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Abstract— Mobile wireless networks with intermittent connec-
tivity, often called Delay/Disruption Tolerant Networks (DTNs),
have recently received a lot of attention because of their applica-
bility in various applications, including multicasting. To overcome
intermittent connectivity, DTN routing protocols utilize mobility-
assist routing by letting the nodes carry and forward the data. In
this paper, we study the scalability of DTN multicast routing. As
Gupta and Kumar showed that unicast routing is not scalable,
recent reports on multicast routing also showed that the use
of a multicast tree results in a poor scaling behavior. However,
Grossglauser and Tse showed that in delay tolerant applications,
the unicast routing overhead can be relaxed using the two-hop
relay routing where a source forwards packets to relay nodes
and the relay nodes in turn deliver packets to the destination via
“mobility,” thus achieving a perfect scaling behavior of Θ(1).
Inspired by this result, we seek to improve the throughput
bound of wireless multicast in a delay tolerant setting using
mobility-assist routing. To this end, we propose RelayCast, a
routing scheme that extends the two-hop relay algorithm in
the multicast scenario. Given that there are ns sources each
of which is associated with nd random destinations, our results
show that RelayCast can achieve the throughput upper bound of
Θ(min(1, n

nsnd
)). We also analyze the impact of various network

parameters and routing strategies (such as buffer size, multi-user
diversity among multicast receivers, and delay constraints) on the
throughput and delay scaling properties of RelayCast. Finally, we
validate our analytical results with a simulation study.

I. INTRODUCTION

Protocols that can withstand intermittent connectivity
caused by mobility and low node density, often called De-
lay Tolerant Network (DTN) Protocols, are becoming in-
creasingly important in disruptive Mobile Ad Hoc Network
(MANET) scenarios such as inter-vehicle communications,
“pocket switched” personal networking among pedestrians,
tactical communications in the battlefield and disaster recovery
operations. In those scenarios, there has been a growing
interest in DTN multicast protocols that enable distribution of
situational data to multiple receivers, such as real-time traffic
information reporting, diffusion of participatory sensor data, or
software patch over multiple devices, in spite of the disruptive
nature and intermittent connectivity of tactical MANETs.

Routing in a DTN is challenging because conventional
MANET protocols can withstand only very short term path
interruptions; they systematically fail when the network stays
disconnected for a prolonged time. In favorable motion condi-
tions, DTN routing protocols can overcome such intermittent
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connectivity by exploiting a mobility-assist routing strategy:
nodes receive, hold in storage, and wait for opportunities to
transfer packets to remote nodes. If the characteristics of a
network (e.g., node mobility and traffic pattern) are known in
advance, we can design “predictive” unicast/multicast routing
algorithms that efficiently route packets over a time-varying
connectivity graph [20], [46]. In practice, however, only lim-
ited information is available about network connectivity as a
function of time. In view of this, researchers have investigated
meaningful mobility statistics that allow one to make a better
routing decision such as encounter history [29], [37], mobility
pattern space [26] and social networking [6]. In addition,
redundancy and coding techniques have been used to further
improve reliability and reduce latency of DTN routing [38],
[36], [19], [40].

Scalability is a very important metric when designing a
routing protocol both in MANETs and in DTNs. For unicast,
the scaling behavior is well understood. In their seminal
work, Gupta and Kumar [16] showed that the scalability of
wireless multi-hop routing is limited; in fact, in a wireless
network with n static nodes, each engaged in a data transfer
to a random destination the per node throughput decays as
Θ(1/

√
n log n).1 Realizing that the increasing hop length

of a path is the key limiting factor when the number of
nodes increases, Grossglauser and Tse [15] showed that under
random mobility assumptions a two-hop relay routing strategy,
a mobility-assisted routing protocol that exploits mobility
and carry-forward to reduce number of hops can achieve
Θ(1) throughput per node, thus exhibiting a perfect scaling
behavior. However, the throughput improvement comes at the
cost of increased delay. This result has been followed by
a flurry of research activities that tried to characterize the
delay/capacity relationship as a function of node mobility [11],
[30], [34], [12], [44]. Due to the increased end-to-end delay,
the need to buffer the packets until delivery to destination has
prompted the study of the impact of finite node buffers on
performance [17].

The scaling throughput properties in static wireless net-
works were recently generalized also to multicast and broad-
cast [33], [27], [41]. Assuming that there are ns sources each

1Recall that (i) f(n) = O(g(n)) means that ∃c and ∃N such that
f(n) ≤ cg(n) for n > N (i.e., asymptotic upper bound); (ii) f(n) =
Ω(g(n)) means that ∃c and ∃N such that f(n) ≥ cg(n) for n > N
(i.e., asymptotic lower bound); (iii) f(n) = Θ(g(n)) means that f(n) ∈
O(g(n)) ∩ Ω(g(n)) (i.e., asymptotic tight bound); (iv) f(n) = o(g(n))
means that limn→∞ f(n)/g(n) = 0 (i.e., asymptotic insignificance); and
(v) f(n) = ω(g(n)) means limn→∞ f(n)/g(n) = ∞ (i.e., asymptotic
dominance).



of which is associated with nd random destinations and that
the packets are delivered on multicast trees, the throughput
per multicast source is Θ(

√
n

ns

√
log n

1√
nd

). The penalty of using
a multicast tree is high; namely, it corresponds to a factor of√

nd throughput decrement. When the number of multicast
receivers is above a threshold value of Ω(n/ log n), multicast-
ing scales as network wide broadcasting. Thus, its throughput
becomes Θ(1/ns) [39], [22]. This follows from the fact that
above the threshold the multicast protocol can fully benefit
from the wireless broadcasting effects [22], [41].

In this paper, we seek to improve the pathological through-
put bound of wireless multicast using a mobility-assist routing
algorithm. Namely, we propose RelayCast, a routing scheme
that extends the Grossglauser and Tse’s two-hop relay strategy
by requiring that a relay node be responsible for delivering
packets directly to each multicast receiver. This extended pro-
tocol is analyzed under the assumption that inter-contact time
of an arbitrary pair of nodes follows an exponential distribution
with rate λ. We compare throughput and delay properties of
RelayCast with those of conventional multicast. In favorable
mobility conditions, RelayCast offers two main benefits: it
improves throughput scalability with increasing number of
nodes, and; it provides reliable delivery even in DTN scenarios
with intermittent connectivity. We then analyze the impact on
RelayCast throughput performance of various network and
routing parameters including buffer size, multicast receiver
relay, and delay constraints.

The following is the preview of the key contributions of this
paper.

• We find the throughput upper bound of DTN multicast
routing and propose RelayCast, a two-hop relay based
DTN multicast routing protocol, that achieves the up-
per bound, namely throughput = Θ(nλ) for the case
nsnd = O(n) and Θ( n2λ

nsnd
) for the case nsnd = ω(n),

or simply Θ(min(nλ, n2λ
nsnd

)). We also show that the
delay of RelayCast is Θ( log nd

λ ). In particular, for a given
λ = Θ(1/n), the throughput and delay of RelayCast are
Θ(min(1, n

nsnd
)) and Θ(n log nd) respectively. We pro-

vide a throughput/delay comparison between RelayCast
and conventional multicast [33], [27].

• We show that RelayCast requires buffer space per multi-
cast source of size Θ(nnd) for the case nsnd = O(n) and
of size Θ(n2

ns
) for the case nsnd = ω(n); the aggregate

buffer space to sustain all flows is bounded by Θ(n2).
Given finite buffer space of size K, the throughput per
multicast source of RelayCast is reduced to Θ(Kλ

nd
).

• We prove that multicast receiver relay where multicast
receivers cooperate in delivering the packets cannot im-
prove the delay with respect to RelayCast, unless the
number of multicast receivers scales as nd = Θ(n).
In this case, we show that there is an optimal multiple
message “gossiping” protocol that can reduce the delay
to Θ( log n

nλ ). We also identify a scalability problem due
to packet reconciliation overhead in some of the schemes
proposed in the literature [8], [10].

• We compute throughput-delay trade-offs where through-
put is traded for delay. In particular, we analyze Relay-

Cast with k-copy replication and show that its throughput
and delay are O(min(nλ

k , n2λ
knsnd

)) and O(k log k+n log nd

nkλ )
respectively.

The rest of the paper is organized as follows. In Section
II, we present the network model. In Section III, we compute
throughput and delay of RelayCast and compare with conven-
tional multicast. In Section IV, we formally investigate various
DTN multicast routing design parameters and their impacts on
the scaling properties. In Section V, we validate our results via
simulations. Finally, we present the conclusion in Section VII.

II. NETWORK MODEL

In this section, we review communication model and traffic
patterns; we define throughput and delay, and; we introduce a
simple mobility model all of which will lead represent a DTN
in general.

Communication Model and Traffic Patterns: We use the
protocol model to abstract interference between transmissions
[16]. Suppose that node i transmits to node j. Node j receives
the transmission successfully if every other node that transmits
simultaneously is at a distance of at least (1 + Δ)r(n) from
j where Δ is some positive number and r(n) is the radio
range. In the network, ns nodes are randomly selected as
multicast sources and each of these sources is associated with
nd multicast receivers, thus making a total of nsnd source-
destination pairs in the system. We assume that a membership
is fixed and for a given source, every node maintains a list of
members.

Definition of Throughput and Delay: For a given schedul-
ing algorithm π, a throughput γ > 0 is said to be feasi-
ble/achievable if every node can send at a rate of γ bits
per seconds to its chosen destination. Let Tπ(n) denote
the maximum feasible per-node throughput under scheduling
algorithm π. The delay of a packet in a network is the time for
a packet to reach the destination after it leaves the source. Let
Dπ(n) denote the average packet delay for a network with n
nodes under scheduling algorithm π. Note that a scheduling
algorithm is stable if the rate Tπ(n) is satisfied by all users
such that one’s queue does not grow infinity; i.e., Dπ(n) is
bounded.

Modeling Mobility: DTN protocols leverage node mobility
as a means of data delivery (i.e., carry-and-forward) and thus,
the performance mainly depends on the encounter pattern.
In this paper, we describe the mobility model using the
pairwise inter-contact time, i.e., the time interval between two
successive encounters of a pair of nodes. For analysis, we
consider a class of random mobility models where each node
independently makes decision on its movement, e.g., each
node independently chooses a a random direction (Random
Direction). Groenevelt et al. showed that the inter-contact
stochastic process of these mobility models can be captured
using an independent homogeneous Poisson process with some
meeting rate λ [14], [13]. In other words, inter-contact time
distributions of any pairs are exponentially distributed with
rate λ. This concept can be generalized using heterogeneous
meeting rates with λij for i, j = 1, · · · , n. We present the
Theorem 4.2.1 from [13] to provide a basis for estimating the
λ value for different mobility models.



Theorem 1: Given that two nodes move randomly in a
1×1 unit area (1×1m2) with the average speed v, if the
transmission range r � 1 and the position of a node at time
t + Δ is independent of its position at time t for small Δ,
then the inter-contact time between two nodes is exponentially
distributed with parameter λ = αrv where α is a mobility
model dependent constant.

In various empirical studies, the inter-contact time distribu-
tion has been reported to follow an exponential distribution in
real-life mobility patterns. Conan et al. showed that several
mobility traces contain significant fraction of contact pairs
following exponential distributions [5]. For instance, in the
Dartmouth College WiFi trace, out of 13,482 pairs 62.3%
pairs have been found to follow an exponential distribution.
Karagiannis et al. found an invariant property that there is
a time granule in the order of half a day, up to which the
distribution of inter-contact time is well approximated by a
power law and beyond it decays exponentially [21]. They also
found that the aggregate inter-contact distribution does not
deviate significantly from the individual pairwise inter-contact
time distribution. In general, when a mobility model is defined
in a finite domain, it has been mathematically proven that the
inter-contact time distribution has an exponential tail [3].

DTN Model: We model an arbitrary DTN in a unit area of
(1×1) using the pairwise inter-contact rate λ = Θ(rv) where
r is radio range and v is speed. We note that it is possible
to map any delay tolerant network to a wireless network in a
unit area by appropriately scaling the radio range and average
speed. In our study, we consider two cases: (a) when λ is
given and fixed and (b) when λ scales according to r and v.

When λ is given, Theorem 1 shows that the contact rate
is independent of the number of nodes. As shown later, this
allows us to predict the performance of DTN as a function of
the number of nodes in the network. However, increasing the
number of nodes over a certain limit will reduce the effective
capacity due to wireless interference. Also, the node increase
will eventually change the connectivity of the network from
a DTN state to a fully connected state.2 Thus, in order for
the network to remain in a delay tolerant state and maximize
the throughput, the number of nodes should be bounded. We
can identify this bound as follows. Assume that the nodes
are uniformly distributed on a unit square. The radio range
determines the number of simultaneous transmissions, and thus
the network-wide aggregate throughput. Since the number of
transmissions is approximately the same as the total number of
non-overlapping circles with radius r that fills 1×1 area, the
network-wide aggregate throughput T is bounded by Θ(1/r2).
Therefore, the aggregate throughput can be expressed in terms
of λ: i.e., T ≤ Θ(1/r2) = Θ(1/λ). For a DTN with the radio
range r, the upper bound of the per-node throughput can be
maximized, when the number of nodes is in the same order
as the aggregate throughput, i.e., Θ(1/r2) = Θ(n) and thus,
r = Θ(1/

√
n). In this paper, we analyze more general scaling

behavior with the radio range of O(1/
√

n).
On the other hand, if λ scales with the node speed and the

2A network is connected with high probability if its transmission range is
set to Θ(

√
log n/n) [16]. Thus, for a given transmission range, we can find

the number of nodes that make the network connected.

radio range (which are functions of the number of nodes), we
have λ = Θ(rv). In this case, we scale the node speed based
on the radio range such that the contact duration of two nodes
is constant as in [7], [11], [34]. Unless otherwise mentioned,
we assume that the radio range is r = O(1/

√
n), and the speed

v = O(1/
√

n) (thus, λ = O(1/n)). We then can easily show
that the node density within one’s radio range is bounded by
Θ(1). Note that Grossglauser and Tse showed that when we
scale the radio range as r = Θ(1/

√
n), a class of DTNs with

λ = Θ(1/n), we can achieve the throughput of Θ(1) using
the two-hop relay “unicast” routing protocol. We assume that
the network area is partitioned into C non-overlapping cells
with size sn×sn where we have sn = 1/

√
n to have the node

density per cell O(1).
In this paper, we slightly abuse the asymptotic notation for

simplicity. For instance, when we denote that the throughput
per multicast source of RelayCast is Θ(min(nλ, n2λ

nsnd
)), this

statement is always true only when λ scales with n. However,
when λ is fixed, it is true only when n ≤ 1/λ. This conditional
rule applies to all asymptotic notations in this paper.

III. THROUGHPUT AND DELAY OF DTN MULTICAST

ROUTING

We derive the upper bound on the throughput of DTN mul-
ticast routing. We then proceed to present RelayCast, a 2-hop
relay-based DTN multicast routing protocol. We analyze the
throughput and delay of RelayCast and show that RelayCast
achieves the throughput upper bound. Finally, we compare the
throughput and delay of RelayCast with those of conventional
wireless multi-hop multicast.

A. Multicast Throughput Upper Bound in DTNs

The below theorem shows the throughput upper bound of
DTN multicast routing where we have ns multicast sources
and nd multicast receivers.

Theorem 2: The throughput upper bound of DTN multicast
is Θ(min(nλ, n2λ

nsnd
)).

Proof: We use a derivation that is similar to that in
[16]. In the network, ns nodes are randomly selected as
multicast sources and each of these sources is associated with
nd multicast receivers. Consider a bit b originating at a source.
In our network setting, there are a constant number of nodes
in each cell.3 The chance of transmission is equally shared by
c interfering nodes under the protocol model [24]. Thus, the
minimum number of transmissions required to deliver a bit b
to nd destinations is Θ(nd), even with broadcasting effects.
Under any scheduling algorithm, we need H(b) = Ω(nd)
transmissions to deliver a bit b. For a given time slot, node i en-
counters a random node with probability nλ. Considering the
interference, the node can transmit with probability nλ/c. This
transmission opportunity is denoted as an indicator random
variable Si. The total number of simultaneous transmissions
is given as S =

∑n
j=1 Sj . Its expectation is E[S] = nE[Si] =

n2λ/c. Each source generates bits with rate T (n). For a given
period τ , the total number of bits generated in the network
is nsT (n)τ . The total number of hops required to support

3For a given contact, the number of interfering nodes is given as
Θ(n/r2) = Θ(1)
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Fig. 1. RelayCast: DTN multicast based on 2-hop relay. Relay node Ri
delivers a packet to all the multicast receivers. Note that receiver Di can also
be a relay node.

these bits during time interval τ is nsT (n)τH(b). This is
bounded by the total number of feasible transmissions in the
network during time interval τ that is τS. Hence, we have
nsT (n)τH(b) ≤ τS. By substituting H(b) and S, we have
T (n) ≤ n2λ

cnsnd
and thus, T (n) = O( n2λ

nsnd
). The DTN multicast

throughput is bounded by its unicast throughput, especially
when nsnd ≤ n. Since the unicast throughput is a special
case of multicast (i.e., ns = n and nd = 1), the throughput is
given as O(nλ). Thus, we have T (n) = O(min(nλ, n2λ

nsnd
)).

To contrast the multicast with the unicast, let us take the
number of source destination pairs to be the same in both
case; i.e., nsnd = n. We take nd = n1−ε and ns = nε where
0 ≤ ε ≤ 1. As long as nsnd = n is satisfied, the throughput
is essentially the same as unicast throughput, i.e., Θ(nλ). As
ε → 1 the multicast is the same as unicast whereas ε → 0, it
becomes a delay tolerant broadcasting.

B. RelayCast: 2-Hop Relay-based DTN Multicast Routing

We present a DTN multicast protocol called RelayCast
whose operations are based on 2-hop relay DTN routing. For
each time slot a cell becomes active if it contains at least a
pair of nodes that are within the radio range of each other.
In each active cell, we randomly select a pair of nodes and
perform either of the following operations. In Phase 1 (Relay),
the multicast source sends a new packet to a relay node. The
relay node could be one of the multicast receivers. In Phase 2
(Delivery), if there is a multicast receiver that has not received
a packet yet, a relay node delivers the packet. The overall
procedure is illustrated in Figure 1. Note that a relay node has a
separate queue for each multicast destination and replicates an
incoming packet to each of the relay queues (i.e., nd replicas).

Theorem 3: The throughput of RelayCast per multicast
source is Θ(min(nλ, n2λ

nsnd
)).

Proof: Consider a multicast stream: source s and a set
of destinations di for i = 1, · · · , nd. The throughput per
source is Θ(nλ) if each destination di can achieve Θ(nλ),
which we will show in the following. During a small time
interval Δt, a random node j encounters the destination di

with probability λΔt+o(Δt). In our network setting, there are
a constant number (c) of nodes in each cell under the protocol
model. Since the chance of transmission is equally shared by c
interfering nodes, node j can successfully deliver a packet with
the probability λΔt/c. Recall that we have ns sources each of
which is associated with nd destinations chosen randomly. The
probability that a node chooses a random node as a destination

is p = nd/n. We want to know how many sources out of
ns − 1 will choose node di as a destination as well. The
probability that 	 sources choose a certain node as a destination
is given as

(
ns−1

�

)
pk(1− p)ns−1−�, and on average there will

be (ns−1)nd

n sources. Let nx denote the total number of sources
competing for the limited resources including the source s.
Then, we have nx = (ns−1)nd

n + 1. When nsnd = O(n),
we have nx = Θ(1); and when nsnd = ω(n), we have
nx = ω(1). Assuming that each source equally shares the
overall transmission opportunities, this packet belongs to a
source i with probability 1/nx. Here, we are interested in
the event that the receiver di is scheduled to receive node i’s
packet at time t. Let an indicator random variable Mi(Δt, n)
denote this event. Since di can meet any of the relay nodes,
we have:

Pr{Mi(Δt, n) = 1} (1)

=
n∑

j=1,j �=di

Pr{node j delivers a packet during Δt} (2)

≈ (n − 1)λΔt

nxc
(3)

Thus, the throughput is given as:

Tdi(n) =
E[Mi(t, n)]

Δt
=

(n − 1)λΔt

nxc

1

Δt
(4)

=

{
Θ(nλ), nsnd = O(n)

Θ( n2λ
nsnd

), nsnd = ω(n)
(5)

The above cases can be simplified as Θ(min(nλ, n2λ
nsnd

)).
When the radio range is scaled appropriately such that r =

Θ(1/
√

n), (and therefore λ = Θ(1/n)), the throughput per
source is given as Θ(min(1, n

nsnd
)). If the number of source-

destination pairs is less than nsnd = O(n), the throughput per
multicast source is Θ(1) as in two-hop relay where there are
n source destination communication pairs.

Theorem 4: The average delay of RelayCast is Θ( log nd

λ ).
Proof: We find the average delay to deliver a packet to

all nd receivers. The relay node encounters the first receiver
with rate ndλ and the average delay is 1

ndλ . At that moment,
there are still nd − 1 receivers waiting for the packet. By the
memoryless property, we can simply treat them as if they just
begin. Thus, the average time to meet the second receiver is
simply 1

(nd−1)λ . By repeating this process, we have:

E[D] =
1

ndλ
+

1

(nd − 1)λ
+ · · · + 1

λ
(6)

=
1

λ

nd∑
i=1

1

i
(7)

=
1

λ

(
log nd + γ + O

(
1

nd

))
(8)

where γ is Euler’s constant. Thus, D(n) = Θ( log nd

λ ). The
packet buffering at each node will incur additional delay in the
end-to-end delay computation. However, the queueing delay
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increases the average delay of each step with a constant factor.4

Thus, the order of the average delay does not change.

C. Comparison with Multi-hop Wireless Multicast Routing

We compare the throughput/delay scaling of conventional
multi-hop wireless multicast routing with that of RelayCast.
For this we first review the throughput scaling of multi-hop
wireless multicast routing where the radio range scales with
Θ(

√
log n/n). The following theorem from [27] shows the

throughput of multi-hop wireless multicast routing. Similar
results have been reported in [33], [41].

Theorem 5: The throughput per multicast source is upper
bounded by Θ

( √
n

ns

√
log n

1√
nd

)
when nd = O( n

log n ) and by

Θ( 1
ns

) when nd = Ω( n
log n ).

As shown in Theorem 2, the key factor of determining the
throughput upper bound is the number of transmissions (or hop
count) H(b). Du et al. [9] showed that the Euclidean distance
of a minimum spanning tree covering nd nodes is Θ(

√
nd),

and thus, we have H(b) = Θ(
√

nd/r(n)). Interestingly, if
the number of receivers is greater than Ω( n

log n ), multicast
becomes a network-wide broadcast whose throughput per node
is Θ(1/ns) [22], [39].5

In Figure 2, we summarize the throughput per node with
ns = Θ(n) as a function of the number of multicast receivers.
Unlike conventional multi-hop wireless multicast routing, the
throughput per node of RelayCast is Θ(min(nλ, n2λ

nsnd
)); in

particular, when the radio range scales as Θ(min(1, n
nsnd

)),
i.e., λ = Θ(1/n). Since the number of sources is ns =
Θ(n), the throughput per node of RelayCast is Θ(1/nd).
The throughput per node of conventional multi-hop multicast

4Note that the queueing behavior can be modeled using the standard M/M/1
queue. In a relay node, a packet can be located in a random position of each
queue. In the beginning, since it has not delivered to any of nd destinations,
we consider all nd queues. The aggregate service rate is ndλ. The key is that
the utilization of the queueing system must be ρ < 1 in order to be stable.
The average sojourn time is simply given as E[W ] = 1

(1−ρ)ndλ
[23]. Thus,

the queueing delay increases the delay only a constant factor. After the packet
is delivered to one of the receivers, we then consider nd − 1 queues in the
same manner.

5In this case, multicast receivers will cover at least a constant fraction of
the 1×1 network. To be precise, because there are 1/r(n)2 cells with at least
one receiver [27], the total area size covered by these nodes is constant, i.e.,
Θ(1/r(n)2 × r(n)2) = Θ(1). Thus, when the number of receivers is large
enough (at least Ω(1/r(n)2)), the throughput put node is simply bounded by
the broadcast capacity.

is Θ
(

1√
n log n

1√
nd

)
when nd = o( n

log n ). If the number of

receivers is nd = Ω( n
log n ), the throughput per node is Θ(1/n).

The throughput per source of RelayCast is better than that of
conventional multi-hop wireless multicast routing. When the
number of receivers is nd = Θ(n), the throughput per node
of wireless broadcast is the same as that of RelayCast.

We now find the delay of conventional multi-hop multicast
routing. El Gamal et al. [11] showed that the average delay
of unicast routing is proportional to the number of hops
to deliver a packet: the average distance between a random
pair of nodes is Θ(1), and the average number of hops is
simply Θ(1/r(n)) = Θ(

√
n/ log n). Given this, we realize

that the average delay of multicast routing is no different
than that of unicast, because a packet can be delivered in
parallel along different paths of the multicast tree, and the
depth of a multicast tree is asymptotically the same as that of
unicast routing.6 While the delay of conventional multi-hop
multicast routing is independent of the number of receivers,
that of RelayCast is a function of the number of receivers,
increasing logarithmically as Θ(log nd/λ). Given a DTN of
λ = 1/n, the delay of RelayCast is Θ(n log nd) that is much
greater than that of conventional multi-hop multicast routing.
In Section IV-C, we investigate the delay-throughput trade-offs
of RelayCast.

IV. PROTOCOL DESIGN PARAMETER ANALYSIS

A. Buffer Requirements and Impact of Finite Buffer

In RelayCast, a relay node maintains a queue for each
multicast receiver and an incoming packet is replicated nd

times. As an alternative, we can emulate the multi-queue
scheme using a single queue with per packet delivery status
bookkeeping (or a simply list of nodes that have received a
certain packet). A relay node scans the queue from the head,
and selects a packet that has not yet been delivered to the
encountered destination node. When a packet is delivered to
all the multicast receivers, it is removed from the queue.

We find the average buffer space for both cases to sustain the
maximum throughput of RelayCast, i.e., Θ(min(nλ, n2λ

nsnd
))

using Little’s law: the product of per node throughput and
average packet lifetime. Since the packet life time is equal to
the average delay, the average number of packets for a given
multicast flow (or the average number of “in-flight” packets)
is determined by the throughput-delay product in a DTN. The
buffer requirement of RelayCast can be computed as follows.
We first analyze the multiple queue scheme. When we have
nsnd = O(n), the incoming rate to a relay node is Θ(λ).
Since the average delay of a packet is Θ(1/λ), the average
number of packets in a queue is Θ(1). There are Θ(n) relay
nodes each of which has nd queues. Thus, the aggregate buffer
space required to sustain a multicast flow is Θ(nnd). Similarly,
when we have nsnd = ω(n), the aggregate buffer space is
Θ( nλ

nsnd
) × 1

λ × nnd = Θ(n2

ns
).

Now we consider the single queue scheme with per packet
delivery status bookkeeping. When we have nsnd = O(n),

6Under the protocol model, the number of cells that interfere with any given
cell is constant as shown in [24]. Thus, the interference among different paths
does not affect the average delay.



the average number of packets in a queue is computed as
Θ(λ) × Θ( log nd

λ ) = Θ(log nd), requiring much less space
than the multiple queue scheme. However, since each packet
requires Θ(nd) space for bookkeeping and there are Θ(n)
relay nodes, the aggregate buffer space to sustain a multicast
flow is Θ(nnd log nd).7 In the same way, we can find the
aggregate buffer space of the case nsnd = ω(n) as Θ( nλ

nsnd
)×

Θ(nnd log nd

λ ) = Θ(n2 log nd

ns
). Thus, the single buffer scheme

requires a factor of Θ(log n) more buffer space than the
multiple queue scheme. If we multiply ns with the aggregate
buffer space per source, we find the aggregate buffer space
over all sources: O(n2 log nd) and O(n2) for single queue
and multiple queue schemes respectively.

One may argue that in the single queue scheme, a node
could perform packet reconciliation whenever it encounters
another node, thus obviating the need of delivery status
bookkeeping. To realize this, we must consider the overhead
of packet reconciliation that is proportional to the average
queue length per node. As there are ns sources, the overhead
is Θ(ns log nd) for nsnd = O(n) and Θ(n log nd

nd
) for nsnd =

ω(n). If the number of multicast receivers scales as the
network size, so does the overhead of packet reconciliation.
However, in our model we assume the constant contact dura-
tion, i.e., Θ(r(n)/v(n)) = Θ(1), and thus, the single queue
scheme is not feasible due to the overhead.

Impact of finite buffer: Given finite buffer space of size nsK
in the network, we now want to find the throughput bound of
RelayCast. We assume that a buffer replacement algorithm is
not used such that a multicast source drops a packet (or fails
to send a packet) if there is not enough space in a relay node.
Note that it must have buffer space of size at least Θ(nd)
because of replication. Moreover, a freed buffer space will
be taken by any of the ns nodes with the same probability
because of the uniform random encounter patterns. Therefore,
we assume that buffer space is equally shared by ns nodes, and
a multicast flow is given buffer space of size K on average.
Given this, the following theorem shows the throughput per
multicast source of RelayCast with finite buffer.

Theorem 6: Given finite buffer space of size K in the
network where K = O(nnd) for the case nsnd = O(n) and
K = O(n2

ns
) for the case nsnd = ω(n), the throughput per

multicast source of RelayCast is Θ(Kλ
nd

)
Proof: Given finite buffer space of size K, it can support

at most Θ(K/nd) in-flight packets, because each packet needs
to be replicated nd times. Let us now investigate how this
space of size Θ(K/nd) can be distributed among relay nodes.
When we have K = O(nnd), the throughput per node is
Θ(nλ): a relay node can meet a destination node with rate
Θ(λ) and there are n such nodes. The space of K = O(K/nd)
should be equally shared by n potential relay nodes, and thus,
a random relay node has a space for the destination with
probability K

nnd
. When we have ω(nnd), the throughput per

node is Θ( n2λ
nsnd

): a relay node encounters a destination node
with rate Θ( nλ

nsnd
) – for a given destination node, the relay

7In practice, the bookkeeping overhead can be ignored in a network with
a finite number of nodes.

node uses its contract rate λ with probability n
nsnd

. As there
are Θ(n) potential relay nodes, the average number of relay
nodes in the network that share the space of O(K/nd) is n2

nsnd
.

Thus, a random relay node has a space for the destination
with probability Kns

n2 . Using the same proof technique as in
Theorem 3, we find that the throughput per source is Θ(Kλ

nd
)

in both cases.

B. Multicast Receiver Relay in DTN Multicast Routing

Since a packet is delivered to a set of multicast re-
ceivers, we want to consider cooperative relaying among
multicast receivers or RelayCast with Multicast Receiver Relay
(RelayCast-MRR). Unlike RelayCast where there is a single
relay node for a given packet, RelayCast-MRR could have
O(nd) relay nodes. It can potentially reduce the delay, yet
preserve the throughput because the number of transmissions
required to deliver a packet does not increase. However, we
show that RelayCast-MRR cannot improve the delay unless
the number of receivers scales as Θ(n) (i.e., network-wide
broadcasting).

Theorem 7: If the number of multicast receivers scales as
nd = o(n), RelayCast-MRR cannot improve the delay.

Proof: Packets arrives at a multicast receiver with the
rate of O(nλ) that is the throughput per source. To realize
Multicast Receiver Relay, the receiver should be able to send
received packets to other multicast receivers. As there are
Θ(nd) receivers, the multicast receiver relay rate is Θ(ndλ).
However, if we have nd = o(n), the arrival rate O(nλ) is
asymptotically greater than the service rate Θ(ndλ). There
will be infinite backlog of packets that need to be sent to
other multicast receivers. Therefore, packets will never have
a chance to be sent to other multicast receivers, and receivers
cannot deliver received packets to other receivers.

From the above argument, we see that MRR is only feasible
when we have nd = Θ(n) (i.e., network-wide broadcasting)
such that the incoming rate is the same order as the multicast
receiver relay rate. We can achieve this using “multiple”
message gossiping protocols where Θ(m) messages from a
single source can be disseminated to n users in Θ(m+ log n)
time steps in a distributed fashion [10], [32]. The key idea of
optimal multiple message gossiping is to make every contact
useful as follows. Due to the randomness of mobility patterns,
it is expected that each node collects on average N(t) mes-
sages out of M messages at time slot t. For a given encounter
between u and v, we show that the probability that the meeting
is useful is 1 with high probability. The meeting is useless if
both u and v have the same set of messages. It happens with
probability poverlap = 1/

(
M

N(t)

)
and we can easily show that

poverlap < 1/M for N(t) < M . The probability that the
meeting is useful is simply 1 − poverlap > 1 − 1/M . As M
goes to infinity, we know that the probability converges to 1.

Theorem 8: The throughput upper bound is achievable with
optimal multiple message gossiping.

Proof: To determine the throughput, we should find
the effective meeting rate that is a fraction of the meeting
rate useful for data transfer. We know that each relay node
encounters a random node at the rate of Θ(nλ). Since there are
Θ(n) potential relay nodes in the network, the aggregate rate is



Θ(n2λ). Optimal multiple gossiping allows us to fully utilize
meeting opportunities and the aggregate meeting rate can be
fully used for data transfer. Thus, using the same argument as
in Theorem 3, we can prove that the throughput upper bound
is achievable.

For example, consider a single source scenario with nd = n
multicast receivers. During n time contact time slots where the
size of a contact time slot is Θ( 1

nλ ), there will be Θ(n2) trans-
mission opportunities. During that period of time, a source has
generated Θ(nλ×1/λ) = Θ(n) packets on average. The total
number of transmissions required to deliver these packets is
given as Θ(n2). Since we show that optimal multiple gossiping
can fully utilize meeting opportunities, Θ(n2) transmission
opportunities can be used for data transfer. We can deliver
n packets during n times slots and thus, the throughput can
be computed as Θ(nλ).

Moreover, optimal multiple message gossiping can mini-
mize the delay, yet fully utilize the contact opportunity by
properly arranging data transfer opportunities. This allows
us to decrease the delay by a factor of n: RelayCast takes
Θ( log n

λ ) whereas RelayCast-MRR using optimal multiple
message gossiping takes Θ( log n

nλ ) which is the average delay
of broadcasting a single message [14]. Note that RelayCast-
MRR actually improves the delay-throughput trade-offs that
Neely et al. [30] reported: the throughput must be reduced by
a factor of n in order to decrease the delay to Θ( log n

nλ ).

The overall process can be best explained by a “pipeline”
analogy, because multiple messages are being simultaneously
transferred in the network. The number of in-flight packets
can be viewed as the number of packets in the pipeline.
Using the Little’s results, we find that the number of in-flight
packets is given as Θ(n log n) and Θ(log n) for RelayCast and
RelayCast-MRR respectively. Thus, RelayCast has a pipeline
of Θ(n log n) stages, and RelayCast-MRR has a pipeline of
Θ(log n) stages. Each stage of a pipeline takes Θ( 1

nλ ) on
average. Given that there are infinite streams of packets from
a multicast source, the throughput is mainly determined by
the duration of stage. RelayCast has a factor of Θ(n) longer
stages in its pipeline, but once the pipeline is fully loaded, a
packet can be delivered in each time slot. Note that the optimal
message gossiping disseminates a finite number of messages,
m. For λ = 1/n, a single message broadcasting takes log n
steps which is followed by m−1 steps to complete the rest of
messages; thus, this will take Θ(m + log n) steps [10], [32].

We now review the multiple message gossiping protocols,
namely Randomized Multi-Message Gossip (RMMG) [10]
and INTERLEAVE [32]. RMMG uses a coloring mechanism
whereby each node has a unique color that indicates the
message for which it has primary pushing responsibility, and
an aging mechanism that limits the scope of primary message
dissemination and enables pulling [10]. In RMMG, a node
must send an M-bit vector in {0, 1}M , indicating the presence
of the set of messages stored in the node, along with the
list of colored packets. After packet reconciliation, a node
either pushes a colored packet, or pulls a random packet that

the node does not have.8 As shown earlier, there are M =
Θ(log n) in-flight packets. Since the packet reconciliation
overhead also scales as Θ(log n), the contact duration must
scale logarithmically to make it feasible.

Sanghavi et al. [32] proposed INTERLEAVE protocol that
interleaves push and pull without any interference in a de-
centralized way as follows. Assume that every time a source
transmits a packet, the sequence number will be incremented.
For a given contact opportunity, INTERLEAVE operates as
follows. The source pushes a new packet to the encountered
node. Other nodes chooses the following two options at
random: 1) a node pushes the highest number packet among
the packets pushed by others, or 2) a node sends a pull request
for the lowest numbered piece it does not have. INTERLEAVE
shares the same idea as RMMG. The key difference is that
INTERLEAVE has removed the packet reconciliation process
based on the observation that after a new packet is out on
the network for Θ( log n

nλ ), it can be delivered to a constant
fraction of the nodes, and thus, a pull request for a lower
number packets is likely to succeed.

Note that Algebraic Gossiping (AG) also realizes optimal
multiple message gossiping using random linear network cod-
ing [8]. Each message is represented an element in a vector
space with the scalars in a finite field of appropriate size.
For a given encounter, a node generates a coded message
by combining all the coded messages collected thus far. If
a node has all M “linearly independent” coded messages, it
can recover the original messages. The key idea of AG is that
network coding ensures that every coded message that one
receives is useful (i.e., linearly independent from one’s coded
messages collected). In AG, the control overhead (i.e., a code
vector in each packet) scales with the network size. Moreover,
to decode the messages, we need to collect all M = Θ(log nd)
messages and thus, the average delay is increased by a factor
of Θ(log nd).

C. Throughput-delay Trade-offs

We show that the delay of RelayCast is Θ( log nd

λ ). Consider-
ing a DTN with λ = 1/n, the delay scales as Θ(n log nd). This
is due to the fact that there is only a single relay node deliver-
ing a packet to all the multicast receivers. To reduce the delay,
we consider the k-copy replication scheme where a packet
is replicated to k relay nodes. We assume that each replica
holder can replicate the packet as long as the total number of
replicas is less than k (i.e., multi-hop replication) [38], [36].
For instance, Spyropoulos et al. proposed a binary spraying
method [38]; i.e., a counter value that is initially set to k
to generate k replicas is halved for each encounter and is
distributed to nodes; a node finishes replication if its counter
value reaches to zero. We can summarize the capacity-delay
tradeoffs as follows.

Theorem 9: Given RelayCast with “k-copy” replication, the
throughput per multicast source is O(min(nλ

k , n2λ
knsnd

)), and
the average delay is O(k log k+n log nd

nkλ ).
Proof: The overall derivation of the throughput upper

bound is very similar to Theorem 2, except that the hop

8Note that to minimize the average delay, we must select a packet with the
smallest sequence number among the missing packets.
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length H(b) is increased to k: given k-copy replication, each
packet requires at least k transmissions. Thus, the throughput
is reduced by a factor of k.

We now find the delay of k-copy replication. The delay
upper bound can be represented as E[D] ≤ E[Ds] + E[Dd]
where Ds represents the time to relay a packet to k distinct
relay nodes (denoted as the spray step), and Dd represent the
time to deliver a packet to all the multicast receivers using k
distinct relay nodes (denoted as the delivery step). The average
delay of the spray step can be calculated as follows. In the
beginning, a source node relays a packet with rate (n − 1)λ.
After this, the rate is increased to 2(n−2)λ because there are
two nodes spraying the packet. After k steps, the rate becomes
k(n − k)λ. Thanks to the memoryless property, the average
delay is simply represented as E[Ds] =

∑k
j=1

1
j(n−j)λ =

1
nλ

∑k
j=1(

1
j + 1

n−j ) = Θ( log k
nλ ). Moreover, the average delay

of the delivery step can be easily calculated using Theorem
4. Given k relay nodes, the average delay is decreased by a
factor of k, i.e., Θ( log nd

kλ ). Therefore, by replacing E[Ds] and
E[Dd], we find the average delay of k-copy replication as
E[D] = O(k log k+n log nd

nkλ ).

V. SIMULATIONS

We present the throughput and delay of RelayCast using
QualNet v3.9.5, a packet level network simulator.

A. Simulation Setup

We use the random waypoint mobility model with 0 pause
time and constant node speeds at 20m/s and 30m/s in a 5000m
× 5000m region. We use 802.11b with 250m transmission
range and 2Mbps transmission rate and use a two-ray ground
path-loss propagation model. We use the Multicast Constant
Bit Rate (MCBR) traffic in QualNet to measure the maximum
throughput. We vary the number of nodes from 10 to 100, and
warm up simulations for 10,000s. We implement RelayCast
and compare its performance with analytical results. We also
compare the results with On-demand Multicast Routing Pro-
tocol (ODMRP), a well-known multi-hop wireless multicast
protocol [25]. For ODMRP, we set the refresh interval to be
3 seconds and the forwarder’s lifetime to be 9 seconds. For
inter-contact time measurement, the duration of a simulation
is 100,000 seconds; for RelayCast performance measurement,
we run simulation for 40,000 seconds. Reported results are
the averages of 50 runs with different random seeds and are
presented with the 95% confidence interval.

B. Results

We first present the pairwise inter-contact time of mobile
nodes and show its Complementary Cumulative Distribution
Functions (CCDF) with fitted exponential curves in Figure
3. The figure confirms that the inter-contact time of nodes
with random waypoint movement closely matches exponential
distribution. The mean inter-contact time is given as 1344.00s
and 924.08s for the speed of 20m/s and 30m/s respectively.

We measure the per node throughput by increasing the CBR
traffic rate (i.e., packets/sec). The size of a packet is 1500B.
Heusse et al. showed that the channel utilization of 802.11b
with a packet of size 1500B is 70% (denoted as u) [18].
For a given bandwidth B, the effective bandwidth is given as
Be = Bu. In Theorem 3, we showed that the throughput per
source is Θ(nλ). In other words, a node encounters another
node with rate nλ, which is a renewal process with the mean
inter-renewal interval of 1

nλ . For a given contact duration Dc,
a node can transfer on average DcBe. We use a very simple
interference model where interference reduces the throughput
by a constant factor, and the frequency of interference is
proportional to the number of nodes in the network. The
average throughput is given as nλDcBeIn where In denotes
the degree of interference given n nodes. Now we want to
know how throughput scales as the number of nodes increases
when there is a single source that sends packets to n − 1
multicast receivers in the network. If a random node is a pure
relay node (not a multicast receiver), it can fully utilize its
contact period delivering packets to the encounter receiver.
However, in our case, every node other than the source is
both a relay node as well as a multicast receiver and thus, the
bandwidth is fairly shared by incoming and relaying traffic.
Thus, the average throughput is given as nλDcBeIn/2. Figure
4 shows the measured throughput and analytical results. The
figure shows that the analytic throughput model matches well
with the simulated results, but they slightly deviate from each
other as the number of nodes increases. We believe this gap
can be reduced by using a more sophisticated interference
model such as [31].

We compare the scalability of RelayCast with that of
ODMRP. In particular, we evaluate the cases nsnd ≤ n where
RelayCast can achieve the throughput of Θ(1). We increase the
number of sources from 1 to 20 each of which has 5 random
destinations. To find the best scenario of ODMRP, we use
various MCBR rate ([20,200] pkts/s) with packet sizes of 512B
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and 1024B, and different area sizes (750m × 750, 1000m ×
1000m, and 1250m × 1250m). Our results show that the max-
imum throughput is attained when a 512B packet is sent at the
rate of 200 pkts/s in an area of size 1000m × 1000m. Figure
5 reports the results. As the number of sources increases, the
throughput of RelayCast slowly decreases, but the throughput
of ODMRP decreases significantly. For instance, when the
number of sources has increased from 1 to 2, the throughput of
ODMRP is decreased from 183.6Kbps to 79.7Kbps, whereas
that of RelayCast is reduced from 975.6Kbps to 926.8Kbps.
This result confirms that RelayCast is a more scalable solution
for multicast in DTN environments.

Finally, we investigate the average delay of RelayCast. We
show how the average delay of RelayCast changes as the
number of destinations increases. In order to measure the
delay incurred by the protocol, we throttle down the sending
rate at the source so that we can minimize the impact of
queueing delay. This result is reported in Figure 6 along with
analytic results from Theorem 4. The graph shows that our
analytic results matches with simulation results fairly well.
In general, the average delay increases, as the number of
destinations increases. We also test the case with k-copy
replication scheme, and our results confirm that replication
can significantly reduce the delay.

VI. RELATED WORK

DTN Multicast Routing Protocols: Zhao et al. proposed a
set of DTN multicast semantic models regarding group mem-
bership and delivery interval, because group membership may
change during message transfer due to large delay [46]. They
incorporated various knowledge oracles such as contact and
membership in the possible routing strategies (e.g., unicast,
broadcast, tree/mesh). In practice, only limited information is
available about network connectivity as a function of time.
Ye et al. [43] proposed on-demand situation-ware multicast
where a node dynamically maintains a multicast tree using the
topology information gathered from underlying unicast routing
protocols. Abdulla et al. [1] used various DTN routing proto-
cols to support DTN multicast such as Spray and Wait [38].
Chuah et al. [4] proposed Encounter-Based Multicast Routing
(EBMR) that uses the encounter history based on PROPHET
unicast DTN routing [29]; i.e., a node disseminates a packet
to neighbors each of which has the highest delivery to one
of the multicast receivers. Message ferrying was also used to

support DTN multicast where DTN routing is aided by nodes
whose mobility patterns are known, or whose trajectories are
controllable [47], [42].

Throughput and Delay Scaling Behavior in DTNs: It is
known that DTN routing protocols can benefit from node
mobility and overcome the capacity bound of Θ(1/

√
n log n)

originally established by Gupta and Kumar [16] for a fixed
wireless network. Noting that the average hop length of a path
is the key limiting factor, Grossglauser and Tse proposed the
two-hop relay routing algorithm that exploits node mobility to
effectively reduce the hop length, and utilizes relay nodes to
deliver data to the destination when they meet, thus achieving
Θ(1) throughput per node [15]. Various mobility models have
been considered to characterize the delay/capacity relationship
with respect to node mobility, from a simple independent
and identically distributed (I.I.D.) mobility model [30], to
more complex random mobility models, such as random
waypoint [35], random direction [34], Brownian mobility [28],
and random walk [11]. Sharma et al. systematically studied the
impact of different mobility models on delay/capacity trade-
offs [34]. Garetto et al. studied a home-point mobility model
where each node moves around its home-point, and studied
its impact on capacity scaling properties [12]. In addition, the
impact of finite buffer constraints on each node to the capacity
of network has also been studied [17]. Note that besides the
scaling behavior analysis, there is a body of work on the
performance analysis of DTN routing protocols. Groenevelt
et al. analyzed the average latency and the number of trans-
missions for the two-hop relaying and unrestricted replication
(i.e., epidemic dissemination) using a stochastic model [14].
Hanbali et al. studied the maximum relay throughput and
buffer occupancy of the two-hop relay routing under various
mobility patterns [2]. Similarly, Zhang et al. studied on the
performance of epidemic routing and its variations using a
simple deterministic model [45].

VII. CONCLUSION

We investigated the throughput and delay scaling properties
of multicasting in DTNs. We analyzed the maximum through-
put bound of DTN multicast. We then proposed RelayCast,
a routing scheme that extends the Grossglauser and Tse’s
two-hop relay algorithm, and showed that RelayCast achieves
the maximum throughput of Θ(min(nλ, n2λ

nsnd
)) where ns is

the number of sources and nd is the number of receivers



associated with each source. We compared throughput and
delay properties of RelayCast with those of conventional
wireless multicast schemes and showed that RelayCast is much
more scalable. We analyzed the impact of various network
parameters and routing strategies on the throughput and delay
scaling properties of RelayCast, namely buffer size, multi-
user diversity among multicast receivers, and throughput-delay
tradeoffs. In particular, we found that: (1) given finite buffer
of size K, the throughput is reduced to Θ(Kλ

nd
), (2) multicast

receiver relay where multicast receivers cooperate in delivering
the packets can be exploited only if the number of multicast
receivers scales as Θ(n), and (3) throughput can be traded for
delay using RelayCast with k-copy replication. Finally, we
validated our findings via extensive simulations.
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