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A Secure Connection Perspective

Jianhua Mo, Meixia Tao, Senior Member, IEEE, and Yuan Liu, Student Member, IEEE

Abstract—This work studies the problem of secure connection
in cooperative wireless communication with two relay strategies,
decode-and-forward (DF) and randomize-and-forward (RF). The
four-node scenario and cellular scenario are considered. For the
typical four-node (source, destination, relay, and eavesdropper)
scenario, we derive the optimal power allocation for the DF
strategy and find that the RF strategy is always better than the
DF to enhance secure connection. In cellular networks, we show
that without relay, it is difficult to establish secure connections
from the base station to the cell edge users. The effect of relay
placement for the cell edge users is demonstrated by simulation.
For both scenarios, we find that the benefit of relay transmission
increases when path loss becomes severer.

Index Terms—Relay placement, physical layer security, secure
connection, outage.

I. INTRODUCTION

W IRELESS communication is inherently vulnerable to
eavesdropping due to its broadcast nature. However,

by exploiting the randomness of the wireless propagation
channels, we can enhance the security in physical layer [1]. On
the other hand, cooperative relay has received much attentions
due to its ability of power reduction, coverage extension, and
throughput enhancement. Thus, it is attractive and promising
to utilize these benefits for physical layer security.

The authors in [2] discussed the four-node (source, destina-
tion, relay, eavesdropper) secure communication system from
an information-theoretical perspective and studied several re-
lay strategies, such as decode-and-forward (DF) and noise-
forwarding (NF). Authors in [3] investigated the secrecy rate
maximization problem for the four-node system in multicarrier
relay channel with the DF strategy. For the secure transmis-
sion system with multiple relays, the beamforming and relay
selection was considered in [4] and [5] respectively under the
assumption that the eavesdropper only wiretaps the second
hop during the cooperative transmission. A joint problem of
secure resource allocation and scheduling was studied in [6]
for cellular networks with DF relays.

In [7], the authors proposed another relay strategy in which
the relays add independent randomization in each hop (we
refer it as randomize-and-forward (RF)). It was proved therein
that under the RF strategy, securing each individual hop is
sufficient for securing the end-to-end transmission. Scaling
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Fig. 1. An illustration of the four-node system model, where S, R, D, and
E represent the source, relay, destination, and eavesdropper, respectively.

law of secrecy capacity were then obtained by using such
RF strategy in [7]. The authors in [8] analyzed the maximal
number of eavesdroppers that can be tolerated in the two-hop
secure transmission with jamming when RF strategy was used.

Our paper is motivated twofold. First, though the coopera-
tive secure transmission has been studied in several scenarios
(e.g., [2]–[9]), to our best knowledge, no attempt has been
made to study relay placement for physical layer security.
Second, although fading was utilized to achieve physical layer
security (e.g., [10]), there is no theoretical analysis about the
impacts of large scale path loss on security.

The main contributions of this work are summarized as
follows. 1) In the four-node system, we derive the optimal
power allocation for the DF strategy and find that the RF
strategy is always better than the DF in terms of secure con-
nection probability. 2) We show that when the eavesdropper
is far away, placing the relay at the midpoint of the source
and the destination is asymptotical optimal, and the outage
probability of the RF strategy is about half of the DF. 3)
In cellular networks, we derive the secure outage probability
without relay and show the superiority of placing RF relay
over DF relay through simulation. 4) We analyze the effects of
path loss on secure connection and find that relay transmission
achieves more benefit when path loss is severer.

II. MAIN RESULTS

We consider two scenarios, i.e., the four-node system and
cellular networks. For both scenarios, we assume that the
cooperative transmission consists of two phases. During the
first phase, the source (or base station (BS)) transmits while
the relay (or relay station (RS)) listens. During the second
phase, the relay transmits and the destination (or mobile user
(MU)) listens. The eavesdropper overhears in both phases.
Here we assume that the direct link from the source (or BS) to
the destination (or MU) is not available. The wireless fading
channels are modeled by large-scale fading with path loss
exponent α and small-scale block Rayleigh fading.

Notations: Subscripts s, r, d and e represent the source (or
BS), relay (or RS), destination (or MU) and eavesdropper,
respectively. dij and hij denote the distance and channel
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coefficient between node i and j, respectively. ps and pr
denote transmit powers of the source and relay, respectively.
For brevity, we denote d := {dsr, drd, dse, dre} and p :=
{ps, pr}.

A. Four-node System

In this subsection, we study a four-node system consisting
of a source, a destination, an eavesdropper and a relay shown
in Fig. 1. Both DF and RF strategies are analyzed in terms of
secure connection probability. Here the knowledge of channel
state information (CSI) for the eavesdropper is assumed to
be known as the eavesdropper may be another legitimate
user who transmits signals but is not allowed to receive the
confidential message from the source [10].

1) Decode-and-Forward (DF): For the DF strategy, the
relay uses the same codebook as the source’s. The achievable
rate from the source to the destination is given by

Rd =
1

2
min

{
log2

(
1 +

ps|hsr|2
dαsr

)
, log2

(
1 +

pr|hrd|2
dαrd

)}
.

(1)
The eavesdropper wiretaps and combines the signals from both
two hops, and as such the information rate at the eavesdropper
is

Re =
1

2
log2

(
1 +

ps|hse|2
dαse

+
pr|hre|2
dαre

)
. (2)

The secrecy rate of the system is

Rs = max {Rd −Re, 0} . (3)

Similar to [11], [12], we define that the connection between
the source and destination is secure if Rs > 0. Then the
secrecy outage probability can be defined as

PDF (d,p) = Pr (Rs < 0)

= Pr

(
min

{
ps|hsr|2
dαsr

,
pr|hrd|2

dαre

}
<

ps|hse|2
dαse

+
pr|hre|2
dαre

)
.

Proposition 1. For the DF strategy, the optimal power allo-
cation satisfies

pr
ps

=

√
dαrd (d

α
rd + dαre)

dαsr (d
α
sr + dαse)

, (4)

and the minimal outage probability, denoted as PDF (d), is

PDF (d) = 1− dαsed
α
re(√

(dαsr + dαse) (d
α
rd + dαre) +

√
dαsrd

α
rd

)2 .
(5)

Proof: Note that ps|hsr|2
dα
sr

, pr |hrd|2
dα
rd

, ps|hse|2
dα
se

and pr|hre|2
dα
re

are exponential distributed with means ps

dα
sr
, pr

dα
rd
, ps

dα
se

and pr

dα
re

,
respectively. Through some derivation, the outage probability
is (6) on the top of this page. Using the inequality of arithmetic
and geometric means, we get (4) and (5).
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Fig. 2. The outage probability as a function of the position of DF and
RF relay. The source, destination and eavesdropper are at (0, 0), (1, 0) and
(0, 1), respectively and α = 4. The optimal DF and RF relay positions
are both around (0.4551,−0.0987) with minimal PDF (d) ≈ 0.1645 and
PRF (d) ≈ 0.0878 while PDirect (d) = 0.5.

Proposition 1 shows that, to minimize the outage probabil-
ity, only the power ratio pr

ps
matters rather than the absolute

power.
2) Randomize-and-Forward (RF): For the RF strategy, the

source and relay use different codebooks to transmit the secret
message. According to [7], the message is secured if the two
hops are both secured. Thus the outage probability can be
defined as

PRF (d) = 1− Pr

( |hsr |2
dαsr

>
|hse|2
dαse

)
Pr

( |hrd|2
dαrd

>
|hre|2
dαre

)

= 1− dαsed
α
re

(dαsr + dαse) (d
α
rd + dαre)

. (7)

(7) shows that for the RF strategy, the source and relay
powers do not influence the outage probability, which is
different from DF.

Since neither (5) nor (7) is a convex function of the relay
position, we resort to numerical results. In Fig. 2, we plot
PDF (d) and PRF (d) as functions of the relay position. We
find that the optimal positions of the DF and RF relays are both
near to the midpoint of the source and destination. Moreover,
the RF strategy is better than the DF strategy.

Theorem 1. For the four-node system, the outage probability
of the DF strategy is always larger than that of RF strategy.

Proof: Observing (5) and (7), we have

√
1

1− PDF (d)
=

√
1

1− PRF (d)
+

√
dαsrd

α
rd

dαsed
α
re

. (8)

Thus, PDF (d) > PRF (d) and Theorem 1 is proved.

Proposition 2. When the eavesdropper is far away from the
source and destination,1 the asymptotic optimal relay position

1This scenario is applicable when the eavesdropper can not come closer
to the legitimate nodes than a specified distance or when each legitimate
node is able to physically inspect its surroundings and deactivate the nearby
eavesdroppers [11].
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Fig. 3. Outage probability vs the eavesdropper’s position. The source and des-
tination are at (0, 0) and (1, 0), respectively. For every given eavesdropper’s
position, we find the optimal relay position and the corresponding minimal
outage probability by numerical search.

is at the midpoint of the source and destination and

PRF (d) ≈ 1

2
PDF (d) ≈ 1

2α−1
PDirect (d) , (9)

where PDirect (d) =
dα
sd

dα
sd+dα

se
≈ dα

sd

dα
se

is the outage probability
of direct transmission.

Proof: By (5) and (7), if dse � dsr and dre � drd,

PDF (d) ≈
(√

dαsr
dαse

+

√
dαrd
dαre

)2

≈
(√

dαsr
dαse

+

√
dαrd
dαse

)2

,

(10)

PRF (d) ≈ dαsr
dαse

+
dαrd
dαre

≈ dαsr
dαse

+
dαrd
dαse

. (11)

To minimize (10) and (11), we should have

dsr = drd =
1

2
dsd. (12)

Thus, the Proposition 2 follows.
Fig. 3 shows the outage probabilities when the eavesdropper

moves away from the source and destination. In this figure,
the asymptotic results of Proposition 2 are verified. It is first
observed that the outage probability of the RF strategy is
indeed about half of the DF. In addition, as the path loss
exponent α increases, more benefit can be achieved from relay
transmission. Notice that PDF (d) ≈ PDirect (d) if α = 2,
meaning that DF relay transmission, compared with direct
transmission, brings no benefit at this time!

B. Cellular Networks

We now consider a single-cell cellular network shown
in Fig. 4. The hexagonal microcell is approximated as a
circular cell of radius R with a BS at the center of the
cell. The MUs aim to get a secure connection with the BS.
Only downlink is considered and uplink transmission can be
encrypted by the key transmitted through the secure downlink.
The eavesdroppers, which may be other MUs, do not cooperate
and are uniformly distributed within the cell. Therefore, the
knowledge of CSI for the eavesdroppers are not needed.

Proposition 3. If there exist N non-cooperative eavesdroppers
uniformly distributed in the cellular networks, the outage

A

rdh

seh
reh

srh

Fig. 4. An example of cellular networks with 6 sectors and RS’s. The RS’s
are placed on the angle bisector of each sector.

probability for direct transmission, PN
Direct, satisfies

P 1
Direct (dsd) � PN

Direct (dsd) � 1− (1− P 1
Direct (dsd)

)N
,

(13)
where P 1

Direct (dsd) is the outage probability with single
eavesdropper and given by

P 1
Direct (dsd) = x2

∞∑
k=0

(−1)k

1 + kα
2

(
1

x2

)1+ kα
2

(14)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 ln

(
1 +

1

x2

)
when α = 2

2x2

(
1

6
ln

(
x2 − x+ 1

)
(x+ 1)2

+
1√
3

(
arctan

2− x√
3x

+
π

6

))

when α = 3

x2 arctan

(
1

x2

)
when α = 4

with x = dsd/R is the normalized distance between the BS
and MU.

Proof: The probability density function of dsd is

f (dsd) =
2dsd
R2

, 0 � dsd � R. (15)

We then can prove (14) by integrating

P 1
Direct (dsd) =

∫ R

0

Pr

( |hsd|2
dαsd

<
|hse|2
dαse

)
f(dse)ddse.

For (13), the left inequality is obvious. For the right one,

PN
Direct(dsd)

= E
{dsei

,1�i�N}

{
Pr

( |hsd|2
dαsd

< max
i

|hse|2
dαsei

)}

= E
{dsei

,1�i�N}

{
1− Pr

(
N⋂
i=1

( |hsd|2
dαsd

>
|hsei |2
dαsei

))}

(a)

� E
{dsei

,1�i�N}

{
1−

N∏
i=1

Pr

( |hsd|2
dαsd

>
|hse|2
dαsei

)}

= 1− (1− P 1
Direct (dsd)

)N
,

where ei denotes the ith eavesdropper and E represents ex-
pectation. The inequality (a) is obtained by using conditional
probability. This completes the proof of Proposition 3.
PN
Direct can be obtained from numerical simulation. We
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plot PN
Direct and 1 − (

1− P 1
Direct

)N
in Fig. 5. First, we

observe that PN
Direct increases very fast with N , meaning that

only a few non-cooperative eavesdroppers will block nearly
all the secure connections from the BS to MU. Second, the
outage probability is decreasing with α when x is small while
increasing when x ≈ 1. Interestingly, it suggests the MUs near
the BS prefer severer path loss while the MUs near the cell
edge prefer milder path loss. Finally, for the cell edge MUs,
i.e., dsd = R, we have

P 1
Direct(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln 2 ≈ 0.693 when α = 2

2π

3
√
3
− 2

3
ln 2 ≈ 0.747 when α = 3

π

4
≈ 0.785 when α = 4

It shows that the cell edge MUs have no secure connections
to the BS with very high probability.

To deal with this issue, we then propose a heuristic relay
placement strategy as follows. The cell is first partitioned to
M sectors and MUs in every sector is served by a relay as

depicted in Fig. 4. Obviously, the MUs located at both the
cell edge and sector edge, like point A (see Fig. 4), have the

largest outage probability. As PN
Direct(R) has the upper bound

1 − (1− P 1
Direct (R)

)N
, we consider only one eavesdropper

and aim to minimize P 1
Direct(R). We then search the optimal

relay position and power to minimize the outage probability
of such MUs by numerical simulation.

We show the numerical results in Fig. 6 where M = 6, N =
1, and each relay has the power constraint pr � ps. It is shown
that in such cases, RF is better than direct transmission while
DF is inferior to direct transmission. Moreover, the outage
probability of direct transmission of the MUs at point A is
increasing with the path loss exponent α, while the outage
probability with DF or RF relay decrease with α. Finally, the
best relay position approaches to the cell edge as α increases.

III. CONCLUSION

In this paper, we have considered relay placement for
secure connection problem. Through analytical expressions
and numerical results, we have shown that relay is beneficial
for establishing secure connection for the four-node system
and cellular networks. We also found that relay transmission
is especially helpful when path loss is severer. Furthermore, it
was shown that the RF relay strategy, by introducing different
randomization in each hop, is much better than the traditional
DF relay strategy.

REFERENCES

[1] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8,
pp. 1355–1367, Oct. 1975.

[2] L. Lai and H. El Gamal, “The relay–eavesdropper channel: cooperation
for secrecy,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4005–4019,
Sep. 2008.

[3] C. Jeong and I.-M. Kim, “Optimal power allocation for secure multi-
carrier relay systems,” IEEE Trans. Signal Process., vol. 59, no. 11, pp.
5428–5442, Nov. 2011.

[4] L. Dong, Z. Han, A. Petropulu, and H. Poor, “Improving wireless
physical layer security via cooperating relays,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1875–1888, Mar. 2010.

[5] I. Krikidis, J. Thompson, and S. Mclaughlin, “Relay selection for secure
cooperative networks with jamming,” IEEE Trans. Wireless Commun.,
vol. 8, no. 10, pp. 5003–5011, Oct. 2009.

[6] D. Ng, E. Lo, and R. Schober, “Secure resource allocation and schedul-
ing for OFDMA decode-and-forward relay networks,” IEEE Trans.
Wireless Commun., vol. 10, no. 10, pp. 3528–3540, Oct. 2011.

[7] O. O. Koyluoglu, C. E. Koksal, and H. El Gamal, “On secrecy capacity
scaling in wireless networks,” IEEE Trans. Inf. Theory, 2012, to appear.

[8] D. Goeckel, S. Vasudevan, D. Towsley, S. Adams, Z. Ding, and K. Le-
ung, “Artificial noise generation from cooperative relays for everlasting
secrecy in two-hop wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 29, no. 10, pp. 2067–2076, Dec. 2011.

[9] P. Popovski and O. Simeone, “Wireless secrecy in cellular systems with
infrastructure-aided cooperation,” IEEE Trans. Inf. Forensics Security,
vol. 4, no. 2, pp. 242–256, June 2009.

[10] M. Bloch, J. Barros, M. Rodrigues, and S. McLaughlin, “Wireless
information-theoretic security,” IEEE Trans. Inf. Theory, vol. 54, no. 6,
pp. 2515–2534, June 2008.

[11] P. Pinto, J. Barros, and M. Win, “Secure communication in stochastic
wireless networks–part I: connectivity,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 125–138, Feb. 2012.

[12] X. Zhou, R. Ganti, and J. Andrews, “Secure wireless network connec-
tivity with multi-antenna transmission,” IEEE Trans. Wireless Commun.,
vol. 10, no. 2, pp. 425–430, Feb. 2011.


