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dInstitute of Physics, École Polytechnique Fédérale de Lausanne,

CH-1015, Lausanne, Switzerland
eScuola Normale Superiore,

Piazza dei Cavalieri 7, 56126, Pisa, Italy
f INFN — Sezione di Pisa,

56200, Pisa, Italy

E-mail: lalberte@sissa.it, creminel@ictp.it, akhmelni@ictp.it,

david.pirtskhalava@epfl.ch, enrico.trincherini@sns.it

Abstract: We propose a technically natural scenario whereby an initially large cosmolog-

ical constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar

evolving on a very shallow potential. The model crucially relies on a sector that violates

the null energy condition (NEC) and gets activated only when the Hubble rate becomes

sufficiently small — of the order of the present one. As a result of NEC violation, this low-

energy universe evolves into inflation, followed by reheating and the standard Big Bang

cosmology. The symmetries of the theory force the c.c. to be the same before and after

the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct

magnitude. Importantly, our model allows neither for eternal inflation nor for a set of

possible values of dark energy, the latter fixed by the parameters of the theory.

Keywords: Classical Theories of Gravity, Effective field theories, Global Symmetries

ArXiv ePrint: 1608.05715

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2016)022

mailto:lalberte@sissa.it
mailto:creminel@ictp.it
mailto:akhmelni@ictp.it
mailto:david.pirtskhalava@epfl.ch
mailto:enrico.trincherini@sns.it
https://arxiv.org/abs/1608.05715
http://dx.doi.org/10.1007/JHEP12(2016)022


J
H
E
P
1
2
(
2
0
1
6
)
0
2
2

Contents

1 Introduction 1

2 Relaxing the c.c. without eternal inflation 3

3 Phase transition to NEC violation 6

3.1 A bound on the trigger 6

3.2 Dynamics of the transition and a bound on Λ⋆ 7

4 Slow violation of the NEC 10

5 Fast violation of the NEC 12

5.1 A method for constructing strongly NEC-violating cosmologies 13

5.2 Perturbations and stability 15

5.3 An ansatz 16

5.4 How to strongly violate the NEC within a stable and subluminal effective

field theory 17

5.5 The sliding cutoff 20

6 Reheating the universe after NEC violation 21

7 Conclusions and outlook 24

1 Introduction

The cosmological constant problem is arguably the biggest conundrum in physics today. It

is fair to say that the “anthropic” explanation [1] is at the moment the most compelling,

even if the lack of a concrete way of testing it leaves a lot of room for personal taste and

heated discussions. Anthropic explanations have the danger of “premature application”,

quoting S. Dimopoulos, and the purpose of this paper is to try to find an alternative

explanation for the smallness of the c.c. We are going to discuss a “historical” explanation

in which the universe dynamically evolves towards a state with a small vacuum energy and

we are heavily inspired by Abbott’s original relaxation mechanism [2] and more recent ideas

about the relaxation of the electroweak hierarchy [3] (for earlier studies, see [4, 5]). The

idea of the model is simple (while its actual implementation is not). A scalar, φ1, moving

on a potential with a slight negative tilt slowly scans the value of the vacuum energy,

starting from large and positive values.1 To avoid large quantum fluctuations and thus

eternal inflation with all its disturbing consequences, we will need this field to be a ghost

1Since we will be considering time-dependent solutions, the relaxation evades Weinberg’s theorem [1].
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condensate [6] (section 2). As the field progresses, the Hubble friction becomes smaller

and smaller and changes the dynamics of relaxation; this triggers a phase transition in a

second sector of the theory, described by a scalar φ2 (section 3). Crucially, this second

sector needs to violate the Null Energy Condition: this is mandatory since any relaxation

mechanism has to probe the small energies associated with the observed c.c. before the

standard cosmology takes place [7]. We are going to present two models which violate

the NEC and give rise to the observable universe: one based on another ghost condensate

(section 4) — as promised the implementation of the idea is not simple — and the second

on a Galileon theory (section 5). In both cases a symmetry forces the c.c to be the same

before and after the NEC violating phase, so that the observed value of the c.c. is the

one relaxed early on. The transfer of energy from the NEC violating sector to standard

matter is realized with the aid of a waterfall field χ (section 6), similarly to what happens

in hybrid inflation [8].

It is important to stress that our model does not allow for a set of possible values of the

observed vacuum energy: the universe violates the NEC and reheats when a particular value

of the c.c. is reached. In this aspect the model is at variance with [2, 3, 7]. Once different

values for the c.c. or the electroweak scale are possible the Pandora’s box is open: one is

forced to address the measure problem in the landscape and to ponder on the anthropic

weight, completely defeating the purpose.

Notice that a dynamical solution of the c.c. problem requires a full description of the

whole cosmological evolution, since the relaxation happens before the standard cosmology.

In particular, the NEC violating phase must be followed by a period of inflation (or some

alternative thereof) to give rise to the scalar perturbations we observe. The resulting model

is clearly complicated (see figure 1 for a schematic sketch) and involves very different energy

scales and vacuum expectation values which, although technically natural, make the picture

aesthetically unpleasant. It is difficult to believe the universe really works in this way. This

may be due to the authors’ lack of imagination and more compelling models may be found.

We see at least two strong motivations to push further the idea of relaxing the c.c.

First, there is a huge experimental activity to test dark energy and its phenomenological

differences from a pure vacuum energy. The only raison d’être of dark energy is the

cosmological constant problem. However, ironically, almost none of the discussed models

addresses this problem in any way (and some introduce additional fine tunings on top of the

c.c. one). Notable exceptions are, for example, “global” modifications of gravity [9–11] and

“degravitation” models [12–14]. While there is a strong activity in constraining generic

models of dark energy, there is no reason to expect their phenomenology has anything

to do with the physics which solves the c.c. problem (if any). In our scenario, the two

sectors (the one relaxing the vacuum energy and the one violating the NEC) are also dark

energy components nowadays, but now indeed related to the c.c. problem! The present

dark energy is related, albeit in a model-dependent way, to the violation of the NEC in the

past and does not reduce simply to a small vacuum energy. The second motivation is fully

theoretical. A dynamical relaxation of the c.c. needs a subsequent violation of the NEC. It

is not yet clear whether some general UV obstructions to building NEC violating theories

exist. Stopping the exploration in this direction would be a clear premature application of

the anthropic principle.
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Figure 1. A sketch of the universe’s expansion rate as a function of time in our model. More details

on each of the four stages (relaxation, phase transition in the NEC-violating sector, violation of the

NEC, inflation/reheating) as well as on the notation used are provided in the following sections.

2 Relaxing the c.c. without eternal inflation

The mechanism responsible for relaxing the cosmological constant ought to satisfy two

basic requirements. First, if that mechanism is to be free from fine tuning, it must be

stable under order-unity variations of the initial vacuum energy. And second, it has to be

dominated by classical dynamics in order to bypass the standard problems with defining

the cosmological probability measures. We will see that these two requirements alone

significantly constrain the ways in which the relaxation of the cosmological constant can

be realized.

Perhaps the simplest realization that complies with the above conditions is provided

by an approximately shift-symmetric scalar φ1, governed by the following low-energy

effective action

S =

∫

d4x
√−g

[

M4
1P1 (X1) + λ3

1φ1 − Λ⋆ + . . .

]

. (2.1)

Here, Λ⋆ = 3M2
PlH

2
⋆ is the cosmological constant we wish to relax (which we assume to be

positive), λ1 is set by some small scale (with ‘small’ quantified shortly), and P1 is a generic

function of

X1 ≡ −gµν∂µφ1∂νφ1

M4
1

. (2.2)
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Furthermore, by the ellipses we denote all other operators in the effective theory, suppressed

by inverse powers of the cutoff M1 and/or the shift symmetry-breaking spurion2 λ1.

Suppose now that the scalar is canonical, P1 = X1/2, and that it starts slowly rolling

down the linear potential from a generic point where the effective dark energy density (that

also includes the contribution from the scalar’s potential energy) is of the order of Λ⋆. In

the course of the evolution, the cosmological constant adiabatically decreases. (Since the

universe is inflating, all other sources of energy will be quickly diluted away.) Slow roll

(|Ḣ| ≪ H2) requires a sufficiently flat potential

λ3
1 ≪ MPlH

2 (slow roll) , (2.3)

while the condition that the dynamics be classical reads

φ̇1

H
≫ H ⇒ λ3

1 ≫ H3 (classical evolution) . (2.4)

Requiring (2.3) and (2.4) to be marginally satisfied respectively for the present value of the

expansion rate (when H ≃ H0 ∼ 10−33 eV) and at the initial stages of relaxation (when

H ≃ H⋆) yields an upper bound H⋆ ≪ (MPlH
2
0 )

1/3. This corresponds to the following

maximal value of the relaxed energy density

Λmax ∼ M
8/3
Pl H

4/3
0 ∼ (10MeV)4 . (2.5)

Thus, a slowly rolling canonical scalar can not relax a cosmological constant larger than

∼ (10MeV)4 if it is to conform to purely classical dynamics all along.

The last conclusion draws heavily upon assuming a constant slope of the scalar po-

tential. One can in principle give up this requirement, allowing for a slope that changes

adiabatically in the course of the evolution, in a way that is optimally compatible with

both conditions (2.3) and (2.4). One could imagine a potential which is steep at the early

stages of relaxation (when H ∼ H⋆), while becoming flat at times when the Hubble rate

drops down to ∼ H0. Such a potential can be made compatible with both slow roll and

classical evolution all along the relaxation trajectory by tuning the tilt V ′ to lie in between

V/MPl and (V 1/2/MPl)
3 at any particular moment of time. The corresponding situation is

depicted in figure 2. However, it necessarily entails fine-tuning: an order-unity variation of

the initial cosmological constant (without changing the potential and the initial conditions)

would result in a breakdown of one of the above two conditions way before the effective

cosmological constant drops down to the desired value. In other words, the potential has

to ‘know’ when H becomes small, and this brings back the usual fine tuning of the c.c.

The constraint (2.4) that arises from requiring classical evolution of φ1 can be made

milder3 and even removed altogether if the background dynamics is in a different, ghost-

condensate regime [6].4 This is described by a particular attractor solution with a constant

2In the absence of gravity, λ1 does not break the scalar’s shift symmetry, meaning that the symmetry-

breaking terms are naturally suppressed both by λ1 and by further powers of the Planck mass.
3For example, this happens in k-inflation models [15].
4We refer to this regime as ‘ghost condensate’, even though φ1 does not necessarily have to describe a

ghost on its Poincaré-invariant vacuum (φ1 = const), which may or may not be connected to φ̇1 6= 0 vacua

within the same low-energy EFT (of course, the Poincaré-invariant vacuum only exists in the limit λ1 → 0).
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Figure 2. The slope of the potential as a function of the effective dark energy V = −λ3
1φ1 + Λ⋆.

The green region corresponds to the allowed window, compatible with both the slow-roll dynamics

and classical evolution. Adjusting the slope so as to make it optimally compatible with both

requirements (blue curve) inevitably entails fine tuning. A change in the initial c.c. of the order

of Λ⋆ leads to a breakdown of the slow-roll regime before the cosmological constant relaxes to

sufficiently low values (red curve). The case corresponding to a constant slope is depicted by the

horizontal purple line. The figure is not to scale and we have set MPl to one.

velocity that corresponds to a minimum of the function P1:

X1 =
φ̇2
1

M4
1

= 1 . (2.6)

For a non-vanishing tilt of the potential, this solution is slightly perturbed by a homoge-

neous mode π1 ≡ φ1−M2
1 t, whose velocity is driven to the following terminal value by the

expansion of the universe5

π̇1 ≃
λ3
1

3H
. (2.7)

Imposing that π be a small perturbation then yields λ3
1 ≪ 3HM2

1 .

For our purposes, the virtue of the ghost condensate is that the field always evolves

classically as long as the cutoff of the theory is well above the Hubble scale (that is, as

far as the low-energy EFT is valid). In particular, the relative quantum versus classical

variation of φ1 over an e-fold reads [16]

(δφ1)quant
(δφ1)class

∼
(

H

M1

)5/4

. (2.8)

5We assume the canonical normalization for π1, which corresponds to P ′′

1 (1) = 1/4 [6, 16].
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The peculiar expression for the spectrum of the scalar’s quantum fluctuations arises from

the fact that their gradient energy comes from higher derivative operators in the effective

theory, while the quadratic in momentum contribution vanishes at the leading order in

ǫ ≡ −Ḣ/H2. This results in a dispersion relation of the form ω2 ∼ k4/M2
1 around Hubble

frequencies, leading to (2.8). Most importantly for our purposes, the amplitude of quantum

fluctuations is independent of the tilt of the potential and remains small even in the limit

λ1 → 0. (Although we stick here to the ghost-condensate for concreteness, one can consider

other models that keep a classical motion in the λ1 → 0 limit, for example based on Galilean

symmetry [17].)

The very same higher-derivative operators that determine the spectrum of short-

wavelength perturbations of φ1 also induce a Jeans-like instability for long-wavelength

modes, once the effects of mixing with gravity are taken into account [6]. Requiring the

characteristic time scale of this instability to be longer than the current Hubble time

strongly constrains the cutoff of the theory [6]:

M3
1 < M2

PlH0 ∼ (10MeV)3 . (2.9)

Using this constraint and imposing that the relaxation proceeds within the regime of valid-

ity of the low-energy effective field theory (i.e. M1 > H⋆) yields the following upper bound

on the magnitude of the relaxed cosmological constant: Λ⋆ ∼< M
10/3
Pl H

2/3
0 ∼

(

105TeV
)4

.

We will see in what follows that this estimate is too optimistic: the structure of the model

imposes M1 . 10−3 eV, which is well compatible with the bound (2.9) imposed by stability.

The validity of the low energy EFT thus requires Λ⋆ ∼< (1TeV)4.

The ghost condensate entails no constraint on the tilt of the potential from the require-

ment of classical evolution. However, the upper bound from imposing a quasi-stationary

relaxation, ǫ ≪ 1, is still there, and it reads:

ǫ0 ≡
(

− Ḣ

H2

)

H=H0

≃ λ3
1M

2
1

6M2
PlH

3
0

≪ 1 . (2.10)

This constraint can be always satisfied by taking λ1 small enough. Moreover, using (2.10),

the correction to the φ1 velocity (2.7) can be expressed through ǫ as
(

π̇1
M2

1

)

H=H0

≃ 2
M2

PlH
2
0

M4
1

ǫ0 . (2.11)

Below, we will consider a scenario where the quasi-stationary evolution of the back-

ground breaks down (i.e. ǫ becomes greater than one) not much later than when the Hubble

rate drops to H ∼ H0. Eq. (2.11) then shows, that for M4
1 ∼ M2

PlH
2
0 — the value of the

EFT cutoff we will be particularly interested in — the background starts to deviate by

order one from the ghost condensate solution (2.6) around the same time.

3 Phase transition to NEC violation

3.1 A bound on the trigger

After having relaxed the large cosmological constant Λ⋆, the universe finds itself in an

empty state with tiny curvature. To turn this into a realistic scenario, one has to specify

– 6 –
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a NEC-violating mechanism responsible for creating energy density that corresponds to at

least the lowest possible reheating temperature compatible with Big Bang nucleosynthesis,

Treh ∼> 5MeV [18, 19]. It is crucial that the dynamics that eventually leads to reheating get

activated only when the relaxation has reached a certain stage: this will fix the observed

value of the c.c. Notice that the relaxation mechanism guarantees the smallness of the

vacuum energy in the low-temperature vacuum (there is no thermal plasma during the

relaxation): after reheating the thermal history of the universe will include various phase

transitions with corresponding jumps in the vacuum energy; however the c.c. we observe

today will be small provided the final vacuum is the same as the one we relaxed early on

(or is related to it by a symmetry).

The violation of the NEC will be achieved by a field φ2 which, as we will see, has an

action similar to (2.1) in most of the field space, with a cutoff M2. We envision a sort

of phase transition for φ2 triggered by the relaxation field φ1: at early times the field φ2

is at rest (or this degree of freedom may even not exist early on) and only later, once a

certain value of the c.c. is reached, a phase transition occurs to the NEC-violating regime.

Regardless of the details of the phase transition, it is clear that it will induce a change

in the vacuum energy of the order of ∼ M4
2 and this imposes a severe constraint on the

model. Since this jump occurs after the relaxation, it must be small compared to the

observed c.c. to avoid reintroducing fine tuning. Therefore, the NEC-violating sector has

to be characterized by a low cutoff6

M2 ∼< Λ
1/4
0 ∼ 10−3 eV . (3.1)

For the scenario at hand to work, it is obviously important that the effective c.c. has

not been reduced significantly by the dynamics of φ1 taking place from the onset of the

NEC-violating phase up to the present time. As we will see, this leads to significant bounds

on the sector of our model responsible for violating the NEC.

3.2 Dynamics of the transition and a bound on Λ⋆

We have remarked above that the NEC-violating dynamics of φ2 should be triggered when

the Hubble rate drops down to values of order H0. In principle, this can happen in a few

different ways. One could imagine that the effective action of φ2 is directly sensitive to the

Hubble rate, for example as a consequence of integrating out a degree of freedom σ with

mass fixed by the curvature through a non-minimal coupling Rσ2. Another possibility —

more along the lines of refs. [2, 3] — to make the system sensitive to the varying Hubble

rate, is to invoke strong dynamics. Unfortunately, neither of these possibilities work for

our purposes. In the first case, the mass of σ will receive radiative corrections at least

of order Λ⋆/M
2
Pl ∼ H2

⋆ so that, barring fine-tuning, the dependence on H is irrelevant

for H ≪ H⋆. In the second case, one can invoke another sector that confines at energies

6To trust the low energy EFT of φ2, at no point during the relaxation process should the Hubble rate

exceed this scale. This would impose an upper bound, H⋆ ∼< M2, on the curvature of the universe, corre-

sponding to a maximal value of the cosmological constant Λ⋆ . (1TeV)4. This bound is not very robust,

since there is nothing wrong if at the beginning of the relaxation one is sensitive to the UV completion of the

φ2 sector. However a very similar bound will be derived below using constraints on the relaxation sector.

– 7 –



J
H
E
P
1
2
(
2
0
1
6
)
0
2
2

around H0 and affects the dynamics of φ2 in some way. However, the energy density

that such a strongly-coupled sector can store is at most of order H4
0 — much less than

the characteristic energy density of the NEC-violating sector of our model M4
2 ∼ M2

PlH
2
0 .

This makes it practically impossible for the confining phase transition to influence the φ2

dynamics in any significant way.

The other route — the one we will stick to below — to encode information about the

background evolution into the EFT of φ2 is to couple it directly to the scanning scalar φ1

through some Lagrangian term

S ⊃
∫

d4x
√−gM4

2P (X1, X2) . (3.2)

The deviation π1 of φ1 from the exact ghost condensate solution (2.6) is negligible at early

times while X2 is assumed to vanish at that stage. However, π1 grows with the relaxation

of the cosmological constant as a result of the reduced Hubble friction: the system is thus

naturally sensitive to the zero of the vacuum energy. In particular, there is a significant

change in the interactions described by (3.2) around the time when π̇1/M
2
1 becomes of order

one. We will assume, that this causes the dynamics of φ1 and φ2 to change qualitatively

— the latter scalar resetting after the phase transition onto its NEC-violating trajectory.

The observed value of the c.c. is therefore fixed, using eq. (2.7), in terms of the parameters

of the model as

Λ0 ∼
λ6
1M

2
Pl

M4
1

. (3.3)

Depending on how the behaviour of the scanning field φ1 changes at the phase transition,

one has very different constraints on the dynamics of the NEC-violating sector.

The first possibility is that φ1 gets stabilized in a trivial vacuum, φ1 = const, after the

effective field theory for the scanning field breaks down at π̇1/M
2
1 ∼ 1. The scanning of

the cosmological constant therefore terminates at the value Λ ∼ Λ0 and there is essentially

unlimited time for the NEC violation to proceed. We describe the corresponding scenario

with slow NEC violation in section 4. One expects the new vacuum of φ1 to have an energy

density that differs from that in the rolling state by ∼ M4
1 . In order for this change in the

effective cosmological constant not to spoil relaxation we require

M1 . Λ
1/4
0 ∼ 10−3 eV . (3.4)

Since the scale M1 determines the cutoff of the φ1 theory, it imposes an upper bound on

the maximal value of the cosmological constant to be relaxed

Λ⋆ ≡ 3M2
PlH

2
⋆ ∼< M3

PlH0 ∼ (1TeV)4 . (3.5)

We will assume that in the scenario with slow NEC violation the characteristic scales of

the scanning sector and the NEC violating sector are similar, M1 ∼ M2 ∼ Λ
1/4
0 .

In the second scenario the scanning of the cosmological constant continues. To remain

within the regime of validity of the EFT we can assume that NEC violation kicks in when

the deviation from φ̇1 = M2
1 is still moderately small

(

π̇1
M2

1

)

H=H0

= x . 1 . (3.6)

– 8 –
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Notice, however, that x cannot be very small since it is difficult to imagine how a tiny

variation of φ̇1 can induce a phase transition. At this point, φ1 continues to scan the

cosmological constant at a rate given by eq. (2.11)

ǫ0 ∼ x
M4

1

Λ0

. (3.7)

The NEC-violating accumulation of the energy density and reheating in this scenario thus

has to be fast and complete within the time of order (ǫ0H0)
−1 — before the effective

cosmological constant further decreases by a significant amount. We provide an example

of how this can happen in section 5. The bound on the maximal value of the relaxed

cosmological constant (3.5) in this case reads

Λ⋆ . 3M2
PlM

2
1 ∼ M2

PlΛ
1/2
0

(ǫ0
x

)1/2
∼ (1TeV)4

(ǫ0
x

)1/2
. (3.8)

Thus, in order to avoid significantly reducing Λ⋆, it is necessary to assume that the energy

density of the scanning field evolves with a not-too-small ǫ0. On the other hand, the non-

vanishing value of ǫ0 is related to the current dark energy equation of state parameter

(wDE + 1), constrained to be less than 0.05 [20].

One could worry that in the second scenario the effective cosmological constant will

continue to scan values much smaller than Λ0. This however is not the case since φ1 remains

on the slow-roll trajectory only for the time of order (ǫ0H0)
−1, after which ǫ becomes of

order one and the system exits the slow-roll regime. Thus, the magnitude of the scanned

effective cosmological constant never falls below its value at the moment of the breakdown

of slow-roll (see eq. (2.10))

Λmin ≃ ǫ
2/3
0 Λ0 . (3.9)

After the breakdown of slow-roll, the evolution of φ1 drives the potential energy to negative

values, causing the expansion of the universe to be followed by a fast contracting phase

that ends in a collapse within a Hubble time at that moment, H−1
ǫ ∼ ǫ

−1/3
0 H−1

0 .

Notice that the displacement of φ1 to relax Λ4
⋆ is of order ∆φ ∼ Λ4

⋆/(H0M
2
1 ), us-

ing eq. (3.3). This gives a disturbingly large displacement ∆φ1/MPl ≃ MPl/H0 using

eqs. (3.4) and (3.5).

An important difference between the two scenarios is that in the former the Universe

gets eventually stuck in a de Sitter vacuum: one has eternal inflation in the future. This

reintroduces to some extent the measure problems. In the second scenario, on the other

hand, the scanning continues and one eventually ends up in a AdS vacuum, so that eternal

inflation is avoided.

We stress that independently of the fate of φ1, our scenario can relax at most a vacuum

energy of order (TeV)4. Reducing higher values would require understanding the UV com-

pletion of the scanning field, or invoking other means of cancellation, e.g. supersymmetry,

broken not too far from the TeV scale or another relaxation mechanism. Notice that the

bounds on Λ⋆ discussed in this section are much stronger than the ones based on stability

we discussed above.
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In this paper we do not attempt to study the phase transition to the NEC-violating

regime. We wish however to argue that its details should not modify the global picture of

the scenario. One could imagine the transition to proceed by nucleation of regions with

the new phase or by a smooth cross-over to the NEC violating regime. In the first case

the bubbles — or whatever describes the nucleation of the new phase — will give rise to a

very inhomogeneous universe on scales much shorter than Hubble, while the long period of

relaxation guarantees homogeneity on larger scales. Since the energy released in the phase

transition is of the order of the cosmological constant, the total energy in the inhomo-

geneities cannot largely exceed the vacuum energy. We thus argue these inhomogeneities

will be quickly erased as the universe is accelerating and soon it will even violate the NEC

(the problem is similar to the start of inflation in the presence of initial inhomogeneities;

for a recent study see [21]). The other option is that the phase transition is smooth like

the waterfall transition at the end of hybrid inflation. In this case we do not expect the

formation of large inhomogeneities even on short scales.

4 Slow violation of the NEC

In the case that the evolution of the scanning field φ1 stops as a result of the phase

transition, φ2 has essentially unlimited amount of time for building up the inflationary

energy density through its NEC-violating dynamics. The Lagrangian for the latter field

that we will implement for these purposes is then similar to (2.1)

Sφ2
=

∫

d4x
√−g

[

M4
2P2 (X2)− V (φ2) + . . .

]

, (4.1)

where the shape of the potential V (φ2) is sketched in figure 3. After acquiring a non-zero

velocity (φ̇2 = M2
2 ), φ2 starts rolling towards a piecewise linear potential. We assume that

the theory (including the potential) enjoys a global Z2 symmetry under reflection of the

field with respect to the origin, φ2 → −φ2. Moreover, we will assume that in the shift

symmetric region, the theory is also invariant under reflections of φ around a generic point

in the field space.7 In this way the theory is invariant under the flip of sign of the field

velocity in the shift symmetric region. The combination of these two symmetries implies

that the system has the same vacuum energy before and after the feature in the potential

(see figure 3).8 The presence of a feature in the potential for a certain range of φ2 will not

spoil the shift symmetry away from it, since renormalization is local in field space.

Upon climbing up the positive slope, it slowly builds up energy, thereby violating the

NEC [22]. We will denote the maximal energy density created this way by M4
I . The validity

of the EFT of φ2 bounds MI : M2
I /MPl . M2 that gives MI .TeV using eq. (3.1). After

NEC violation has ceased and φ2 finds itself on the plateau on top of the potential, its

coupling to some ordinary matter field χ is assumed to activate, by means of which the

7Notice, that this property is not implied by the global Z2 symmetry. For example, the operator

tanh(φ2)(∂φ2)
2�φ2 is allowed by the global Z2 symmetry, but reduces to an operator with an odd number

of fields in the shift-symmetric region.
8In the next section we will employ a different symmetry for this purpose.
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Figure 3. The potential V (φ2) for the NEC-violating scalar. The figure is not to scale: all slopes

are extremely small compared to the scale setting the potential’s height.

latter acquires potential energy. At this point the universe is assumed to undergo inflation

and (after φ2 rolls back to the region with a vanishing potential) to reheat through the

dynamics of χ. This connects our scenario to the standard Big Bang cosmology, which, at

late times (and after all possible phase transitions have happened) finds itself in a state

with a small cosmological constant Λ0. We will postpone discussing how inflation and

reheating fit into this picture until section 6.

On the way up the positive slope, one has to deal with the known problems associated

with NEC violation (see, e.g. [22, 23]). In the particular case of the ghost condensate there

are two possible issues: besides the Jeans-like instability discussed above eq. (2.9) there is

a gradient instability associated with NEC violation. The rates corresponding to these are

respectively ωJeans ∼ M3
2 /M

2
Pl and ωgrad ∼ ḢM2

Pl/M
3
2 . These instabilities are harmless if

these rates are less than the expansion rate of the universe, which imposes the following

bounds on M2 [22]

Ḣ

H ∼<
M3

2

M2
Pl

∼< H . (4.2)

We have encountered an analogous upper bound in the context of the scanning field φ1;

it yields a constraint, similar to eq. (2.9), M2 ∼< (M2
PlH0)

1/3 ∼ 10MeV. This is a much

weaker constraint than the one we derived in eq. (3.1) based on naturalness of the NEC-

violating phase transition. The lower bound on M2 that follows from (4.2), on the other

hand, strongly constrains the slope of the linear piece of the potential, V ′(φ2) = λ3
2,

λ3
2 ∼< M2H

2
0 . (4.3)

Note that the above constraint forces λ2 to be extremely small compared to the height

of the potential MI . Indeed, assuming that the latter scale takes on its maximal value,

M4
I ∼ Λ⋆, we have

λ2

MI
∼<

(M2H
2
0 )

1/3

(M3
PlH0)1/4

∼
(

Λ
1/4
0

MPl

)7/6

∼ 10−35 . (4.4)
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As in the case of the scanning field φ1, the smallness of λ2 is technically natural given that

it is a spurion of φ2 shift symmetry breaking.

The smallness of λ2 significantly limits the speed at which energy density can be built

up by the dynamics of the NEC-violating sector. One can readily estimate how long it

takes for φ2 to roll up the linear slope. Assuming that the energy density grows all the

way up to M4
I ∼ Λ⋆ in the process, we have

ρ ≃
∫

ρ̇ dt ∼ λ3
2M

2
2 t ∼ Λ⋆ . (4.5)

Making use of eqs. (3.1), (3.5) and (4.3), the resulting time scale can be expressed as

t &
1

H0

Λ⋆

M3
2H0

∼ 1090

H0

. (4.6)

The time required to create a sizeable amount of energy density is way beyond the Hubble

time right before the onset of the NEC-violating phase transition. This is due to the

smallness of the cutoff M2 compared with the energy density we want to produce. Slow

violation of the NEC is therefore only relevant if the scanning of the cosmological constant

stops completely as a result of this transition. Much faster violation of the NEC is possible,

provided the cutoff evolves in time, as we will study in the next section.

5 Fast violation of the NEC

Rather than stopping, the scanning field may retain a non-zero speed φ̇1 ∼ M2
1 after the

transition to the NEC-violating phase. In this case it is crucial that this phase followed

by inflation and reheating complete relatively fast, within a time of order, or less than

(ǫ0H0)
−1. This will guarantee that, by the time the universe reaches its present state, the

cosmological constant has not been reduced by a significant amount.

For the purposes of achieving fast NEC violation, we will again rely on a theory that

in most of the φ2-field space is described by a ghost condensate-like shift-symmetric action.

The shift symmetry is only broken in a narrow interval of width ∆φ2, centered at φ2 = 0,

see figure 4 for an illustration. This region is also where the violation of the NEC happens

in our model, as we discuss shortly. A successful implementation of the scenario requires

that the φ2 field space be periodic with a period f2, so that any φ2 is identified with

φ2 + f2. The virtue of periodicity is twofold. First, periodicity, together with invariance

under internal shifts, imposes that away from the red region with broken symmetry, the

value of the cosmological constant is identical on the two sides of that region, see figure 4.

Second, periodicity of φ2 is important for naturalness of the model under consideration.

This is because, given the limited time for the NEC-violating phase to complete, φ2 has

to hit the red region with broken symmetry within a time that does not parametrically

exceed (ǫ0H0)
−1 (we are assuming the phase transition will leave φ2 in a generic point of

the field space).9 Since φ2 moves with a constant speed φ̇2 ∼ M2
2 in the shift-symmetric

9Given the periodicity, one can imagine to have a cyclic evolution of the universe [7] which goes through

NEC violation many times. As discussed around eq. (3.9), the cosmological constant will continue the

scanning only until the breaking of slow-roll, so that its value will not be parametrically different in the

various cycles, unless ǫ0 is not very suppressed.
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Figure 4. The structure of the φ2 effective theory (the endpoints of the depicted field space are

identified).

region, this translates, assuming M4
2 ∼ M2

PlH
2
0 (see eq. (3.1)), and ǫ0 ∼ 1, into f2 . MPl.

This is reminiscent of the constraint on axion decay constants that follows from the weak

gravity conjecture of ref. [24].

5.1 A method for constructing strongly NEC-violating cosmologies

To complete the picture we have to come up with an explicit example of a theory with the

symmetry structure illustrated in figure 4 that would lead to a strong violation of the NEC.

Rather than constructing solutions to a particular theory that conforms to the asymptotic

symmetries of interest, we will employ a trick whereby the appropriate theory itself is

reverse-engineered based on a postulated ansatz for the desired cosmological evolution.

For our purposes, this will provide a mechanism to smoothly build up the inflationary

energy density within a period t✘✘✘NEC ∼< H−1
0 — at the same time avoiding instabilities

and superluminal perturbations usually associated with NEC violation. Our presentation

draws heavily on an analogous construction of ref. [25].

Inspired by the fact that NEC violation is possible in Galileon theories, let us consider

a theory of the following form (it is convenient to work with a dimensionless angle, defined

as θ ≡ φ2/f2):

Sθ =

∫

d4x
√−g

[

f2
2F1(θ)(∂θ)

2 +
f3
2

M3
θ

F(θ)(∂θ)2�θ +
f3
2

2M3
θ

F2(θ)(∂θ)
4 − V (θ)

]

. (5.1)

To reheat the universe, we are going to need an extra scalar, χ, which will act as a waterfall

field; we postpone this discussion to the following section and consider only the field θ here.

F1,2 and F are a priori arbitrary dimensionless functions of θ. The typical values of the

decay constant f2 we will have in mind are around the Planck scale, and often we will

simply assume f2 = MPl. Since the coefficients of the operators are arbitrary we can

choose for later convenience

M3
θ =

3

2
f2H

2
0 . (5.2)
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Furthermore, we will be interested in the functions F1,2 and F such that the resulting

theory complies with the symmetry requirements illustrated in figure 4. In particular these

functions must be constant asymptotically with the same value on the two sides of the

shift-breaking region. For reasons that will become clear below, we will also assume that F
is very small in the shift-symmetric part of the field space (while we will have F1 ∼ F2 ∼ 1).

What this means in practice is that the higher-derivative Galileon has the right magnitude

dictated by the derivative expansion, and it thus gives sub-leading effects compared to

the more relevant one-derivative operators.10 We will have to break this náıve power

counting in the NEC-violating region with broken shifts, where the Galileon operator will

play a crucial role. Notice it is consistent and technically natural to have a large �θ(∂θ)2

operator compared to the (∂θ)4 since the first one is Galilean invariant, while the second is

not [26]. Regarding the potential, we are going to look for solutions such that the potential

after the shift-breaking region is much larger than before: the idea is that the waterfall field

χ gets trapped in some minimum with higher potential energy during the NEC-violating

phase. It will eventually return to the same vacuum as before (with a very small, relaxed

cosmological constant), releasing the energy into the thermal bath. Therefore, although

the potential for θ is periodic, the potential energy will be higher until χ drops to the true

minimum. We will come back to this part of the model in section 6.

The dynamics of the system (5.1) is governed by the Einstein’s equations plus the scalar

equation of motion. These however are not independent: as a consequence of diffeomor-

phism invariance, the scalar equation can be traded for the conservation of its stress-energy

tensor via

∇µT
µ
ν = − 1√−g

δSθ

δθ
∂νθ . (5.3)

On homogeneous FRW backgrounds, it is the energy conservation, ρ̇+3H(ρ+ p) = 0 that

yields the θ-equation of motion. Energy conservation on the other hand follows from the

temporal and space components of the Einstein’s equations. Therefore, one can choose the

latter two to make up the complete system determining the background evolution.

The expressions for the energy density and pressure due to a homogeneous evolution

θ(t) are

ρ =
f2
2

H2
0

θ̇2
[

F2(θ)θ̇
2 + 4F(θ)Hθ̇ −H2

0F1(θ)
]

− 2

3

f2
2

H2
0

F ′(θ)θ̇4 + V (θ) , (5.4)

p =
f2
2

3H2
0

θ̇2
[

F2(θ)θ̇
2 − 4F(θ)θ̈ − 3H2

0F1(θ)

]

− 2

3

f2
2

H2
0

F ′(θ)θ̇4 − V (θ) , (5.5)

where ′ denotes differentiation with respect to the argument (so that Ḟ = F ′θ̇). The two

functions F1,2(θ) can be solved for with the help of the Friedmann equations, 3M2
PlH

2 = ρ

10In particular, canonical normalization of the action (5.1) for F1 ∼ F2 ∼ 1 reveals that the cubic

operator is suppressed by powers of the scale (f2H
2
0/F)1/3, while the quartic one — by powers of (f2

2H
2
0 )

1/4.

Requiring the two scales to be comparable as dictated by náıve dimensional analysis (and recalling that

f2 ∼ MPl ≫ H0) yields an extremely suppressed value of F in the shift-symmetric region.
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and M2
Pl(3H

2 + 2Ḣ) = −p, which yield

F1 =
18M2

PlH
2
0H

2 + 9M2
PlH

2
0 Ḣ − 6f2

2FHθ̇3 − 6f2
2F θ̇2θ̈ − 2f2

2 Ḟ θ̇3 − 6H2
0V

3f2
2H

2
0 θ̇

2
, (5.6)

F2 =
9M2

PlH
2
0H

2 + 3M2
PlH

2
0 Ḣ − 6f2

2FHθ̇3 − 2f2
2F θ̇2θ̈ − 3H2

0V

f2
2 θ̇

4
. (5.7)

Now, for any postulated homogeneous profile for θ, F , the Hubble rate H, and the scalar

potential V , one can find a theory (i.e. find F1,2(θ)) such that the chosen background solves

its equations of motion. The recipe for constructing the relevant solutions goes as follows:

i) pick arbitrary background profiles for θ(t), F(t), H(t), and the potential V (θ(t)), ii)

for the chosen profiles, find the time-dependent functions F1,2(t) with the help of (5.6)

and (5.7), iii) invert the expression for θ(t) to find t = t(θ) (we do not have problems of

inversion if we remain within a single period of θ), and iv) using the previous steps find F1,2

as functions of the dynamical field, rather than time: F1,2 = F1,2 (t(θ)). Importantly, we

should check whether a given cosmological solution obtained through the above procedure

is stable and devoid of superluminal perturbations. A detailed analysis of perturbations

for the theory (5.1) can be found in ref. [25], and here we will only present the relevant

expressions without deriving them.

5.2 Perturbations and stability

In the unitary gauge defined by the absence of θ - fluctuations, the system’s only scalar de-

gree of freedom is captured by the curvature perturbation on uniform-density hypersurfaces

gij = a(t)2(1 + 2ζ)δij . (5.8)

A peculiar feature of the theory (5.1) — in particular of the Galileon operator — is that

it leads to second-order equations of motion both for the scalar and for metric on an

arbitrary background. Related to that, the quadratic ζ action takes on the standard

two-derivative form

Sζ =

∫

d4x a3
[

A(t) ζ̇2 −B(t)
1

a2
(∂ζ)2

]

. (5.9)

The kinetic coefficients A and B are given by [22, 25]

A(t) =
M2

Pl(−4M4
PlḢ − 12M2

PlHM̂3 + 3M̂6 + 2M2
PlM

4)

(2M2
PlH − M̂3)2

, (5.10)

B(t) =
M2

Pl

(

−4M4
PlḢ + 2M2

PlHM̂3 − M̂6 + 2M2
Pl∂tM̂

3
)

(2M2
PlH − M̂3)2

, (5.11)

where M4 and M̂3 have been defined as follows

M4(t) =
4

3

f2
2

H2
0

(

2F2(θ)θ̇
4 + F θ̇2θ̈ + 9FHθ̇3

)

− 4

3

f2
2

H2
0

Ḟ θ̇3, M̂3
3 (t) =

4

3

f2
2

H2
0

F θ̇3 . (5.12)
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With the above expressions at hand, we are in a position to postulate an arbitrary NEC-

violating set of profiles H(t), F (θ(t)), θ(t) and V (θ(t)) and check the properties of per-

turbations on the chosen background. In particular, the absence of ghost and gradient

instabilities require A > 0 and B > 0, while subluminal propagation of ζ imposes B/A ≤ 1.

5.3 An ansatz

An ansatz that we will find particularly useful for fast NEC violation is defined by the

following set of relations

θ̇(t) = H0 , F(t) = α(t)
H(t)

H0

, Ḣ(t) = ε(t)H(t)2 , V (t) = 3κ(t)M2
PlH(t)2 , (5.13)

where α(t), ε(t), H(t) and κ(t) are yet unspecified functions.11 The function α(t) quantifies

the role of the Galileon operator in (5.1), while κ(t) determines the fraction of the total

energy density ρ, stored in the potential, κ = V/ρ. A rather attractive feature of this

ansatz is that the kinetic coefficients A and B take a simple form on it

A = 3M2
Pl

36 + 4α2 − 2α(ε+ 9)− 2β − 36κ+ 9ε

(3− 2α)2
, (5.14)

B = M2
Pl

6α(1 + ε) + 6β − 4α2 − 9ε

(3− 2α)2
, (5.15)

where we have set f2 = MPl for simplicity, and have defined

β ≡ 1

H

d

dt
α . (5.16)

Note that according to (5.13) the scalar never changes its velocity after the phase

transition, always moving with θ̇ = H0. For field values far from the shift symmetry-

breaking region in figure 4, if we assume α = 0, this describes a ghost condensate solution.

Prior to hitting that region, there is no potential energy (κ = 0), while the kinetic energy

of θ is

ρθ = 3M2
PlH

2
0 , (5.17)

consistently with having a de Sitter spacetime with the Hubble rate H0 (for simplicity of

presentation, we ignore all other sources of energy except for the sector responsible for

reheating, see below). Upon approaching the region with broken shifts from the left, NEC

violation gradually turns on (ε(t) > 0), and the Hubble rate starts increasing. Subsequently,

when the NEC-violating dynamics ceases and θ rolls back into the shift-symmetric part of

the field space, the curvature of the universe becomes constant again. However, it is not

the same as prior to NEC violation. Incorporating reheating (see section 6) requires that

the Hubble rate after NEC violation, HI , be much larger than H0. Moreover, the energy

density at this stage is almost fully due to the potential energy of the reheating sector,

meaning that κ ≃ 1 to a very good approximation. Eventually θ should return to the same

11Note the unconventional sign in the definition of ε in (5.13) as opposed to the slow-roll parameter,

ǫ = −ε, we worked with in the previous sections.
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state after the NEC-violating phase (recall that the Lagrangian of θ is periodic), where it

still contributes to the energy density of the universe by the amount ρθ in (5.17).12 The

Friedmann equation right after the NEC-violating phase can then be written as

3M2
PlH

2
I = 3κM2

PlH
2
I + 3M2

PlH
2
0 . (5.18)

As an instructive sanity check of our procedure, let us verify that θ indeed returns to

the same vacuum after it exits the region with broken shifts. As we have chosen the field

velocity not to change at all for our ansatz (5.13), this reduces to verifying that the effective

field theory of θ itself (that is, F1 and F2) is the same before and after NEC violation.

The latter fact is not so manifest, since F1 and F2 apparently depend on the Hubble rate

in (5.6) and (5.7), which does change as a result of the NEC-violating phase as we have

just discussed. Prior to the latter phase eqs. (5.6) and (5.7), upon setting H = H0 and

α = β = ε = κ = 0, imply

Fbefore
1 = 6, Fbefore

2 = 9 . (5.19)

After NEC violation, on the other hand, plugging in the same values of the parameters

except that now H = HI and κ 6= 0, yields

Fafter
1 = 6(1− κ)

H2
I

H2
0

, Fafter
2 = 9(1− κ)

H2
I

H2
0

. (5.20)

It suffices to use eq. (5.18) to show that (5.19) and (5.20) imply Fbefore
1 = Fafter

1 and

Fbefore
2 = Fafter

2 . Note, however, that the same logic would not go through had we allowed

for the Galileon (non-zero F) in the shift-symmetric region of field space. This is because

the energy density due to this operator depends on the Hubble rate, see eq. (5.4). Therefore,

the drastically different value of H after NEC violation would constitute an obstruction —

at least for the simple ansatz (5.13) — to returning to the same EFT on the right of the

shift symmetry-breaking region.

5.4 How to strongly violate the NEC within a stable and subluminal effective

field theory

In principle, we can choose an arbitrary profile for the Hubble rate, such that it takes on

the small value H0 before the field hits the NEC-violating region of the field space, while

growing abruptly — all the way up to HI — within the latter region. The time required

to produce a significant amount of energy density this way can be roughly estimated as

t✘✘✘NEC ∼ 1

ε✘✘✘NECH0

(5.21)

where ε✘✘✘NEC is a typical value of the slow-roll parameter ε(t) over the NEC-violating

period t✘✘✘NEC.

A non-trivial task is to find a solution of this type, such that it does not lead to

any sort of instability or superluminal perturbations all along the cosmological evolution.

12This is where the absence of the Galileon operator outside the shift symmetry-breaking region is im-

portant — see discussion below for more detail.
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Figure 5. A sketch of the time dependence of various functions characterizing the ansatz (5.13) in

the three-stage NEC-violating phase.

Fast NEC violation can only be achieved in a stable way in the presence of the Galileon

operator, and we will thus need the parameters α and β to turn on in the NEC-violating

region. Furthermore, as we have discussed above, both have to decay outside this region

of field space. Given that its derivative, β = H−1α̇, enters into the dynamics, the decay

of α should be smooth. On the other hand, at least formally nothing requires β to be

continuous, and we will make it a piecewise function for the sake of presenting examples of

stable and subluminal cosmologies with fast NEC violation. It is clear that these examples

can always be deformed into versions with a smooth β without compromising stability

and/or subluminality.

Our scenario for fast, stable and subluminal NEC violation is described in figure 5 and

goes as follows.

• Stage 1: by continuity, after θ hits the region with broken shifts, α is very small for

a while. We will also assume that ε is small, so that the kinetic coefficients in (5.14)

and (5.15) read

A =
2

3
M2

Pl

(

18(1− κ)− β
)

, B =
2

3
M2

Plβ . (5.22)

Even for κ = 0, there is significant parameter space, consistent with stability and

subluminality of scalar perturbations:

0 < β ≤ 9 (stability and subluminality) . (5.23)

This means, using eq. (5.16), that the parameter α can be smoothly increased to an

order-one value within a time of order H−1
0 .
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• Stage 2: when α becomes order-one, β turns off for a while. For β = 0, the parameter

space consistent with i) positivity of A and B and (sub)luminality of ζ’s speed of

propagation, c2s = B/A, ii) positivity of the potential energy (κ > 0) and iii) NEC

violation (ε > 0) can readily be found. We will not fully reproduce it here, merely

quoting its part that is continuously connected with the Stage 1:

0 < α <
3

2

∧

0 < ε <
2

3
α
∧

0 < κ ≤ 1

27

(

27 + 4α2 − 3(ε+ 5)α+ 9ε
)

. (5.24)

It is clear from (5.24) that fully stable and subluminal NEC-violating solutions (with

a speed of sound of order unity all along) exist for an order-one ε — meaning that

one can build up (arbitrarily large) inflationary energy density ρI ≃ 3M2
PlH

2
I within a

time of order H−1
0 . Note, that according to eq. (5.24), an order-one ε is only possible

for an order-one α; this is why we had to increase the latter parameter before a

significant rate of NEC violation were allowed.

• Stage 3: having built up the inflationary energy density, θ has to return to its original

state, but now in a universe with the large curvature HI driven by the potential energy

of the sector responsible for reheating. To this end, we have to make sure that α, β

and ε all drop back to zero, while κ asymptotes to one, as discussed around eq. (5.18)

and illustrated in figure 4. That α decreases, means that β has to turn negative

at this stage. Imposing again all of the requirements that led to eq. (5.24) — but

now with a non-zero and negative β — yields the allowed parameter space. Again,

this parameter space is quite large and not particularly illuminating, so we will not

reproduce it here. For our purposes, if suffices to note that it includes as a subset

eq. (5.24), supplemented by

1

6

(

9ε− 6α+ 4α2 − 6αε
)

< β < 0 . (5.25)

With the latter formula at hand, one can evolve the parameter α from its order-one

value back to zero — with a time derivative that satisfies (5.25) all along. Moreover,

ε can also be dialed to zero in the process, in a way that is compatible with the

condition 0 < ε < 2α/3 at any given moment of time. One can thus easily send the

NEC-violating sector back to its original state in a fully stable/subluminal manner

— while keeping the Hubble rate HI much larger than what it was prior to NEC

violation. The last thing to check is that, given the limitedness of the rate at which

α can decrease, eq. (5.25), this parameter can be dialed to zero within a sufficiently

short time. Let us for simplicity of the argument assume, that ε and α are of the

same order and that they start evolving towards zero from an initial value, somewhat

smaller than one. In that case, one can keep only the linear terms on the left hand

side of eq. (5.25), and (almost) saturating this inequality yields β ≃ −cα, where c is

some order-one number. Recalling the definition (5.16), we have

α = αie
−cHI t , (5.26)

meaning that α can be driven to zero within a time of order H−1
I ≪ H−1

0 .
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It is unlikely that eq. (5.13) is the unique ansatz, consistent with our stringent con-

straints on the dynamics of the theory in the NEC-violating phase, and other solutions with

even faster NEC violation may well be found. For our purposes, however, the ansatz (5.13)

perfectly does the job: it shows that the dynamics of θ does allow to build up a significant

amount of inflationary energy density within a Hubble time H−1
0 in a fully stable and sub-

luminal way. Moreover, it does so in a way that naturally accounts for inflation and the

subsequent reheating of the universe. We will return to discussing the latter aspect of our

model in some more detail in section 6.

5.5 The sliding cutoff

Given that the Hubble rate increases drastically in the NEC-violating phase, one may

wonder about the fate of the effective field theory description of θ’s dynamics. Outside

the NEC-violating region of the field space the low-energy EFT of φ2 is characterized by

a very low cutoff bound by eq. (3.1). As can be inferred by canonically normalizing the

field in (5.1), M2 ∼ (f2
2H

2
0 )

1/4 (recall that F vanishes in that region, while F1 and F2 are

field-independent order-one constants). The largest possible curvature that the universe

experiences after relaxation is HI . H⋆ . M2, meaning that the dynamics is well within

the regime of validity of the EFT in the region under consideration. During the NEC-

violating phase, however, the Galileon operator turns on, and a strong violation of the

NEC requires it to have a large Wilson coefficient. For instance, for order-one F , F1 and

F2, this operator would be suppressed by powers of the scale Mθ ∼ (f2H
2
0 )

1/3 — much

lower than H⋆. This however does not happen in our scenario: F1 and F2 are much larger

than unity in the bulk of the NEC-violating region, where F becomes sizeable. Indeed,

while F is proportional, for α ∼ 1, to the instantaneous Hubble rate H(t) according to our

ansatz (5.13), it follows from eqs. (5.6) and (5.7) that F1 and F2 in fact grow faster

F1 ∼
H(t)2

H2
0

, F2 ∼
H(t)2

H2
0

. (5.27)

Furthermore, the time evolution of these functions is precisely such that upon canonical

normalization of the field perturbation, θc ≡ f2
√

|F1|δθ, the scale suppressing the cubic

operator (∂θc)
2�θc at any given moment is

Mθ(t)
3 ∼ f2H(t)2 , (5.28)

instead of M3
θ ∼ f2H

2
0 . That is to say, at any particular moment of time, the sliding

cutoff of the theory Mθ(t) is much higher than the instantaneous value of the Hubble rate.

Likewise, one can check that it is the sliding scale (f2Mθ(t)
3)1/4 ≫ Mθ(t) that suppresses

the quartic interaction (∂θc)
4 at any given time.

This concludes our discussion of the mechanisms that allow to create the inflationary

universe within the context of the relaxed cosmological constant. Before turning to the next

section to discuss the implementation of inflation and reheating in our setup a comment is

in order. One may wonder whether all of the above discussion could be simplified by just

focusing on the effective theory of perturbations around a given background, similarly to
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what done in [22]: indeed it would be straightforward to choose the operators which describe

the quadratic perturbations in such a way as to avoid instabilities and superluminality.

However in this approach it would be hard (impossible?) to impose that the action after

the NEC violating phase be the same as before up to a shift in the potential energy: the

extra potential energy changes the solution and this approach is not suited to compare

different background solutions.

6 Reheating the universe after NEC violation

To complete the picture, one has to come up with a mechanism for transferring the energy

density stored in the NEC-violating scalar φ2 into a sector that will eventually be respon-

sible for reheating the universe and connecting it to the conventional Big Bang cosmology.

To this end, we will invoke another canonical scalar χ coupled to φ2: the idea is that the

energy created during NEC violation is stored in χ who gets stuck into a minimum with

large energy. Eventually χ comes back to the true vacuum (the one with relaxed cosmologi-

cal constant) reheating the universe in the same way as the waterfall field does after hybrid

inflation. For definiteness, we will focus on the scenario with slow NEC violation where the

ghost condensate slowly climbs up the piecewise linear potential V (φ2) shown in figure 3,

building up a potential energy density of order M4
I . A similar reheating mechanism can be

applied to the scenario with fast NEC violation.

Consider a canonical scalar field χ whose potential has the following form

U(φ2, χ) = W (χ) + ge−χ/MI · V (φ2) + M̂4 · f
(

χ− χI

M̂
,
φ2

M̃

)

, (6.1)

where g is a small dimensionless coupling, g ≪ 1, while M̂ and M̃ are mass scales, specified

below. We assume that the function f is invariant under φ2 → −φ2, so that the full

potential respects the Z2 symmetry.

The first term in (6.1) gives the potential for χ in the limit when its coupling to the

ghost condensate field φ2 is turned off. For concreteness we choose it to be a Starobinsky-

type potential [27–29]:

W (χ) = M4
I

(

1− e−χ/MI

)2

. (6.2)

The other two terms in (6.1) contain couplings to φ2 that have a finite range in the φ2

direction. Indeed, the second piece vanishes for |φ| > φNEC by definition of the potential

V (φ2), while the third term is assumed to vanish for |φ| > φf > φNEC (see figure 3).

The potential U(φ2, χ) for φ2 < −φf is shown in the top left panel of figure 6. It

becomes exponentially flat in the region where χ/MI ≫ 1 and has its only minimum at

χ = 0, which we assume is the initial value of χ. After the phase transition into a ghost

condensate state with constant non-zero velocity, the field φ2 starts to move towards the

point φ2 = −φf from the left. Upon crossing this point, the last term in the potential (6.1)

turns on, which results in the appearance of a second, shallow minimum at χ = χI in

the flat region where χ/MI ≫ 1 and U ∼ M4
I — see the top middle panel of figure 6.

Later on, when NEC violation sets in (i.e. for φ2 > −φNEC), the initial minimum at χ = 0
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Figure 6. A sketch of the potential U(φ2, χ) for different values of the NEC-violating field φ2.

starts to rise and gradually disappears (see the top right panel of figure 6). This is due to

the activation of the second term in (6.1), which significantly modifies the potential for χ

for the field values χ/MI ≪ 1, but has exponentially suppressed effects in the flat region

χ/MI ≫ 1. On the other hand, the potential for the field φ2 for small field values χ/MI ≪ 1

(in particular, while the field χ sits in the minimum at χ = 0) remains almost unaffected by

the coupling to χ and reduces to the linearly piecewise potential V (φ2) shown in figure 3.

As a result, while φ2 evolves on top of its potential (−φI < φ2 < φI), χ rolls towards the

second minimum at χ/MI ≫ 1 and gets caught in it, acquiring potential energy of order

ρχ ∼ M4
I . (6.3)

Starting from φ2 = 0, the shape of the potential changes in the opposite order, except that

χ now sits in the false vacuum at χ = χI when the ghost condensate reaches φ2 = φNEC,

as depicted on the lower right panel of figure (6.1). While χ is sitting in the false vacuum,

the common potential U(φ2, χ) is nearly flat and the universe inflates with the inflationary

Hubble rate of order H2
I ∼ M4

I /M
2
Pl. In the meantime, the inflaton field φ2 continues

to roll and eventually reaches the point φ = φNEC where the true minimum at χ = 0 has

reappeared. Inflation ends when the ghost condensate field rolls past φ2 = φf , removing the

second minimum in the potential (6.1). Around that point χ starts rolling back towards the

true minimum and oscillates around it — eventually transferring energy to the standard

model degrees of freedom through one of the conventional reheating mechanisms (see,

e.g., [30, 31]). When χ reaches field values χ/MI ≪ 1 the inflationary period ends and

one returns to the state with the present day cosmological constant. In this sense, the

field χ plays a role analogous to the waterfall field that terminates the period of hybrid

inflation [8]. Notice that in our model the inflaton φ2 is a ghost condensate and this gives a

peculiar phenomenology for primordial perturbations [16]. In particular, the normalization

of scalar perturbations will read (HI/M2)
5/4 ∼ 10−5. Assuming M4

2 ∼ Λ0, one gets

(HIMPl)
2 ∼ (10GeV)4: inflation occurs at very low energy, but it is still compatible

with nucleosynthesis.
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At this point we should comment on the φ2-dependence of the function f(χ−χI

M̂
, φ2

M̃
),

that provides the mild modulation of the χ potential in the flat region. We will assume

that f is an order unity function of its dimensionless arguments. As remarked above, this

function is symmetric under a sign flip for φ2. Moreover, given that φ2 varies over a huge

distance in field space within the region of interest13 (−φf < φ2 < φf ), one should make f

weakly dependent on this field. One way to achieve this is to assume that f changes from

zero to an order-one value within a region of width ∆φ2 ∼ M̃ around φ2 ≃ −φf and then

stays constant all the way up to φ2 ≃ φf . The largest possible value of the φ2-derivative

of f , therefore, is ∂φ2
f ∼< f/M̃ .

In what follows, we list several requirements that the potential in eq. (6.1) has to

satisfy in order to provide a working realization of inflation and reheating in our scenario:

• The backreaction of the potential (6.1) on the dynamics of φ2 should be negligible.

This is guaranteed if the resulting correction to the velocity of φ2 is much smaller

than its unperturbed value. The second term in (6.1) clearly provides a sub-leading

correction. The third term, on the other hand, gives

π̇2 ∼
∂φ2

U

HI
∼ M̂4

M̃ HI

≪ φ̇2 = M2
2 . (6.4)

The above condition implies the following lower bound on M̃

M̃ ≫ M̂4

M2
2 HI

(no backreaction) . (6.5)

We note that this condition only concerns the backreaction on the dynamics of φ2

at the moment when expansion rate is H ∼ HI . One might suspect that the field φ2

experiences a stronger backreaction at the time of appearance of the modulation f

at φ ∼ −φf when H ∼ H0, leading to a much stronger constraint on M̃ . However,

the modulation f is assumed to modify the shape of the total potential U(φ2, χ) only

at values χ/MI ≫ 1. At the moment when φ ∼ −φf , the field χ is at its minimum

at χ = 0 and is assumed to have a negligible effect on U(φ2, χ).

• In order for χ not to undergo significant quantum fluctuations in the false vacuum,

its mass should exceed the inflationary Hubble rate

m2
χ ∼ M̂2 > H2

I (no fluctuations in χ) . (6.6)

This condition is equivalent to requiring that the slow-roll parameter η = M2
Pl ∂

2
χU/U

is large.

• As mentioned before, the field χ that rolls fast towards the true minimum of its

potential after being released from the false minimum plays a role analogous to the

13This is a direct consequence of the fact that the slope of V (φ2) is bound to be extremely small compared

to its height, see eq. (4.4). Assuming then, for example, that M4

I ∼ Λ⋆, that bound translates into

φNEC > MPl (MPl/H0)
3/2.
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waterfall field that terminates inflationary stage in the hybrid inflation scenario. Dur-

ing disappearance of the false minimum at χ = χI , the second derivative of the χ

potential is expected to flip the sign from ∂2
χU > 0 to ∂2

χU < 0, so that the field

χ subsequently rolls down to the true minimum at χ = 0. In such a scenario, the

mass of χ crosses zero and thus violates the condition (6.6) during the release. When

the mass of χ drops below the Hubble scale of inflation, its quantum perturbations

contribute to the density perturbations generated during inflation together with the

quantum fluctuations of φ2. For simplicity we choose to exclude such a possibility

and put constraints that insure an effectively single-field inflationary stage.14 In order

for quantum fluctuations of χ to be negligible, the transition phase at φ ≃ φf during

which the inequality (6.6) is violated should happen sufficiently quickly, preferably,

within one Hubble time. We therefore require that at the end of inflation the field φ2

changes by order M̃ within one Hubble time and thus induces an order one change

in the modulation f . This provides an upper bound on the scale M̃ ,

(∆φ2)H−1

I
≃ M2

2

HI
& M̃ (fast transition) . (6.7)

The bounds (6.5) and (6.7) on the scale M̃ can be satisfied simultaneously only if the

scale M̂ of the modulation f is smaller than M2,

M̂ . M2 . Λ
1/4
0 ∼ 10−3 eV . (6.8)

This leaves enough room to satisfy also the condition (6.6), since HI/M2 ∼ 10−4. The

condition (6.8) implies that the scale of the locking potential is much smaller than the

overall scale of the χ potential (that also sets the scale of inflation):

M̂

MI
.

(

Λ
1/4
0

MI

)

∼ 10−9 ·
(

1MeV

MI

)

. (6.9)

This confirms our assumption of f being a mild modulation on top of the first two terms

of the potential U(φ2, χ) in (6.1). Such a large hierarchy between the two scales can be

explained as technically natural on the account of the overall flatness of the χ potential in

this region.

7 Conclusions and outlook

The idea that the observed smallness of the cosmological constant may be a result of its

dynamical relaxation is by no means new. In this work, we have put forward a concrete

model, realizing this idea in a technically natural way. Our model shares some similarities

with Abbott’s thirty-year-old approach to the c.c. problem [2], but also differs from it in

several important ways. One difference is that our mechanism does not allow for a landscape

of possible values of the observed vacuum energy. The latter is instead unambiguously fixed

by the parameters in the Lagrangian. Importantly, the new sector is dominated by purely

classical, rather than quantum, dynamics — leaving no room for eternal inflation and the

14Notice that φ1 is light during inflation and therefore it gets quantum fluctuations. However the isocur-

vature perturbations produced in this way are completely negligible, as it is easy to check.
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associated issues. Moreover, as pointed out by Abbott himself, the scenario of [2] lacks a

mechanism for producing significant energy density out of a relaxed low-curvature state

of the universe, characterized by the Hubble rate of order ∼ 10−33 eV. Specifying such a

mechanism is necessary for connecting the latter state to inflation/Big Bang cosmology,

and is thus an indispensable requirement for any model based on dynamical relaxation of

the cosmological constant. Drawing on the last decade’s progress in understanding theories

that strongly violate the null energy condition, we have provided two explicit examples of

how the inflationary universe may arise out of the post-relaxation low-curvature state.

Our model can be further explored along several interesting directions. We have not

elaborated on the precise details of the phase transition that turns on the non-trivial dy-

namics for the NEC-violating sector. Neither have we attempted to find a UV completion

of relaxation and/or NEC violation. Remaining agnostic about the latter, we have imposed

the most stringent possible constraints on our model that results in the conservative upper

bound of Λ⋆ ∼< (1TeV)4 on the maximal magnitude of the relaxed cosmological constant.

In principle, the dynamics of relaxation should be under complete control within a puta-

tive UV-extended theory of the ghost condensate. It would be interesting to see whether

invoking such a UV completion, e.g. along the lines of ref. [32], can lift the upper bound

on Λ⋆ — opening up a possibility to relax even higher values of the initial c.c.

Furthermore, our model directly links the cosmological constant problem to dark en-

ergy, and therefore provides a solid theoretical motivation for the experimental study of

the current acceleration of the universe. On the theoretical side, it is important to explore

the phenomenology of the late-time cosmology after the relaxation of the c.c. Depend-

ing on the precise scenario considered above, either one or both of the two (relaxing and

NEC-violating) sectors of the theory contribute to the current dark energy, and it would

be interesting to see whether this entails any sizeable observational consequences. Can

the traces of NEC-violation — a crucial property of theories with c.c. relaxation — be

imprinted on today’s universe in a way, amenable to observational verification? Would a

putative UV extension of the theory introduce any novel, experimentally relevant features?

We anticipate that the answers to these questions are model-dependent. For example, the

precise phenomenology of dark energy — e.g. the extent to which it differs from a c.c. —

would depend on which of the two scenarios of sections 4 and 5 is relevant. Exploring these

matters has been largely left outside the scope of this work, and we plan to return to them

in the future.
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