
Relay Attacks on Bluetooth Authentication and 
Solutions 

Albert Levi1, Erhan Çetintaş2, Murat Aydos3, Çetin Kaya Koç4, M. Ufuk Çağlayan5 

1 Sabanci University, Fac. of Eng. & Nat. Sci., Orhanli, Tuzla, TR-34956, Istanbul, Turkey 
levi@sabanciuniv.edu 

 2 TUBITAK – UEKAE, National Research Institute of Electronics and Cryptology,  
Gebze, TR-41470, Kocaeli, Turkey 

cetintas@uekae.tubitak.gov.tr 
3 Pamukkale University, Dept. of Computer Engineering, Denizli, TR-20020, Turkey 

maydos@pamukkale.edu.tr 
4 Oregon State Univ., School of Electr. Eng. & Comp. Sci., Corvallis, OR 97331 USA 

koc@ece.orst.edu 
5 Boğaziçi University, Dept. of Computer Engineering, Istanbul, TR-34342, Turkey 

caglayan@boun.edu.tr 

Abstract. We describe relay attacks on Bluetooth authentication protocol. The 
aim of these attacks is impersonation. The attacker does not need to guess or 
obtain a common secret known to both victims in order to set up these attacks, 
merely to relay the information it receives from one victim to the other during 
the authentication protocol run. Bluetooth authentication protocol allows such a 
relay if the victims do not hear each other. Such a setting is highly probable. 
We analyze the attacks for several scenarios and propose practical solutions. 
Moreover, we simulate attacks to make sure about their feasibility. These 
simulations show that current Bluetooth specifications do not have defensive 
mechanisms for relay attacks. However, relay attacks create a significant partial 
delay during the connection that might be useful for detection. 

1 Introduction and Background 

Bluetooth [1] is a promising short-range radio link technology for wireless 
connectivity of portable electronic devices, such as mobile phones, laptop computers, 
palm computers and digital cameras. The Bluetooth system operates in the 2.4 GHz 
ISM (Industrial Scientific Medicine) band. In order to avoid interference with other 
piconets (piconet is Bluetooth’s personal/local area network) and/or other devices 
using the ISM band, the master of a piconet synchronizes its slaves to hop among 
several RF channels in a pseudo-random sequence. 

Bluetooth specification defines link level security mechanisms to provide 
confidentiality, integrity and authentication between Bluetooth devices. However, 
there are some vulnerabilities in the Bluetooth security as proposed in [2, 3, 4]. 

In this paper, we point to relay attacks on Bluetooth authentication protocol. In 
relay attacks, the attacker places itself in two distinct piconets and picks two victims, 



one in each piconet. The attacker impersonates those victims by forwarding 
authentication messages generated by one of them to another between the piconets. 
As opposed to the man-in-the-middle attacks described in [2], the attacker does not 
need to know any shared secret between the victims in order to set up our relay 
attacks. We simulate relay attacks to assess their feasibility. Moreover we use 
simulation to evaluate the delays caused by the attack and to see if these delays could 
be used as a detection mechanism. We propose two other low-cost solutions as well. 

The rest of Section 1 gives an overview of Bluetooth key management and 
authentication scheme. Relay attacks are explained in Section 2. Mechanisms to 
detect relay attacks are proposed in Section 3. Simulation results are presented in 
Section 4. Conclusions and some discussions are in Section 5.  

1.1   Key Management and Authentication in Bluetooth 

There are several key types in Bluetooth, but the attacks described here depend on the 
initialization and combination keys. Initialization key (Kinit) is calculated at both sides 
of communication using a pre-shared PIN, a random number and a Bluetooth Device 
Address (BD_ADDR). Kinit is used to exchange the Combination Key, which is one of 
the members of the Bluetooth “Link Key” family. These keys are used for 
authentication. Both ends of communication, say A and B, contribute to the 
combination key (KAB) in a secure way by encrypting some random numbers. Current 
link key or Kinit is used as the key for this encryption. Link keys are stored in 
Bluetooth devices and they are reused whenever necessary.  

Bluetooth uses a simple challenge-response authentication scheme. The verifier 
sends a 128-bit random number called AU_RAND to the claimant. Claimant 
calculates the authentication response called SRES, which is a cryptographic function 
of AU_RAND, its own BD_ADDR, and the current link key. Claimant sends SRES to 
the verifier. Meanwhile the verifier computes the same SRES and checks whether the 
computed one is equal to the received one. If so, that means the claimant is really who 
it claims to be. 

2   Relay Attacks 

In this section, we describe relay attacks proposed in the paper.  In the relay attacks, 
adversary C talks to victim A posing as victim B, and to B posing as A. All 
authentication messages that C needs are generated by real A and B. C conveys these 
messages from A/B to B/A. We present two types of relay attacks: (i) two-sided, and 
(ii) one-sided. In a two-sided relay attack, both victims are impersonated. In a one-
sided attack, only one victim is impersonated.  

In [2], some man-in-the-middle and impersonation type of attacks are proposed 
where the attacker knows or can guess the PIN or existing link key between victims. 
Relay attacks are similar to man-in-the-middle attacks. There exists an adversary 
located between the sender and receiver, but the only activity of the adversary is to 
relay information that it receives from one to another without changing the content. 
Unlike the attacks in [2], the adversary does not need to know a shared secret.  



2.1   Special Conditions of Bluetooth and Attack Settings 

Relay attacks are possible if: 
(i) actual communication between the real sender and receiver is disconnected and 

they cannot listen to each other anymore,  
(ii) network infrastructure does not have a global infrastructure for routing and 

locating its users, and  
(iii) adversary is capable enough to impersonate each of the victims to the other, even 

if the victims are located in distant locations. 
As an example attack setting, suppose the victims A and B have communicated for 

some time and then terminated the communication. They may easily end up in 
different locations due to their mobile and ad-hoc behavior. In this example, we 
assume two users working in the sales department of a Bluetooth-enabled office. 
These two users exchange their data using a service configured in Bluetooth Security 
Mode 3 that requires only authentication. It is assumed that no encryption and 
application layer security are employed for this service. The users’ laptops are 
normally part of a piconet within their department, but whenever one of them moved 
to conference room for a meeting, it becomes a part of the piconet in the conference 
room. Even if they might be close to each other, they cannot listen to each other since 
every piconet has a different frequency hopping order. Once the attacker impersonates 
the users, it can, for example, transfer fraudulent data or alter sales reports.  

Although there are valuable efforts in the literature for forming and routing for 
Bluetooth Scatternets [7, 8, 9], the short-range characteristics of Bluetooth devices 
would not enable to have a Bluetooth-based global ad hoc network, thus satisfying the 
feasibility of the conditions (i) and (ii) above. One may argue that some application 
layer Bluetooth profiles, such as IP over Bluetooth, could provide global connectivity. 
However, such applications should be implemented over L2CAP (Logical Link 
Control and Adaptation Protocol) and consequently the LMP (Link manager Protocol) 
layers of Bluetooth at which relay attacks are implemented. Thus, such global 
connectivity does not help to avoid relay attacks since packets used in the relay 
attacks remain local and do not pass through the gateways. 

In order to satisfy condition (iii), the adversary, C, should contain two different 
Bluetooth units, Ac and Bc (Ac and Bc denote A and B impersonated by C), with 
adjustable BD_ADDRs. Ac should be located close to B, and Bc close to A. The 
adversary C is also equipped with a special communication interface between Ac and 
Bc.  This interface is not necessarily a Bluetooth interface; actually Bluetooth is not 
useful for communication between Ac and Bc if they are far apart. Some other 
wireless or wired methods can be used for communication between distant Ac and Bc. 
Moreover, C should know the pseudo-random frequency hopping order of real A and 
B in order to eavesdrop on their communication. Jakobsson and Wetzel proposed a 
method to determine this order in [2]. 

Each Bluetooth device is identified using an overt and fixed Bluetooth Device 
Address (BD_ADDR). It is embedded in the device and normally not changeable. 
However, a hostile manufacturer can build a Bluetooth device with an adjustable 
BD_ADDR. With the current trend of increased Bluetooth deployment in almost all 
type of mobile devices, attacks on Bluetooth may create a spying market and such 
manufacturers may come into sight.  



2.2 Two-sided Relay Attack 

This attack is shown in Figure 1. Here, C must wait for a real request for connection 
from either A or B. Suppose real A wants to establish connection to B. The connection 
establishment process starts with the paging procedure. A first pages Bc thinking that 
it is real B. After the paging procedure, A sends LMP_host_connection_req command 
to Bc. Bc accepts the connection request by sending back LMP_accepted. Meanwhile, 
Ac pages B and initiates a connection establishment procedure posing as A. 

The above connection establishment process is valid if victims A and B are distant. 
If they are close to each other, in order A to connect Bc instead of B, the attacker’s Bc 
interface must respond to the paging request faster than B. The details of such a 
setting are described by Kügler [4]. In addition, Kügler [4] also discusses that the 
attacker’s Ac interface must use a clock value different from the clock of A. Thus, 
both A and B use the same frequency hopping order with different offsets and do not 
hear each other.  

The current link key between A and B may or may not be changed at each 
connection. The attacker does not need to know this key. Thus, changing the link key 
or using the current one do not cause any problem in attack setting.  If the link is to be 
changed, then the next step is the exchange of combination key contributions (the 
random numbers which are encrypted by XORing with the current link key). A sends 
its encrypted random number, RAND_NRA, to Bc in an LMP_comb_key command. 
C, using its Ac interface, relays this encrypted random number to real B as if it is sent 
by A. After receiving this number, B sends out its encrypted random number 
RAND_NRB to Ac, and C forwards it to real A while wearing its Bc hat. After these 
message rounds, both real A and real B compute the same combination key KAB and 
this key is assigned as new link key.  

  A   Bc   Ac   B    C 

LMP_setup_complete LMP_setup_complete 
LMP_setup_complete LMP_setup_complete 

LMP_sres(SRESB)LMP_sres(SRESB) 

    LMP_au_rand(AU_RANDB)     LMP_au_rand(AU_RANDB) 

LMP_sres (SRESA) LMP_sres(SRESA) 

  LMP_au_rand(AU_RANDA)     LMP_au_rand(AU_RANDA) 
/*Authentication Steps*/ /*Authentication Steps*/ 

  LMP comb key(RAND NRB) 

   LMP_comb_key(RAND_NRA) 
/*Key exchange Steps*/ /*Key           

LMP_comb_key(RAND_NRA) 
  

LMP_comb_key(RAND_NRB) 

 exchange Steps*/ 

LMP_accepted LMP_accepted 

LMP_host_connection_req LMP_host_connection_req 

Paging Procedure Paging Procedure 

Fig. 1. Two-sided relay attack 



The next steps are for authentication. A sends LMP_au_rand command to Bc 
(thinking that it is B) along with a 128 bit random number called AU_RANDA. After 
sending AU_RANDA, A expects the corresponding authentication response SRESA. 
Bc cannot calculate SRESA, since it does not know the current link key, but C (using 
its Ac interface) can forward AU_RANDA to real B in another LMP_au_rand 
command as if A requests authentication of B. The response of real B to this command 
is an LMP_sres command that contains SRESA. C forwards SRESA to A in another 
LMP_sres command as the authentication response of Bc. After that A thinks that B is 
authenticated, but the truth is that Bc is authenticated. Similar steps are taken in the 
case of mutual authentication where B requests authentication of Ac thinking that it is 
A. At the end, both A and B think that they authenticated each other, but the fact is 
that C impersonated both of them. C exploits both real A and B to generate 
authentication responses SRESB and SRESA. 

If there is no existing link key established beforehand or the link key is somehow 
unavailable (e.g. lost, compromised, expired, etc.), then A and B should initiate Kinit 
generation before combination key generation steps. Two-sided attack works in such 
a setting too, because the attacker would only need to relay some messages as in 
combination key generation steps.  

2.3   One-sided Relay Attack 

The adversary C can make use of this attack by initiating communication with one of 
the victims impersonating the other one. This attack is possible only when the victims 
can be convinced to use the existing link key.  

 
  A   Ac   Bc    C B 

Paging Procedure Paging Procedure 

LMP_host_connection_req LMP_host_connection_req 

LMP_accepted LMP_accepted 
     

LMP_au_rand(AU_RANDAc) 

LMP_sres(SRESAc) 

    LMP_au_rand(AU_RANDB)     LMP_au_rand(AU_RANDB) 

LMP_sres(SRESB) LMP_sres(SRESB) 

LMP_setup_complete LMP_detach 

LMP_setup_complete

Fig. 2. One-sided relay attack 

Figure 2 depicts one-sided attack. In this attack, C impersonates A to talk to B. We 
assume that real A and B already have a link key established. Communication is 
requested by C (Ac). In order to make new connection Ac first pages B and then sends 
LMP_host_connection_req command to B. B accepts the connection request by 



sending back LMP_accepted. At the same time Bc pages A and starts the connection 
establishment procedure with A. After the first step, Ac sends LMP_au_rand to B. In 
this command Ac includes a dummy random number AU_RANDAc. B wrongfully 
thinks that real A requests authentication and sends back the corresponding 
authentication response SRESAc. Ac has no way to check the correctness of SRESAc, 
so it implicitly assumes that real B is indeed genuine. Having sent SRESAc, B sends its 
authentication challenge AU_RANDB to Ac. Ac should obtain SRESB, which is the 
SRES corresponding to AU_RANDB, so C sends out AU_RANDB to real A using its 
Bc interface. Real A mistakenly thinks that B requests authentication, and calculates 
and sends SRESB to Bc. Then Ac forwards SRESB to real B. The connection setup is 
completed by mutually sending LMP_setup_complete. These steps authenticate Ac to 
B as if Ac were the real A. At the end Bc sends an LMP_detach command to end its 
communication with real A, since A is not needed anymore.  

Although the above attack explanation is for distant victims, it also works for close 
ones by using different clock values as explained in Section 2.2 for two-sided attack. 

3 Proposed Solutions 

In this section, we propose three practical solutions to detect relay attacks.  

3.1 Solution 1: for Victims in Close Piconets     

One method for preventing the relay attacks is to include unforgeable piconet-specific 
information in SRES calculation. Such information could be hop sequence 
parameters, channel access code, which is added to each packet sent within the 
piconet, and the sync word, which is part of the channel access code. Unfortunately 
all of them are based on LAP (lower address part) of master’s BD_ADDR and/or 
master’s clock. Since the attacker is the master in one of the piconets, it can enforce 
those parameters that are learned from the other piconet where the attacker is a slave. 
The only exception is when these two piconets are close to each other. Channel access 
code, sync word, hop sequence and phase cannot be the same for those piconets due 
to interference problems. That means piconet specific information based relay attack 
control works for close piconets.  

Implementation of this control is easy. It is sufficient to consider master’s clock 
and LAP values in SRES calculation. To do so, the least significant 42 bits of the 
AU_RAND values could be XORed with the concatenation of clock and LAP values 
at each piconet for SRES calculation and verification. Real A and B use different 
clock and/or LAP values since the attacker cannot enforce the same values, because 
otherwise messages of two piconets mix up. The updated authentication mechanism is 
shown in Figure 3. The original Bluetooth authentication scheme does not have the 
XOR part, i.e. AU_RAND is directly fed into E1 boxes. 

 



 

Fig. 3. Updated Bluetooth challenge-response authentication scheme that is sensitive to piconet 
(master) clock and LAP. 

3.2 Solution 2: for One-sided Relay Attack  

In the original Bluetooth scheme, mutual authentication is performed exclusively 
between master and slave. First, one is authenticated with AU_RAND (challenge) and 
SRES (response) exchange. Then the other is authenticated again using a 
challenge/response mechanism. We propose to change this authentication message 
exchanges in a nested form such that first both parties exchange their AU_RAND 
values and claimant does not send its SRES before getting the legitimate SRES from 
the verifier. This message exchange is shown in Figure 4.  

  
LMP_au_rand (AU_RANDV) 

LMP_sres (SRESV) 

LMP_au_rand (AU_RANDC) 

LMP_sres (SRESC) 

Verifier Claimant 
/*Authentication steps*/

Claimant verifies 
SRESc first. If correct, 
then it sends SRESv 

 

Fig. 4. Nested mutual authentication 

In this method, which is effective against one-sided attack, the attacker cannot 
obtain SRES values from the victims, since both victims first wait for the SRES value 
from the other party (i.e. from the attacker). Since the attacker acts as a verifier in 
both piconets, its authentication challenge is responded with another authentication 
challenge from the genuine entities; SRES values are not sent and protocol eventually 
times out. Unfortunately, nested mutual authentication does not solve the problems 
associated with two-sided attacks. One of the victims is the verifier in that scenario, 
so the attacker can obtain the SRES from it.  



3.3 Solution 3: Variance in Delays 

This solution is based on consideration of variance in end-to-end delays between 
normal connection cases and attack cases, as will be discussed in Section 4. 

4 Simulation Results 

In order to analyze the effectiveness of the proposed relay attacks, we developed a 
simulator using C++ programming language that simulates baseband link connection 
and authentication procedures according to the baseband, security and LMP 
specifications.  

First, we implemented the attack scenarios in our simulation environment and Link 
Manager transactions of the simulated Bluetooth devices are compared in normal 
connection and attack cases. During this analysis, we have realized that there is 
absolutely no difference in terms of transaction outputs between attacked victims and 
a non-attacked ones. Thus, we conclude that victim devices cannot be aware of the 
relay attacks by checking connection establishment transactions. These transaction 
outputs are not shown here because of space restrictions. 

4.1 Timing Analysis 

In our attack scenarios, one victim waits for receiving the authentication response 
SRES while the attacker is getting this SRES from the other victim. If this duration is 
too much, LMP response timeout may exceed. In addition, due to relay attacks the 
connection establishment process may take long time and one of the victims may be 
aware of the attack. Thus, in our experiments we measure the connection 
establishment time and the latency in receiving LMP_SRES. Here only the timings of 
successful transmissions are taken into account. In case of retransmissions, which are 
probable in Bluetooth, the baseband layer should inform link manager so that the 
corresponding timers are reset.  

We first measured connection establishment times during normal connection cases 
and attack cases. Particular increase has been noticed in the connection time of an 
attacked victim as compared to non-attacked one. However, as discussed in [5], 
connection time can vary between devices which are produced by different 
manufacturers or whose clocks are not initially well synchronized. Thus we conclude 
that the increase was not big enough in order to conclude that connection time 
increase could be used as an attack detection mechanism.  

In our experiments, we also considered how our relay attacks affect the duration 
between sending LMP_AU_RAND command and receiving LMP_SRES response in 
victim devices A and B. Figure 5 shows a histogram of the latency in receiving 
LMP_SRES in the normal connection establishment. A obtains the link key from Host 
A before receiving LMP_AU_RAND from B. However, B gets the link key after 
receiving LMP_AU_RAND from A. Therefore, A waits longer than B to receive 
LMP_SRES. The average waiting time is 10.378 ms for A and 2.008 ms for B. 



Figure 6 and Figure 7 show the histograms of the waiting times for receiving 
LMP_SRES response in two-sided and one-sided relay attacks. 
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Fig. 5. Histogram for the waiting times for receiving LMP_sres in the normal connection 
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Fig. 6. Frequency of the latency in receiving LMP_sres in two-sided relay attack 
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Fig. 7. Frequency of the latency in receiving LMP_sres in one-sided relay attacks 



In two-sided relay attack, the average latency in receiving LMP_SRES for A and B 
is 50.978 and 39.625 ms respectively. As we see in Figure 7, most of the waiting 
times are between 50 ms and 80 ms (on average 62.578 ms) in one-sided relay attack. 
Thus we conclude that relay attacks increase the latency in receiving LMP_SRES 
response; two-sided relay attack increases this latency 5 times in A and 20 times in B. 
Similarly, the latency in one-sided relay attack is 30 times more than the latency in 
the normal connection. According to Bluetooth Link Manager Protocol specification, 
the time between receiving an LMP PDU and sending a valid response PDU must be 
less than the LMP response timeout, which is 30 seconds. Therefore, the LMP 
response timeout does not expire due to relay attacks. However, if enough intelligence 
is added to LMP protocol, the victims may detect the relay attacks by checking the 
considerable increase in latency of getting LMP_SRES response. For example, one 
device measures average delays in connection establishment processes and stores 
these values in its memory. During each connection, it estimates the current delay by 
considering a sequence of previous delays and then compares the estimated delay 
with new measured one. If there is a major difference, then the device may decide that 
there is an attack going on. One possible method for estimating the current delay 
would be simply to compute arithmetic average of stored delays. Since it is not 
necessary to store all past delays, this method is appropriate for devices with limited 
memory resources. Another method for the current delay estimation would be to 
compute exponential average delay by using the smoothing procedure as in the TCP 
protocol. With this method, we can give the most recent measurements a greater 
weight than the older ones. Dynamically estimating the current delay reduces the 
impact of transmission errors in decisions about the relay attacks. 

5 Conclusion and Discussions 

We present two important relay attacks on Bluetooth authentication method for 
impersonation purposes. The adversary need not obtain any secret (like PINs or 
current keys) of the victims. He/she simply relays some protocol messages from one 
victim to another without alteration. 

Relay attacks are to make fail only Bluetooth authentication, not encryption. The 
attacker cannot continue its attack if the victims prefer to have encrypted 
communication. However, in Bluetooth specification [1], having no encryption is a 
valid option, and during negotiation the adversary can indeed convince the victims not 
to have encrypted communication. Bluetooth authentication is performed to 
authenticate entities, not messages, mostly for access control decisions. Traditionally 
access control does not require encrypted communications, once the access is granted. 
Thus, message encryption and entity authentication need not coexist all the time. As 
suggested in [6], it is conceivable that a device might want to perform only-
authentication because it was not using encryption on the link, but it still wants to 
check if it is communicating with the correct device. The processing power 
limitations of a device might not let it use encryption that requires constant 
processing. However, authentication is once-per-session and can be tolerated even for 
restricted devices. 



Relay attacks are based on a deception: both victims think they are in the same 
piconet. However, they are not. They are actually in different piconets. If the victims 
can include some information about their actual piconets in SRES, then relay attacks 
could be detected. As discussed in this paper, such piconet-specific information is 
unfortunately forgeable by the attacker, if the piconets are not close to each other. If 
they are close, then inclusion of LAP (lower address part) of the master BD_ADDR 
and master clock in SRES messages solves the problem. Such a solution is of limited 
use, but does not cause a remarkable load on the entities; the extra processing is just 
an XOR computation. Another limited use, but efficient precaution could be to 
exchange the challenge messages (AU_RAND) before sending out the responses 
(SRES). The claimant waits for the SRES for its challenge first. In this way, it does 
not give out the SRES to be relayed. This solution works only if the attacker is the 
verifier in both piconets. This situation corresponds to the one-sided attack described 
in this paper.  

In the simulations of the attacks, we have realized that the victims cannot detect 
relay attacks if they strictly follow Bluetooth specifications. On the other hand, our 
analysis of the simulation results demonstrates that there is a perceptible variation in 
some end-to-end delays between the normal and the attacked connections. One device 
can estimate the current delay by observing the pattern of delay for recent connection 
establishments, and then compare the estimated delay with new measured one. A 
significant increase means that there may be an attack going on. Simple average or 
exponential average methods would be used for the current delay estimation. Such an 
intelligent adaptive mechanism can be incorporated in Bluetooth connection 
establishment procedure at LMP level to determine both types of relay attacks in a 
low-cost and effective way. 
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