
Release the Kraken: New KRACKs in the 802.11 Standard

Mathy Vanhoef
imec-DistriNet, KU Leuven

Mathy.Vanhoef@cs.kuleuven.be

Frank Piessens
imec-DistriNet, KU Leuven

Frank.Piessens@cs.kuleuven.be

ABSTRACT

We improve key reinstallation attacks (KRACKs) against 802.11

by generalizing known attacks, systematically analyzing all hand-

shakes, bypassing 802.11’s o�cial countermeasure, auditing (�awed)

patches, and enhancing attacks using implementation-speci�c bugs.

Last year it was shown that several handshakes in the 802.11 stan-

dard were vulnerable to key reinstallation attacks. These attacks

manipulate handshake messages to reinstall an already-in-use key,

leading to both nonce reuse and replay attacks. We extend this work

in several directions. First, we generalize attacks against the 4-way

handshake so they no longer rely on hard-to-win race conditions,

and we employ a more practical method to obtain the required

man-in-the-middle (MitM) position. Second, we systematically in-

vestigate the 802.11 standard for key reinstallation vulnerabilities,

and show that the Fast Initial Link Setup (FILS) and Tunneled direct-

link setup PeerKey (TPK) handshakes are also vulnerable to key

reinstallations. These handshakes increase roaming speed, and en-

able direct connectivity between clients, respectively. Third, we

abuse Wireless Network Management (WNM) power-save features

to trigger reinstallations of the group key. Moreover, we bypass (and

improve) the o�cial countermeasure of 802.11. In particular, group

key reinstallations were still possible by combining EAPOL-Key and

WNM-Sleep frames. We also found implementation-speci�c �aws

that facilitate key reinstallations. For example, some devices reuse

the ANonce and SNonce in the 4-way handshake, accept replayed

message 4’s, or improperly install the group key.

We conclude that preventing key reinstallations is harder than

expected, and believe that (formally) modeling 802.11 would help

to better secure both implementations and the standard itself.

CCS CONCEPTS

• Security andprivacy→ Security protocols;Mobile andwire-

less security; • Networks→ Security protocols;

KEYWORDS

key reinstallation attack; KRACK; WPA2; 802.11; security protocols

ACM Reference Format:

Mathy Vanhoef and Frank Piessens. 2018. Release the Kraken: New KRACKs

in the 802.11 Standard. In 2018 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3243734.3243807

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243807

1 INTRODUCTION

Last year, Vanhoef and Piessens showed that WPA2 is vulnerable to

key reinstallation attacks [50]. What made their attack surprising,

apart from taking more than a decade to discover, is that the core

components of WPA2 were formally proven secure. That is, both

the 4-way handshake and the (AES-)CCMP encryption protocol had

security proofs [19, 25]. However, the manner in which these two

components interacted made it possible to reinstall an already-in-

use key. This resets the key’s associated parameters such as transmit

nonces and receive replay counters, making it possible to decrypt,

replay, and potentially forge packets. Because this was a �aw in the

standard, all WPA2 implementations were a�ected by some variant

of the attack [50]. We build upon this work, and extend it in several

directions. Summarized, we demonstrate that key reinstallation

attacks can be further improved, and unfortunately are harder to

prevent than initially assumed.

We �rst increase the practicality of key reinstallation attacks

against the 4-way handshake. Previously, device-speci�c and hard-

to-win race conditions had to be used to exploit the 4-way hand-

shake of Android, macOS, and OpenBSD [50]. This was necessary,

because otherwise these platforms would not accept the plaintext

handshake message that triggers the key reinstallation. Moreover,

it was not possible to attack Wi-Fi drivers of OpenBSD that use

software encryption. We overcome these limitations by generat-

ing an encrypted (instead of plaintext) handshake message that

triggers the key reinstallation. As a result, an adversary no longer

has to rely on hard-to-win race conditions to exploit vulnerable

implementations of the 4-way handshake. The encrypted hand-

shake message can also be used to attack OpenBSD irregardless of

the used Wi-Fi driver. Apart from making it easier to trigger key

reinstallations, we will also discuss an easier method to establish

the required man-in-the-middle (MitM) position.

We continue by systematically investigating all 802.11 features

that may be a�ected by key reinstallation attacks. In particular,

we inspected the 802.11 standard for handshakes that negotiate

and install keys, and we searched for frames that transport keys.

Then we looked for non-standard functionality that installs keys,

by auditing the open source code of wpa_supplicant, hostapd, and

iwd. Finally, we also checked whether vendors correctly patched

known key reinstallation vulnerabilities. This systematic analysis

revealed several new vulnerabilities.

Our �rst discovery is that both the FILS and TPK handshake

are also vulnerable to key reinstallations. The FILS handshake can

establish a secure link and Internet connection in only 100 ms, and

is expected to be widely adopted in highly mobile environments.

The TPK handshake is mainly used to stream data from a device to

a smart TV [56], and establishes a direct tunnel between two clients.

We demonstrate how an adversary can trigger key reinstallations

against these handshakes, making it possible to decrypt, replay, and

possibly forge frames.

https://doi.org/10.1145/3243734.3243807
https://doi.org/10.1145/3243734.3243807

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

When searching for frames that transports keys, we found that

certain WNM-Sleep frames may transport the (integrity) group key.

We demonstrate that manipulating these frames allows an adver-

sary to trigger a reinstallation of the (integrity) group key. Building

on top of this, we also show how to break the o�cial countermea-

sure of 802.11 that is supposed to prevent key reinstallation attacks.

This is done by exploiting interactions between EAPOL-Key frames

and WNM-Sleep frames. More precisely, our attack �rst lets the

victim install a new (integrity) group key, so it can then be tricked

into reinstalling an older (integrity) group key. Apart from this, we

also encountered implementation-speci�c vulnerabilities where the

group key is improperly installed. For example, we found that cer-

tain devices always install the group key with a zero replay counter,

instead of the given replay counter. More troublesome, we even

discovered some devices that always accept replayed broadcast and

multicast frames. All combined, this shows that securely handling

and installing group keys is a non-trivial task.

In the last part of the paper, we present several implementation-

speci�c key reinstallation vulnerabilities that we discovered when

inspecting patches and open source code. First, we discuss imple-

mentations that reuse the SNonce or ANonce when refreshing the

session key using the 4-way handshake. We demonstrate how this

can be abused to trigger key reinstallations. A second notewor-

thy vulnerability is that some Access Points (APs) accept replayed

message 4’s of the 4-way handshake. An adversary can abuse this

to trivially trigger key reinstallations, without having to obtain a

MitM. In turn it becomes possible to decrypt, replay, and possibly

forge frames. Finally, we show how to perform key reinstallation

attacks against Android 7.0 and higher without relying on device-

speci�c race conditions. These results show that preventing key

reinstallations can be more tedious in practice than expected.

To summarize, our main contributions are:

• We show how to attack the 4-way handshakewithout relying

on hard-to-win race conditions, and use a method to more

easily obtain the required multi-channel MitM.

• We systematically analyze all 802.11 features that negoti-

ate or manage keys, and discover that the FILS and TPK

handshake are also vulnerable to key reinstallations.

• We show that the updated 802.11 standard is still vulnerable

to reinstallations of the group key, and present implementa-

tion �aws that a�ect the security of group-addressed frames.

• We analyze security patches of vendors, and discover several

implementation-speci�c key (re)installation vulnerabilities.

The remainder of this paper is organized as follows. Section 2

introduces the 802.11 standard and key reinstallation attacks. In

Section 3 we generalize attacks against the 4-way handshake, and

make it easier to obtain a MitM. We attack the FILS handshake

in Section 4 and the TPK handshake in Section 5. In Section 6 we

show how WNM frames can be used to reinstall the group key, and

Section 7 discusses implementation-speci�c vulnerabilities. Finally,

we discuss related work in Section 8 and conclude in Section 9.

2 BACKGROUND

In this section we introduce relevant parts of the 802.11 standard,

and explain the core idea behind a key reinstallation attack [20, 50].

FC addr1 addr2 addr3 KeyID & PN Data

Figure 1: Simpli�ed 802.11 frame with a WPA2 header.

2.1 The 802.11 Standard

A simpli�ed layout of a 802.11 frame is shown in Figure 1. First, the

Frame Control (FC) �eld contains several bit-�ags, with the most

important one for us being the Power Management (PM) �ag. A

station sets the PM �ag in an (empty) data frame to indicate it is

entering sleep mode, meaning it will no longer be able to receive

frames. For ease of readability, we will refer to the PM �ag as the

sleep �ag. The AP will bu�er frames for clients that are asleep. To

exit sleep mode, the station sends an (empty) frame where the sleep

�ag is not set. More advanced power management techniques will

be further discussed (and abused) in Section 6.

The next three �elds contain the address of the receiver (addr1),

the address of the sender (addr2), and the address of the �nal desti-

nation (addr3). For example, when a client sends an outbound IP

packet, addr1 equals the MAC address of the AP, addr2 that of the

client itself, and addr3 that of the router. A station, i.e., a client or

AP, can also combine several frames into a single A-MSDU frame.

This avoids the overhead of sending multiple small frames. The con-

tent of each frame, along with its source and destination address, is

stored in the data �eld of the A-MSDU frame. Interestingly, against

version 4.8 and below of the Linux kernel, A-MSDU frames can be

abused to spoof the sender and destination addresses of frames [5].

When a frame is encrypted, its plaintext header includes the

KeyID and Packet Number (PN) �eld. The PN �eld stores the replay

counter used by the encryption algorithm (see Section 2.4), and the

KeyID identi�es which key was used to protect the frame. Modern

networks mainly use the KeyID to transparently update the group

key. That is, a newly generated group key uses a di�erent KeyID

than the one currently in use. This allows an AP to (gradually)

distribute the new group key, while simultaneously sending group-

addressed frames using the old key.

Before a client can send data frames, it �rst needs to authenticate

and associate with the AP. This is illustrated in the �rst stage of

Figure 2. At this stage, real authentication only takes place when

using the FT, SAE, or FILS handshake [20]. Most WPA2 networks

do not yet support these handshakes, and instead use Open System

authentication. This means there is no authentication at this stage,

and actual authentication is o�oaded to the 4-way handshake.

After authentication, the client (re)associates with the AP. In this

process the client informs the AP which features it supports and

wants to use (e.g. its supported bitrates). Additionally, if encryption

is used, the (re)association frame contains the cipher suite that the

client wishes to use. The AP replies with a (re)association response

that indicates whether the association was successful, i.e., whether

the requested features and cipher suite are supported.

Finally, the 802.11 standard supports Quality of Service (QoS)

features to prioritize certain tra�c. In particular, the standard de-

�nes 16 di�erent priority channels [20, §5.1.1.3], where each chan-

nel is identi�ed by a 4-bit Tra�c Identi�er (TID). Interestingly,

when encryption is used, each QoS priority channel uses its own

receive replay counter (under the same session key). However, a

Release the Kraken: New KRACKs in the 802.11 Standard CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Client (supplicant) AP (authenticator)

Authentication Request

Authentication Response

(Re)Association Request

(Re)Association Response

as
so
ci
at
io
n
st
ag
e

optional 802.1X authentication

Msg1(r, ANonce)

Derive PTK Msg2(r, SNonce)

Derive PTK
Msg3(r+1; GTK)

Msg4(r+1)

Install PTK & GTK Install PTK

4-
w
ay

h
an
d
sh
ak
e

encrypted data can now be exchanged

Refresh GTK

Encx
ptk

{ Group1(r+2; GTK) }

Enc
y

ptk
{ Group2(r+2) }

Install GTK Install GTK

g
ro
u
p
k
ey

h
an
d
sh
ak
e

Figure 2: Messages exchanged when a client connects with

an AP, performs the 4-way handshake, and periodically ex-

ecutes the group key handshake [50].

single transmit replay counter is shared by all QoS channels. This

design allows the physical-layer component of the Wi-Fi chip to

reorder outgoing frames based on their priority. We will abuse these

priority-dependent receive replay counters in Section 3.3 and 5.4.

2.2 Protected Wi-Fi Networks

All modern protected Wi-Fi networks rely on the 802.11i amend-

ment, which de�nes both the 4-way handshake and two encryption

protocols [22]. However, due to the slow standardization of this

amendment, the Wi-Fi Alliance already started certifying devices

based on a draft of 802.11i under the Wi-Fi Protected Access (WPA)

program. Once 802.11i was �nished, the WPA2 certi�cation pro-

gram was created. As a result, WPA and WPA2 are very similar.

The main di�erence is that WPA2 mandates support for the more

secure (AES-)CCMP encryption protocol, and optionally allows the

(WPA-)TKIP encryption protocol, while the reverse is true for WPA.

As a reaction to the key reinstallation attacks against WPA2,

the Wi-Fi Alliance recently released the WPA3 certi�cation pro-

gram [57]. This certi�cation mandates support of the Simultaneous

Authentication of Equals (SAE) handshake. In contrast to the 4-way

handshake of WPA2, the SAE handshake provides forward secrecy,

and is resistant to dictionary attacks.

header replay counter nonce RSC MIC Key Data

encrypted

Figure 3: Simpli�ed layout of an EAPOL-Key frame.

2.3 The 4-way Handshake

The 4-way handshake provides both mutual authentication and

session key generation. Authentication is based on a shared secret

called the Pairwise Master Key (PMK), and from this a fresh session

key called the Pairwise Transient Key (PTK) is derived. In this

handshake the client is called the supplicant, and the AP is called

the authenticator. Concretely, the PTK is a combination of the PMK,

the Authenticator Nonce (ANonce), the Supplicant Nonce (SNonce),

and the MAC address of both the supplicant and client. In turn, the

PMK is either derived from a pre-shared password in a personal

network, or negotiated using 802.1X in an enterprise network.

Every message in the 4-way handshake is de�ned using EAPOL-

Key frames. Their most important �elds are shown in Figure 3. The

header contains eight �ags which describe properties of the frame.

For instance, the Encrypted �ag denotes whether the key data �eld

is encrypted or not, and the MIC �ag denotes whether the frame is

authenticated using a Message Integrity Check (MIC). Note that for

every message in the handshake, a unique combination of �ags is

set. The replay counter is used to detect replayed messages. That is,

the AP increments the replay counter for every handshake message

it sends. When the client replies to the AP, it uses the same replay

counter that it previously received from the AP. The nonce �eld

transports either the random ANonce or SNonce of the AP or client,

respectively. When the frame also transports a (integrity) group

key (GTK), it is saved in the key data �eld, which is encrypted using

the PTK. The Receive Sequence Counter (RSC) contains the current

replay counter of the transported group key. In contrast, the current

replay counter of the integrity group key is saved in the key data

�eld. We will use the notation GTKz
i
to represent a group key with

replay counter z and key id i . When the value of either z or i is not

important, we will not include them in the notation.

Figure 2 illustrates the messages exchanged in the 4-way hand-

shake. Similar as in [50], we use the notation

MsgN(r, nonce; GTK)

to represent message n of the 4-way handshake, which uses the

replay counter r , and the given nonce (if present). All parameters

after the semicolon are stored in the key data �eld. Simpli�ed, the

�rst two messages of the 4-way handshake are used to exchange

nonces, and the last two messages are used to con�rm that both

parties derived the same session key. Note that message 3 transports

the group key to the client. The authenticity of every message,

except Msg1, is protected with a MIC that is calculated using the

KCK subkey of the PTK. After the 4-way handshake, the AP can

use the group key handshake to distribute (periodically renewed)

group keys to all associated clients (see Figure 2).

The PTK can be refreshed by performing a new 4-way handshake

after the initial one. In this new handshake, messages are encrypted

using the previously negotiated PTK. More importantly, the client

and AP generate a fresh SNonce and ANonce, respectively. By

refreshing these nonces, a new PTK will be negotiated.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

2.4 Encryption Protocols

The 802.11 standard de�nes four encryption protocols when ex-

cluding the broken WEP protocol. The �rst three are (WPA-)TKIP,

(AES-)CCMP, and GCMP, and they are used to protect data frames

and certain unicast management frames. All three behave like

stream ciphers, meaning keystream is generated and XORed with

the plaintext data. The generated keystream depends on the TK

subkey of the PTK, and on a 48-bit packet number. This packet

number, commonly called a nonce, is incremented by one for ev-

ery transmitted packet, initialized to zero or one depending on the

speci�c protocol, and used as a replay counter by the receiver.

The fourth encryption protocol is the Broadcast/multicast In-

tegrity Protocol (BIP), and is designed to authenticate (but not

encrypt) group-addressed robust management frames. It uses an in-

tegrity group key for protection, employs a 48-bit packet number to

detect replays, and calculates an authenticity tag using AES-CMAC.

To denote that a frame is encrypted and authenticated we use

the following notation:

Encn
k
{·}

Here n denotes the packet number being used (and thus also the

replay counter). The parameter k denotes the used key, which is

the session key (PTK) for unicast tra�c, and the group key (GTK)

for multicast and broadcast tra�c. Finally, the two notations

[header,] Data(payload)

[header,] GroupData(payload)

represent an ordinary unicast or broadcast data frame, respectively,

with the given payload and 802.11 header. The optional header

represents the unauthenticated plaintext header of the 802.11 frame.

It may contain the sleep parameter, which denotes that the Power

Management �ag is set in the FC �eld (recall Section 2.1). When

the sleep �ag is not present, the corresponding PM �ag is not set.

In case of a key reinstallation, the transmit nonce is reset to

zero and subsequently reused. This implies keystream is reused

during encryption, making it possible to decrypt frames. Moreover,

against (WPA-)TKIP and GCMP, the adversary can recover the

authentication key if a nonce is ever reused [26, 43]. This means it

becomes possible to forge frames aswell. Finally, a key reinstallation

also resets the receive replay counter, meaning an adversary can

replay old frames towards the victim.

2.5 Key Reinstallation Attacks

More than a decade after the creation of WPA2, Vanhoef and

Piessens discovered that it is vulnerable to key reinstallation at-

tacks [50]. Surprisingly, the attack is easy to understand once

pointed out. The main idea is that an adversary abuses retrans-

missions of handshake messages to trick a victim into reinstalling

a key. This causes the key’s associated parameters, such as the

incremental transmit nonce and receive replay counter, to be reset.

As mentioned in Section 2.4, this allows an adversary to decrypt,

replay, and possibly forge frames.

Figure 4 shows how to perform a key reinstallation attack against

the 4-way handshake. First, the adversary obtains a multi-channel

man-in-the-middle (MitM) position [50]. This position does not

enable decryption of frames, but only the ability to reliably block

and delay messages sent between the client and AP [47]. The MitM

Client (victim) Adversary (MitM) AP

Msg1(r, ANonce)Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)

Msg3(r+1; GTK)Msg3(r+1; GTK)

Msg4(r+1)

1○

Install PTK & GTK

Enc1
ptk

{ Data(. . .) }
2○

Msg3(r+2; GTK)Msg3(r+2; GTK)

Enc2
ptk

{ Msg4(r+2) }

Reinstall PTK & GTK

3○

next transmitted frame(s) will reuse nonces

Enc1
ptk

{ Data(. . .) } Enc1
ptk

{ Data(. . .) }
4○

Figure 4: Key reinstallation attack against the 4-way hand-

shake, when the client (victim) still accepts plaintext re-

transmissions of message 3if a PTK is installed [50].

works by cloning the AP on a di�erent channel, forcing the victim

to connect to the AP on the rogue channel, and then forwarding

frames between both channels. Once in this position, the adversary

forwards the �rst three messages of the 4-way handshake with-

out modi�cation, but does not forward message 4 (see stage 1 of

Figure 4). Nevertheless, the client considers the handshake to be

complete, meaning it will install the negotiated session key (PTK).

As a result, any data frames that the client now transmits are en-

crypted at the link layer (see stage 2 in Figure 4). However, because

the AP did not receive message 4, it has not yet completed the

handshake. To remedy this, the AP will retransmit a new message 3

using an increased replay counter of r + 2. When the client receives

this retransmitted message 3, it will reply using a new message 4.

Additionally, it will reinstall the PTK, and thereby reset the transmit

nonce and receive replay counter. This is catastrophic, as it causes

nonce reuse when sending the next data frame (see stage 4 in Fig-

ure 4). Additionally, it becomes possible to replay frames towards

the victim, since the receive replay counter was also reset.

A similar attack was presented against the PeerKey, group key,

and Fast BSS Transition (FT) handshake. For more details we refer

the reader to [50]. In this paper, we also demonstrate that the FILS

and TPK handshakes are vulnerable to key reinstallations.

After the disclosure of the attacks, the 802.11 standard was mod-

i�ed in an attempt to prevent all key reinstallation vulnerabili-

ties [17]. Interestingly, this modi�cation consisted of just two new

lines, with the main one being [17]:

“When the Key, Address, Key Type, and Key ID parameters

identify an existing key, the MAC shall not change the current

transmitter TSC/PN/IPN counter or the receiver replay counter

values associated with that key.”

Release the Kraken: New KRACKs in the 802.11 Standard CCS ’18, October 15–19, 2018, Toronto, ON, Canada

In other words, when an already-in-use key is being reinstalled, the

standard now states that the associated transmit nonce and receive

replay counter should not be reset. Unfortunately, in Section 6.3

we will demonstrate that this defense does not prevent all attacks.

3 IMPROVED 4-WAY HANDSHAKE ATTACKS

In this section we present an attack against vulnerable implemen-

tations of the 4-way handshake that does not rely on hard-to-win

race conditions. Additionally, we show how to easily obtain a multi-

channel MitM and increase the impact of key reinstallations.

3.1 Existing Attacks and their Limitations

The original key reinstallation attack against the 4-way handshake

of Android, macOS, and OpenBSD, relied on hard-to-win race con-

ditions to trigger the key reinstallation [50]. This was necessary

because, by default, these implementations no longer accept plain-

text handshake messages after installing the negotiated session

key. As a result, a key reinstallation attack as illustrated in Figure 4

would fail. Indeed, when the client no longer accepts plaintext hand-

shake messages after installing the session key, the retransmitted

(plaintext) message 3 in stage three of the attack is ignored.1 As a

result, no key reinstallation will take place. In [50], Vanhoef and

Piessens proposed two techniques to overcome this problem, and

both of them relied on device-speci�c race conditions.

Their �rst technique targeted Android devices. Against these

devices, the attacker must wait with forwarding the �rst message 3

until it also received a retransmitted message 3. At that point, both

message 3’s are quickly send one after another to the victim. This

triggers a race condition in the Wi-Fi chip of the victim, where the

retransmitted plaintext message 3 is accepted for further process-

ing, before the PTK is installed in response to the �rst message 3.

Although the tested Android devices were vulnerable, other plat-

forms such as macOS and OpenBSD were not a�ected by this race

condition. Additionally, it may be hard to win (exploit) the race

condition, and it is unclear how many Android devices are a�ected.

In the second technique, they trigger a key reinstallation dur-

ing a rekey handshake [50]. Recall that a rekey handshake uses

the same messages as in a normal handshake, except that all mes-

sages are now encrypted under the (old) session key. Similar to

the previous technique, the adversary will wait with forwarding

the �rst message 3 (now during a rekey), until it also received the

retransmitted message 3. At that point, both message 3’s are quickly

sent one after another to the victim. This triggers a race condition

where the retransmitted message 3 will be decrypted using the

old session key, because the �rst message 3 has not yet been fully

processed. Although this technique can be used to attack macOS

and OpenBSD, it is rather impractical. The main problem is that

few networks are con�gured to perform rekeys, and even if they

are, a rekey happens only every few minutes to hours. For instance,

Linux’s hostapd AP disables rekeys of the PTK by default. Only the

group key is periodically renewed. Additionally, the technique does

not work against OpenBSD when the victim uses a Wi-Fi driver

that employs software encryption. All combined, this technique

1This behaviour also causes a reliability issue: if message 4 is lost, the 4-way handshake
will time out because the client drops the retransmitted plaintext message 3 [49].
Retransmitting message 3 is only useful when the original message 3 was lost.

to trigger key reinstallations in the 4-way handshake is of limited

value in practice.

We conclude that, although key reinstallation attacks are feasible

against most devices in theory, in practice the existing techniques

can be tedious and impractical.

3.2 Generating Encrypted Message 3’s

We discovered a new technique to exploit key reinstallations against

the 4-way handshake. In contrast to existing techniques, it does

not rely on hard-to-win race conditions, but instead abuses power-

save functionality in the AP. In particular, we manipulate the AP

into sending retransmissions of message 3 that are encrypted un-

der the newly negotiated session key. This encrypted message 3

will always be accepted by the client, even if it already installed

the PTK. For example, unpatched versions of Android, macOS, and

OpenBSD all accept the encrypted retransmitted message 3, and

subsequently reinstall the session key. This demonstrates that an

adversary no longer has to rely on hard-to-win race conditions to

exploit vulnerable implementations of the 4-way handshake.

At a high level, we abuse power save functionality of 802.11

to make the AP temporarily bu�er a retransmitted message 3. Af-

ter this, we let the AP install the new PTK, and let it transmit all

bu�ered frames. Since now a PTK is installed when the retransmit-

ted message 3 is �nally sent, it will be encrypted using it.

Figure 5 show the details of our attack. Again the adversary �rst

establishes a multi-channel MitM position between the client and

AP (see also Section 3.3). Note that the client is not explicitly drawn

in Figure 5, its actions are clear from context. We assume the AP

accepts older but unused handshake replay counters (e.g. hostapd).

According to the standard all APs should do this, but in practice

some APs only accept the latest replay counter [50]. In stage one of

the attack, the adversary forwards the �rst three messages of the

4-way handshake without modi�cation. However, message 4 is not

forwarded to the AP. Instead, the adversary sends an empty (null)

data frame to the AP with the sleep �ag set (recall Section 2.1). As a

result, the AP now believes the victim (client) is in sleep mode. This

implies the AP will now bu�er all frames sent towards the victim.

In stage three of the attack, the AP will retransmit message 3

since it has not yet received message 4 as a reply (see Figure 5).

However, the 802.11 sublayer management entity (i.e. the kernel)

thinks that the victim is in sleep mode. Therefore, it will queue the

retransmitted message 3 instead of transmitting it. At this point, the

adversary forwards the previously blocked message 4 to the client.

Notice that the sleep bit of this message is set before forwarding it,

which is possible because this information in the 802.11 header is

not encrypted nor authenticated. When the AP receives message 4,

the kernel will forward it to hostapd, and will keep thinking the

client is asleep since the sleep bit is still set. Hostapd accepts this

message 4, since its replay counter value r + 1 is higher than the

one it previously received from the client. Note that other APs may

deviate from this, and only accept replay counters that match the

latest one used by the AP [50]. After validating message 4, hostapd

will command the kernel into installing the newly negotiated PTK.

In stage 5 of the attack, the adversary will send an empty (null)

data frame to the AP without the sleep �ag set. This makes the AP

mark the client as awake, causing the AP to transmit all bu�ered

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

Adversary (MitM) Kernel Hostapd

AP (Authenticator)

Msg1(r, ANonce)Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)

Msg3(r+1; GTK)Msg3(r+1; GTK)

Block Msg4(r+1)

1○

Sleep, Data(null)

Stop all TX queues
2○

Msg3(r+2; GTK)

Add to TX queue
3○

Sleep, Msg4(r+1) Msg4(r+1)

Install Keys

Install PTK & GTK

4○

Data(null)

Wake up all TX queues

Enc1
ptk

{ Msg3(r+2; GTK) }

next transmitted frame(s) will reuse nonces

5○

Figure 5: Making Linux’s hostapd AP retransmit mes-

sage 3of the 4-way handshake with link-layer encryption.

frames to the client. In particular, the retransmitted message 3

is now sent to the victim. And more importantly, it will be en-

crypted, because the kernel has already installed the new PTK. This

encrypted message 3 can be forwarded to the victim, which will

trigger a key reinstallation in all vulnerable implementations.

We tested this technique against hostapd version 2.6, which was

running on Debian Jessie with Linux kernel 3.16. This con�rmed the

AP indeed encrypts the retransmitted message 3 under the new PTK.

Since hostapd is used by both home routers and professional APs

such as Aerohive, Cisco, Ubiquity, Aruba, and others, this attack is

possible against many protected Wi-Fi networks [50].

Note that our new technique does not rely on tight timing con-

straints. Instead, it exploits logical features of power-save func-

tionality in the AP. With our technique it is now also possible to

attack OpenBSD even when it uses a Wi-Fi driver that employs

software encryption. In contrast, the existing attacks based on race

conditions were not able to accomplish this. Finally, we conjecture

that more advanced power management functionality, such was

WNM, can also be used to trick the AP into sending encrypted

message 3’s. However, we abused legacy power management func-

tionality, because nearly all APs support this feature.

3.3 Improved MitM and Delaying Reinstalls

Performingmost key reinstallation attacks, including the one against

the 4-way handshake, requires a multi-channel MitM position [50].

Currently, obtaining this position requires special Wi-Fi equipment

to jam all frames on a particular channel [47]. The jammer is used

to prevent victims from connecting to the real AP. We propose

a more practical method to obtain the MitM, which works based

on Channel Switch Announcements (CSAs). In this method, the

adversary forges CSAs to trick clients into switching to the desired

(rouge) channel [27, 46]. This is more reliable then jamming cer-

tain channels, and does not require special Wi-Fi equipment. We

successfully tested this approach against Android and Chromium.

A second limitation of existing attacks is that the key reinstalla-

tion is always triggered as soon as possible. In other words, once a

retransmitted message 3 has been captured, it is immediately sent to

the victim. However, it is also possible to delay the delivery of this

message. This has as advantage that more frames will have been

sent before the key reinstallation occurs, meaning more frames will

also reuse nonces. This increases the impact of a key reinstallation.

Delaying message 3 is even possible when it is encrypted. Indeed,

handshake messages are typically sent using a fairly unique QoS

priority. And since each priority channel has its own receive replay

counter (recall Section 2.1), we can safely forward data frames to the

victim with a higher replay counter, without a�ecting the reception

of the encrypted message 3. We successfully tested delaying (an

encrypted) message 3 against Linux, Android, iOS, and macOS.

4 ATTACKING THE FILS HANDSHAKE

In this section we study the Fast Initial Link Setup (FILS) handshake,

and show that it is also vulnerable to key reinstallation attacks.

4.1 Background

The Fast Initial Link Setup (FILS) handshake was rati�ed in 2016 un-

der the 802.11ai amendment [21]. Its purpose is to securely connect

to an AP, while simultaneously initializing higher layer protocols

by, for example, requesting and assigning an IP address.

With FILS, authentication can be performed using either a shared

secret key, or a public key. The shared key can be a PMK, or a key

called the re-authentication Root Key (rRK). A shared rRK can be

establishing during the 802.1X authentication stage of a traditional

handshake (recall Figure 2). Using an rRK instead of a PMK has the

advantage that any AP on a particular network can obtain the rRK

using the EAP Reauthentication Protocol (ERP) [12]. In contrast, a

PMK can only be used with an AP that the client previously connect

to, though a PMK does has the advantage that no ERP requests are

necessary. We remark that for public key authentication, there are

no guidelines on how or when to trust public keys.

An example execution of the FILS handshake is shown in stage

one of Figure 6. The client initiates the handshake by sending an

Authentication Request (AuthReq) to the AP. In our example, the

frame contains an EAP-Initiate/Re-auth packet, indicating that the

client wants to authenticate using a shared rRK. The AP extracts

the EAP packet from the authentication request, and forwards it to

a local (trusted) authentication server. In turn, the authentication

server replies with an EAP-Finish/Re-auth packet as required by

RFC 6696 [12]. When authentication was successful, this packet

Release the Kraken: New KRACKs in the 802.11 Standard CCS ’18, October 15–19, 2018, Toronto, ON, Canada

contains the re-authentication Master Session Key (rMSK), which

was derived from the rRK. The AP extracts the rMSK, and forwards

the remaining content of the EAP packet to the client in an Authen-

tication Response (AuthResp). This allows the client to derive the

rMSK as well, meaning both the client and AP posses the rMSK.

Similar to the �rst two messages of the 4-way handshake, the

authentication request and response frames transport a random

SNonce and ANonce, respectively. If a rRK was used by the client,

these nonces are combined with the rMSK to derive the PMK. In

turn, the PMK is combined with both nonces and the MAC address

of the client and AP to derive the PTK.

In the second part of the handshake, the client and AP exchange

(re)association frames to con�rm they negotiated the same PTK.

More precisely, the client sends a (Re)Association Request (Reas-

soReq) with a Key Con�rmation �eld containing a HMAC over the

ANonce, SNonce, and the MAC address of both the client and AP.

In turn, the AP replies using a (Re)Association Response (Reas-

soResp), which also contains a HMAC using the PTK over the same

parameters (but ordered di�erently). All sensitive FILS �elds in the

(re)association response and request are encrypted using the PTK.

Additionally, the (re)association response contains the (integrity)

group key, which the client will install after receiving and process-

ing the frame. Finally, once both the AP and client installed the PTK,

encrypted data frames can be exchanged (see stage 2 of Figure 6).

Finally, clients can include a DHCP request in the (re)association

request. The AP forwards this request to the local DHCP server,

and returns the reply in the (re)association response.

4.2 Triggering a Key Reinstallation

The 802.11ai amendment does not de�ne a state machine that de-

scribes how to implement the FILS handshake. More troublesome,

it also does not specify when the PTK should be installed. Instead,

it only speci�es that the client should install the GTK after receiv-

ing (and decrypting) the (re)association response [21, §12.12.2.6.3].

This lack of rigorousness increases the chance of implementations

having vulnerabilities. Nevertheless, we conjecture that most im-

plementations will mimic the behaviour of the 4-way handshake,

and install the PTK after completing the handshake. This means

implementations will install the PTK after sending or receiving the

FILS (re)association response (see Figure 6).

The standard also does not state what should happen when the

AP receives a retransmitted FILS (re)association request. However,

we can deduce the required reaction from context. In particular, we

know that when a client has not received a (re)association response,

it will retransmit the (re)association request. The goal of this is

to make the AP send a new (re)association response. This means

the AP must process and reply to retransmitted (re)association

requests. Unfortunately, implementations may reinstall the PTK

while doing so. That is, the APmay reinstall the PTKwhen receiving

a retransmitted (re)association request during the FILS handshake.

An attacker can actively trigger these key reinstallations by re-

playing (re)association requests (see stage 3 of Figure 6). Unlike the

attack against the 4-way handshake, a MitM position is not required.

This is because none of the messages in the FILS handshake contain

a replay counter, meaning we can trivially replay them. Moreover,

plaintext (re)association frames must always be accepted, even if a

Client Adversary AP (victim)

AuthReq(SNonce, EAP-Initiate/Re-auth)

AuthResp(ANonce, EAP-Finish/Re-auth)

(Re)AssoReq(Enc{Key Con�rm})

(Re)AssoResp(Enc{Key Con�rm, GTK})

Install PTK & GTK Install PTK

1○

Enc1
ptk

{ Data(. . .) }2○

(Re)AssoReq(Enc{Key Con�rm})

(Re)AssoResp(Enc{Key Con�rm, GTK})

Reinstall PTK

3○

next transmitted frame(s) will reuse nonces

Enc1
ptk

{ Data(. . .) }4○

Figure 6: Key reinstallation attack against the Fast Initial

Link Setup (FILS) handshake. A MitM position is not re-

quired, only the ability to sni� and replay frames.

session key is installed. After the AP replies with a retransmitted

(re)association response, it will reinstall the PTK. Subsequent data

frames sent by the AP now reuse nonces (see stage 4 in Figure 6),

allowing an adversary to decrypt, replay, and possible forge frames.

4.3 Practical Evaluation

Because the FILS handshake was only rati�ed in December 2016,

few APs currently support it. Nevertheless, we were able to test

our attack against a development version of hostapd2 on a Kali

Linux distribution running kernel version 4.14. This con�rmed

that hostapd was vulnerable to the attack: merely replaying the

(re)association requests triggered a key reinstallation. This shows

vendors must be careful when implementing the FILS handshake,

since otherwise trivial key reinstallation attacks are possible.

We reported the vulnerability, and it was �xed by not reinstalling

keys when processing retransmitted FILS (re)association requests.

5 ATTACKING THE TPK HANDSHAKE

In this section we show how to perform key reinstallations against

the Tunneled Direct-Link Setup (TDLS) PeerKey (TPK) handshake.

5.1 Background

The TDLS PeerKey (TPK) handshake is speci�ed in amendment

802.11z, and provides a direct secure tunnel between two clients [24].

It is used by smart TVs, mobile phones, and tablets, to directly

2We tested our attack against commit 89c343e88 of 12 October 2017.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

Initiator (client) AP Responder (client)

Encri
ki
{PeerMsg1(SNonce)} Enc

r
′
r

kr
{PeerMsg1(SNonce)}

Install TPK?

Enc
r
′
i

ki
{PeerMsg2(A/SNonce)} Encrr

kr
{PeerMsg2(A/SNonce)}

Install TPK

Enc
r
′
r+1

kr
{PeerMsg3(A/Snonce)}Encri+1

ki
{PeerMsg3(A/SNonce)}

Install TPK
Enc1

tpk
{ Data(. . .) }

Figure 7: TPK handshake between two clients.

stream data between two devices. This avoids the overhead of

having to pass all frames through the AP. Another use case of the

TDLS tunnel is to transfer �les to storage devices or printers. This

tunnel forms an interesting target for attackers, because it may be

used to exchange sensitive information (e.g. personal pictures and

videos) without higher-layer protection.

Before executing the TPK handshake, there must already be a

secure tunnel between each client and the AP. Once this tunnel

is established, the TPK handshake can be performed as illustrated

in Figure 7. Note that ki and kr represent the session keys of the

secure tunnel between each client and AP. The client that initi-

ates the handshake is called the initiator, and the other client is

called the responder. The initiator starts by sending a TDLS Setup

Request frame, which is represented by PeerMsg1, and contains a

random SNonce. If the other client accepts the direct tunnel request,

it generates a random ANonce, and combines it with the received

SNonce to derive the TPK key. Although the standard speci�es that

the responder should install the TPK at this point, in practice imple-

mentations deviate from this, and install the TPK when receiving

PeerMsg3. After generating the ANonce, the responder sends it to

the initiator using a TDLS Setup Response frame (represented by

PeerMsg2). Once the initiator learns the ANonce, it also derives and

installs the TPK. Finally, the initiator sends a TDLS Setup Con�rm

frame, represented by PeerMsg3, to indicate that the handshake has

successfully completed. If the responder did not yet install the TPK,

it will install it after receiving PeerMsg3.

Note that the negotiated TPK only depends on the ANonce and

SNonce, and not on a shared secret. This is not problematic, because

we assume the AP is trustworthy and will not leak the nonces.

5.2 Key Reinstallation Attacks

Similar to the FILS handshake, the 802.11z amendment does not

de�ne a state machine describing the precise behaviour of the TPK

handshake. In particular, it does not specify whether to retransmit

TPK handshake messages when no reply was received. That said,

the implementations we tested retransmit PeerMsg1 and PeerMsg2

if no corresponding PeerMsg2 or PeerMsg3, respectively, was re-

ceived. Additionally, the tested implementations process retrans-

missions of PeerMsg1 and PeerMsg2.

Initiator (client) MitM / AP Responder (client)

Encri
ki
{PeerMsg1(SNonce)} Enc

r
′
r

kr
{PeerMsg1(SNonce)}

Install TPK?

Enc
r
′
i

ki
{PeerMsg2(ANonce)} Encrr

kr
{PeerMsg2(ANonce)}

Install TPK

Encri+1
ki

{PeerMsg3(A/SNonce)}

1○

Enc1
tpk

{ Data(. . .) }2○

Enc
r
′
i
+1

ki
{PeerMsg2(ANonce)} Encrr+1

kr
{PeerMsg2(ANonce)}

Reinstall TPK

Encri+2
ki

{PeerMsg3(A/SNonce)} Enc
r
′
r+2

kr
{PeerMsg3(A/SNonce)}

Install TPK

3○

frame(s) in direct tunnel will reuse nonces

Enc1
tpk

{ Data(. . .) }3○

Figure 8: Key reinstallation attack against TPK. The MitM

can be between the AP, and either the initiator or responder.

Given that implementations send and accept retransmitted TPK

handshake messages, a key reinstallation attack can be mounted

against them. In particular, Figure 7 illustrates an attack against

the initiator of the TPK handshake. Similar to previous attacks,

the adversary �rst establishes a multi-channel MitM between the

initiator and responder. This can either be between the initiator

and AP, or between the responder and AP. Once a MitM position

is obtained, the adversary forwards the two �rst messages of the

handshake without modi�cation (see stage 1 of Figure 8). However,

the third message is not forwarded to the responder. As a result, in

stage two of the attack, the responder retransmits PeerMsg2. When

the initiator receives this message, it will reinstall the TPK. This

causes subsequent frames to reuse nonces, enabling the attacker to

decrypt, replay, and possibly forge frames (see stage 3 in Figure 8).

If the responder installs the TPK after receiving PeerMsg1, and

no longer accepts PeerMsg1’s after receiving PeerMsg3, it is not

vulnerable to key reinstallations. This is because the responder only

starts sending data frames after receiving PeerMsg3, at which point

key reinstallations are no longer possible. In the case the responder

installs the PTK after receiving PeerMsg3, we conjecture that (most)

implementations will not be vulnerable to key reinstallation attacks.

This is because retransmissions of PeerMsg3 do not require a (new)

reply, and therefore can simply be ignored by the responder.

5.3 Practical Evaluation

An overview of devices with a vulnerable TPK handshake is avail-

able under the vulnerability identi�er CVE-2017-13086 [34]. One

Release the Kraken: New KRACKs in the 802.11 Standard CCS ’18, October 15–19, 2018, Toronto, ON, Canada

interesting example is wpa_supplicant, because the version being

used heavily in�uences the impact of the attack. Therefore we will

discuss wpa_supplicant in more detail.

For versions 2.0 to 2.2 of wpa_supplicant, a key reinstallation

attack against the initiator is possible precisely as illustrated in

Figure 7. For versions 2.3 to 2.5, the initiator will reinstall the TPK,

but immediately after the key reinstallation it tears down the direct

link due to an internal bug. So although the TPK is being reinstalled,

there is only a small time window when frames may reuse nonces,

since the direct link is immediately teared down. Finally, in ver-

sion 2.6 the initiator ignores retransmissions of PeerMsg2, meaning

the initiator is not vulnerable to key reinstallations.

Surprisingly, we also found that all versions of wpa_supplicant

accept retransmissions of PeerMsg3. These retransmissions cause

the responder to reinstall the TPK. However, for version 2.3 and

above, the key reinstallation is immediately followed by the tear-

down of the direct link due to an internal bug. Nevertheless, this

means there is a small time window where the responder can be

attacked. In practice this can be exploited by making the initia-

tor retransmit PeerMsg3, which is possible by blocking the �rst

PeerMsg3 from arriving at the responder. This causes the responder

to retransmit PeerMsg2, which in turn makes the initiator send

a new PeerMsg3. At this point the adversary can forward both

PeerMsg3’s to the responder, which triggers the key reinstallation.

Note that this attack is only possible if the initiator correctly pro-

cesses retransmitted PeerMsg2’s (e.g. the attack is possible when

the initiator uses version 2.0 to 2.2 of wpa_supplicant).

5.4 Handling Encrypted TPK Messages

To attack the TPK handshake, we must be able to distinguish en-

crypted TPK handshake messages from other encrypted frames.

The �rst property that can be used for this is the length of TPK

messages. In particular, PeerMsg1 has a data payload of 221 bytes,

PeerMsg2 a payload of 107 bytes, and PeerMsg3 payload of 173

bytes. These numbers include the 8-byte LLC and SNAP header, but

exclude the (predictable) overhead added by the encryption proto-

col. Additionally, normal data frames are sent between the client

and the network gateway, but TPK messages are sent between two

clients. As a result, this means we can also look at the source and

destination MAC address of frames to recognize TPK messages.

Similar to the 4-way handshake, most implementations also use

a fairly unique QoS priority to send TPK messages. This means

retransmissions of PeerMsg2, which trigger the key reinstallation,

can be arbitrary delayed. Indeed, even if the clients exchange data

frames with higher replay counters, these will not in�uence the re-

ceive replay counter associated to the QoS channel of TPKmessages.

As a result, delayed TPK messages will still be accepted.

6 GROUP KEY REINSTALLATIONS AND WNM

In this section we use Wireless Network Management (WNM) fea-

tures to both perform group key reinstallations, and to bypass

802.11’s o�cial countermeasure against key reinstallations. Addi-

tionally, we demonstrate implementation-speci�c vulnerabilities

regarding the installation and usage of the group key.

Client (victim) Adversary (MitM) AP

WNM-Sleep(Enter)WNM-Sleep(Enter)

WNM-Sleep(Accept) WNM-Sleep(Accept)
1○

WNM-Sleep(Exit)WNM-Sleep(Exit)

WNM-Sleep(Accept, GTKr)
2○

Encr+1
gtk

{ GroupData(. . .) }Encr+1
gtk

{ GroupData(. . .) }3○

WNM-Sleep(Accept, GTKr)

Reinstall GTKr
4○

Encr+1
gtk

{ GroupData(. . .) }5○

Figure 9: Abusing WNM-Sleep frames to reinstall the (in-

tegrity) group key, to then replay group-addressed frames.

6.1 Background

Wireless Network Management (WNM) features were rati�ed in

the 802.11v amendment, and make it easier to manage clients [23].

Among other things, this includes the addition of WNM-Sleep

mode. This is an extended power-save mode where clients can stay

asleep much longer than previously possible. In particular, clients

no longer need to wake up for group key updates.

A client enters WNM-Sleep mode by sending a WNM-Sleep

Mode Request framewith an action �eld indicating the client wishes

to enter sleep mode. The AP replies with a WNM-Sleep Mode Re-

sponse frame that indicates whether the request was accepted or

not. To exit sleep mode, the client sends a WNM-Sleep Mode Re-

sponse frame indicating it is exiting sleep mode. Again the AP

replies with a WNM-Sleep Mode Response frame, which now spec-

i�es whether the wakeup request was accept. More importantly, if

Protected Management Frames (PMF) is enabled, this response will

also contain the current (integrity) group key. Note that since 2018,

PMF is required as part of WPA2 [55].

Based on security advisories of other WNM-Sleep mode vulner-

abilities, and on our own disclosure process [35, 36], most mobile

devices support WNM-Sleep functionality. For example, macOS [3],

iOS [2], and Android [15], all support WNM-Sleep mode.

6.2 Group Key Reinstallations

We discovered that WNM-Sleep response frames can be abused to

trigger key reinstallations. How this is accomplished is shown in Fig-

ure 9. In this attack, the adversary �rst establishes a multi-channel

MitM position, and then waits until the client enters WNM-Sleep

mode. We assume the client is using PMF, and that it keeps the

current group key installedwhen entering sleepmode. This latter as-

sumption is in line with 802.11v, which states that [23, §11.2.3.18.2]:

“If RSN is used without management frame protection, the non-

AP STA shall delete the GTKSA if the response indicates success.”

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

In other words, the group key is only removed when PMF is not

used. Since we do assume PMF is used, the group key is not removed.

Interestingly, later versions of the 802.11 standard specify to always

delete the (integrity) group key before going into WNM-Sleep [20].

Nevertheless, the implementations we tested do not remove the

group key when going into WNM-Sleep mode.

At stage 2 of the attack, the adversary does not forward the

WNM-Sleep response frame to the client (see Figure 9). Instead,

the adversary waits until the AP sends group-addressed frames it

wants to replay. Once such a frame is captured, it will forward it to

the client, and will subsequently forward the (previously blocked)

WNM-Sleep exit frame from the AP (see stage 4 of Figure 9). This

causes the client to reinstall the group key. At this point the ad-

versary can replay group-addressed frames (with a replay counter

above r) that it previously captured (see stage 5 of the attack).

We tested the attack against wpa_supplicant version 2.6. For an

overview of all other vulnerable devices, we refer to vulnerability

identi�ers CVE-2017-13087 and CVE-2017-13088 [35, 36].

6.3 Bypassing 802.11’s Countermeasure

To prevent key reinstallations, the 802.11 standard was updated

such that a key’s associated parameters are not reset when it is

being reinstalled (recall Section 2.5). Reinstallations are detected by

comparing the new key with the currently installed one. However,

this defense can be bypassed if an adversary can temporarily make

the victim install a di�erent key, before reinstalling the old one. Un-

fortunately, this is exactly what is possible by abusing interactions

between EAPOL-Key and WNM-Sleep frames.

6.3.1 EAPOL-Key andWNM Frames. Figure 10 illustrates how com-

bining WNM frames, with EAPOL-Key frames of the group key

handshake, enables an attacker to bypass the o�cial key reinstal-

lation countermeasure of 802.11. The adversary �rst establishes a

multi-channel MitM position, and then waits until the client enters

and exits WNM-Sleep mode. Similar to the attack in Section 6.2, we

safely assume the client will not delete the group key when going

into sleep mode. In stage 2 of the attack, when the client exits sleep

mode, the adversary does not forward the WNM-Sleep response

to the client. We now wait until the AP performed two group key

updates (stage 4 and 5 of the attack). Waiting for two updates is

necessary because the �rst group key update uses KeyID 1, and only

the second update overwrites the group key associated to KeyID 0.

At this point the adversary can forward the WNM-Sleep response

frame that was captured in stage 2 of the attack. Since the group

key in the WNM-Sleep frame has KeyID 0, and di�ers from the

newly installed key associated to KeyID 0, the client will (re)install

the old key. In our case this (integrity) group key is installed with a

replay counter of z, meaning we can now replay group-addressed

frames with a higher replay counter. For example, in stage 7 the

adversary replays the frame captured at stage 3 of the attack.

Our attack requires us to wait until the AP performed two group

key updates. In case the AP is using strict group rekeying, an adver-

sary can trigger these group key updates by forcibly disconnecting

another client. Note that disconnecting a client when PMF is enabled

is still possible by forging channel switch announcements [27].

Figure 13 in the Appendix contains another variant of the attack.

There, WNM frames are used to temporarily install a new (integrity)

Client (victim) Adversary (MitM) AP

WNM-Sleep(Enter)WNM-Sleep(Enter)

WNM-Sleep(Accept) WNM-Sleep(Accept)
1○

WNM-Sleep(Exit)WNM-Sleep(Exit)

WNM-Sleep(Accept, GTKz0)
2○

Encz+1
gtk

{ GroupData(. . .) }Encz+1
gtk

{ GroupData(. . .) }3○

Generate new GTK1

group key handshake

Install new GTK1

Generate new GTK0

group key handshake

Install new GTK0

4○

5○

WNM-Sleep(Accept, GTKz0)

(Re)install old GTKz0

6○

Encz+1
gtk

{ GroupData(. . .) }7○

Figure 10: Interleaving EAPOL-Key andWNM-Sleep frames

to bypass key reinstallation countermeasures. More pre-

cisely, we �rst (re)install an old (integrity) group key, after

temporarily installing a di�erent key. In this case, the rein-

stallation itself is caused by a WNM-Sleep frame.

group key, while group handshake messages are abused to reinstall

the old key. Forwarding the group key handshakemessage in stage 6

of the attack is possible even if data frames with a higher replay

counter have previously been sent to the client. This is because the

group key messages use a fairly unique QoS priority. Yet another

variant is shown in Figure 14 of the Appendix. Here EAPOL-Key

frames of the 4-way handshake are combined with WNM frames

to bypass 802.11’s countermeasure and reinstall the group key.

6.3.2 Improved Countermeasure. A naive solution is to track all

group keys that have previously been installed. This is impractical

because a network can update the group key an arbitrary number

of times, meaning a large number of keys would need to be tracked.

Moreover, against APs that use strict group rekeying, a new group

key is generated whenever a client leaves the network.

A more e�cient defense is to track the latest (integrity) group

key installed in response to an EAPOL-Key frame, and the latest

(integrity) group key installed in response a WNM-Sleep frame.

This means that two normal group keys are saved, and two in-

tegrity group keys are also saved. When now receiving a new key

in either an EAPOL-Key or WNM-Sleep frame, the new (integrity)

group key must only be installed if it di�ers from both of the two

Release the Kraken: New KRACKs in the 802.11 Standard CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Victim (client) Adversary Authenticator (AP)

4-way handshake

Install GTK
Encr

gtk
{ GroupData(. . .) }

Deauthenticate

4-way handshake

Install GTK

Encr
gtk

{ GroupData(. . .) }

Figure 11: Replaying group-addressed frames against clients

that always install the GTK with an all-zero replay counter.

saved (integrity) group keys. Additionally, we require that the client

disconnects from the network if it did not receive a WNM-Sleep

response frame when exiting sleep mode. We also recommend that

a client deletes the current (integrity) group key before entering

WNM-Sleep mode. All combined, this prevents the attacks in Fig-

ures 10, 13, and 14. Intuitively, the idea behind this defense relies

on the replay counters used in WNM and group key frames. That

is, an adversary can only use the last not-yet-received WNM or

EAPOL-Key frame during an attack. Since we track the last key

installed in response to either frame, and we cannot let these frames

interact in di�erent manners using older frames (due to out-of-date

replay counters), attacks are prevented. A formal analysis of our

new countermeasure is unfortunately out of scope for this paper.

We informed the 802.11 working group of our new defense, but

they have not incorporated it into the standard. In contrast, Hostapd

has implemented this defense in its development version.

6.4 Improper GTK Installation and Usage

During our analysis of group key installations, we also discovered

two common types of implementation-speci�c vulnerabilities. The

�rst one is rather trivial. Namely, certain devices always accept

replayed group-addressed frames. In total we tested 18 di�erent de-

vices, and found that half of them accept replayed group-addressed

frames (see Table 1). We conjecture this is usually caused by a faulty

hardware decryption engine in the Wi-Fi chip.

A related �aw is that some devices always install the group key

with an all-zero replay counter (see Table 1). Recall that normally the

group key must be installed with a given replay counter. However,

these devices ignore this value. An adversary can abuse this by

forcibly disconnecting the client, after which it will reconnect to

the network, and (re)install the group key using an all-zero replay

counter. This allows the adversary to replay group-addressed frames

to the victim (see Figure 11). Interestingly, the integrity group key

was always installed with the correct replay counter (see Table 1).

7 IMPLEMENTATION-SPECIFIC ANALYSIS

This section discusses bugs that we discovered while analyzing key

reinstallation patches, and inspecting implementations in general.

For example, we found implementations that reused the SNonce

Table 1: Implementation-speci�c �aws. The 2nd column in-

dicates if devices accept replayed group-addressed frames.

The 3rd whether it always installs the group key with an all-

zero replay counter. The last column if the integrity group

key is always installed with an all-zero replay counter. For

laptop and USB devices under the gray line, L andW denote

the attack only works on Linux or Windows, respectively.

Implementation Replay Flawed GTK Flawed IGTK

Galaxy S3 LTE No Yes No

Nexus 5X Yes ? a No

iOS 11.2.6 (iPad) No Yes No

macOS 10.13.4 No Yes No

Linksys RE7000 Yes ? a No

Ralink 802.11n USB No No No

Sitecom NIC Yes ? a No

TL-WN722N No No No

RTL8188CUS W ? a No

DWL-AG132 W ? a No

AWUS036H W ? a No

AWUS036NH v.2 Yes ? a No

Intel 7260 No No No

AWUS036NHA No No No

WNDA3200 No No No

Belkin F5D8053 v3 Yes ? a No

TWFM-B003D No No No

ZyXel NWD6505 W ? a No

a We are unable to test this attack because the device always

accepts replayed group-addressed frames (see column two).

or ANonce in the 4-way handshake, routers that accept replayed

handshake messages, and other implementation-speci�c �aws.

7.1 ANonce and SNonce Reuse

When analyzing the key reinstallation patch of macOS High Sierra

10.13.2 beta, we con�rmed that it prevented key reinstallation at-

tacks against the 4-way handshake as shown in Figure 4 (even when

using encrypted message 3’s in the attack). However, subsequent

tests showed that during a rekey of the session key (recall Sec-

tion 2.3), macOS reused the previous SNonce value. Interestingly,

in a related discovery, Malinen found that hostapd APs reused the

ANonce during rekeys of the session key [31]. This means that

if a macOS device was connected to an AP running hostapd, and

the session key was periodically refreshed, they would constantly

negotiate the same key. As a result, this key would constantly be

reinstalled, leading to nonce and keystream reuse. This makes it

possible to decrypt old (passively captured) tra�c.

It is also possible to attack a client that reuses the SNonce, even

when the real AP does not reuse the ANonce. Figure 12 shows

how this can be accomplished. The adversary starts by obtaining a

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

Client (victim) Adversary (MitM) AP

Msg1(r, ANonce)Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)

Msg3(r+1; GTK)

Msg3(r+2; GTK)

Msg3(r+3; GTK)

1○

Msg3(r+1; GTK)2○

Msg1(r+2)

Msg3(r+3; GTK)
3○

Msg4(r+1) Msg4(r+1)

Install PTK & GTK
4○

Enc1
ptk

{ Msg2(r+2, SNonce) } Enc1
ptk

{ Msg2(. . .) }

Enc2
ptk

{ Msg4(r+3) } Enc2
ptk

{ Msg4(r+3) }

Reinstall PTK & GTK

5○

next transmitted frame(s) will reuse nonces

Enc1
ptk

{ Data(. . .) } Enc1
ptk

{ Data(. . .) }
6○

Figure 12: Replaying an old handshake against a client that

reuses the previous SNonce during a rekey. This attack vari-

ant assumes the client accepts plaintext handshake mes-

sages that are sent immediately after the �rst message 3.

multi-channel MitM position, and then blocks the �rst three mes-

sage 3’s from arriving at the client. In the second stage of the attack,

the adversary forwards the �rst message 3 to complete the initial

4-way handshake with the client. Additionally, the adversary sends

a forged message 1, and sends the previously blocked message 3

with replay counter r + 3 to the client (see stage 3 in Figure 12).

These two latter messages will form the second 4-way handshake.

In stage 4, the client receives the �rst message 3, and will complete

the handshake and install the session key. Assuming the client still

accepts plaintext handshake messages when they are sent immedi-

ately after the �rst message 3, it will now process the messages sent

during stage 3 of the attack. As a result, it will reply using a new

message 2 and 4, completing the second 4-way handshake. Remark

that the client accepts this new handshake because it is still using

the same SNonce value, and the messages sent by the adversary all

use the old ANonce value. At this point the client will reinstall the

old session key, leading to nonce reuse (see stage 6 in Figure 12).

If the client never accepts plaintext handshake messages after

installing the PTK, we can use the technique presented in Section 7.2

to generate arbitrary encrypted handshake messages. However, in

contrast to the attack of Figure 12, and to the technique of Section 3.2

Table 2: Routers tested for a replay of message 4. Column

two contains the vendor of the Wi-Fi chip(s) in the router.

Router Wi-Fi Driver Vulnerable

Linksys WAG320N Broadcom No

Galaxy S3 i9305 Broadcom No

Cisco Aironet 1130 AG Unknown No

Linksys EA7500 MediaTek No

RE7000 MediaTek No

RT-AC51U MediaTek Yes

TP-Link RE370K MediaTek Yes

to generate encrypted message 3’s, the technique presented in

Section 7.2 works against fewer network con�gurations.

We reported the SNonce reuse vulnerability to Apple, and it has

been �xed in macOS High Seirra 10.13.3 and above.

7.2 Generating Encrypted Message 1’s

In an addendum to their paper, Vanhoef and Piessens mention

that version 2.6 of wpa_supplicant can be tricked into installing an

all-zero key during the 4-way handshake.3 To accomplish this, an

adversary must inject a forged message 1, with the same ANonce as

used in the original message 1, before forwarding a retransmitted

message 3 to the victim. If we want to perform the attack against

Android without relying on hard-to-win race conditions, we need to

generate both encrypted message 1’s and message 3’s. We showed

in Section 3.2 how to generate encrypted message 3’s, however, this

technique cannot be used to generate encrypted message 1’s.

An adversary can generate encrypted message 1’s when the

victim is connected to an enterprise network, and the adversary

can also connect to this network. In that situation, the adversary lets

the client connect to the AP, after which it also connects to the AP.

Then it sends the forgedmessage 1 through theAP to the victim. The

AP will encrypt the frame when sending it to the victim. Moreover,

the adversary can abuse A-MSDU frames against Linux 4.8 and

below to spoof the source address of message 1, such that it appears

to be sent by the AP (recall Section 2.1). Admittedly this attack is

not applicable in all scenarios, but it does show defenders must

take into account that an adversary can generate both encrypted

message 1’s and message 3’s.

7.3 Replaying a Handshake’s Last Message

We also investigated whether some devices accept retransmissions

of the last message in a handshake. Note that, according to the

standard, these retransmissions should be ignored, as the handshake

already completed. Nevertheless, some may accept them due to

implementation bugs. We �rst tested whether replaying message 4

of the 4-way handshake triggers a key reinstallation in the AP. This

was done by replaying the message using the same replay counter

as message 3, and by using an increased one. Additionally, we

performed our tests with both plaintext and encrypted message 4’s.

We tested all devices in Table 2, and discovered that the default

�rmware of the RT-AC51U and TP-Link RE370K accepts replayed

3See https://www.krackattacks.com/

https://www.krackattacks.com/

Release the Kraken: New KRACKs in the 802.11 Standard CCS ’18, October 15–19, 2018, Toronto, ON, Canada

message 4’s. Upon further inspection, we found that the MediaTek

driver for both the 2.4 and 5 GHzWi-Fi chips in these devices has an

invalid state check in the function that processes message 4’s (see

Listing 1). The function starts by checking if it has already received

message 2 (see line 6). If not, it discards the message. However, this

condition does not check whether a message 4 has already been

received (i.e. whether WpaState equals AS_PTKINITDONE). As a

result, replays of message 4 are accepted. Moreover, an adversary

can simply replay the original plaintext message 4, meaning a MitM

is not required. Rather worrisome, these Wi-Fi chips are present in

more than 100 di�erent devices, ranging from APs, wireless cam-

eras, wireless network extenders, home automation switches, NAS

devices, smart power plugs, and so on [58]. Unless these devices use

a di�erent driver from the ones we tested, they are all vulnerable.

We also tested if the last message in the FT handshake can be

replayed towards the client. This did not uncover any vulnerabilities

in wpa_supplicant, Windows, or iOS. Other clients did not yet

support FT. Once more devices support the FT handshake, and

support other new handshakes such as FILS, it will be interesting

to perform a more extensive analysis of implementations.

We noti�ed MediaTek of the vulnerability. They stated it will

be �xed in a new release of their driver. However, at the time of

writing, a patch for our RT-AC51U router was not yet available.

7.4 Forging Message 3

Another interesting use case revolves around a recently discovered

vulnerability in wpa_supplicant [51]. In particular, wpa_supplicant

incorrectly handled EAPOL-Key frames that have the Encrypted

�ag set, but not the MIC �ag. Against version 2.6 and lower of

wpa_supplicant, this malformed EAPOL-Key frame was treated as

message 1 of the 4-way handshake, and could be abused to mount

a decryption oracle attack to e.g. decrypt the group key [51]. How-

ever, in the development version of wpa_supplicant, the malformed

frame is treated as message 3 of the 4-way handshake. This change

in behaviour was caused by a commit that added support for AEAD

ciphers in the 4-way handshake [29]. We can abuse this new be-

haviour to forge message 3’s, and trigger key reinstallations against

the 4-way handshake without needing a MitM, as follows:

(1) Capture a valid message 3 sent by the AP.

(2) Unset the MIC �ag in the EAPOL-Key header, and increase

the replay counter (recall Section 2.3).

(3) Inject the modi�ed message 3 towards the client.

The development version of wpa_supplicant will not verify the

authenticity of the EAPOL-Key frame, but will still process it as

message 3 of the 4-way handshake. And since we increased the re-

play counter, the message is treated as a new one. Hence, the client

will reinstall the session key after replying with a new message 4.

Additionally, wpa_supplicant will decrypt the key data �eld and re-

install the (integrity) group key. Moreover, because the full EAPOL-

Key frame is not authenticated, we can set the replay counter of

the transported group key to any value we desire (since the replay

counter of the group key is saved in the RSC �eld, which in our

scenario is not authenticated). This allows an adversary to reset the

replay counter to zero, allowing replays of group-addressed frames,

or it can be set to a very high value, leading to a denial-of-service

attack where the victim will drop all group-addressed tra�c.

Listing 1: Simpli�ed code of the MediaTek driver in the

RT-AC51U that is vulnerable to a replay of message 4.

1 enum _ApWpaState { /* ... */

2 AS_PTKSTART, AS_PTKINIT_NEGOTIATING, AS_PTKINITDONE }

3

4 VOID PeerPairMsg4Action(PRTMP_ADAPTER pAd, MAC_TABLE_ENTRY *pEntry,

5 MLME_QUEUE_ELEM *pMsg) {

6 if (pEntry->WpaState < AS_PTKINIT_NEGOTIATING)

7 return;

8 if (!PeerWpaMessageSanity(pMsg, EAPOL_PAIR_MSG_4, pEntry))

9 return;

10

11 WPAInstallPairwiseKey(pAd, pEntry->func_tb_idx, pEntry, TRUE);

12 pEntry->WpaState = AS_PTKINITDONE;

13 }

To carry out the above attack in practice, the victim needs to

accept plaintext EAPOL-Key messages after installing the session

key. Although this is the case for several Linux platforms, this

does not hold for e.g. Android [50]. Nevertheless, the technique

of Section 7.2 can be used to attack a client even if it only accepts

encrypted EAPOL-Key frames after installing the session key.

7.5 Discussion: Network Protocol Gadgets

One common theme in this work is that seemingly innocent bugs,

and even protocol features, can act as essential gadgets when trying

to exploit (implementation-speci�c) protocol bugs. For example, on

its own the technique of Section 3.2 to generate encrypted hand-

shake messages is innocent. However, this technique allowed us to

perform key reinstallation attacks against OpenBSD drivers that

use software encryption. Similarly, the A-MSDU bug in Linux that

allows an adversary to spoof the source and destination address,

has little impact on its own. Unfortunately, in Section 7.2 and 7.4,

this bug proved essential to trigger key reinstallations in certain

versions of wpa_supplicant. As another example, having separate

receive replay counters for each QoS channel is also not a security

risk on its own. However, this protocol feature allowed us to attack

the group key and TPK handshake. In other words, seemingly inno-

cent implementation bugs or protocol features can act as gadgets

that enable exploitation of other vulnerabilities.

The most intriguing example is that users of wpa_supplicant no-

ticed that some versions installed an all-zero key when processing

a retransmitted message 3 [30]. However, they did not realize an

adversary could actively trigger these retransmissions, and only

treated this as an innocent bug. In a sense they almost discovered

key reinstallation attacks, but failed to realize the capabilities of an

adversary, and therefore did not realize this was exploitable.

These observations teach us that it can be very di�cult to deter-

mine whether a protocol bug is exploitable or not. In other words,

one needs an expert understanding of all available gadgets, i.e., re-

lated protocol features and implementations bugs. Only when hav-

ing this knowledge is it possible to accurately determine whether,

and under which conditions, a protocol bug is exploitable.

8 RELATED WORK

Vanhoef and Piessens introduced the key reinstallation attack, and

demonstrated that it a�ected the 4-way, group key, PeerKey, and

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

FT handshake [50]. Vanhoef et al. also proposed a defense against

the multi-channel MitM position, which is required in several of

theirs and ours attacks [46]. There are no other known attacks

where an adversary can actively trigger nonce reuse in a similar

manner. Although a power failure can also lead to nonce reuse [60],

and some TLS servers have been found to use static nonces [7],

an adversary is not able to actively trigger nonce reuse in these

cases. Additionally, some network cards always initialize the WEP

IV to zero, making reuse of small IVs more likely [8, 9]. However,

an adversary cannot actively trigger these IV initializations.

He and Mitchell formally analyzed the 4-way handshake, and

discovered a denial-of-service vulnerability [18, 32]. This resulted

in the standardization of a slightly improved 4-way handshake [20].

He et al. continued to analyze the 4-way handshake, and proved its

correctness in 2005 [19]. However, implementations of the 4-way

handshake were nevertheless vulnerable to downgrade attacks [48].

Researchers successfully attacked the older (WPA-)TKIP encryp-

tion protocol. The �rst type of works exploit its weak message

integrity code, allowing an adversary to decrypt and forge packets

sent towards the client [16, 33, 43, 45, 47]. The second type of at-

tacks exploit the RC4 encryption algorithm used in TKIP [1, 37, 38].

These attacks against RC4 enable an adversary to decrypt secrets

that are repeatedly transmitter over the network. Nowadays, TKIP

is deprecated by the Wi-Fi Alliance due to its security issues [54].

Other attacks target the old Wired Equivalent Privacy (WEP)

protocol. Here Fluhrer et al. exploited weaknesses in the key sched-

ule of RC4 to recover the secret key [14]. This attack was later

demonstrated in practice [42], and over time improved by several re-

searchers [40, 44]. Other attacks against WEP were also discovered,

for example, fragmentation of frames was used to break WEP [6].

Researchers also discovered �aws in implementations and tech-

nology surrounding Wi-Fi. For example, they found �aws in Wi-Fi

Protected Setup (WPS) [53], vulnerable drivers [4, 11], predictable

random number generators [48], predictable pre-shared keys [28],

insecure enterprise authentication [10, 13, 39, 59], implementation

bugs in handshakes [41, 49, 52], and so on.

9 CONCLUSION

Our results show that preventing key reinstallation attacks is harder

than initially assumed. For example, we were able to bypass the

o�cial countermeasure of the 802.11 standard and reinstall the

group key, by combining WNM-Sleep frames with EAPOL-Key

frames. Additionally, we showed that the FILS and TPK handshakes

are vulnerable to key reinstallation attacks. Apart from attacks

against the standard, we also discovered novel implementation-

speci�c vulnerabilities that facilitate key (re)installation attacks.

We believe the main reason vulnerabilities are still present is

because the 802.11 standard is large, is continually being extended

with new features, and requires domain-speci�c knowledge to un-

derstand. These obstacles can be avoided by having up-to-date and

high-level descriptions (or formal models) of all security-related

features of 802.11. This would make it easier to reason about its

design, and test the correctness of implementations. Another option

would be to simplify the standard, which would again make it easier

to analyze. Additionally, we believe the Wi-Fi Alliance should not

only test products for interoperability during their certi�cation

process, but also fuzz them for vulnerabilities.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU Leuven.

Mathy Vanhoef holds a Postdoctoral fellowship from the Research

Foundation Flanders (FWO).

REFERENCES
[1] Nadhem J. AlFardan, Daniel J. Bernstein, KennethG. Paterson, BertramPoettering,

and Jacob C. N. Schuldt. 2013. On the Security of RC4 in TLS andWPA. In USENIX
Security.

[2] Apple. 2017. About the security content of iOS 10.3.3. Retrieved 18 August 2018
from https://support.apple.com/en-us/HT207923.

[3] Apple. 2017. About the security content of macOS Sierra 10.12.6, Security Update
2017-003 El Capitan, and Security Update 2017-003 Yosemite. Retrieved 18 August
2018 from https://support.apple.com/en-us/HT207922.

[4] Gal Beniamini. 2017. Over The Air: Exploiting Broadcom’s Wi-Fi Stack. Last
retrieved 7 May from https://googleprojectzero.blogspot.be/2017/04/over-air-
exploiting-broadcoms-wi-�_4.html.

[5] Johannes Berg. 2016. cfg80211: add ability to check DA/SA in A-MSDU decapsu-
lation. Linux commit 8b935ee2e.

[6] Andrea Bittau, Mark Handley, and Joshua Lackey. 2006. The Final Nail in WEP’s
Co�n. In IEEE S&P.

[7] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jo-
vanovic. 2016. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on
GCM in TLS. In USENIX WOOT.

[8] Nikita Borisov, Ian Goldberg, and DavidWagner. 2001. Analysis of 802.11 Security,
or Wired Equivalent Privacy Isn’t. In Mac Crypto Workshop.

[9] Nikita Borisov, Ian Goldberg, and David Wagner. 2001. Intercepting mobile
communications: the insecurity of 802.11. In MobiCom.

[10] Sebastian Brenza, Andre Pawlowski, and Christina Pöpper. 2015. A practical
investigation of identity theft vulnerabilities in eduroam. In WiSec.

[11] Laurent Butti and Julien Tinnes. 2008. Discovering and exploiting 802.11 wireless
driver vulnerabilities. Journal in Computer Virology 4, 1 (2008), 25–37.

[12] Z. Cao, B. He, Y. Shi, Q. Wu, and G. Zorn. 2012. EAP Extensions for the EAP
Re-authentication Protocol (ERP).

[13] Aldo Cassola, William Robertson, Engin Kirda, and Guevara Noubir. 2013. A
Practical, Targeted, and Stealthy Attack Against WPA Enterprise Authentication.
In NDSS Symp.

[14] Scott Fluhrer, Itsik Mantin, and Adi Shamir. 2001. Weaknesses in the key sched-
uling algorithm of RC4. In SAC.

[15] Google. 2017. Android Security Bulletin–September 2017. Retrieved 18 August
2018 from https://source.android.com/security/bulletin/2017-09-01.

[16] Finn M. Halvorsen, Olav Haugen, Martin Eian, and Stig F. Mjølsnes. 2009. An
Improved Attack on TKIP. In 14th Nordic Conference on Secure IT Systems (NordSec
’09). 13.

[17] Dan Harkins and Jouni Malinen. 2017. Addressing the Issue of Nonce Reuse in
802.11 Implementations. Retrieved 8 February 2018 from https://mentor.ieee.org/
802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx.

[18] Changhua He and John CMitchell. 2004. Analysis of the 802.1 i 4-WayHandshake.
In WiSe. ACM.

[19] Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, and John C
Mitchell. 2005. A modular correctness proof of IEEE 802.11i and TLS. In CCS.

[20] IEEE Std 802.11. 2016. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Spec.

[21] IEEE Std 802.11ai. 2016. Amendment 1: Fast Initial Link Setup.
[22] IEEE Std 802.11i. 2004. Amendment 6: Medium Access Control (MAC) Security

Enhancements.
[23] IEEE Std 802.11v. 2011. Amendment 8: IEEE 802.11 Wireless Network Management.
[24] IEEE Std 802.11z. 2008. Amendment 7: Extensions to Direct-Link Setup (DLS).
[25] Jakob Jonsson. 2002. On the security of CTR+ CBC-MAC. In SAC.
[26] Antoine Joux. 2006. Authentication failures in NIST version of GCM. Retrieved

8 May 2017 from http:/ / csrc.nist.gov/groups/ST/ toolkit/BCM/documents/Joux_
comments.pdf (2006).

[27] Bastian Könings, Florian Schaub, Frank Kargl, and Stefan Dietzel. 2009. Channel
switch and quiet attack: New DoS attacks exploiting the 802.11 standard. In LCN.

[28] Eduardo Novella Lorente, Carlo Meijer, and Roel Verdult. 2015. Scrutinizing
WPA2 password generating algorithms in wireless routers. In USENIX WOOT.

[29] Jouni Malinen. 2015. FILS: Use AEAD cipher to check received EAPOL-Key
frames (STA). Hostap commit 0ab1dd010.

[30] Jouni Malinen. 2015. Fix TK con�guration to the driver in EAPOL-Key 3/4 retry
case. Hostap commit ad00d64e7.

https://support.apple.com/en-us/HT207923
https://support.apple.com/en-us/HT207922
https://googleprojectzero.blogspot.be/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.be/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://source.android.com/security/bulletin/2017-09-01
https://mentor.ieee.org/802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx
https://mentor.ieee.org/802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf

Release the Kraken: New KRACKs in the 802.11 Standard CCS ’18, October 15–19, 2018, Toronto, ON, Canada

[31] Jouni Malinen. 2017. Fix PTK rekeying to generate a new ANonce. Retrieved 7
May from https://w1.�/security/2017-1/0005-Fix-PTK-rekeying-to-generate-a-
new-ANonce.patch.

[32] John Mitchell and Changhua He. 2005. Security Analysis and Improvements for
IEEE 802.11i. In NDSS.

[33] Masakatu Morii and Yosuke Todo. 2011. Cryptanalysis for RC4 and Breaking
WEP/WPA-TKIP. IEICE Transactions (2011), 2087–2094.

[34] National Vulnerability Database. 2017. CVE-2017-13086 Detail. Retrieved 6 May
2018 from https://nvd.nist.gov/vuln/detail/CVE-2017-13086.

[35] National Vulnerability Database. 2017. CVE-2017-13088 Detail. Retrieved 6 May
2018 from https://nvd.nist.gov/vuln/detail/CVE-2017-13087.

[36] National Vulnerability Database. 2017. CVE-2017-13088 Detail. Retrieved 6 May
2018 from https://nvd.nist.gov/vuln/detail/CVE-2017-13088.

[37] Kenneth G Paterson, Bertram Poettering, and Jacob CN Schuldt. 2014. Big Bias
Hunting in Amazonia: Large-Scale Computation and Exploitation of RC4 Biases.
In AsiaCrypt.

[38] Kenneth G. Paterson, Jacob C. N. Schuldt, and Bertram Poettering. 2014. Plaintext
Recovery Attacks Against WPA/TKIP. In FSE.

[39] Pieter Robyns, Bram Bonné, Peter Quax, andWim Lamotte. 2014. Short paper: ex-
ploiting WPA2-enterprise vendor implementation weaknesses through challenge
response oracles. In WiSec.

[40] Pouyan Sepehrdad, Petr Susil, Serge Vaudenay, and Martin Vuagnoux. 2015.
Tornado Attack on RC4 with Applications to WEP & WPA. Cryptology ePrint
Archive, Report 2015/254.

[41] Christopher McMahon Stone, Tom Chothia, and Joeri de Ruiter. 2018. Extending
Automated Protocol State Learning for the 802.11 4-Way Handshake. In Proceed-
ings of the European Symposium on Research in Computer Security (ESORICS).

[42] Adam Stubble�eld, John Ioannidis, Aviel D Rubin, et al. 2002. Using the Fluhrer,
Mantin, and Shamir Attack to Break WEP. In NDSS.

[43] Erik Tews and Martin Beck. 2009. Practical attacks against WEP and WPA. In
WiSec.

[44] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. 2007. Breaking 104 bit
WEP in less than 60 seconds. In JISA.

[45] Yosuke Todo, Yuki Ozawa, Toshihiro Ohigashi, and Masakatu Morii. 2012. Falsi�-
cation Attacks against WPA-TKIP in a Realistic Environment. IEICE Transactions

95-D, 2 (2012).
[46] Mathy Vanhoef, Nehru Bhandaru, Thomas Derham, Ido Ouzieli, and Frank

Piessens. 2018. Operating Channel Validation: Preventing Multi-Channel Man-
in-the-Middle Attacks Against Protected Wi-Fi Networks. In WiSec.

[47] Mathy Vanhoef and Frank Piessens. 2014. Advanced Wi-Fi attacks using com-
modity hardware. In ACSAC.

[48] Mathy Vanhoef and Frank Piessens. 2016. Predicting, Decrypting, and Abusing
WPA2/802.11 Group Keys. In USENIX Security.

[49] Mathy Vanhoef and Frank Piessens. 2017. Denial-of-Service Attacks Against
the 4-way Wi-Fi Handshake. In 9th International Conference on Network and
Communications Security (NCS).

[50] Mathy Vanhoef and Frank Piessens. 2017. Key Reinstallation Attacks: Forcing
Nonce Reuse in WPA2. In CCS.

[51] Mathy Vanhoef and Frank Piessens. 2018. Symbolic Execution of Security Protocol
Implementations: Handling Cryptographic Primitives. In USENIX WOOT.

[52] Mathy Vanhoef, Domien Schepers, and Frank Piessens. 2017. Discovering logical
vulnerabilities in the Wi-Fi handshake using model-based testing. In ASIA CCS.
ACM.

[53] Stefan Viehböck. 2011. Brute forcing Wi-Fi protected setup. Retrieved February
1 2017 from http://packetstorm.foofus.com/papers/wireless/viehboeck_wps.pdf.

[54] Wi-Fi Alliance. 2015. Technical Note: Removal of TKIP from Wi-Fi Devices.
[55] Wi-Fi Alliance. 2018. Discover Wi-Fi: Security. Retrieved 8 May 2018 from

https://www.wi-�.org/discover-wi-�/security
[56] Wi-Fi Alliance. 2018. Product Finder Results: TLDS Certi�ed Products. Re-

trieved 16 August 2018 from https://www.wi-�.org/product-�nder-results?
certi�cations=38

[57] Wi-Fi Alliance. 2018. WPA3 Speci�cation Version 1.0. Retrieved 18 August 2017
from https://www.wi-�.org/�le/wpa3-speci�cation-v10.

[58] WikiDevi. 2018. MediaTek MT7620. Retrieved 27 March 2018 form https://
wikidevi.com/wiki/MediaTek_MT7620.

[59] Joshua Wright. 2003. Weaknesses in LEAP challenge/response. In DEF CON.
[60] Erik Zenner. 2009. Nonce Generators and the Nonce Reset Problem. In Interna-

tional Conference on Information Security.

https://w1.fi/security/2017-1/0005-Fix-PTK-rekeying-to-generate-a-new-ANonce.patch
https://w1.fi/security/2017-1/0005-Fix-PTK-rekeying-to-generate-a-new-ANonce.patch
https://nvd.nist.gov/vuln/detail/CVE-2017-13086
https://nvd.nist.gov/vuln/detail/CVE-2017-13087
https://nvd.nist.gov/vuln/detail/CVE-2017-13088
http://packetstorm.foofus.com/papers/wireless/viehboeck_wps.pdf
https://www.wi-fi.org/discover-wi-fi/security
https://www.wi-fi.org/product-finder-results?certifications=38
https://www.wi-fi.org/product-finder-results?certifications=38
https://www.wi-fi.org/file/wpa3-specification-v10
https://wikidevi.com/wiki/MediaTek_MT7620
https://wikidevi.com/wiki/MediaTek_MT7620

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mathy Vanhoef and Frank Piessens

APPENDIX

Client (victim) Adversary (MitM) AP

Encx
ptk

{ Group1(r; GTK0) } Encx
ptk

{ Group1(r; GTK0) }

Install GTK0 Install GTK0?

Enc
y

ptk
{ Group2(r) }

Encx+1
ptk

{ Group1(r+1; GTK0) }

Enc
y

ptk
{ Group2(r) }

Install GTK0

1○

Enc1
gtk

{ GroupData(. . .) }Enc1
gtk

{ GroupData(. . .) }2○

WNM-Sleep(Enter)WNM-Sleep(Enter)

WNM-Sleep(Accept) WNM-Sleep(Accept)
3○

Generate new GTK1

Generate new GTK0

4○

WNM-Sleep(Exit)WNM-Sleep(Exit)

WNM-Sleep(Accept, GTK0)WNM-Sleep(Accept, GTK0)

Install new GTK0

5○

Encx+1
ptk

{ Group1(r+1; GTK0) }

Reinstall old GTK0

6○

Enc1
gtk

{ GroupData(. . .) }7○

Figure 13: Abusing the interaction between the group key

handshake andWNM-Sleep frames to bypass key reinstalla-

tion countermeasures. More precisely, we �rst (re)install an

old (integrity) group key, after temporarily installing a dif-

ferent key. In this case, the reinstallation itself is caused by

an EAPOL-Key frame of the group key handshake.

Client (victim) Adversary (MitM) AP

Msg1(r, ANonce)Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)

Msg3(r+1; GTK0)

Msg3(r+2; GTK0)

Msg3(r+1; GTK0)

Msg4(r+1) Msg4(r+1)

Install PTK & GTK0 Install PTK

1○

Enc1
gtk

{ GroupData(. . .) }Enc1
gtk

{ GroupData(. . .) }2○

3○

WNM-Sleep(Enter) WNM-Sleep(Enter)

WNM-Sleep(Accept) WNM-Sleep(Accept)

Generate new GTK1

Generate new GTK0

4○

WNM-Sleep(Exit)WNM-Sleep(Exit)

WNM-Sleep(Accept, GTK0)WNM-Sleep(Accept, GTK0)

Install new GTK0

5○

Msg3(r+2; GTK0)

Reinstall old GTK0

6○

Enc1
gtk

{ GroupData(. . .) }7○

Figure 14: Abusing the interaction between the 4-way hand-

shake and WNM-Sleep frames to bypass key reinstallation

countermeasures. More precisely, we �rst (re)install an old

(integrity) group key, after temporarily installing a di�er-

ent key. In this case, the reinstallation itself is caused by an

EAPOL-Key frame of the 4-way handshake.

	Abstract
	1 Introduction
	2 Background
	2.1 The 802.11 Standard
	2.2 Protected Wi-Fi Networks
	2.3 The 4-way Handshake
	2.4 Encryption Protocols
	2.5 Key Reinstallation Attacks

	3 Improved 4-way Handshake Attacks
	3.1 Existing Attacks and their Limitations
	3.2 Generating Encrypted Message 3's
	3.3 Improved MitM and Delaying Reinstalls

	4 Attacking the FILS Handshake
	4.1 Background
	4.2 Triggering a Key Reinstallation
	4.3 Practical Evaluation

	5 Attacking the TPK Handshake
	5.1 Background
	5.2 Key Reinstallation Attacks
	5.3 Practical Evaluation
	5.4 Handling Encrypted TPK Messages

	6 Group Key Reinstallations and WNM
	6.1 Background
	6.2 Group Key Reinstallations
	6.3 Bypassing 802.11's Countermeasure
	6.4 Improper GTK Installation and Usage

	7 Implementation-Specific Analysis
	7.1 ANonce and SNonce Reuse
	7.2 Generating Encrypted Message 1's
	7.3 Replaying a Handshake's Last Message
	7.4 Forging Message 3
	7.5 Discussion: Network Protocol Gadgets

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

