)
R[σ(·, a)s(·, a, t)i(·, a∗, t)∂Iψ(S(·, t), I(·, t+ h))]. (16)

Now, passing to the limit for h → 0 into the discrete system (14) we obtain the
feedback controlled system (12) with the instantaneous control term (16).
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Let us now, report explicit expressions of the control term for the perception
function (10) and (11). In the convex case we have

uj(a, a∗, t) =
C

κj(a, a∗)
R[σ(·, a)s(·, a, t)i(·, a∗, t)I

q−1(·, t)], (17)

whereas in the logarithmic case

uj(a, a∗, t) =
C

κj(a, a∗)
R

[

σ(·, a)s(·, a, t)i(·, a∗, t)
1

S(·, t)(1 + τI(·, t))

]

. (18)

In the sequel we will restrict our attention to feedback controlled models of the form
(17) for q = 1, namely there is no bias in the perception of the infectious disease
from the policy maker, and where R[·] is given by (9) corresponding to the number
of reported cases.

Remark 1. To understand the action of the feedback controls (17)-(18), let us
consider the simplest case of a standard SEIRD model without age dependence,
specific social interactions and uncertainty. In this simplified setting, it is easy
to verify that the corresponding feedback controlled model has the same SEIRD
structure with the modified transmission rate

β̃ = β −
σS(t)I(t)∂Iψ(S(t), I(t))

κ
, (19)

that takes the specific form

β̃ = β −
CσS(t)I(t)q

κ
= β

(

1−
S(t)I(t)q

κ

)

,

in the case (10) assuming C = β/σ, and

β̃ = β −
CσI(t)

κ(1 + τI(t))
=

β

1 + τI(t)
,

in the case (11) taking τ = 1/κ, C = β/σ. These correspond to the nonlinear
incidence transmissions considered in [4, 39] and [10, 26, 35], respectively. Other
nonlinear incidence rates may be obtained similarly by considering different percep-
tion functions (see [39] and the references therein).

3.2. Application to the COVID-19 outbreak. In this section, we first present
a comparison between different control strategies considering both a SEIR and SIR
compartmentalization. Subsequently, we focus on the application of the feedback
controlled models with uncertain data, that takes into account the presence of
unreported symptomatic and asymptomatic cases, to the first wave of the COVID-
19 pandemic in different countries. Details of the stochastic Galerkin method used
to deal efficiently with uncertain data may be found in [4,44]. The data concerning
the actual number of infected, recovered and deaths in the various country have
been taken from the Johns Hopkins University Github repository [19] ad for the
specific case of Italy from the Github repository of the Italian Civil Protection
Department 1. The social interaction functions βj have been reconstructed from
the dataset of age and location specific contact matrices related to home, work,
school and other activities in [45]. Finally, the demographic characteristics of the
population for the various country have been taken from the United Nations World
Populations Prospects 2. Other sources of data which have been used include the

1Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile. GitHub: COVID-
19 Italia - Monitoraggio situazione, https://github.com/pcm-dpc/COVID-19, 2020

2https://population.un.org/wpp/
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Figure 1. Evolution fo the fraction of infected (left) and recovered
(right) based on the two different feedback controls defined in (17)
with q = 1 (first row) and (18) (second row) for the SEIR model
with homogeneous mixing. We considered different penalizations
κ = 10−2, 10−1. The choice κ = +∞ corresponds to the uncon-
strained case. Bottom figure: evaluation of the cost functional J
for the introduced controls.

Coronavirus disease (COVID-2019) situation reports of the WHO 3 and the Statistic
and Research Coronavirus Pandemic (COVID-19) from OWD 4.

3.3. Containment in homogeneous social mixing. In the first test case, we
will not attempt to analyze the data in a quantitative setting, but will compare the
behaviour of the feedback controlled models with different controls of the form de-
fined in (17)-(18). Furthermore, to simplify the modeling we neglect any dependence
on uncertainties and we consider the case of homogeneous social mixing.

In the SEIR case we consider a population of size N = 60·106 where at time t = 0
the initial number of exposed is given by E(0) = 1

N
and the number of susceptibles

is S(0) = N−1
N

, whereas I(0) = R(0) = 0. To exemplify the possible evolution of
the pandemic we consider β = 0.25, γ = 0.1, corresponding to a recovery rate of

3https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
4https://ourworldindata.org/coronavirus
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10 days, so that R0 = 2.5. Furthermore, we assume a latency period of 3.32 days,
leading to σ ≈ 0.3012, see [27].

In Figure 1 we report the dynamics of infected and recovered based on the ac-
tivation of the control in the time frame t ∈ [60, 200], meaning that the control is
activated after 60 days the first exposed and after 200 days we suppose that all the
restrictions are cancelled. We may easily observe how the delation of social restric-
tions leads for both controls to a restart of the epidemic and therefore to a second
wave of infection. Both the controls have comparable costs but the perception func-
tion ψ(S, I) = CIq/q is more capable to flatten the curve of infection. After the
deactivation of the control we may observe how the number of recovered for large
times does not significantly change with respect to the unconstrained dynamics.

We perform a similar test in the case of SIR compartimentalization. Therefore we
assume a population of the same size N = 60 ·106 of the previous test where at time
t = 0 the initial number of infected is I(0) = 1

N
and S(0) = N−1

N
. We considered

epidemiological parameters that are compatible with the ones considered above and
leading to R0 = 2.5, i.e. β = 0.25 and γ = 0.1. We remark that in presence of a
SIRD-type compartmentalization we obtain a feedback control compatible with (17)
with σ = 1 for a perception function ψ(S, I) = CIq/q, whereas in the logarithmic
case we can derive a feedback control compartible with (18) with σ = 1, we point
the interested reader to [4] for more details. In Figure 2 we report the dynamics
of infected and recovered with an activation of the control in the time interval
[60, 200]. Interestingly enough, the logarithmic perception function is in this case
more effective in the reduction of the number of recovered, that is the total number
of infected of the population.

3.4. Model calibration. Estimating epidemiological parameters is a very difficult
problem that can be addressed with different approaches [9, 15, 47]. In the case of
COVID-19 due to the limited number of data and their great heterogeneity is an
even bigger problem that can easily lead to wrong results. Here, we restrict ourselves
to identifying the deterministic parameters of the model through a suitable fitting
procedure, considering the possible uncertainties due to such estimation as part of
the subsequent uncertainty quantification process. For this reason in the sequel we
will neglect the presence of the exposed population and thus consider the feedback
controlled SIR model.

More precisely, we have adopted the following two-level approach in estimating
the parameters. In the phase preceding the lockdown we estimated the epidemic pa-
rameters, and hence the model reproduction number R0, in an uncontrolled regime.
This estimate was then kept in the subsequent lockdown phase where we estimated
as a function of time the value of the control penalty parameter. Both these two
calibration steps were analyzed under the assumption of homogeneous mixing.

Thua, we solved two separate constrained optimization problems. First we es-
timated βe > 0 and γe > 0 in each country by solving in the uncontrolled time
interval t ∈ [t0, tu] a least square problem based on minimizing the relative L2 norm

of the difference between the reported number of infected Î(t) and recovered R̂(t),
and the theoretical evolution of the unconstrained model I(t) and R(t). In details,
we considered the following minimization problem

min
β,γ∈R+

[

(1− θ)‖I(t)− Î(t)‖L2([t0,tu]) + θ‖R(t)− R̂(t)‖L2([t0,tu])

]

,
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Figure 2. Evolution fo the fraction of infected (left) and recovered
(right) based on the two different feedback controls defined in (17)
with q = 1 (first row) and (18) (second row) for the SIR model with
homogeneous mixing. We considered different penalizations κ =
10−2, 10−1. The choice κ = +∞ corresponds to the unconstrained
case. Bottom figure: evaluation of the cost functional J for the
introduced controls.

where θ ∈ [0, 1] is a penalization parameter and ‖ · ‖L2([t,s]) denotes the relative L2

norm over the time horizon [t, s]. It is worth to remark that the lack of reliable
informations concerning the recovered in early stages of the disease suggests to
adapt the model mainly to the curve of infectious and to introduce the uncertainty
in the reproductive number using this estimated value as an upper bound of the
reproduction number.

Due to the heterogeneity of the data between the different countries, we con-

strained the value of β ∈ [0, 1] and the value of γ ∈

[

1

24
,
1

10

]

. Indeed, according

to clinical studies, time to viral clearance during the early phases of the epidemic,
i.e. the time from the first positive test to the first negative test, can approxi-
mately span from 10 to 24 days, see [13, 27, 36]. At the end of this optimization
procedure, we obtain the values βe, γe for each country reported in Table (1). The
results have been obtained by averaging the optimization outputs with penalization
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Germany
Mar 5-Mar 22

France
Mar 5-Mar 17

Italy
Feb 24-Mar 9

Spain
Mar 5-Mar 14

UK
Mar 8-Mar 23

US
Mar 7-Mar 19

βe 0.3134 0.3164 0.3101 0.3686 0.2698 0.3716
γe 0.0483 0.0483 0.0494 0.0400 0.0482 0.0481
Re

0 6.487 6.5525 6.2710 9.2150 5.6010 7.7155

Table 1. Model fitting parameters in estimating attack values for
the COVID-19 outbreak before lockdown in various countries.

factors θ = 10−2 and θ = 10−6, respectively. The choice of small values for θ is
due to the increased heterogeneity in data for recovered in this early stages of the
epidemic.

Next, we estimate the penalization κ = κ(t) > 0 in time by solving in the
controlled time interval t ∈ (tu, tc] for a sequence of unitary time steps ti the
corresponding least square problems in [ti − kl, ti + kr], kl, kr ≥ 1 integers, and
where for the evolution we consider the values βe and γe estimated in the first
optimization step using the curve of infectious. In details we solve the following
minimization problem

min
κ(ti)∈R+

[

(1− θ)‖I(t)− Î(t)‖L2([ti−kl,ti+kr]) + θ‖R(t)− R̂(t)‖L2([ti−kl,ti+kr])

]

,

over a window of seven days (kl = 3, kr = 4) for regularization along one week of
available data. For consistency we performed the same optimization process used to
estimate β and γ, namely using two different penalization factors and then averaging
the results. These optimization problems have been solved testing different opti-
mization methods in combination with adaptive solvers for the system of ODEs.
The results reported have been obtained using the Matlab functions fmincon in
combination with ode45.

The corresponding time dependent values for the controls as well as results of
the model fitting with the actual trends of infectious are reported in Figure 3. The
trends have been computed using a weighted least square fitting with the model
function k(t) = aebt(1− ect).

For some countries, like France, Spain and Italy after an initial adjustment phase
the penalty term converged towards a peak and has just started to decrease. This
is consistent with a situation in which data concerning the number of reported
infectious needs a certain period of time before being affected by the lockdown policy
and can also be considered as an indicator of an unstable situation where reducing
control could lead to a potential restart of the infectious curve. The penalty terms
for the US and the UK clearly indicates that the pandemic was still in its growing
phase. In the case of Germany the dynamics highlight a significative decrease in
the penalization term, this fact is coherent with the timely implementation of social
distancing measures. Note that, see figure 3, the behavior of the model is able to
fairly realistically describe the observed data for a time window of about one month
after calibration. On the other hand, a larger time window, up to the end of June,
clearly presents significant deviations from the expected behavior due to the restart
of the pandemic wave as in France, Spain and the US or a drop down in the number
of cases as in Italy and the UK.

3.5. Estimating actual infection trends with uncertain data. Next we focus
on the influence of uncertain quantities on the controlled system with homogeneous
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Figure 3. Model behavior with fitting parameters and actual
trends in the number of reported infectious using the estimated
control penalization terms after lockdown over time in the various
countries.

mixing. According to recent results on the diffusion of COVID-19 in many countries
the number of infected, and therefore recovered, is largely underestimated on the
official reports, see e.g. [33, 41]. One possible way to understand this is based on
a renormalization process of the reported data based on the estimated infection
fatality rate (IFR) of Covid-19. Although estimating the true IFR is generally
hazardous while an epidemic is underway, some studies have estimated an overall
IFR around 1.3% with an age dependent credible interval [46, 48]. In the sequel
we consider a range spanning between 0.9% − 2.0%. On the contrary the current
fatality rate (CFR) may vary strongly from country to country accordingly to the
differences in the number of people tested, demographics, health care system. One
way to have in insight in the uncertainty of data is to use the estimated IFR ranges
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Figure 4. Estimated disagreement in the total number of cases
based on an IFR of 1.3% in the range 0.9%-2.0%. The uncertainty
is measured as the estimated values divided by the reported cases.
The country specific values are given on the top of each red bar,
the average value of c = 8.56 is reported as a dashed green line.

as normalization factors for the current data reported of total cases Itot. This is
done computing an estimated number of total confirmed cases as Îtot = 100 ×
Dr/IFR, where Dr is the total number of confirmed deaths. The results of the

variations Îtot/Itot for the various countries are summarized in Figure 4 and are
directly proportional to the CFR of the country. We are aware that the estimate
obtained is certainly coarse, nevertheless it allows to get an idea of the disagreement
between the data observed and expected in the various countries and therefore to
be able to define a common scenario between the various countries.

In order to have an insight on global impact of uncertain parameters we consider
a two-dimensional uncertainty z = (z1, z2) with independent components such that

I(z, 0) = I0(1 + µz1), R(z, 0) = R0(1 + µz1), µ > 0 (20)

and

β(z) = βe − αβz2, γ(z) = γe + αγz2, αβ , αγ > 0 (21)

where z1, z2 are chosen distributed as symmetric Beta functions in [0, 1], i0 and r0
are the initial number of reported cases and recovered taken from [13] and βe, γe
are the fitted values given in Table 1. In the following we will consider µ = 2(c− 1)
common for all countries such that E[I(z, 0)] = cI(0), E[R(z, 0)] = cR(0) where
c = 8.56, the average value from Figure 4.

From a computational viewpoint we adopted the method developed in [4] based
on a stochastic Galerkin approach. The feedback controlled model has been com-
puted using an estimation of the total number of susceptible and infected reported,
namely we have the control term

u(t) = −
1

k(t)
Sr(t)Ir(t), (22)

where Sr(t) and Ir(t) are the model solution obtained from the registered data, and
thus Ir(t) represents a lower bound for the uncertain solution I(z, t).
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Figure 5. Evolution of current and total cases for each country
with uncertain initial data as in (20) based on the average uncer-
tainty between countries. The 95% and 50% confidence levels are
represented as shaded and darker shaded areas respectively. The
dash-dotted lines denote the expected trends with a country de-
pendent uncertainty from Figure 4.

In Figure 5 we report the results concerning the evolution of estimated current
infectious cases from the beginning of the pandemic in the reference countries using
z1 ∼ B(10, 10) and αβ = αγ = 0. In the inset figures the evolution of total cases
is reported. The expected number of infectious is plotted with blue continuous
line. Furthermore, to highlight the country-dependent underestimation of cases we
report with dash-dotted lines both the expected evolutions, where the uncertain
parameter c > 0 varies from country to country accordingly to the numbers on the
top of the red bars in Figure 4.
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Figure 6. Evolution of estimated reproduction number R0 and
its confidence bands for uncertain data in as in (21). The 95% and
50% confidence levels are represented as shaded and darker shaded
areas respectively. The green zones denote the interval between the
first day the 50% confidence band and the expected value fall below
1.

In Figure 6 we report the evolution of reproduction number R0 for the considered
countries under the uncertainties in (21) obtained with αβ = 0.03, αγ = 0.05 and
z2 ∼ B(2, 2). It has been reported, in fact, that deterministic methods based on
compartmental models overestimate the effective reproduction number [40]. The
reproduction number is estimated from

R0(z2, t) =
β(z2)− u(t)χ(t > t̄)

γ(z2)
,

being the control u(t) defined in (22) and t̄ is the country-dependent lockdown time.
The estimated reproduction number relative to data is reported with x-marked
symbols and represents an upper bound for R0(z2, t). The first day that the 50%
confidence interval and the expected value fall below 1 is highlighted with a shaded
green region. We can observe how the model estimates that for most countries in
the first days of April the reproduction number R0 has fallen below the threshold
of 1. On the other hand, in the UK and the US the same condition was reached
between the end of April and the beginning of May. In realistic terms these dates
should be considered as overestimates as they are essentially based on observations
without taking into account the delay in the data reported.

3.6. Relaxing control on the various social activities. We analyze the effects
of the inclusion of age dependence and social interactions in the above scenario. The
number of contacts per person generally shows considerable variability depending
on age, occupation, country, in relation to the social habits of the population.
However, some universal features can be extracted, which emerge as a function of
specific social activities.
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Figure 7. The total contact interaction function β = βF + βE +
βP + βO taking into account the contact rates of people with dif-
ferent ages. Family and home contacts are characterized by βF ,
education and school contacts by βE , professional and work con-
tacts by βP , and other contacts by βO.

More precisely, we consider the social interaction functions corresponding to the
contact matrices in [45] for the various countries. As a result we have four inter-
action functions characterized by A = {F,E, P,O}, where we identify family and
home contacts with βF , education and school contacts with βE , professional and
work contacts with βP , and other contacts with βO. These functions have been
reconstructed over the age interval Λ = [0, amax], amax = 100 using linear interpo-
lation. We report in Figure 7, as an example, the total social interaction functions
for the various countries. The functions share a similar structure but with different
scalings accordingly to the country specific features identified in [45].

In order to match the age-structured model with the homogeneous mixing model
the social functions were normalized using the previously estimated parameters βe
and γe in accordance with

βe =
1

a2maxL

∑

j∈A

∫

Λ×Λ

βj(a, a∗) da da∗, γe =
1

amax

∫

Λ

γ(a) da. (23)

We considered both a uniform and an age-related recovery rate [50,53] as a decreas-
ing function of the age in the form

γ(a) = γe + Ce−ra, (24)

with r = 5 and C ∈ R such that (23) holds. Clearly, this choice involves a certain
degree of arbitrariness since there are not yet sufficient studies on the subject,
nevertheless, as we will see in the simulations, it is able to reproduce more realistic
scenarios in terms of age distribution of the infected without significantly altering
the behaviour relative to the total number of infected.

In a similar spirit, to match the single control applied in the extrapolation of the
penalization term κ(t) to age dependent penalization factors κj(a, t) we redistribute
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their values as

κj(a, t)
−1 =

wj(t)
∫

Λ
βj(a, a∗) da∗

∑

j∈A
wj(t)

∫

Λ×Λ
βj(a, a∗) da da∗

κ(t)−1, j ∈ A (25)

where wj(t) ≥ 0, are weight factors denoting the relative amount of control on a
specific activity. In the lockdown period accordingly to other studies [45] we assume
wE = 1.5, wH = 0.2, wP = 0.5, wO = 0.6, namely the largest effort of the control is
due to the school closure which as a consequence implies more interactions at home.
Work and other activities are equally impacted by the lockdown. In particular, these
initial lockdown choices make it possible to have a good correspondence between
the infectivity curves expected in the age dependent case and in the homogeneous
mixing case. Therefore, these values have been set homogeneously for each country
and correspond to the situation in the first lockdown period. We will discuss possible
changes to these choices following a relaxation of the lockdown in the different
scenarios presented below.

We divided the computation time frame into two zones and used different models
in each zone, in accordance with the policy adopted by the various countries. The
first time interval defines the period without any form of containment, the second
the lockdown period. In the first zone we adopted the uncontrolled model with
homogeneous mixing for the estimation of epidemiological parameters. Hence, in
the second zone we compute the evolution of the feedback controlled age dependent
model (17) with matching (on average) interaction and recovery rates (23) and with
the estimated control penalization κ(t). The initial values for the age distributions
of susceptible have been taken from the specific demographic distribution of each
country. More difficult is to get the same informations for the infected, since re-
ported data are rather heterogeneous for the various country and the initial number
of individuals is very small (we selected a time frame where the reported number of
infectious is larger than 200). Therefore, we tested the available data against a uni-
form distribution. As there were no particular differences in the results, we decided
to adopt a uniform initial distribution of the infected for all countries. In Figure 8
we report the age distribution of infected computed for each country at the end of
the lockdown period using an age dependent recovery and a constant recovery. The
differences in the resulting age distributions are evident. In subsequent simulations,
to avoid an unrealistic peak of infection among young people, we decided to adopt
an age-dependent recovery [50].

3.6.1. Scenario 1: Relaxing lockdown measures at different times. In the first sce-
nario we analyze the effects on each country of the same relaxation of the lockdown
measures at two different times. The first date is country specific accordingly to
current available informations, the second is June 1st for all countries. For all coun-
tries we assumed a reduction of individual controls on the different activities by
20% on family activities, 35% on work activities and 30% on other activities with-
out changing the control over the school. The behaviors of the curves of infected
people together with the relative 95% confidence bands are reported in Figure 9.

The results show well the substantial differences between the different countries,
with a situation in the UK and US that highlight that the relaxation of lockdown
measures could lead to a resurgence of the infection. On the contrary, Germany
and, to some extent Spain, were in the most favorable situation to ease the lockdown
without risking a new start of the infection.
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Figure 8. Age distribution of infected using constant and age de-
pendent recovery rates as in (24) at the end of the lockdown period
in different countries.

3.6.2. Scenario 2: Impact of school and work activities. In order to highlight the
differences in the infection dynamics according to the choices related to specific
activities, such as school and work, we have considered the effects of a specific
lockdown relaxation in these directions. Precisely for each country we have identified
a range for such loosening which gives an indication of the maximum allowed opening
of the activities before a strong departure of the infection.

It was assumed to relax the lockdown of the school with a mild resumption
of family, work and other activities interactions by 5% for each 10% release of the
school. The results are reported in Figure 10. Next, we perform a similar relaxation
process oriented towards productive activities with a reduction of control on such
activities at various percentages. Here we assumed no impact on school activities
and a mild impact on family and other activities with a loosening at 5% for each 10%
release of the work. The results are given in Figure 11. In both cases, the results
show different infection dynamics in the selected countries as a consequence of the
relaxation of lockdown policies. In particular, in the UK and USA any relaxation
could determine a strong restart of the epidemic.

3.6.3. Scenario 3: Restarting activities while keeping the curve under control. One
of the major problems in the application of very strong containment strategies, like
lockdown measures, is the difficulty in maintaining them over a long period, both
for the economic impact and for the impact on the population from a social point
of view.

The results presented in Section 3.6.2 that the impact of relaxation policies may
strongly differ one country from another.

In this latter scenario, we consider a strategy based on a two-stage opening of
the blocking measures with a progressive approach. This possibility is analysed
for the four countries where the infection curve appears less sensitive to relaxation
policies, i.e. Germany, Spain, France, and Italy. For each country we have selected
a progressive lockdown relaxation focused mainly on the opening of productive
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Figure 9. Scenario 1: Effect on releasing containment measures
in various countries at two different times. In all countries after
lockdown we assumed a reduction of individual controls on the dif-
ferent activities by 20% on family activities, 35% on work activities
and 30% on other activities by keeping the lockdown over the
school.

activities in the second phase and with a partial reprise of school activities in the
third phase. The reduction of the controls are now country specific and the values
are reported in Table 2. In Figure 12 we plot the resulting behavior for the expected
number of current infectious. The simulations show that for all these countries,
the relaxation of containment measures was possible while keeping the infection
curve under control. However, timing and intensity of the relaxation choices play a
fundamental rule in the process.

4. Conclusions. In order to contain epidemic dynamics, it is essential to have
models capable of describing the impact of non pharmaceutical interventions, such
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Figure 10. Scenario 2 - school: Effect on releasing containment
measures for school activities in various countries at two different
times. Family, work and other activities are relaxed by 5% for each
10% release of the school activity.

Figure 11. Scenario 2 - work: Effect on releasing containment
measures for productive activities in various countries at two differ-
ent times. School is kept in lockdown. Family, and other activities
are relaxed by 5% for each 10% release of the productive activity.

as lockdown policies, based on specific social characteristics of the country and the
containment actions implemented. In this work, aware of the complexity of the
problem, we have tried to provide a suitable modeling context to describe possible
scenarios in this direction. More precisely, with the aid of compartmental models
incorporating specific feedback controls on social interactions capable to describe
the selective action of a government in opening certain activities such as home,

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 10, 2021. ; https://doi.org/10.1101/2020.05.12.20099721doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.12.20099721
http://creativecommons.org/licenses/by/4.0/


MODELLING LOCKDOWN IN EPIDEMIC OUTBREAKS WITH UNCERTAINTY 23

Figure 12. Scenario 3: Relaxing lockdown measures in a pro-
gressive way in two subsequent phases while keeping the epidemic
peak under control. In the second phase only productive activities
are restarted and partially home interactions and other activities.
In a third phase school activities are also partially reopened (see
Table 2).

Germany
Phase 2 - Phase 3

France
Phase 2 - Phase 3

Italy
Phase 2 - Phase 3

Spain
Phase 2 - Phase 3

Home 30%-60% 10%-25% 10%-15% 20%-25%
School 0%-60% 0%-30% 0%-20% 0%-40%
Work 70%-80% 35%-45% 40%-50% 60%-70%
Other 30%-60% 10%-25% 10%-20% 20%-45%

Table 2. Scenario 3: Progressive relaxation of lockdown mea-
sures for different countries as specific control reduction percent-
ages. Results are reported in Figure 12.

work, school and other activities, we can simulate their impact with respect to the
epidemic trend. In particular, in an effort to take into account the high uncertainty
in the data, the model has been formalized in the presence of uncertain input pa-
rameters that allow to explore hypothetical scenarios with appropriate confidence
bands. Applications to the first wave of the COVID-19 pandemic to different coun-
tries, including Germany, France, Italy, Spain, the United Kingdom and the United
States, has been considered. The results, in accordance with the observations, show
situations with different levels of sensitivity to a hypothetical reopening of certain
activities Further studies are being conducted on geographical dependence through
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spatial variables. This would make it possible to characterize control measures on
a local rather than global basis.
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