
Relaxing the Inclusion Property
in Cache Only Memory Architecture

Jinseok Kong I and Gyungho Lee 2

1 Department of Computer Science
2 Department of Electrical Engineering

University of Minnesota, 200 Union St. SE., Minneapolis, MN 55455, USA

Abs t r ac t . Cache only memory architecture (COMA), even with its ad-
ditional memory overhead, can incur longer inter/intra-node commu-
nication latency than cache-coherent nonuniform memory access (CC-
NUMA). Some studies on COMA suggest that the inclusion property
applied between the processor cache and its local memory is one of the
major causes of less-than-desirable performance. The inclusion property
creates extra accesses to the slow local memory. We consider the bind-
ing time of data address to the local memory to be an important factor
related to the long latency in COMA. This paper considers the inclusion
property in COMA and introduces a variant of COMA, dubbed Dynamic
Memory Architecture (DYMA), where the local memory is utilized as a
backing store for blocks discarded from the processor cache. Thus, by
delaying the binding time, the long latency due to the inclusion prop-
erty can be avoided. This paper examines the potential performance of
DYMA compared to COMA and CC-NUMA.

1 I n t r o d u c t i o n

Cache only memory architecture (COMA) [3, 6] t reats the memory local to each
node, called attraction memory (AM) 3, as a cache to the shared address space
without providing traditional main memory [6]. In cache-coherent nonuniform
memory access (CC-NUMA) [11], the local memory is utilized as a port ion of the
space. COMA is similar to SVM (Shared Virtual Memory), which allows sharing
of vir tual memory space through migrat ion and replication of pages [4, 12], but
COMA is a more hardware-oriented approach and the granulari ty of the sharing
unit, the memory block, is significantly finer than tha t of the page used in SVM.

In COMA, the huge size of the AM creates more coherence activity and longer
latency for the cache miss accesses [13]. Also, organizing it as a cache requires
the overhead of tag storage and additional unallocated space for replicated data.
The proposed COMA machines [3, 6] and the studies [7, 13] found in open
l i terature utilize an invalidation policy for coherency, and assert the inclusion
proper ty [1] applied between the processor cache and its AM [9]. By broadcast ing
invalidation signals [15] to the processor cache when an AM block is replaced or

3 Although KSR-1 [3] and another COMA proposal DDM [6] use different terminology
for various aspects of COMA, we generally follow the terminology of the DDM.

436

Node i Nedej Node i Nodej Node i Nodej

I 2 b , o o k

Network Network Network

Time to: initial configuration Time tl (Pi read E): block E is Time t2 (Pj wirte E): block E
shared by Pi and Pj in Pi is invalidated

Fig. 1. An example of ill-effects of the inclusion property

by attaching an inclusion bit [1] to each AM block entry, the inclusion property
can be enforced. However, both of these schemes generate additional intra-node
communication. Because of this, some studies [7, 13] on COMA consider relaxing
the inclusion property somewhat to improve performance.

We propose a variant of COMA, which we call dynamic memory architecture
(DYMA), where the local memory is utilized as a backing store for the blocks
discarded from the processor cache, thereby delaying the address binding of data
to the local memory from block-incoming t ime to block-discarding time. Delaying
the address binding relaxes the inclusion property, and this allows faster data
a c c e s s .

Section 2 describes background materials which motivated our work. Section
3 introduces DYMA along with a coherence control. The memory access latency
of DYMA is compared to those of COMA and CC-NUMA in Section 4. Section
5 reports our preliminary simulation results. Section 6 offers a conclusion.

2 B a c k g r o u n d

The inclusion property in COMA causes another overhead: frequent accesses
to the AM. For example, consider the simple configuration shown in Fig. 1.
If processor Pi reads the shared block E at t ime t l , the block A in Nodei's
AM is replaced by block E to maintain the inclusion. At this time, accesses to
Nodei's AM are needed to store block E. Also, note that if block A is the last
copy in the system, two more AM accesses are needed to relocate block A (read
block A from Nodei's AM and save it at a remote AM). If processor Pj writes
data on block E at time t2, the copies of block E in Node/ are invalidated in
the write-invalidation policy. To invalidate block E of Pi 's AM, access to the
AM tag is necessary. By allowing direct access to the processor cache for the
incoming message from the network, we can hide these extra AM accesses from
the critical path of the memory access latency. However, the extra AM accesses
can still make other memory access latency longer due to contention at the AM.
Also, note tha t probing the processor cache is unavoidable in the write-back
policy, since the up-to-date copy can exist only in the processor cache.

If we allow non-inclusive memory access in COMA, the extra AM accesses can
be reduced. Let 's consider the example again. If we relax the inclusion property
for block E at t ime t l , block E is saved only in the cache of Nodei, which removes
the extra AM accesses to save block E and to relocate block A. Also, the access

437

to the AM tag is not necessary when block E is invalidated at time t2. Further,
if block A is referenced again in Nodes, the node hit rate increases. This saves
memory space and reduces extra accesses to the AM. However, this requires
predicting future behavior of a block to determine whether the address of a
block should be bound to a local memory frame or not. To relax the inclusion
property in COMA, the prediction is required when the block is brought to
the node (block-incoming time). Binding the address of a block which will be
swapped or invalidated to an AM frame at block-incoming time may waste AM
space. If the address of a block which will not be invalidated in the near future
is not bound to an AM frame, the block can easily be replaced from the node
due to the small size of the processor cache. Thus, either way limits the effective
utilization of the AM, thereby diminishing the advantage of COMA.

3 D y n a m i c M e m o r y A r c h i t e c t u r e (D Y M A)

In DYMA, the local memory of each node has the facility of dynamic address
binding to a memory block frame supported by hardware as in COMA. But
DYMA uses the local memory as the backing store for the blocks discarded from
the processor cache, i.e., binding the address of a block to the local memory
happens at block-discarding time. Using the local memory in this way, no write
access which hits on a non-shared cache block has to go to the local memory. Also,
a node miss can be serviced directly from a remote cache and saved directly to
its cache without accessing the slow local memory. Further, between the block-
incoming time and the block-discarding time, the block of the cache can be
invalidated, or the block of the local memory can be loaded again. The first case
reduces the local memory accesses and global replacement traffic, and the second
case increases the node hit rate. These properties can make the average latency
of DYMA short while still allowing dynamic data replication and migration from
node to node as in COMA.

In CC-NUMA, the data address is bound to a local memory frame when a
page is loaded. COMA delays the address binding from page-fault time to mem-
ory block missing time. We call the local memory of DYMA dynamic memory
(DM). An interesting aspect of DYMA is tha t there is no inclusion property
between the processor cache and the DM. DYMA utilizes the processor cache
and the DM for different functionality, while the processor cache is somewhat
redundant in COMA. If the sum of local memories and the size of the working
set of an application are the same, DYMA allows a block to be replicated to
other nodes, while COMA allows no block replication.

The relationship between the AM and the DM is similar to the relationship
between the miss cache and the victim cache [8]; the address of the miss cache
is bound at the block-incoming time to the lower level cache as in COMA, while
the address of the victim cache is bound at the discarding time from the lower
level cache as in DYMA. The miss and victim caches are designed to reduce
cache misses in uniprocessors, while the AM and the DM are designed to reduce
node misses in multiprocessors.

438

3.1 M e m o r y A c c e s s M e c h a n i s m

The memory access mechanism of DYMA described in this section assumes a
directory-based write-invalidation protocol with an interconnection network. By
adding one more bit, a local bit, in each cache block entry, we developed a scheme
where only an indispensable block, when discarded from the cache, is written to
its DM. The local bit is used to indicate whether the copy of the block is in its
DM (local block) or not (global block). All global blocks are saved in its DM
when they are replaced at the cache. If a local block is selected for replacement
and modified at the cache, it must be writ ten in the DM like the traditional
write-back cache. The use of the local bit and the memory access mechanism
can be described in seven steps:

C a c h e acces s s t e p : If a write hits on a non-shared block or a read hits, give the
da ta to the processor. If a write hits on a shared block, go to i n v a l i d a t i o n
s t ep . Go to r e m o t e acces s s t e p directly if a cache coherence miss happens;
otherwise, go to D M access s t ep .

D M access s t e p : I f a write hits on a non-shared block or a read hits, go to
c a c h e fill s t ep . If a write hits on a shared block, go to i n v a l i d a t i o n s t e p
and then cache fill s t ep . If a DM miss occurs, go to r e m o t e access s t ep .

R e m o t e acces s s t e p : Find the owner node of the block at its home directory,
and send a block request message to the node. At the owner node, if the
block exists at the cache, copy the block from the cache. If the block exists
in the DM, not in the cache, copy it from the DM. Deliver the copy to the
requesting node, and go to c a c h e fill s t ep .

I n v a l i d a t i o n s t e p : At the home directory, send an invalidation signal to the
nodes which have any copies of the block to be invalidated. At the remote
node, invalidate the block if it is at the cache or at the DM but not in the
cache, and send back an acknowledgment signal to the requesting node.

C a c h e fill s t ep : Fill the missing block into the cache and s tar t processing. At
this time, set the local bit if the block is from its DM or from the network
due to the cache coherence miss of a local block; otherwise, reset the local
bit. If there is no space to save the block, select a block to be replaced. Here,
any replacement algorithm can be used. If the selected block is a global or
modified block, go to r e l o c a t i n g c a c h e b l o c k s t e p to save the block at the
DM. The relocation action is overlapped with the running of the processor.

R e l o c a t i n g cache b l o c k s t e p : If a block replaced in the DM in order to save
the cache block is the unique copy in the node and has ownership, go to the
home directory of the DM block, select a node which can keep ownership
of the block, and go to r e l o c a t i n g D M b l o c k s t e p for relocating the DM
block at the remote node. When selecting a node at the home directory, t ry
to find a node with the following priority sequence: (1) a node which has
the same copy of the block, (2) a node which has unused space to save the
block, and (3) a node which contains a shared non-owner block.

R e l o c a t i n g D M b l o c k s t e p : If the same block exists in the cache or if the
same block is in the DM but not in the cache, just change the state to
owner. If there is an invalid block or a different, shared non-owner block in
the DM, save the owner block at tha t place.

439

I
I: Invalid
PN: Private Non-owr
PO: Private Owrm-
SN: Shaxed Nomown
SO: Shared Owner
US: Unique Shared

- ~ transition on
Icr

�9 transition on
[network-based

__~'lusiv I I.~cal O~nedrsi~hip
Cache i DM atobat Ownership

(a) coherence protocol

set
set

set n

DM

phys ic a
address

owner nodeo bit
n
P

m

n
i

NN

space Directory

(b) directory structure

F ig . 2. Coherence and relocation controls for DYMA.
In the directory structure, the DM is 2-way set associative. The number of
DM sets is n, and the number of nodes is p.

3.2 C o h e r e n c e and R e l o c a t i o n C o n t r o l s

The coherence protocol of DYMA is an optimized one with twelve states in each
cache block and four states in each DM block (Fig. 2a). The loca l b i t described in
the previous section is combined with the s tate bits. When a page is first loaded
from secondary storage, all blocks of the page are saved in a private owner (PO)
state. When a read access hits at the cache, there is no s ta te change. When a
block is copied from its local DM for a read access, the block becomes private
non-owner (PN) if its DM state is PO; otherwise it becomes shared non-owner
(SN). When a block is copied from a remote node for a read access, the block is
loaded into the cache in a unique shared (US) state. At this time, the s tate of
the remote node becomes shared owner (SO). The write access makes the cache
block PO-s ta te while all other copies of the block become the invalid (I) state.

If a PO- /SO-s t a t e block is selected for replacement, the block is saved at its
DM with the same state. If a US-state block is selected, the block is saved in the
DM with SN-state. If a SN-(from PN) / I - s t a t e local block is selected, the DM
block becomes SO-/I-s ta te . If a copy of the DM block replaced by a global cache
block exists in its cache with PN-/SN-'s tate , the s tate of the cache block changes
to the global PO- / (US- or SO-)state. When a DM block is relocated at a remote
node, it becomes SO-state if its copy exists at more than one node. Otherwise,
the block is relocated with PO-state .

DYMA possesses an overhead related to memory block relocation as COMA
does. If the replaced memory block is the last valid copy in the system, the
block must be relocated to some other node. To reduce the overhead of the DM
block relocation in DYMA, we use a new directory s t ructure (Fig. 2b) where
each home directory has information of all the blocks which are mapped to the
same DM set. Therefore, just by checking the home directory of a block to be
relocated, the node which has space for the block can be chosen.

Frequent accesses to the cache s tate in DYMA may impede the processor 's
access to the cache. Thus, one may want to provide the controller with a duplicate

440

copy of both cache tag and state; this will shield the processor's access to its
own cache from the interference of unsuccessful a t tempts to match cache tag
and state by remote accesses and invalidations. If the copy from the cache can
be provided much faster than the copy from the DM, the copy from the cache
is favorable in terms of total system performance because it decreases the stall
t ime of processors generating the remote access.

4 M e m o r y L a t e n c y C o m p a r i s o n

To compare the performance of CC-NUMA, COMA, and DYMA in terms of la-
tency, we modeled memory access latency for each architecture. We divided mem-
ory accesses into four different cases; local-cache hit, local-memory hit, remote-
cache hit, and remote-memory hit. Let us say that Llc, Ltm, Lrc, and Lrm are
latencies for a local-cache hit, a local-memory hit, a remote-cache hit, and a
remote-memory hit respectively. Then, the average latency per reference can be
expressed as follow:

HlcLzc + MlcH~,nLtm + MtcMlmHr~Lrc + MtcMl,nM,.cLrrn, (1)

where Htc (= 1 - Mtc) is the local-cache hit rate, Htm (= 1 - Mtm) is the
local-memory hit rate, and Hrc (= 1 - Mrc) is the remote-cache hit rate.

Fig. 3 shows the latencies for each individual memory access in the memory
architectures. When a local-cache hit occurs in COMA, there are two possible
courses of action: (i) write access to a non-shared block or read access; or (ii)
write access to a shared block. In the first case, the latency is the time for cache
access (to). In the second case, coherence action is necessary. This coherence
action may need three network traversals (3tn), directory processing time (c~),
and the invalidation time at a remote node (to or tc + ta).

Although, the latencies for each memory architecture are from a simple anal-
ysis of the memory access mechanism, they nevertheless show inherent latency
characteristics. The average latency of CC-NUMA can be the shortest only when
the partit ion and distribution of data and the page migration [5] are done so well
tha t the local-memory hit rate, Htm, becomes close to that of DYMA. In general,
the Him of DYMA and COMA is expected to be higher than that of CC-NUMA.
With higher HIra, even though the average remote latency can decrease both in
DYMA and COMA, the coherence action in Ltm and the memory tag access
t ime (t~) can make the average overall latency longer. Thus, the cut-off point
depends on how much higher the Him of DYMA and COMA is than that of
CC-NUMA, given the network latency.

By relaxing the inclusion property in COMA, the extra AM accesses can be
reduced. However, generally it seems to be hard to determine whether the address
of a block should be bound to the local memory or not, without knowing the
future behavior of the block. DYMA can reduce the extra accesses by delaying
the address binding while increasing the Htm.

441

D Y M A a n d C O M A C C - N U M A

�9 t c ~ �9 t c

network ~ ~1 , n i ~:~
clean dataOnetworl~

t C '

cache/ \ F ten~~ ttss

lodal "tr o.n.- \ ~ ~r
memory~ ta r eaa . t t t a \ " ,~emof l~ t

cac r~t lore
a ~ tm he

memow ~hared dat~ \

�9 netwdl k

tc tc tc' tc' tc tc tc' tc'

tn ~ tn ,0~ ~3tn
t ne~wolrk I ' network ' t ! ! I network I network !

L,n

tc tc tc" �9 tc , tc', g'~

Fig . 3. Memory access latency in each architecture.
In the figure, tc = cache access time, to, = cache fill time, t,~ = memory access
time, ta =- memory tag access time, tn = network traversal time without data,
c~ = processing time at the directory, fltn = network traversal time with data.

5 Preliminary Simulation R e s u l t s

We developed a trace driven simulator using the parallelized Perfect Club Bench-
mark programs (Table la) [2] as workloads. Although our simulations were done
with scaled-down da ta size and accordingly scaled-down cache and local memory
size, they nevertheless demonstra te the potential advantage of DYMA.

We assume tha t instruction access is overlapped with da ta access. The re-
quests for the use of resources are serviced in first-in first-out order. The pro-
cessor which arrives at the barrier synchronization early is blocked until the last
processor arrives at the synchronization point. The mas te r processor (processor
number 0) executes sequential portions of a program. The default simulation
parameters are shown in Table lb. We use the optimized coherence protocol
[10, 14] for each architecture. We made the memory access t ime relatively large
because we believe tha t the processor-memory performance gap is widening, not
narrowing. Here, note tha t the tag of the memory is assumed to be slow DRAM.

We use the average memory access latency described in Section 4 (Eq. 1) as
the performance metrics. The waiting t ime caused by resource contention is also
considered. The network traffic rate is defined as the average number of network

442

Code Total Ref.
Name (write %)
ADM 3802575(20.2)

ARC2D 60158056(15.7)

DYFESM 6028514(13.9)

FLO52Q 72824086(14.9)
MDG 107182698(19.8)

OCEAN 17254748(21.7)
QCD2 31078266(16.0)

TRACK 2773985(16.0)
TRFD 9446379(14.6)
(a)

Data Sz Unit I Parameters CC-NUMA COMA DYMA
(words) coherence protocol 5 states 4 states 12 & 4 states

17255 cache size ---- 512 bytes, access time(to) ---- 1, fill
899484 time (tel) : 4, associativity ---- direct-mapped

data size 16451 memory (total) size data size 1-1 / (~ of nodes)
25763 associativity - direct mapped
29299 access time (tin) = 25, tag time (~) ---- 16

1204 network protocol I directory-based
32971 service time (t~) ---- 10, a = O, ~ = 3
21537 block size = 16 bytes, # of nodes = 8
14950 Here, time unit is clock cycles

:haracteristics of the traces (b) default parameters

Table 1. Simulation environments.

1 NUMA 1 C(80%) I C(87.5%) m C(90%) ~ D(80%) ~ D(87.5%) [~ D(90~)]

ADM A R C 2 D DYFESM FLO52Q MDG OCEAN Q C D 2 TRACK TRFD

Fig. 4. Node hit rate per reference.

traversals per memory reference. The three main components of the network
traffic are data traffic, replacement traffic, and coherence traffic [10].

Fig. 4 is the node hit rate of the master node when 8 processors are used.
Usually, the node hit rates of COMA and DYMA decrease as the memory pres-
sure (data size / memory size) increases from 80% to 90%. However, at higher
memory pressure in COMA, the node hit rates of some traces such as MDG and
TRFD are high. This is because the relocation protocol giving high priority to
the master processor in COMA allows effective block migration.

The results in Fig. 5 include the traffic generated by all 8 nodes. If the
memory pressure is high and the associativity of the DM is low, COMA would
like to generate replacement traffic whenever there is a node miss [7]. This makes
the replacement traffic of COMA much higher than that of the others. Although
not all node misses cause replacement traffic in CC-NUMA, the write-back from
the processor cache frequently does. In DYMA, the replacement action at the
DM is delayed until there is a relocation request from its cache. This makes the
replacement traffic of DYMA lowest. The coherence traffic rate in COMA and
DYMA is higher than in CC-NUMA.

The average latencies of DYMA are shorter than the others in most of the
traces (Fig. 6) since the high node hit rate of DYMA and small DM accesses
reduce the large overhead of remote access and replace it with the small overhead
of local access. Although the remote latency of COMA becomes smaller than that
of CC-NUMA, the frequent contention at the AMs makes the waiting time for
an AM access in COMA longer. In a large (relative to our simulation workloads)
processor cache (512 K bytes), the advantage of dynamic address mapping in
the local memory becomes small and the contention at the AM of COMA shows
more pronounced ill-effects (Fig. 7).

443

II]I,, Kill III Illlll ~
ADM ARC2D DYFESM FLO52Q MDG OCEAN QCD2 TRACK

Fig. 5. Network traffic rate per reference.
TRFD

1 j* ~mory

ADM ARC2D DYFESM FLO52Q MDG OCEAN QCD2 TRACK TRFD

Fig. 6. Average latency (including the waiting time) per reference.

~30~ ~ t i n ~ "~ n~emmCt~] hit

~ N u N g N U N g N g N U N U N U N
ADM ARC2D DYFESM FLO52Q MDG OCEAN QCD2 TRACK TRFD

Fig. 7. Average latency with a large processor cache (512 K bytes).

6 Conclus ion

COMA allows higher local memory utilization by organizing the local memory
as a cache (AM). However, the inclusion property applied between the processor
cache and the AM creates extra accesses to the slow AM. Relaxing the inclusion
property in COMA requires determining whether a missing block should be
bound to a AM frame or not when it is brought to the node (block-incoming
time).

This paper proposed a variant of COMA, which we call DYMA, to reduce
the latency associated with COMA. The local memory of DYMA, called dy-
namic memory (DM), is utilized as a backing store for blocks discarded from
the processor cache. There is no inclusion property between the processor cache
and its DM. By delaying the data address binding to the DM frame from block-
incoming time to block-discarding time, the extra accesses to the DM can be
reduced while effective utilization of the DM is increased.

444

We compared the latencies of DYMA, COMA, and CC-NUMA based on
simple analysis of the memory access mechanism and based on the results of a
simulation. Although DYMA may need more complex hardware control, our pre-
liminary results show that DYMA can provide an opportuni ty to have relatively
small average latency in a large-scale distributed shared-memory multiprocessor
system.

A c k n o w l e d g m e n t s . We would like to thank the members of DICE and HPCC
groups at the University of Minnesota and the anonymous referees for discus-
sions, suggestions, and encouragements. This work has been supported by fund-
ing from Samsung Electronics.

References

1. J. L. Baer, W. H. Wang, "On the Inclusion Property for Multi-Level Cache Hier-
archies," Proc. of the 15th ISCA, pp. 73-80, 1988.

2. M. Berry et aL, "The Perfect Club Benchmark: Effective Performance Evaluation
of Supercomputers," Int'l Journal of Supercomputing Apps., Vol. 3, No. 3, 1989.

3. H. Burkhardt III et. aL, "Overview of the KSR-1 Computer System," Technical
Report KSR-TR-9202001, Kendall Square Research Corporation, 1992.

4. J. B. Carter, J. K. Bennett, W. Zwaenepoel, "Implementation and Performance of
Munin," 13th Sym. on Operating System Principles, Oct. 1991.

5. R. Chandra et al., "Scheduling and Page Migration for Multiprocessor Computer
Servers," Proc. of the 6th ASPLOS-VI, Oct. 1994.

6. E. Hagersten, S. Haridi, A. Landin, "DDM - A Cache-Only Memory Architecture,"
IEEE Computer, pp. 44-54, Sept. 1992.

7. T. Joe, "COMA-F: A Non-hierarchical Cache Only Memory Architecture," Ph.D.
Dissertation, Stanford University, Mar. 1995.

8. N.P. Jouppi, "Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers," Proc. of the 17th ISCA, pp.
364-373, 1990.

9. G. Lee, "An Assessment of COMA Multiprocessors," Proc. of the 9th Int'l Parallel
Processing Syrup., Santa Barbara, CA., Apr. 1995.

10. G. Lee, J. Kong, "Prospects of Distributed Shared Memory for Reducing Global
Traffic in Shared-Bus Multiprocessors," Prac. of the 7th IASTED/ISMM Int'l
Conf., pp. 63-67, Oct. 1995.

11. D. E. Lenoski et aL, "The Directory-Based Cache Coherence Protocol for DASH
multiprocessor," Prac. of the 17th ISCA, pp. 148-159, 1990.

12. K. Li, P. Hudak, "Memory Coherence in Shared Virtual Memory Systems," ACM
Trans. on Computer Systems, 7(4):321-359, Nov. 1889.

13. A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin, "An Argument for Simple
COMA," Proc. of 1st IEEE Syrup. on High Perform. Comp. Archi., 1995.

14. P. Sweazey, A.J. Smith, "A Class of Compatible Cache Consistency Protocols and
their Support by the IEEE Futurebus," Proc. of the 13th ISCA, 1986.

15. A. W. Wilson Jr., "Hierarchical Cache/Bus Architecture for Shared Memory Mul-
tiprocessors," Proe. of the 14th ISCA, 1987.

