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Relaxing the Rule of Ten Events per Variable in Logistic and Cox Regression
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The rule of thumb that logistic and Cox models should be used with a minimum of 10 outcome events per
predictor variable (EPV), based on two simulation studies, may be too conservative. The authors conducted a large
simulation study of other influences on confidence interval coverage, type I error, relative bias, and other model
performance measures. They found a range of circumstances in which coverage and bias were within acceptable
levels despite less than 10 EPV, as well as other factors that were as influential as or more influential than EPV.
They conclude that this rule can be relaxed, in particular for sensitivity analyses undertaken to demonstrate ade-
quate control of confounding.

bias (epidemiology); coverage probability; event history analysis; model adequacy; type I error; variable selection

Abbreviation: EPV; events per predictor variable.

The rule of thumb that logistic and Cox models should be
used with a minimum of 10 events per predictor variable
(EPV) is based on two simulation studies (1–3). In these
studies, only the numbers of events were varied; the sample
size and the distribution and effects of the seven binary
predictors were held constant at the values observed in a ran-
domized trial (4). The results showed increasing bias and
variability, unreliable confidence interval coverage, and
problems with model convergence as EPV declined below
10 and especially below five, leading to the reasonable con-
clusion that results should be cautiously interpreted with
less than 10 EPV.

Rules of thumb, such as 10 or more EPV, are useful sig-
nals for potential trouble and, for prediction, rules requiring
20 or more EPV may be appropriate (5). However, in anal-
ysis of causal influences in observational data, control of
confounding may require adjustment for more covariates
than the rule of 10 or more EPV allows (6). We carried
out a simulation study to examine the influence of the fac-
tors not varied in the original studies, to identify circum-
stances where we might safely relax the rule of 10 or more
EPV.

MATERIALS AND METHODS

We conducted a large factorial simulation study with bi-
nary as well as failure time endpoints, focusing on a primary
predictor, either binary or continuous, and regarding the co-
variates as adjustment variables. We considered values of
EPV from two to 16; models with a total of two, four, eight,
and 16 predictor variables; sample sizes of 128, 256, 512,
and 1,024; and values of b1, the regression coefficient for the
primary predictor, of 0, log(1.5), log(2), and log(4). The
factorial omitted extreme cases with outcome prevalence
of greater than 50 percent.

With a binary primary predictor, the other predictors were
multivariate normal with pairwise correlation of 0.25. The
binary primary predictor was generated with expected prev-
alence of 0.1, 0.25, or 0.5 and multiple correlation with the
covariates of 0, 0.25, 0.5, or 0.75. With the continuous pri-
mary predictor, all predictors were multivariate normal and
equally intercorrelated. The variance of the primary predic-
tor was set to 0.16, for comparability with the binary pri-
mary predictors, and the multiple correlation between the
primary predictor and adjustment variables was set to 0, 0.1,
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0.25, 0.5, or 0.9. The aggregate effect of the covariates was
held constant across models with two, four, eight, and 16
predictors. We examined 9,328 and 3,392 scenarios with
binary and continuous primary predictors, respectively.

In the logistic models, we kept the first ‘‘cases’’ and
‘‘controls’’ generated, up to the required numbers of each,

taking advantage of the fact that under the logistic model
only the intercept is affected by such retrospective sam-
pling. For the Cox model, longer randomly generated fail-
ure times were censored after the required numbers of
events had been ‘‘observed.’’ For each combination of
parameters, 500 data sets were generated and then analyzed

FIGURE 1. Logistic model with binary primary predictor. CI, confidence interval.
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in SAS, version 9.13, software (SAS Institute, Inc., Cary,
North Carolina). Results from data sets for which the model
did not converge were excluded from the computation of
summary statistics.

Confidence interval coverage was estimated by the per-
centage of the retained data sets in which the Wald 95 per-

cent confidence interval for b1 included the true value.
Relative bias was estimated for b1 > 0 by the percentage
difference between the average estimate and the true value.
We also estimated the type I error rate or power of the two-
sided Wald test of H0 (b1 ¼ 0) by the proportion of data sets
in which the test was statistically significant at p < 0.05.

FIGURE 2. Logistic model with continuous primary predictor. CI, confidence interval.
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Finally, we tabulated problematic scenarios with confidence
interval coverage less than 93 percent, type I error rate
greater than 7 percent, or relative bias greater than 15 per-
cent, and we report the worst confidence interval coverage,
type I error rate, and relative bias for each model and type of
predictor.

RESULTS

Results are summarized in figures 1–4. The left column of
each figure displays confidence interval coverage for b1, and
the right column shows relative bias. In each panel, average
confidence interval coverage or relative bias is plotted for

FIGURE 3. Cox model with binary primary predictor. CI, confidence interval.
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EPV from two to 16, stratified in turn by the numbers of
variables, events, and observations, and then by the preva-
lence of the binary primary predictor or value of b1. Aver-
ages are taken over all simulation parameters other than
EPV and the stratification variable. Problem rates and worst
cases are shown in tables 1 and 2, respectively, for 2–4, 5–9,
and 10–16 EPV.

Logistic regression with binary primary predictor

Results are shown in figure 1. For the primary predictor,
the average confidence interval coverage for b1 was gener-
ally at or above the nominal level. The conservatism was
apparent only in data sets with 30 or fewer events. Sample
size did not affect confidence interval coverage. Values of

FIGURE 4. Cox model with continuous primary predictor. CI, confidence interval.
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EPV were associated with confidence interval coverage
when the prevalence of x1 was 25 percent or 50 percent,
but not at 10 percent. Neither the magnitude of b1 nor the
multiple correlation of x1 with other predictors affected con-
fidence interval coverage (results not shown). Confidence
interval coverage was less than 93 percent in 1.7 percent
of scenarios with 5–9 EPV, and the type I error rate was
greater than 7 percent in 0.9 percent of scenarios (table 1).
Minimum observed confidence interval coverage and max-
imum type I error rates were similar for 5–9 EPV and 10–16
EPV but considerably worse with 2–4 EPV (table 2).

We found mild relative bias in the estimate of b1 except
with 2–4 EPV; in that case, it was confined mainly to models
with only two predictors and to predictors with either low
(10 percent) or high (50 percent) prevalence (figure 1, right
column). The upward bias with low prevalence predictors
may be explained by failure to converge, which was ob-
served in greater than 5 percent of data sets only with 2–4
EPVor 30 or fewer events (results not shown). Relative bias
was greater than 15 percent in 7.4 percent of scenarios with
5–9 EPV (table 1) but generally comprised less than 10
percent of root mean squared error. Maximum bias was
moderately larger with 5–9 EPV than with 10–16 EPV,
but much smaller than with 2–4 EPV (table 2). Power was
less than 80 percent in 80 percent of the scenarios examined,
increasing as expected with the magnitude of b1, as well as
the number of events and sample size, and decreasing as the

correlation of x1 with the other predictors increased. Over-
all, we found problems in 7.2 percent of scenarios with 5–9
EPV (table 1), mainly in those with two predictors and 30 or
fewer events.

Logistic regression with continuous primary predictor

Results are shown in figure 2. The average confidence
interval coverage was within one percentage point of the
nominal level in almost all circumstances, nearly constant
at values of EPV greater than or equal to five, and influenced
as much by the numbers of variables (first row) and events
(second row) as by EPV. Coverage appeared liberal only
with 16 predictors and 10 or fewer EPV. The true value of
b1 had little apparent influence, and we found no effect of
the multiple correlation of x1 with the other predictors (re-
sults not shown). Confidence interval coverage was less than
93 percent in 2.5 percent of scenarios with 5–9 EPV, and
type I error was greater than 7 percent in 1.7 percent. The
minimum observed confidence interval coverage and max-
imum type I error rates were similar for 2–4, 5–9, and 10–16
EPV.

In terms of relative bias, the influence of EPV was appar-
ent when the number of predictor variables was small. How-
ever, sample size was considerably more influential than
EPV (third row), and even with 10 or more EPV, average
bias away from the null was roughly 5 percent. Relative bias

TABLE 1. Scenarios with problematic performance*

Model
Primary
predictor

Problemy
Events per variable

2–4 5–9 10–16

Logistic Binary Confidence interval
coverage: <93% 5.9 1.7 1.4

Type I error: >7% 4.4 0.9 0.7

Relative bias: >15% 26.4 7.4 2.7

Any of three problems 23.7 7.2 3.4

Continuous Confidence interval
coverage: <93% 6.0 2.5 1.0

Type I error: >7% 6.8 1.7 1.1

Relative bias: >15% 21.0 6.1 2.8

Any of three problems 19.3 6.9 3.2

Cox Binary Confidence interval
coverage: <93% 8.2 5.8 3.1

Type I error: >7% 6.4 3.4 2.3

Relative bias: >15% 25.3 6.4 2.7

Any of three problems 25.1 10.4 5.1

Continuous Confidence interval
coverage: <93% 9.5 7.0 3.0

Type I error: >7% 9.5 6.9 1.9

Relative bias: >15% 17.2 2.0 0.0

Any of three problems 19.8 8.6 3.0

* All measures are shown in percent.

y Confidence interval coverage and any problem are evaluated in all scenarios; type I error is

evaluated only in scenarios with b1 ¼ 0, while relative bias is evaluated only in scenarios with

b1 > 0.
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was greater than 15 percent in 6.1 percent of scenarios with
5–9 EPV, but it generally comprised no more than 10 per-
cent of root mean squared error. Maximum bias was mod-
erately larger with 5–9 EPV than with 10–16 EPV but also
moderately smaller than with 2–4 EPV. Power was less than
80 percent in 87 percent of the scenarios examined and
responded predictably to inputs. Overall, we found prob-
lems in 6.9 percent of scenarios with 5–9 EPV, mainly in
those with two or 16 predictors.

Cox regression with binary primary predictor

Results are shown in figure 3. We found departures in
confidence interval coverage from the nominal level in both
directions. Liberal confidence intervals were observed only
for models with 16 predictors. In contrast, conservatism
depending on EPV was observed in models with two and
four predictors. The conservatism with 10 or fewer EPV was
more pronounced with larger samples. The effects of the
prevalence of the predictor, as well as its multiple correla-
tion with other predictors and the magnitude of b1, were
minor (results for the latter not shown). Confidence interval
coverage was less than 93 percent in 5.8 percent of scenarios
with 5–9 EPV, and type I error was greater than 7 percent
in 3.4 percent. The minimum observed confidence inter-
val coverage and maximum type I error rates were slightly
worse for 5–9 EPV than for 10–16 EPV but considerably
better than for 2–4 EPV.

We found some bias in b1 with 2–4 EPV, depending on
the number of predictor variables or events. Sample size had
little or no apparent effect. Substantial bias away from the
null was observed only with low predictor prevalence, in
association with 2–4 EPV, 30 or fewer events, and resulting

model convergence rates less than 95 percent. The magni-
tude of b1 and the multiple correlation of x1 with the other
predictors were also influential in this range of values of
EPV (results not shown). Relative bias was greater than
15 percent in 6.4 percent of scenarios with 5–9 EPV but
generally comprised less than 10 percent of root mean
squared error. Maximum bias was similar with 5–9 EPV
and 10–16 EPV but much smaller than with 2–4 EPV. Esti-
mated power was less than 80 percent in 74 percent of
scenarios, responded predictably to inputs, and showed little
dependence on sample size after the number of events was
taken into account (7). Overall, we found problems in 10.4
percent of scenarios with 5–9 EPV, mainly in those with two
or 16 predictors.

Cox regression with continuous primary predictor

Results are shown in figure 4. Confidence interval cover-
age was slightly conservative with two predictors and
slightly liberal with four or more predictors. There was little
or no apparent influence of EPV. The regression coefficient
for x1 and its correlation with the other predictors were
similarly unimportant. Confidence interval coverage was
less than 93 percent in 7.0 percent of scenarios with 5–9
EPV, and type I error was greater than 7 percent in 6.9
percent. The minimum observed confidence interval cover-
age and maximum type I error rates were similar for 5–9 and
10–16 EPV.

Bias away from the null in b1 was observed with 10 or
fewer EPV in this case. However, bias was less than 5 per-
cent except with four or fewer EPV and 16 predictors or in
relatively small samples of 128 or 256 observations. Bias
did not strongly depend on the magnitude of b1, nor on the

TABLE 2. Worst observed problems*

Model
Primary
predictor

Problemy
Events per variable

2–4 5–9 10–16

Logistic Binary Minimum confidence
interval coverage 85.7 91.0 91.2

Maximum type I error 14.3 7.6 7.8

Maximum relative bias 260.1 51.3 36.8

Continuous Minimum confidence
interval coverage 89.2 90.4 92.4

Maximum type I error 8.6 8.6 7.6

Maximum relative bias 65.6 40.2 35.0

Cox Binary Minimum confidence
interval coverage 85.0 88.4 90.6

Maximum type I error 12.9 9.0 8.6

Maximum relative bias 240.4 51.4 40.7

Continuous Minimum confidence
interval coverage 90.4 91.0 91.0

Maximum type I error 8.8 8.8 8.0

Maximum relative bias 51.8 29.5 13.9

* All measures are shown in percent.

y Confidence interval coverage is evaluated in all scenarios; type I error is evaluated only in

scenarios with b1 ¼ 0, while relative bias is evaluated only in scenarios with b1 > 0.
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correlation of x1 with other predictors. Relative bias was
greater than 15 percent in only 2 percent of scenarios with
5–9 EPV and generally comprised 10 percent or less of root
mean squared error. Maximum bias was moderately larger
with 5–9 EPV than with 10–16 EPV but also moderately
smaller than with 2–4 EPV. Estimated power was less than
80 percent in 82 percent of scenarios and responded pre-
dictably to inputs. Overall, we found problems in 8.6 per-
cent of scenarios with 5–9 EPV.

Additional simulations

To reflect the setup considered by Peduzzi et al. (2, 3)
more closely, we also examined models with all binary pre-
dictors. For both the logistic and Cox models, results were
very similar to those seen with continuous covariates, with con-
fidence interval coverage, type I error rates, and relative bias
for the primary predictor at most slightly degraded. In addi-
tion, for the logistic model, we also assessed bias-corrected,
percentile-based bootstrap confidence intervals in selected
problematic scenarios with five EPV and n¼ 256. The boot-
strap confidence intervals were somewhat more conserva-
tive than the Wald confidence intervals, often with coverage
greater than 95 percent.

DISCUSSION

Our simulation study shows that the rule of thumb of 10
or more EPV in logistic and Cox models is not a well-
defined bright line. If we (somewhat subjectively) regard
confidence interval coverage less than 93 percent, type
I error greater than 7 percent, or relative bias greater than
15 percent as problematic, our results indicate that problems
are fairly frequent with 2–4 EPV, uncommon with 5–9 EPV,
and still observed with 10–16 EPV. Cox models appear to be
slightly more susceptible than logistic. The worst instances
of each problem were not severe with 5–9 EPV and usually
comparable to those with 10–16 EPV.

Our evaluation focuses primarily on confidence interval
coverage for b1 and the related type I error rate of the test of
H0 (b1 ¼ 0), secondarily on bias in the estimate of b1, and
only indirectly on variability and power. These emphases
are motivated by the fact that, in the situations we have
considered, power is usually low and variability is high.
However, because bias on average comprises only 10–20
percent of root mean squared error, confidence interval cov-
erage and the type I error rate are fairly well maintained
even in the presence of considerable bias. We draw three
broad implications from our results.

� In this context, type II errors will be common, but
misleading conclusions can usually be avoided if nega-
tive findings are interpreted in the light of confidence
intervals (8) with expected coverage close to the nominal
level. Our results show that these conditions usually hold
with five or more EPV.

� Mildly conservative confidence intervals and type I error
rates were the dominant pattern even when parameter
estimates were biased away from the null. This implies
that, when a statistically significant association is found

in a model with 5–9 EPV, only a minor degree of extra
caution is warranted, in particular for plausible and
highly significant associations hypothesized a priori.

� If even the low risk of problems seen with 5–9 EPV is
unacceptable, modern resampling tools can be used to
validate the model-based inferences. For example, the
bootstrap can be used to assess bias and frequency of
nonconvergence and to derive bias-corrected confidence
intervals.

Our results suggest other contexts in which extra caution
in interpretation is warranted. For example, the confidence
interval coverage was eroded in larger models, especially at
low EPV. Bias away from the null was also exacerbated with
continuous primary predictors by smaller sample sizes and
with binary primary predictors by low predictor prevalence.
The latter stems from the fact that, when no events are
observed in the small set of ‘‘exposed’’ observations, the
model does not converge.

Our simulation study, while large, has limitations. In par-
ticular, our graphical summaries averaging over parameters
other than EPV and a single stratification variable may
obscure some circumstances in which confidence interval
coverage or bias is considerably worse than the average.
However, our tabulation shows that such problems are un-
common, usually not severe, and are also observed with 10
or more EPV.

Bigger samples and more events are almost always
preferable. However, situations commonly arise where
confounding cannot be persuasively addressed without vio-
lating the rule of thumb we have studied. In that case, we
agree with Peduzzi et al. (2) that results should be inter-
preted with caution and, in addition, compared with those
from models from which weaker predictors have been ex-
cluded. However, systematic discounting of results, in par-
ticular statistically significant associations, from any model
with 5–9 EPV does not appear to be justified.
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