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Abstract. Online graph problems are considered in models where the
irrevocability requirement is relaxed. Motivated by practical examples
where, for example, there is a cost associated with building a facility
and no extra cost associated with doing it later, we consider the Late
Accept model, where a request can be accepted at a later point, but
any acceptance is irrevocable. Similarly, we also consider a Late Reject
model, where an accepted request can later be rejected, but any rejection
is irrevocable (this is sometimes called preemption). Finally, we consider
the Late Accept/Reject model, where late accepts and rejects are both
allowed, but any late reject is irrevocable. For Independent Set, the Late
Accept/Reject model is necessary to obtain a constant competitive ratio,
but for Vertex Cover the Late Accept model is sufficient and for Mini-
mum Spanning Forest the Late Reject model is sufficient. The Matching
problem has a competitive ratio of 2, but in the Late Accept/Reject
model, its competitive ratio is 3

2
.

1 Introduction

For an online problem, the input is a sequence of requests. For each request,
the algorithm has to make some decision without any knowledge about possible
future requests. Often (part of) the decision is whether to accept or reject the
request and the decision is usually assumed to be irrevocable. However, many
online problems have applications for which total irrevocability is not inher-
ent or realistic. Furthermore, when analyzing the quality of online algorithms,
relaxations of the irrevocability constraint often result in dramatically different
results, especially for graph problems. This has already been realized and several
papers study various relaxations of the irrevocability requirement. In this paper
we initiate a systematic study of the nature of irrevocability and of the implica-
tions for the performance of the algorithms. Our aim is to understand whether
it is the absence of knowledge of the future or the irrevocability restrictions on
the manipulation of the solution set that makes an online problem difficult.

We consider graph problems and focus on four classical problems, Indepen-
dent Set, Matching, Vertex Cover, and Minimum Spanning Forest. Independent

⋆ Supported in part by the Danish Council for Independent Research, Natural Sci-
ences, grant DFF-1323-00247, and the Villum Foundation, grant VKR023219.
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Set and Vertex Cover are studied in the vertex arrival model. In this model,
vertices arrive one by one together with all the edges between the newly arrived
vertex and previous vertices. Matching and Minimum Spanning Forest are stud-
ied in the edge arrival model, but the results hold in the vertex arrival model as
well. In the edge arrival model, edges arrive one by one, and if a vertex incident
with the newly-arrived edge was not seen previously, it is also revealed.

Relaxed irrevocability

For the four problems considered in this paper, the online decision is whether to
accept or reject the current request. In the standard model of online problems,
this decision is irrevocable and has to be made without any knowledge about
possible future requests. We relax the irrevocability requirement by allowing
the algorithm to perform two additional operations, namely late accept and late
reject. Late accept allows the algorithm to accept not only the current request but
also requests that arrived earlier. Thus, late accept relaxes irrevocability by not
forcing the algorithm to discard the items that are not used immediately. Late
reject allows the algorithm to remove items from the solution being constructed,
relaxing the irrevocability of the decision to accept an item. When the algorithm
is allowed to perform late accept or late reject, but not both, we speak of a
Late Accept model and Late Reject model, respectively. Note that, in these two
models, the late operations are irrevocable. We also consider the situation where
the algorithm is allowed to perform both late accepts and late rejects, focusing
on the Late Accept/Reject model, where any item can be late-accepted and late-
rejected, but once it is late-rejected, this decision is irrevocable. In other words,
if the algorithm performs both late accept and late reject on a single item, the
late accept has to precede the late reject.

We believe that the Late Accept, Late Reject, and Late Accept/Reject models
are appropriate modeling tools corresponding to many natural settings. Match-
ing, for example, in the context of online gaming or chats, functions in the Late
Accept model. Indeed, the users are in the pool until assigned, allowing the late
accept, but once the users are paired, the connection should not be broken by
the operator. Note that the matching problem is a maximization problem. For
minimization problems, accepting a request may correspond to establishing a re-
source at some cost. Often there is no natural reason to require the establishment
to happen at a specific time. Late acceptance was considered for the dominating
set problem in [2], which also contains further feasible practical applications and
additional rationale behind the model.

When the knapsack problem is studied in the Late Reject model, items are
usually called removable; see for example [15,12,11,3,13]. For most other prob-
lems, late rejection is usually called preemption and has been studied in vari-
ants of many online problems, for example call control [1,8], maximum cover-
age [24,23], and weighted matching problems [5,6]. Preemption was also pre-
viously considered for one of the problems we consider here, independent set,
in [19], but in a model where advice is used, presenting lower bounds on the
amount of advice necessary to achieve given competitive ratios in a stated range.
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Online Vertex Cover was studied in [4], where they considered the possibility
of swapping some of the accepted vertices for other vertices at the very end, at
some cost depending on the number of vertices involved.

A similar concept is studied in, for example, [14,22,9,10] for online Steiner
tree problems, MST, and TSP. Here, replacing an accepted edge with another is
allowed, and the objective is to minimize the number of times this occurs while
obtaining a good competitive ratio. The problem is said to allow rearrangements
or recourse.

TSP has also been studied [16] in a model where the actual acceptances and
rejections (rejections carry a cost) are made at any time.

Competitive analysis

For each graph problem, we study online algorithms in the standard, Late Ac-
cept, Late Reject, and Late Accept/Reject models using the standard tool of
competitive analysis [25,17], where the performance of an online algorithm is
compared to the optimum algorithm Opt via the competitive ratio. For any
algorithm (online or offline), A, we let A(σ) denote the value of the objective
function when A is applied to the input sequence σ.

For minimization problems, we say that an algorithm, Alg, is c-competitive,
if there exists a constant α such that, for all inputs σ, Alg(σ) ≤ c ·Opt(σ)+α.
Similarly, for maximization problems, Alg is c-competitive, if there exists a
constant α such that, for all inputs σ, Opt(σ) ≤ c ·Alg(σ)+α. In both cases, if
the inequality holds for α = 0, the algorithm is strictly c-competitive. The (strict)
competitive ratio of Alg is the infimum over all c such that Alg is (strictly)
c-competitive. The competitive ratio of a problem P is the infimum over the
competitive ratio of all online algorithms for the problem. For all combinations
of the problem and the model, we obtain matching lower and upper bounds on
the competitive ratio.

For ease of notation for our results, we adopt the following conventions to
express that a problem essentially has competitive ratio n, i.e., it is true up to
an additive constant. We say that a problem has competitive ratio n−Θ(1) if

– for any algorithm, there is a constant b > 0 such that the strict competitive
ratio is at least n− b, and

– for any constant b, there is a strictly (n−b)-competitive algorithm for graphs
with at least b+ 1 vertices.

Similarly, we say that a problem has competitive ratio n/Θ(1) if

– for any algorithm, there is a constant b > 0 such that the strict competitive
ratio is at least n/b, and

– for any constant b, there is an n/b-competitive algorithm for graphs with at
least b vertices.

This notation is used in Theorems 3 and 13. For all other results, the upper
bounds hold for the strict competitive ratio. For convenience, when stating re-
sults containing both an upper bound on the strict competitive ratio and a lower
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bound on the competitive ratio, we use the term “competitive ratio” even though
the result holds for the strict competitive ratio as well.

Our results

The paper shows that for some problems the Late Accept model allows for algo-
rithms with significantly better competitive ratios, while for others it is the Late
Reject model which does. For other problems, the Late Accept/Reject model is
necessary to get these improvements. See Table 1. Note that only deterministic
algorithms are considered, not randomized algorithms.

Our results on Minimum Spanning Forest follow from previous results. Thus,
they are mainly included to give an example where late rejects bring down
the competitive ratio dramatically. The technical highlights of the paper are
the results for Independent Set in the Late Accept/Reject model, where, in
Theorems 4 and 5, we prove matching lower and upper bounds of 3

√
3/2 on the

competitive ratio.

Table 1. Competitive ratios of the four problems in each of the four models. W is the
ratio of the largest weight to the smallest.

Problem Standard Late Accept Late Reject Late Accept/Reject

Independent Set n− 1 n

Θ(1)

⌈

n

2

⌉

3
√

3
2

≈ 2.598

Matching 2 2 2 3
2

Vertex Cover n− 1 2 n−Θ(1) 2

Min. Spanning Forest W W 1 1

We consider only undirected graphs G = (V,E). Throughout the paper, G
will denote the graph under consideration, and V and E will denote its vertex
and edge set, respectively. Moreover, n = |V | will always denote the number of
vertices in G. We use uv for the undirected edge connecting vertices u and v, so
vu denotes the same edge.

2 Independent Set

An independent set for a graph G = (V,E) is a subset I ⊆ V such that no two
vertices in I are connected by an edge. For the problem called Independent Set,
the objective is to find an independent set of maximum cardinality. We consider
online Independent Set in the vertex arrival model.

Theorem 1. For Independent Set in the standard model, the strict competitive
ratio is n− 1.
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Proof. For the upper bound, consider the greedy algorithm that accepts each
vertex, if possible.

For the lower bound, consider the following adversarial strategy where inde-
pendent vertices arrive until a vertex, v, is accepted by the algorithm. From this
point on, the adversary presents vertices with v as their only neighbor. Hence,
the algorithm cannot accept any further vertices, whereas Opt rejects v and
accepts all other n− 1 vertices, yielding the result. ⊓⊔

We first show that allowing only late rejects helps, but only very slightly.

Theorem 2. For Independent Set in the Late Reject model, the strict competi-
tive ratio is ⌈n/2⌉.

Proof. For the lower bound, whenever there is at least one vertex v in the current
independent set constructed by Alg, the adversary presents a vertex incident
only to v. The only vertex which can be accepted whenAlg rejects v is the vertex
which just arrived, so Alg will never have more than one accepted vertex. On
the other hand, the graph the adversary produces is bipartite, so Opt can accept
at least half of the vertices.

For the upper bound, consider the following algorithm Alg: If the presented
vertex v can be added to the independent set I being constructed, then accept
it. Otherwise, if v is adjacent to only one vertex u in I, then remove u from I
and add v to I.

By definition, Alg accepts the first vertex. If Alg ever has two accepted
vertices, it will also have at least two accepted vertices at the end, and the result
holds. Otherwise, consider some vertex u accepted by Alg. If the adversary
presented a vertex not adjacent to u, Alg would accept it without rejecting u,
which would be a contradiction. Thus, each vertex presented by the adversary is
connected to the unique vertex currently in I. By definition of the algorithm, in
every step, the currently accepted vertex is rejected and the new one accepted.
Thus, considering the vertices in the order they are presented, they form a path.
No algorithm can accept more than every second vertex from a path, and since
all vertices are on the path, Opt accepts at most ⌈n/2⌉ vertices, and the result
follows. ⊓⊔

We now show that while allowing late accepts helps further, it is still not
enough to obtain a finite (constant) competitive ratio.

Theorem 3. For Independent Set in the Late Accept model, the competitive
ratio is n/Θ(1).

Proof. For a given positive constant c, an algorithm which does not accept any
vertex until the presented graph has an independent set of size at least c, and
then accepts any such set, is n/c-competitive (for a graph with no independent
set of size c, c− 1 suffices for the additive constant).

For the lower bound, consider any algorithm, Alg. Let Ik denote a sequence
consisting of k independent vertices. Let c be the smallest integer such that Alg
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accepts at least one vertex of Ic. If there is no such c, then the competitive ratio
of Alg is unbounded. Assume that v is a vertex accepted in Ic. When Alg

accepts v, the adversary extends Ic to an arbitrarily long input by presenting
vertices of degree one adjacent only to v. Clearly, Opt can accept n− 1 vertices
of the resulting graph, while Alg can accept at most c vertices. ⊓⊔

The following two theorems show that, in the Late Accept/Reject model,
the optimal competitive ratio for Independent set is 3

√
3/2. The upper bound

comes from a variant of the greedy algorithm, Algorithm 1, rejecting a set of
vertices if it can be replaced by a set at least

√
3 as large. The algorithmic idea

is natural and has been used before (with other parameters than
√
3) in [23,24],

for example. Thus, the challenge lies in deciding the parameter and proving the
resulting competitive ratio. Pseudocode for Algorithm 1 is given below.

For Algorithm 1, we introduce the following notation. Let S be the current
set of vertices that have been accepted and not late-rejected. Let R be the set
of vertices that have been late-rejected, and let P denote the set V − (R ∪ S) of
vertices that have not been accepted (and, hence, not late-rejected).

For a set U of vertices, let N(U) = ∪v∈UN(v), where N(v) is the neighbor-
hood of a vertex v (not including v). We call a set, T , of vertices admissible if
all the following conditions are satisfied:

1) T is an independent set;
2) T ⊆ P ;
3) |T | ≥

√
3 |N(T ) ∩ S|.

Algorithm 1: Algorithm for Independent Set in the Late Accept/Reject
model.
Result: Independent set S

1 S = ∅
2 while a vertex v is presented do

3 if S ∪ {v} is independent then

4 S = S ∪ {v}
5 else

6 while there exists an admissible set do

7 Let T be an admissible set minimizing |S ∩N(T )|
8 S = (S −N(T )) ∪ T

For the analysis of Algorithm 1, we partition S into the set, A, of vertices
accepted in line 4 and the set, B, of vertices accepted in line 8. We let O be
the independent set constructed by Opt. For any set, U , of vertices, we let
U+ = U ∩O and U− = U −O. Thus, O = P+∪S+∪R+ = P+∪A+∪B+∪R+.

Lemma 1. When Algorithm 1 terminates, |B| ≥ (
√
3− 1)|R|.

Proof. Clearly, the inequality is true before the first vertex is presented. Each
time a set, X , of vertices is moved from S = A ∪ B to R, a set at least

√
3

times as large as X is added to B. Thus, each time the size of R increases by
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some number x, the size of B increases by at least
√
3x − x. The result follows

inductively. ⊓⊔
Lemma 2. When Algorithm 1 terminates, |P+| <

√
3 |S−|.

Proof. When the algorithm terminates, there are no admissible sets. This means,
in particular, that P+ is not admissible. Trivially, P+ does not violate 2). Fur-
thermore, since P+ ⊆ O, it cannot violate 1). Thus, we conclude from 3) that
|P+| <

√
3|N(P+) ∩ S| ≤

√
3|S−|, where the last inequality follows from the

fact that there are no edges between P+ and S+, since P+ ∪ S+ ⊆ O. ⊓⊔
Lemma 3. When Algorithm 1 terminates, |B−|+ |R−| ≥

√
3 |R+|.

Proof. Consider a set, T , added to B in line 8. Let Q = N(T ) ∩ S. We prove
that

|T−| ≥
√
3|Q+| (1)

If |Q+| = 0, this is trivially true. Thus, we can assume that Q− is a proper
subset of Q. Since T is admissible, it follows that

|T | ≥
√
3|Q| (2)

Note that (S −Q−) ∪ T+ is independent, since (S −Q) ∪ T is independent and
there are no edges between Q+ and T+. Since the algorithm chooses T such that
|Q| is minimized, this means that

|T+| <
√
3|Q−| (3)

Subtracting Ineq. (3) from Ineq. (2), we obtain Ineq. (1).
Let T1, T2, . . . , Tk be all the admissible sets that are chosen in line 8 during

the run of the algorithm, and let Q1, Q2, . . . , Qk be the corresponding sets that
are removed from S. Then, ∪k

i=1Ti ⊆ B ∪ R, and thus, ∪k
i=1T

−
i ⊆ B− ∪ R−.

Furthermore, R = ∪k
i=1Qi. Hence,

|B−|+ |R−| ≥
k

∑

i=1

|T−
i | ≥

k
∑

i=1

√
3|Q+

i | =
√
3|R+|,

where the second inequality follows from Ineq. (1). ⊓⊔
Lemma 4. When Algorithm 1 terminates, |B+|+ |R+| ≤

√
3√

3+1
|B+|+

√
3
2 |B|.

Proof. Since |B+| = |B| − |B−| and |R+| = |R| − |R−|, we obtain the following.

(
√
3 + 1)(|B+|+ |R+|) =

√
3
(

|B+|+ |R+|
)

+ 1 ·
(

|B|+ |R| − (|B−|+ |R−|)
)

≤
√
3|B+|+

√
3|R+|+ |B|+ |R| −

√
3|R+|, by Lemma 3

=
√
3|B+|+ |B|+ |R|

≤
√
3|B+|+ |B|+ 1√

3− 1
|B|, by Lemma 1

=
√
3|B+|+

√
3√

3− 1
|B|

The result now follows by dividing both sides by
√
3 + 1. ⊓⊔
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Theorem 4. For Independent Set in the Late Accept/Reject model, Algorithm 1
is strictly 3

√
3/2-competitive.

Proof. We prove that |O| ≤ 3
√
3

2 |S|, establishing the result.

Opt = |P+|+ |A+|+ |B+|+ |R+|
≤

√
3(|A−|+ |B−|) + |A+|+ |B+|+ |R+|, by Lemma 2

≤
√
3(|A|+ |B−|) + |B+|+ |R+|, since |A| = |A+|+ |A−|

≤
√
3

(

|A|+ |B−|+ 1√
3 + 1

|B+|+ 1

2
|B|

)

, by Lemma 4

≤
√
3

(

|A|+ |B|+ 1

2
|B|

)

, since
1√
3 + 1

< 1

≤ 3
√
3

2
(|A|+ |B|), since

1

2
|B| ≤ 1

2
(|A|+ |B|)

⊓⊔

We prove a matching lower bound:

Theorem 5. For Independent Set in the Late Accept/Reject model, the compet-
itive ratio is at least 3

√
3/2.

Proof. Assume that Alg is strictly c-competitive for some c > 1. We first show
that c is at least 3

√
3/2 and then lift the strictness restriction. Assume for the

sake of contradiction that c < 3
√
3/2.

Incrementally, we construct an input consisting of a collection of bags, where
each bag is an independent set. Whenever a new vertex v belonging to some
bag B is given, we make it adjacent to every vertex not in B, except vertices
that have been late-rejected by Alg. Thus, if Alg accepts v, it cannot hold any
vertex in any other bag. This implies that the currently accepted vertices of Alg

always form a subset of a single bag, which we refer to as Alg’s bag, and this is
the crucial invariant in the proof. We say that Alg switches when it rejects the
vertices of its current bag and accepts vertices of a different bag.

For the incremental construction, the first bag is special in the sense that
Alg cannot switch to another bag. We discuss later when we decide to create
the second bag, but all we will need is that the first bag is large enough. From
the point where we have created a second bag, Alg has the option of switching.
Whenever Alg switches to a bag, B′, we start the next bag, B′′. All that this
means is that the vertices we give from this point on and until Alg switches
bag again belong to B′′, and Alg never holds vertices in the newest bag.

Now we argue that as long as we keep giving vertices, Alg will repeatedly
have to switch bag in order to be c-competitive. Choose some ε > 0, let B
be Alg’s bag, B′ be the new bag, and s be the number of vertices which are
not adjacent to any vertices in B′. If Alg has accepted a vertices of B after
(c + ε)a − s vertices of the new bag B′ have been given, Alg has to accept at
least one additional vertex to be c-competitive, since at this point Opt could
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accept all of the vertices in B′ and s additional vertices. Since B′ is the new bag,
B has reached its final size, so eventually Alg will have to switch to a different
bag.

For the proof, we keep track of relevant parts of the behavior of Alg using
a tree structure. The first bag is the root of the tree. Recall that whenever Alg

switches to a bag, say X , we start a new bag Y . In our tree structure we make
Y a child of X .

Since Alg is c-competitive and always holds vertices only from a single bag
B, the number a of vertices held in B satisfies a ≥ |B|/c. Since, by assumption,
c < 3, it follows that Alg can accept and then reject disjoint sets of vertices
of B at most twice, or equivalently, that each bag in the tree has at most two
children. As we proved above, Alg will have to keep switching bags, so if we
keep giving vertices, this will eventually lead to leaves arbitrarily far from the
root.

Consider a bag Bm that Alg holds after a “long enough” sequence has been
presented.

Label the bags from the root to Alg’s bag by B1, . . . , Bm, where Bi+1 is a
child of Bi for each i = 1, . . . ,m−1. Let aj , 1 ≤ j < m, be the number of vertices
of Bj held by Alg immediately before it rejected already accepted vertices from
Bj for the first time and let am be the number of vertices currently accepted in
Bm. Let nj = |Bj |, 1 ≤ j ≤ m.

Furthermore, for each j, if j is even, let sj = a2 + a4 + · · · + aj , and if j is
odd, let sj = a1+a3+ · · ·+aj. Note that our choice of adjacencies between bags
implies that Opt can hold at least sj vertices in bags B1, B2, . . . , Bj .

Thus, just beforeAlg rejects the vertices in Bj−1 (just before the njth vertex
of Bj is given), we must have caj−1 ≥ nj − 1 + sj−2, by the assumption that
Alg is c-competitive. We want to introduce the arbitrarily small ε chosen above
and eliminate the “−1” in this inequality: Since Opt can always hold the a1
vertices from the root bag, caj ≥ a1 must hold for all j. Since a1 ≥ (n1 − 1)/c,
we get that aj ≥ (n1 − 1)/c2. Thus, at the beginning of the input sequence, we
can keep giving vertices for the first bag, making n1 large enough such that aj
becomes large enough that εaj−1 ≥ 1. This establishes (c+ ε)aj−1 ≥ nj + sj−2.
Trivially, nj ≥ aj , so

(c+ ε)aj−1 − sj−2 ≥ aj . (4)

Next, we want to show that for any 1 ≤ c < 3
√
3/2, there exists an m such that

sm > cam, (5)

contradicting the assumption that Alg was c-competitive. To accomplish this,
we repeatedly strengthen Ineq. (5) by replacing aj with the bound from Ineq. (4),
eventually arriving at an inequality which can be proven to hold, and then this
will imply all the strengthened inequalities and, finally, Ineq. (5).

From Ineq. 5, we first use the definition of sm and collect the am terms to
get

sm−2 > (c− 1)am (6)
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and then we use Ineq. (4) to obtain the following inequality, which implies
Ineq. (6):

sm−2 > (c− 1)(c+ ε)am−1 − (c− 1)sm−2.

Collecting sm−2 terms gives

csm−2 > (c− 1)(c+ ε)am−1,

and, using Ineq. (4) again, we get a stronger inequality

csm−2 > (c− 1)(c+ ε)2am−2 − (c− 1)(c+ ε)sm−3,

and, after moving sm−3,

csm−2 + (c− 1)(c+ ε)sm−3 > (c− 1)(c+ ε)2am−2. (7)

We proceed by labeling the coefficients of sj and aj in these inequalities of the
form

fism−i + fi+1sm−(i+1) ≥ giam−i (8)

by sequences {fk}∞k=0, respectively {gk}∞k=0. We reverse the order of f and g
so the index k corresponds to k applications of Ineq. (4), and simplifications
as in the above. Therefore, fk and gk are the coefficients of sm−k and am−k,
respectively (recall that m is fixed).

Our repeated rewriting of aj and sj terms to terms with smaller indices will
eventually lead to a1, which is a constant, and to s0, which is zero. The above
calculations show that

f0 = 1

f1 = 0

f2 = c

f3 = (c− 1)(c+ ε)

g0 = c

g1 = (c− 1)(c+ ε)

g2 = (c− 1)(c+ ε)2

Our aim is to show that the coefficients fk and gk satisfy

gi+1 = (c+ ε)(gi − fi) (9)

fi+2 = gi (10)

With the derived constants for f and g with small indexes given above as the base
case, we proceed by induction, assuming that for i, the coefficients of Ineq. (8)
have the values claimed in Eq. (9) up to index i and in Eq. (10) up to index
i+ 1.

We emphasize that we are still strengthening inequalities, so it is the inequal-
ity for the (i + 1)-version of Ineq. (8) that we derive that will imply Ineq. (8)
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for i. The induction is used to show that the coefficients in the inequalities fulfill
the recurrence equations stated for them.

From Ineq. (8), we collect the am−i to obtain

fism−(i+2) + fi+1sm−(i+1) ≥ (gi − fi)am−i,

and using Ineq. (4), we get the stronger inequality

fism−(i+2) + fi+1sm−(i+1) ≥ (gi − fi)(c+ ε)am−(i+1) − (gi − fi)sm−(i+2),

which can be rewritten as

gism−(i+2) + fi+1sm−(i+1) ≥ (gi − fi)(c+ ε)am−(i+1).

Reordering on the left-hand side and inserting the claimed Eqs. (9) and (10), we
arrive at

fi+1sm−(i+1) + fi+2sm−(i+2) ≥ gi+1am−(i+1),

which is the (i+ 1)-version of Ineq. (8), proving the claim.
This concludes the strengthening of the inequalities and the sequence of im-

plications. Thus, to prove Ineq. (5), it is sufficient to prove that there exist m
and i such that Ineq. (8) holds. This, in turn, will follow if gj is negative. Indeed,
if gj eventually becomes negative, we can choose j to be the smallest such index
and Ineq. (8) then implies the desired Ineq. (5). This inequality contradicts the
assumption of the algorithm being c-competitive, and we will have established
the theorem.

Plugging Eq. (10) into Eq. (9) gives us

gi+1 = (c+ ε)(gi − gi−2), (11)

and this is the recurrence we use to show that gi becomes negative.
According to [18, Theorem 1.2.1], every solution to a linear homogeneous

difference equation oscillates (around zero, and thus has negative values infinitely
often) if and only if its characteristic equation has no positive roots. For a direct
proof of the subcase of the above theorem that we need, see [21].

The characteristic equation of Eq. 11 is r3− (c+ε)r2+(c+ε) = 0, which, for

the interval 1 ≤ c+ ε < 3
√
3

2 , has two imaginary roots and one real root. Letting
d = c+ ε and

s = − 3

√

108d− 8d3 − 12
√

−12d4 + 81d2,

this third root is s
6 +

2d2

3s + d
3 , which is negative for 1 ≤ d ≤ 3

√
3

2 . (Note that s is

no longer real when −12d4 + 81d2 becomes negative, which occurs for d > 3
√
3

2 .

At d = 3
√
3

2 , in addition to the negative real root, there is a double root at
√
3,

and the solution to the recurrence never becomes negative.)
Thus, from [18, Theorem 1.2.1], any solution to the recurrence equation os-

cillates, implying, in particular, that it becomes negative at some point, giving
the desired contradiction.
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Finally, we return to the assumption of strictness, which can easily be re-
moved. There are only two places we use the relation given by Alg being strictly
c-competitive. One place is in the claim caj ≥ a1. However, we use this only to
lead to Ineq. (4), and just as we used a large enough first bag to make εaj−1 ≥ 1,
we can increase the size of the first bag to eliminate any additive constant. The
other place was in the argument that caj−1 ≥ nj − 1 + sj−2. Also in this case,
if bags are large enough, no additive constant makes a difference, and the mini-
mum size of all bags can be increased by increasing n1, since that increases the
lower bound on a1, and the algorithm can never hold fewer vertices in any bag
than that. ⊓⊔

The previous two theorems give us:

Corollary 1. For Independent Set in the Late Accept/Reject model, the com-
petitive ratio is 3

√
3/2.

3 Matching

A matching in a graph G = (V,E) is a subset of E consisting of pairwise non-
incident edges. For the problem called Matching, the objective is to find a match-
ing of maximum cardinality. We study online Matching in the edge arrival model,
but note that the results hold in the vertex arrival model as well: For the upper
bounds, an algorithm in the vertex arrival model can process the edges incident
to the current vertex in any order. For the lower bounds, all adversarial sequences
used in this section consist of paths, and hence, exactly the same input can be
given in the vertex arrival model.

It is well known and easy to prove that the greedy algorithm which adds an
edge to the matching whenever possible is 2-competitive and this is optimal in
the standard model. The first published proof of this is perhaps in the classical
paper of Korte and Hausmann [20]. The paper shows that in any graph, the ratio
of the minimum size of a maximal matching to the size of a maximum matching
is at least 1

2 , and there are graphs where it is no more than 1
2 . Since the greedy

algorithm produces a maximal matching, the claim follows.

Late accept or late reject alone does not help:

Theorem 6. For Matching in the Late Accept model, the competitive ratio is 2.

Proof. The upper bound follows from the standard model. For the lower bound,
we can use the same sequence as in the standard model: The adversary presents
m mutually non-incident edges to some algorithm, Alg. For every edge uv ac-
cepted by Alg at any point, the adversary presents edges xu and vy, which Alg

cannot accept. Thus, there will be m connected components such that in each
component, Opt accepts at least twice as many edges as Alg. ⊓⊔

Theorem 7. For Matching in the Late Reject model, the competitive ratio is 2.
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Proof. The upper bound follows from the standard model. For the lower bound,
the adversary presents m mutually non-incident edges to some algorithm, Alg.
For each edge, uv, accepted by Alg, the adversary presents an edge vx. If Alg

late-rejects uv, then the adversary presents an edge xy. Alg can only accept
one of the edges vx and xy and it cannot accept uv again, but Opt accepts both
uv and xy. Otherwise, Alg must reject vx. In this case, the adversary presents
an edge, zu. Alg can only keep zu or uv, but Opt accepts both zu and vx.
This adversarial strategy results in m connected components such that in each
component, Opt accepts at least twice as many edges as Alg. ⊓⊔

Theorem 8. For Matching in the Late Accept/Reject model, the competitive
ratio is at least 3/2.

Proof. The adversary presents a number of mutually non-incident edges to some
algorithm, Alg. If, for some such edge uv, during the entire processing of the
input, Alg does not accept uv, then Opt will, and no more edges incident to
u or v will be presented. The ratio is then unbounded on the subconstruction
containing uv.

If Alg accepts an edge uv, the adversary presents xu and vy. If Alg never
rejects uv, no more edges incident to any of these vertices will be presented, and
the ratio is 2 on this subconstruction.

If Alg late-rejects uv at some point, then the adversary presents x′x and yy′.
The algorithm cannot accept uv again, so it cannot accept more than two edges
from this subconstruction, while Opt can accept three, giving a ratio of 3/2.

⊓⊔

To prove a matching upper bound, we give an algorithm, Algorithm 2, which
is strictly 3

2 -competitive in the Late Accept/Reject model.
Recall that for a matching M , a path P = e1, . . . , ek is alternating with

respect to M , if for all i ∈ {1, . . . , k}, ei belongs to M if and only if i is even.
Moreover, an alternating path P is called augmenting if neither endpoint of P is
incident to a matched edge. Note that the symmetric difference of a matching M
and an augmenting path with respect to M is a matching of size larger than M .
We focus on local changes, called short augmentations in [27]. We use a result
which implies that if a maximal matching M does not admit augmenting paths
of length 3, then 3|M | ≥ 2|OPT |. This fact is part of the folklore and its proof
can be found for example in [7, Lemma 2].

Algorithm 2: Algorithm for maximal matching in the Late Accept/Reject
model.
Result: Matching M

1 M = ∅
2 while an edge e is presented do

3 if M ∪ {e} is a matching then

4 M = M ∪ {e}
5 if there is an augmenting path xuvy of length 3 then

6 M = (M ∪ {ux, vy})− {uv}
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Theorem 9. For Matching in the Late Accept/Reject model, Algorithm 2 is
strictly 3/2-competitive.

Proof. We first show that Algorithm 2 is a Late Accept/Reject algorithm, i.e.,
no edge which is late-rejected is later late-accepted. Suppose an edge e = uv is
late-rejected in some step i. For it to be accepted again, there must later be an
augmenting path consisting of three edges, where e is one of the outer edges,
and one endpoint of e must not be incident to any edges of the matching at
that point. However, once a vertex is incident to an edge in some matching, it
is always incident to some edge in all later matchings, due to the augmentation.
Thus, e cannot be late-accepted later, so after any edge is late-rejected, it will
never be accepted again.

Next, we prove that the algorithm is strictly 3/2-competitive. Let M be the
matching constructed by Algorithm 2 on a graph G. Algorithm 2 ensures that G
does not contain any augmenting paths of length at most three with respect to
M by augmenting on them when they do exist. To prove that this fact implies
the bound, we present a proof similar to [7, Lemma 2]. Let M ′ be any maximum
matching in G. Consider the symmetric difference N of M and M ′. Since M and
M ′ are matchings, any path in N contains alternatingly edges from M and M ′.
Since each augmenting path with respect to M in N contains one more edge of
M ′ than of M , we get that N contains |M ′|− |M | augmenting paths. Clearly, no
augmenting path in N consists of a single edge, since all edges which either are
not accepted or are late-rejected by Algorithm 2 are incident to at least one edge
accepted by the algorithm. Since there is no augmenting path of length at most
three with respect to M in G, it follows that all of the |M ′| − |M | augmenting
paths in N have length at least five. At least two edges of an augmenting path in
N of length at least five are contained in M , and thus accepted by the algorithm,
so we get that |M | ≥ 2(|M ′| − |M |), giving that |M ′| ≤ 3

2 |M |. ⊓⊔

4 Vertex Cover

A vertex cover for a graph G = (V,E) is a subset C ⊆ V such that for any edge,
uv ∈ E, {u, v} ∩ C 6= ∅. For the problem called Vertex Cover, the objective is
to find a vertex cover of minimum cardinality. We study online Vertex Cover in
the vertex arrival model.

Theorem 10. For Vertex Cover in the standard model, the strict competitive
ratio is n− 1.

Proof. For the lower bound, consider any online algorithm, Alg. For each n,
the adversary presents independent vertices until Alg rejects some vertex or n
vertices have been presented. If n vertices are presented, Opt accepts none of
them and the ratio is unbounded. If the algorithm rejects some vertex v, then
the remainder of the n vertices will be adjacent only to v. Opt will only accept
v and the result follows.



Relaxing Irrevocability 15

For the upper bound, the algorithm only accepts a new vertex v if at least one
edge incident with v is not already covered. Thus, it rejects the first vertex and
therefore accepts at most n− 1 vertices. Opt accepts at least one vertex unless
there are no edges, in which case the algorithm does not accept any vertices
either. ⊓⊔

The situation improves dramatically if we can accept vertices at a later stage.

Theorem 11. For Vertex Cover in the Late Accept model, the competitive ratio
is 2.

Proof. The best known offline 2-approximation algorithm for Vertex Cover greed-
ily maintains a maximal matching, repeatedly covering both endpoints of an
edge and removing all edges incident to these two endpoints. In the Late Accept
model, a 2-competitive online algorithm can be obtained by mimicking the of-
fline approximation algorithm. The online algorithm does not accept any vertex
until it sees the second vertex incident to an uncovered edge; then it accepts
both endpoints of that edge.

For the lower bound, consider any algorithm Alg. The adversary presents
isolated pairs of vertices, each pair connected by an edge. After the second vertex
of a pair has arrived, Alg must have accepted at least one of them, or the
adversary could stop the input there, and Alg’s output would not be a vertex
cover. If Alg accepts both vertices, then no further vertices adjacent to the
pair arrive, and Opt could have covered the edge with only one vertex. If Alg

accepts only one vertex u from a pair {u, v}, then an additional vertex adjacent
only to v arrives, and Opt could cover both edges with only v, but Alg must
accept at least two of the three vertices. ⊓⊔

Allowing both late accept and late reject does not improve the situation
further.

Theorem 12. For Vertex Cover in the Late Accept/Reject model, the competi-
tive ratio is 2.

Proof. The upper bound follows from Theorem 11. The lower bound follows
from the observation that no algorithm that ever late-rejects a vertex can be
c-competitive for any constant c. Indeed, if Alg late-rejects a vertex v, then the
adversary can present arbitrarily many vertices adjacent only to v. Therefore,
to be c-competitive for any constant c, Alg can never late-reject a vertex and
the lower bound from Theorem 11 applies. ⊓⊔

Theorem 13. For Vertex Cover in the Late Reject model, the competitive ratio
is n−Θ(1).

Proof. For the lower bound, the adversary keeps giving independent vertices
until the algorithm rejects at least one vertex, v. Since Opt does not have to
accept any vertices if they are all independent, the algorithm must eventually
reject at least one vertex to avoid an unbounded competitive ratio. We let b
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denote the number of vertices presented at the time the first vertex is rejected.
After this point, all new vertices are adjacent to v, so the algorithm has to accept
all of them. In total, at least n−b vertices are accepted, and Opt accepts only v.

For the upper bound, consider the following algorithm, Algb: The first b+1
vertices are accepted (if they arrive). After that an optimal vertex cover, C, for
the edges seen so far is calculated. Each vertex not included in C is rejected.
After this, each new vertex is accepted only if necessary. Note that the size of
C is a lower bound on Opt. Thus, for any input sequence I of length at least
b+ 1, either Opt(I) = Alg(I) = 0 or

Algb(I)

Opt(I)
=

|C|+ n− (b+ 1)

Opt(I)
≤ Opt(I) + n− (b+ 1)

Opt(I)
≤ n− b .

⊓⊔

5 Minimum Spanning Forest

A spanning forest for a graph G = (V,E) is a subset T ⊆ E which forms
a spanning tree on each of the connected components of G. Given a weight
function w : E → R

+, the objective of the Minimum Spanning Forest problem
is to find a spanning forest of minimum total weight. We let W denote the ratio
between the largest and the smallest weight of any edge in the graph.

We study online Minimum Spanning Forest in the edge arrival model, but the
results also hold in the vertex arrival model: For the upper bounds, an algorithm
in the vertex arrival model can process the edges incident to the current vertex
in any order. In the lower bound sequences presented here, all edges from a new
vertex to all previous vertices are presented together in an arbitrary order.

Theorem 14. For Minimum Spanning Forest in the standard model, the com-
petitive ratio is W .

Proof. Since all spanning forests have the same number of edges, the ratio cannot
be worse than W . A matching upper bound can be realized by the adversary
first presenting a tree consisting of edges of weight W , and then presenting edges
of weight 1 from a new vertex v to each of the vertices seen so far. The ratio is
(n−2)W+1

n−1 , giving an asymptotic lower bound of W . ⊓⊔

Since an online algorithm does not know when the input ends, it must always
have a forest spanning all the vertices seen so far, so in moving from the standard
model to the Late Accept model, we do not gain any advantage:

Theorem 15. For Minimum Spanning Forest in the Late Accept model, the
competitive ratio is W .

Proof. We show that we can never perform a late accept. Assume to the contrary
that an edge uv was late-accepted and added to a solution F ′ for the current
graph G′ = (V ′, E′). Since uv was late-accepted, both vertices u and v were
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seen earlier and thus contained in V ′. By our requirement that the algorithms
maintain a spanning forest on the set of vertices presented so far, F ′ is a span-
ning forest of G′. Therefore, adding uv created a cycle, contradicting that the
algorithm finds a forest. ⊓⊔

On the other hand, in the Late Reject model, the greedy online algorithm
mentioned by Tarjan in [26] can be used. We detail the algorithm in the proof.

Theorem 16. For Minimum Spanning Forest in the Late Reject model, the
competitive ratio is 1.

Proof. No algorithm can be better than 1-competitive. For the upper bound, we
note that the greedy online algorithm mentioned by Tarjan in [26] works in the
Late Reject model: Assume that the current forest is F ′ when an edge e = uv
arrives. If at least one of the two endpoints of e is a vertex not seen earlier, accept
e. Otherwise, the greedy algorithm constructs the unique cycle Ce in F ′ ∪ {e}.
If e is not the heaviest edge in Ce, then the algorithm late-rejects the heaviest
edge f in Ce and replaces it by e, obtaining F ′′. Otherwise, it rejects e. It is easy
to see that this produces an optimal spanning forest; it only uses the so-called
red rule [26]. ⊓⊔

Since the Late Reject model leads to an optimal spanning tree, any model
allowing that possibility inherits the result.

Theorem 17. For Minimum Spanning Forest in the Late Accept/Reject model,
the competitive ratio is 1.

Future Work

Since we prove tight results for all combinations of problems and models con-
sidered, we leave no immediate open problems. However, one could reasonably
consider late operations a resource to be used sparingly, as for the rearrange-
ments in [14,22,9,10], for example. Thus, an interesting continuation of our work
would be a study of trade-offs between the number of late operations employed
and the quality of the solution (in terms of competitiveness). Obviously, one
could also investigate other online problems and further model variations.
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