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Abs t r ac t .  Cache only memory architecture (COMA), even with its ad- 
ditional memory overhead, can incur longer inter/intra-node commu- 
nication latency than cache-coherent nonuniform memory access (CC- 
NUMA). Some studies on COMA suggest that the inclusion property 
applied between the processor cache and its local memory is one of the 
major causes of less-than-desirable performance. The inclusion property 
creates extra accesses to the slow local memory. We consider the bind- 
ing time of data address to the local memory to be an important factor 
related to the long latency in COMA. This paper considers the inclusion 
property in COMA and introduces a variant of COMA, dubbed Dynamic 
Memory Architecture (DYMA), where the local memory is utilized as a 
backing store for blocks discarded from the processor cache. Thus, by 
delaying the binding time, the long latency due to the inclusion prop- 
erty can be avoided. This paper examines the potential performance of 
DYMA compared to COMA and CC-NUMA. 

1 I n t r o d u c t i o n  

Cache only memory  architecture (COMA) [3, 6] t reats  the memory  local to each 
node, called attraction memory (AM) 3, as a cache to the shared address space 
without  providing traditional main memory  [6]. In cache-coherent nonuniform 
memory  access (CC-NUMA) [11], the local memory  is utilized as a port ion of the 
space. COMA is similar to SVM (Shared Virtual Memory),  which allows sharing 
of vir tual  memory  space through migrat ion and replication of pages [4, 12], but  
COMA is a more hardware-oriented approach and the granulari ty of the sharing 
unit,  the memory block, is significantly finer than tha t  of the page used in SVM. 

In COMA, the huge size of the AM creates more coherence activity and longer 
latency for the cache miss accesses [13]. Also, organizing it as a cache requires 
the overhead of tag storage and additional unallocated space for replicated data.  
The  proposed COMA machines [3, 6] and the studies [7, 13] found in open 
l i terature utilize an invalidation policy for coherency, and assert the inclusion 
proper ty  [1] applied between the processor cache and its AM [9]. By broadcast ing 
invalidation signals [15] to the processor cache when an AM block is replaced or 

3 Although KSR-1 [3] and another COMA proposal DDM [6] use different terminology 
for various aspects of COMA, we generally follow the terminology of the DDM. 
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Fig.  1. An example of ill-effects of the inclusion property 

by attaching an inclusion bit [1] to each AM block entry, the inclusion property 
can be enforced. However, both of these schemes generate additional intra-node 
communication. Because of this, some studies [7, 13] on COMA consider relaxing 
the inclusion property somewhat to improve performance. 

We propose a variant of COMA, which we call dynamic memory architecture 
(DYMA), where the local memory is utilized as a backing store for the blocks 
discarded from the processor cache, thereby delaying the address binding of data  
to the local memory from block-incoming t ime to block-discarding time. Delaying 
the address binding relaxes the inclusion property, and this allows faster data  
a c c e s s .  

Section 2 describes background materials which motivated our work. Section 
3 introduces DYMA along with a coherence control. The memory access latency 
of DYMA is compared to those of COMA and CC-NUMA in Section 4. Section 
5 reports our preliminary simulation results. Section 6 offers a conclusion. 

2 B a c k g r o u n d  

The inclusion property in COMA causes another overhead: frequent accesses 
to the AM. For example, consider the simple configuration shown in Fig. 1. 
If processor Pi reads the shared block E at t ime t l ,  the block A in Nodei's 
AM is replaced by block E to maintain the inclusion. At this time, accesses to 
Nodei's AM are needed to store block E. Also, note that  if block A is the last 
copy in the system, two more AM accesses are needed to relocate block A (read 
block A from Nodei's AM and save it at a remote AM). If processor Pj  writes 
data  on block E at time t2, the copies of block E in Node/ are invalidated in 
the write-invalidation policy. To invalidate block E of Pi 's AM, access to the 
AM tag is necessary. By allowing direct access to the processor cache for the 
incoming message from the network, we can hide these extra AM accesses from 
the critical path of the memory access latency. However, the extra AM accesses 
can still make other memory access latency longer due to contention at the AM. 
Also, note tha t  probing the processor cache is unavoidable in the write-back 
policy, since the up-to-date copy can exist only in the processor cache. 

If we allow non-inclusive memory access in COMA, the extra AM accesses can 
be reduced. Let 's consider the example again. If we relax the inclusion property 
for block E at t ime t l ,  block E is saved only in the cache of Nodei, which removes 
the extra AM accesses to save block E and to relocate block A. Also, the access 
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to the AM tag is not necessary when block E is invalidated at time t2. Further, 
if block A is referenced again in Nodes, the node hit rate increases. This saves 
memory space and reduces extra accesses to the AM. However, this requires 
predicting future behavior of a block to determine whether the address of a 
block should be bound to a local memory frame or not. To relax the inclusion 
property in COMA, the prediction is required when the block is brought to 
the node (block-incoming time). Binding the address of a block which will be 
swapped or invalidated to an AM frame at block-incoming time may waste AM 
space. If the address of a block which will not be invalidated in the near future 
is not bound to an AM frame, the block can easily be replaced from the node 
due to the small size of the processor cache. Thus, either way limits the effective 
utilization of the AM, thereby diminishing the advantage of COMA. 

3 D y n a m i c  M e m o r y  A r c h i t e c t u r e  ( D Y M A )  

In DYMA, the local memory of each node has the facility of dynamic address 
binding to a memory block frame supported by hardware as in COMA. But  
DYMA uses the local memory as the backing store for the blocks discarded from 
the processor cache, i.e., binding the address of a block to the local memory 
happens at block-discarding time. Using the local memory in this way, no write 
access which hits on a non-shared cache block has to go to the local memory. Also, 
a node miss can be serviced directly from a remote cache and saved directly to 
its cache without accessing the slow local memory. Further,  between the block- 
incoming time and the block-discarding time, the block of the cache can be 
invalidated, or the block of the local memory can be loaded again. The first case 
reduces the local memory accesses and global replacement traffic, and the second 
case increases the node hit rate. These properties can make the average latency 
of DYMA short while still allowing dynamic data  replication and migration from 
node to node as in COMA. 

In CC-NUMA, the data  address is bound to a local memory frame when a 
page is loaded. COMA delays the address binding from page-fault time to mem- 
ory block missing time. We call the local memory of DYMA dynamic memory 
(DM). An interesting aspect of DYMA is tha t  there is no inclusion property 
between the processor cache and the DM. DYMA utilizes the processor cache 
and the DM for different functionality, while the processor cache is somewhat 
redundant in COMA. If the sum of local memories and the size of the working 
set of an application are the same, DYMA allows a block to be replicated to 
other nodes, while COMA allows no block replication. 

The relationship between the AM and the DM is similar to the relationship 
between the miss cache and the victim cache [8]; the address of the miss cache 
is bound at the block-incoming time to the lower level cache as in COMA, while 
the address of the victim cache is bound at the discarding time from the lower 
level cache as in DYMA. The miss and victim caches are designed to reduce 
cache misses in uniprocessors, while the AM and the DM are designed to reduce 
node misses in multiprocessors. 
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3.1 M e m o r y  A c c e s s  M e c h a n i s m  

The memory  access mechanism of DYMA described in this section assumes a 
directory-based write-invalidation protocol with an interconnection network. By 
adding one more bit, a local bit, in each cache block entry, we developed a scheme 
where only an indispensable block, when discarded from the cache, is written to 
its DM. The  local bit is used to indicate whether the copy of the block is in its 
DM (local block) or not (global block). All global blocks are saved in its DM 
when they are replaced at the cache. If a local block is selected for replacement 
and modified at the cache, it must be writ ten in the DM like the traditional 
write-back cache. The  use of the local bit and the memory  access mechanism 
can be described in seven steps: 

C a c h e  acces s  s t e p :  If  a write hits on a non-shared block or a read hits, give the 
da ta  to the processor. If a write hits on a shared block, go to i n v a l i d a t i o n  
s t ep .  Go to r e m o t e  acces s  s t e p  directly if a cache coherence miss happens; 
otherwise, go to D M  access  s t ep .  

D M  access  s t e p :  I f  a write hits on a non-shared block or a read hits, go to 
c a c h e  fill s t ep .  If a write hits on a shared block, go to i n v a l i d a t i o n  s t e p  
and then cache  fill s t ep .  If a DM miss occurs, go to r e m o t e  access  s t ep .  

R e m o t e  acces s  s t e p :  Find the owner node of the block at its home directory, 
and send a block request message to the node. At the owner node, if the 
block exists at the cache, copy the block from the cache. If the block exists 
in the DM, not in the cache, copy it from the DM. Deliver the copy to the 
requesting node, and go to c a c h e  fill s t ep .  

I n v a l i d a t i o n  s t e p :  At the home directory, send an invalidation signal to the 
nodes which have any copies of the block to be invalidated. At the remote 
node, invalidate the block if it is at the cache or at the DM but not in the 
cache, and send back an acknowledgment signal to the requesting node. 

C a c h e  fill s t ep :  Fill the missing block into the cache and s tar t  processing. At 
this time, set the local bit if the block is from its DM or from the network 
due to the cache coherence miss of a local block; otherwise, reset the local 
bit. If  there is no space to save the block, select a block to be replaced. Here, 
any replacement algorithm can be used. If the selected block is a global or 
modified block, go to r e l o c a t i n g  c a c h e  b l o c k  s t e p  to save the block at the 
DM. The relocation action is overlapped with the running of the processor. 

R e l o c a t i n g  cache  b l o c k  s t e p :  If  a block replaced in the DM in order to save 
the cache block is the unique copy in the node and has ownership, go to the 
home directory of the DM block, select a node which can keep ownership 
of the block, and go to r e l o c a t i n g  D M  b l o c k  s t e p  for relocating the DM 
block at  the remote  node. When selecting a node at the home directory, t ry  
to find a node with the following priority sequence: (1) a node which has 
the same copy of the block, (2) a node which has unused space to save the 
block, and (3) a node which contains a shared non-owner block. 

R e l o c a t i n g  D M  b l o c k  s t e p :  If  the same block exists in the cache or if the 
same block is in the DM but  not in the cache, just  change the state to 
owner. If there is an invalid block or a different, shared non-owner block in 
the DM, save the owner block at tha t  place. 
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F ig .  2. Coherence and relocation controls for DYMA. 
In the directory structure, the DM is 2-way set associative. The number of 
DM sets is n, and the number of nodes is p. 

3.2 C o h e r e n c e  and  R e l o c a t i o n  C o n t r o l s  

The coherence protocol of DYMA is an optimized one with twelve states in each 
cache block and four states in each DM block (Fig. 2a). The  loca l  b i t  described in 
the previous section is combined with the s tate  bits. When a page is first loaded 
from secondary storage, all blocks of the page are saved in a private owner (PO) 
state. When a read access hits at the cache, there is no s ta te  change. When a 
block is copied from its local DM for a read access, the block becomes private 
non-owner (PN) if its DM state  is PO; otherwise it becomes shared non-owner 
(SN). When a block is copied from a remote  node for a read access, the block is 
loaded into the cache in a unique shared (US) state. At this time, the s tate  of 
the remote node becomes shared owner (SO). The write access makes the cache 
block PO-s ta te  while all other copies of the block become the invalid (I) state. 

If  a PO- /SO-s t a t e  block is selected for replacement,  the block is saved at its 
DM with the same state. If  a US-state block is selected, the block is saved in the 
DM with SN-state. If  a SN-(from PN) / I - s t a t e  local block is selected, the DM 
block becomes SO-/I-s ta te .  If a copy of the DM block replaced by a global cache 
block exists in its cache with PN-/SN-'s tate ,  the s tate  of the cache block changes 
to the global PO- / (US-  or SO-)state.  When a DM block is relocated at  a remote  
node, it becomes SO-state if its copy exists at  more than  one node. Otherwise, 
the block is relocated with PO-state .  

DYMA possesses an overhead related to memory  block relocation as COMA 
does. If  the replaced memory  block is the last valid copy in the system, the 
block must  be relocated to some other node. To reduce the overhead of the DM 
block relocation in DYMA, we use a new directory s t ructure  (Fig. 2b) where 
each home directory has information of all the blocks which are mapped  to the 
same DM set. Therefore, just  by checking the home directory of a block to be 
relocated, the node which has space for the block can be chosen. 

Frequent accesses to the cache s tate  in DYMA may impede the processor 's  
access to the cache. Thus,  one may want to provide the controller with a duplicate 
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copy of both cache tag and state; this will shield the processor's access to its 
own cache from the interference of unsuccessful a t tempts  to match cache tag 
and state by remote accesses and invalidations. If the copy from the cache can 
be provided much faster than the copy from the DM, the copy from the cache 
is favorable in terms of total  system performance because it decreases the stall 
t ime of processors generating the remote access. 

4 M e m o r y  L a t e n c y  C o m p a r i s o n  

To compare the performance of CC-NUMA, COMA, and DYMA in terms of la- 
tency, we modeled memory access latency for each architecture. We divided mem- 
ory accesses into four different cases; local-cache hit, local-memory hit, remote- 
cache hit, and remote-memory hit. Let us say that  Llc, Ltm, Lrc, and Lrm are 
latencies for a local-cache hit, a local-memory hit, a remote-cache hit, and a 
remote-memory hit respectively. Then, the average latency per reference can be 
expressed as follow: 

HlcLzc + MlcH~,nLtm + MtcMlmHr~Lrc + MtcMl,nM,.cLrrn, (1) 

where Htc (= 1 - Mtc) is the local-cache hit rate, Htm (= 1 - Mtm) is the 
local-memory hit rate, and Hrc (= 1 - Mrc) is the remote-cache hit rate. 

Fig. 3 shows the latencies for each individual memory access in the memory 
architectures. When a local-cache hit occurs in COMA, there are two possible 
courses of action: (i) write access to a non-shared block or read access; or (ii) 
write access to a shared block. In the first case, the latency is the time for cache 
access (to). In the second case, coherence action is necessary. This coherence 
action may need three network traversals (3tn), directory processing time (c~), 
and the invalidation time at a remote node (to or tc + ta). 

Although, the latencies for each memory architecture are from a simple anal- 
ysis of the memory access mechanism, they nevertheless show inherent latency 
characteristics. The average latency of CC-NUMA can be the shortest only when 
the partit ion and distribution of data  and the page migration [5] are done so well 
tha t  the local-memory hit rate, Htm, becomes close to that  of DYMA. In general, 
the Him of DYMA and COMA is expected to be higher than that  of CC-NUMA. 
With higher HIra, even though the average remote latency can decrease both in 
DYMA and COMA, the coherence action in Ltm and the memory tag access 
t ime (t~) can make the average overall latency longer. Thus, the cut-off point 
depends on how much higher the Him of DYMA and COMA is than that  of 
CC-NUMA, given the network latency. 

By relaxing the inclusion property in COMA, the extra AM accesses can be 
reduced. However, generally it seems to be hard to determine whether the address 
of a block should be bound to the local memory or not, without knowing the 
future behavior of the block. DYMA can reduce the extra accesses by delaying 
the address binding while increasing the Htm. 
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Fig .  3. Memory access latency in each architecture. 
In the figure, tc = cache access time, to, = cache fill time, t,~ = memory access 
time, ta =- memory tag access time, tn = network traversal time without data, 
c~ = processing time at the directory, fltn = network traversal time with data. 

5 Preliminary Simulation R e s u l t s  

We developed a trace driven simulator using the parallelized Perfect Club Bench- 
mark  programs (Table la)  [2] as workloads. Although our simulations were done 
with scaled-down da ta  size and accordingly scaled-down cache and local memory  
size, they nevertheless demonstra te  the potential  advantage of DYMA. 

We assume tha t  instruction access is overlapped with da ta  access. The re- 
quests for the use of resources are serviced in first-in first-out order. The pro- 
cessor which arrives at the barrier synchronization early is blocked until the last 
processor arrives at  the synchronization point. The mas te r  processor (processor 
number  0) executes sequential portions of a program.  The  default simulation 
parameters  are shown in Table lb.  We use the optimized coherence protocol 
[10, 14] for each architecture. We made the memory  access t ime relatively large 
because we believe tha t  the processor-memory performance gap is widening, not 
narrowing. Here, note tha t  the tag of the memory  is assumed to be slow DRAM. 

We use the average memory  access latency described in Section 4 (Eq. 1) as 
the performance metrics. The waiting t ime caused by resource contention is also 
considered. The network traffic rate is defined as the average number  of network 
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Code Total Ref. 
Name (write %) 
ADM 3802575(20.2) 

ARC2D 60158056(15.7) 

DYFESM 6028514(13.9) 

FLO52Q 72824086(14.9) 
MDG 107182698(19.8) 

OCEAN 17254748(21.7) 
QCD2 31078266(16.0) 

TRACK 2773985(16.0) 
TRFD 9446379(14.6) 
(a) 

Data Sz Unit I Parameters CC-NUMA COMA DYMA 
(words) coherence protocol 5 states 4 states 12 & 4 states 

17255 cache size ---- 512 bytes, access time(to) ---- 1, fill 
899484 time (tel) : 4, associativity ---- direct-mapped 

data size 16451 memory (total) size data size 1-1 / ( ~  of nodes) 
25763 associativity - direct mapped 
29299 access time (tin) = 25, tag time ( ~ )  ---- 16 

1204 network protocol I directory-based 
32971 service time (t~) ---- 10, a = O, ~ = 3 
21537 block size = 16 bytes, # of nodes = 8 
14950 Here, time unit is clock cycles 

:haracteristics of the traces (b) default parameters 

Table 1. Simulation environments. 

1 NUMA 1 C(80%) I C(87.5%) m C(90%) ~ D(80%) ~ D(87.5%) [ ~  D(90~) ] 

ADM A R C 2 D  DYFESM FLO52Q MDG OCEAN Q C D 2  TRACK TRFD 

Fig. 4. Node hit rate per reference. 

traversals per memory reference. The three main components of the network 
traffic are data traffic, replacement traffic, and coherence traffic [10]. 

Fig. 4 is the node hit rate of the master node when 8 processors are used. 
Usually, the node hit rates of COMA and DYMA decrease as the memory pres- 
sure (data size / memory size) increases from 80% to 90%. However, at higher 
memory pressure in COMA, the node hit rates of some traces such as MDG and 
TRFD are high. This is because the relocation protocol giving high priority to 
the master processor in COMA allows effective block migration. 

The results in Fig. 5 include the traffic generated by all 8 nodes. If the 
memory pressure is high and the associativity of the DM is low, COMA would 
like to generate replacement traffic whenever there is a node miss [7]. This makes 
the replacement traffic of COMA much higher than that of the others. Although 
not all node misses cause replacement traffic in CC-NUMA, the write-back from 
the processor cache frequently does. In DYMA, the replacement action at the 
DM is delayed until there is a relocation request from its cache. This makes the 
replacement traffic of DYMA lowest. The coherence traffic rate in COMA and 
DYMA is higher than in CC-NUMA. 

The average latencies of DYMA are shorter than the others in most of the 
traces (Fig. 6) since the high node hit rate of DYMA and small DM accesses 
reduce the large overhead of remote access and replace it with the small overhead 
of local access. Although the remote latency of COMA becomes smaller than that 
of CC-NUMA, the frequent contention at the AMs makes the waiting time for 
an AM access in COMA longer. In a large (relative to our simulation workloads) 
processor cache (512 K bytes), the advantage of dynamic address mapping in 
the local memory becomes small and the contention at the AM of COMA shows 
more pronounced ill-effects (Fig. 7). 
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Fig. 6. Average latency (including the waiting time) per reference. 
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Fig. 7. Average latency with a large processor cache (512 K bytes). 

6 Conclus ion 

COMA allows higher local memory utilization by organizing the local memory 
as a cache (AM). However, the inclusion property applied between the processor 
cache and the AM creates extra accesses to the slow AM. Relaxing the inclusion 
property in COMA requires determining whether a missing block should be 
bound to a AM frame or not when it is brought to the node (block-incoming 
time). 

This paper proposed a variant of COMA, which we call DYMA, to reduce 
the latency associated with COMA. The local memory of DYMA, called dy- 
namic memory (DM), is utilized as a backing store for blocks discarded from 
the processor cache. There is no inclusion property between the processor cache 
and its DM. By delaying the data address binding to the DM frame from block- 
incoming time to block-discarding time, the extra accesses to the DM can be 
reduced while effective utilization of the DM is increased. 
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We compared the latencies of DYMA, COMA, and CC-NUMA based on 
simple analysis of the memory access mechanism and based on the results of a 
simulation. Although DYMA may need more complex hardware control, our pre- 
liminary results show that  DYMA can provide an opportuni ty to have relatively 
small average latency in a large-scale distributed shared-memory multiprocessor 
system. 
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