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Abstract

Lock-free data structures are an important tool for the de-
velopment of concurrent programs as they provide scalability,
low latency and avoid deadlocks, livelocks and priority inver-
sion. However, they require some sort of additional support to
guarantee memory reclamation. The Optimistic Access (OA)
method has most of the desired properties for memory recla-
mation, but since it allows memory to be accessed after be-
ing reclaimed, it is incompatible with the traditional memory
management model. This renders it unable to release memory
to the memory allocator/operating system, and, as such, it
requires a complex memory recycling mechanism. In this pa-
per, we extend the lock-free general purpose memory allocator
LRMalloc to support the OA method. By doing so, we are
able to simplify the memory reclamation method implementa-
tion and also allow memory to be reused by other parts of the
same process. We further exploit the virtual memory system
provided by the operating system and hardware in order to
make it possible to release reclaimed memory to the operating
system.

1 Introduction

With the recent developments in computer hardware focus-
ing on the increase of parallelism as the main way to improve
performance, it is key to have accompanying software capable
of taking advantage of such hardware. Lock-free data struc-
tures provide one of the most fundamental building blocks for
concurrent/parallel software, as the lock-freedom property pro-
motes scalability and guarantees immunity to livelocks, dead-
locks and priority inversion [10]. However, in comparison to
their lock-based counterparts, lock-free data structures require
additional support in order to manage memory reclamation.
This can be delegated to a garbage collector, if the program-
ming runtime being used provides one, but such a garbage
collector is usually not lock-free causing the system as a whole
to lose the lock-freedom property [18].

An alternative is to use a specific memory reclamation

method. The most common methods, such as pass the buck [9]
and hazard pointers [15], are based on the idea of threads ad-
vertising their coordinates in order to prevent other threads
from reclaiming the memory they are using. This idea how-
ever requires every thread to constantly write its coordinates
to memory and perform expensive memory barriers in order
to ensure that such memory writes are visible. More sophis-
ticated methods try to amortize the memory writes and con-
sequent memory barrier usage. Some examples are drop the
anchor [2], hazard eras [19], interval based reclamation [23],
and hazard hash and level [I7], among others. Dice et al. [7]
also provide a mechanism to reduce the cost of memory barri-
ers, but such mechanism requires hardware/operating system
support.

Instead of having threads advertising their coordinates, a
more recent strategy, called optimistic access (OA) [5], allows
threads to optimistically access the memory they are travers-
ing and only after verify if the access is valid. In order to be
able to check the validity of a memory access, the OA method
moves the responsibility to the reclaiming threads to adver-
tise that memory reclamation has occurred. This no longer
requires threads to constantly write to memory to advertise
their locations, but only to do extra reads to check if memory
reclamation has occurred. These extra reads are inexpensive,
as they will target a cached memory location most of the time,
and require less expensive memory barriers.

An important disadvantage of existing OA based methods
is that they are unable to release memory to the memory al-
locator/operating system. This happens due to the fact that,
at anytime, a thread may read memory that has already been
reclaimed. To work around this problem, these methods im-
plement a recycling mechanism to manage the memory being
used. However, this prevents the memory used in this manner
from being reused in other parts of the same process and from
being released to the operating system.

In this work, we propose a solution to this problem without
having to make the whole application aware of the memory
reclamation method. Our proposal is to extend LRMalloc [12],
a lock-free general purpose memory allocator, in such a way



that we can guarantee memory allocations to be readable even
after we free such allocations.

No guarantees are given about the content of the memory, or
how it is reused by the rest of the application. This is a good
match for OA because it already ensures that the contents of
reads on possibly reclaimed memory are to be ignored, and
that memory to be written is protected from reclamation by
the use of hazard pointers.

We start by solving the problem at the memory allocator
level, by adapting LRMalloc such that it does not release mem-
ory used by the OA method back to the operating system. This
allows us to simplify the implementation of the OA memory
reclamation method as we no longer need a recycling mecha-
nism in order to manage the distribution of memory between
threads. This task is now covered by the memory allocator
as it was designed for this task in a general sense. We also
gain the ability to reuse memory reclaimed by the OA method
across the whole process. As we will see, all this is possible
with minimal changes to the LRMalloc memory allocator.

Then, to complete our solution, and have the ability to re-
lease the memory used by the OA method to the operating sys-
tem, we exploit how current operating systems/hardware use
virtual memory. As we need the virtual addresses (pages) to
remain accessible after they have been used by the OA method,
but we do not care about the contents on the physical memory
(frames) they are mapped to, we map all these multiple pages
to the same frame. This allows us to free all the frames our
pages were previously mapped to while keeping the pages still
valid for access.

Modern operating systems apply similar strategies, e.g.,
when a memory request is made to the operating system, no
frame is immediately reserved, only the pages are made valid
by being all pointed to a single copy on write zero filled frame.
Only when a memory write is attempted in these pages, is that
the operating system copies the zero filled frame to a new free
frame and maps the page to it. This all happens transpar-
ently to the application, which never notices that the memory
given to it at the start was not actually backed by physical
memory. One of the strategies we propose to implement the
remapping of pages exploits this operation system behavior,
while the other strategy will do the remapping in a more ex-
plicit fashion using the shared memory mechanisms of current
operation systems.

The remainder of the paper is organized as follows. First,
we introduce relevant background. Then, we present in detail
the main ideas supporting our approach and discuss its current
limitations. Next, we show a set of experiments comparing our
model against the original OA method. At the end, we present
conclusions and further work directions.

2 Background

This section briefly introduces relevant background about vir-
tual memory and memory allocation systems and describes
in more detail the LRMalloc memory allocator and the Opti-
mistic Access (OA) method.

2.1 Virtual Memory

Virtual memory is a memory management system that works
as an abstraction layer that allows for a multitude of opti-
mizations in modern operating systems. The main idea is to
have a translation layer between the memory addresses viewed
by a user process and the actual physical addresses in main
memory. The translation is done in hardware by the memory
management unit (MMU) and relies on a cache named trans-
lation lookaside buffer (TLB). This introduces an overhead, as
with virtual memory, when trying to access a memory location,
one first needs to consult where the virtual address resides in
physical memory. This requires extra memory accesses in or-
der to obtain the physical memory location, however by the
use of an efficient TLB this disadvantage is mostly mitigated.
Modern systems define the granularity of a page/frame to be
a power of 2, usually between 4KiB and 1GiB total size.

The main benefits provided by virtual memory are the abil-
ity for processes to oversubscribe memory allowing them to use
more memory than what is physically available, the ability of
multiple processes having the same address space, the ability
to move unused pages from memory to persistent storage when
under memory pressure, and the ability to block a process from
accessing or modifying any memory that does not belong to
it. Virtual memory also allows memory to be shared between
processes, the most common case being shared libraries, so
multiple processes can use the same copy of a library in phys-
ical memory but each have it in a different memory address.
Another important use case is efficient inter-process communi-
cation, made possible having two or more processes mapping a
single region of physical memory into their own address spaces.

Further optimizations include the ability to only load frames
when they are needed, meaning that when a process is loaded
into memory, it does not need to be entirely loaded, only the
necessary frames are loaded as the corresponding pages are
accessed. For example, an error routine that is never called
would never actually be loaded into physical memory. When
a process requests memory from the operating system, a simi-
lar optimization can be done, every page the process requests
can be initially mapped to a single zero filled frame and only
mapped to free memory frames when they are actually written
to. As we will see later, this is one of the features that we will
take advantage of for our proposal.

2.2 Memory Allocation

Memory allocators serve as an interface between processes and
the operating system, satisfying memory requests of any size
in such a way that processes waste as little additional memory
and time as possible. To do so, a memory allocator starts
by acquiring pages from the operating system that are then
subsequently divided to satisfy smaller allocation requests, and
later combined in order to give complete pages back to the
operating system. Classic memory allocators [24] tended to
use strategies like best-fit, in which they find the smallest block
of contiguous memory that can satisfy the request and, if such
a block is still too big, it is split to the right size so they can
keep what remains to a future allocation. Another strategy



is first-fit, in which instead of finding the smaller continuous
block that satisfies a request, they simple use the first block
found. This strategy has a speed advantage, but can increase
memory waste.

A more modern strategy is to use size classes, where any
request is met by rounding up to the nearest size class. Blocks
of a size class are created by splitting a bigger block into many
blocks of the same size. The size classes need to be carefully
selected, therefore avoiding too many different classes and pos-
sibly allocations of large blocks that result in a limited amount
of allocations from it, or too few classes and possibly wasting
memory by having to provide a much larger allocation than
needed due to the nonexistence of a large enough smaller size.
Size classes are very time efficient and tend to improve mem-
ory locality, therefore also improve the global performance of
applications beyond memory allocation.

With the advent of multi-core processors, in order to fur-
ther improve performance and scalability, different proposals
were adopted to minimize the amount of synchronization be-
tween threads. These gave origin to mechanisms such as pri-
vate heaps [1], in which each thread has a private allocator
implementing specific strategies to deal with frees that occur
in threads different from the one where the memory was allo-
cated. These strategies can be used to kept the free memory
in the thread in which it was freed until it is allocated again;
to immediately give back the free memory to the thread it was
allocated on; or to give back only after a threshold is met. An
alternative mechanism is to use a per thread cache on top of a
shared heap [11].

2.3 LRMalloc

LRMalloc [12] is a modern lock-free memory allocator that uses
size classes and thread caches as described above. It has three
main components: (i) the thread caches, one per thread; (ii)
the heap; and (iii) the pagemap. Figure [1| shows the relation-
ship between these three components, the user’s application
and the operating system,

The thread caches use a stack for every size class, so that a
memory request becomes simply a pop on the corresponding
size class stack, and a memory free becomes a stack push.
When a memory request is made and the corresponding stack
is empty, then the stack is filled from the heap, and when a
memory free happens and the stack is full, it is flushed back to
the heap. The size of the stack is limited in order to prevent
blowup [I]. The caches are local to a thread, so they only
synchronize with other threads when a fill or flush from/to the
heap occurs.

The heap is responsible for managing superblocks, which are
large blocks of memory obtained from the operating system
that are then divided into blocks of a size class to be given to
the thread caches. Superblocks are managed through descrip-
tors, an object that contains the superblock metadata and that
is never reclaimed. When a superblock is released to the oper-
ating system, the associated descriptor is added to a recycling
pool in order to be reused for a future superblock. The de-
scriptor contains information, such as, where the superblock
begins, its associated size class, the number of blocks it pos-
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Figure 1: LRMalloc’s overview

sesses, the index of the first free block and the number of free
blocks.

Superblocks can be in one of three states: (i) full, if all its
blocks are in use; (ii) empty, if all its blocks are available for al-
location; or (iii) partial, if it has available and allocated blocks.
The initial state of a superblock is always full, as all its blocks
are immediately used to fill a cache. Then it becomes partial
as some blocks are returned to it by cache flushes, at which
point it can either become full again, if a threads uses it to fill
its cache, or it can become empty, if all blocks are returned
to it. When a superblock becomes empty, it cannot be used
again and its memory is released back to the operating sys-
tem. When threads try to fill their caches they give priority to
partial superblocks and, if none is available, a new superblock
is created by requesting memory from the operating system.

The pagemap is a simple lock-free data structure that stores
metadata for each page in use. Taking into account that su-
perblocks are always aligned with pages and have a size that
is a multiple of the page size, blocks in the same page always
belong to the same superblock. So this metadata includes the
superblock that a page belongs to and its associated descrip-
tor. The main usage of the pagemap is to allow finding the
corresponding superblock for a block that is flushed from the
cache, or to allow finding the appropriate cache (with the cor-
rect size class) when memory is receive from the application
through a call to the free() procedure.

2.4 Optimistic Access

A memory reclamation method for a lock-free data structure
is a mechanism that detects when an node removed from the
data structure can no longer be referenced by any running
thread, and thus uses such information to free the correspond-
ing memory to the memory allocator/operating system. Usu-



ally, such methods require some sort of validation to avoid
accessing memory that has been already reclaimed.

An alternative approach is the one followed by the opti-
miastic access (OA) method [B], which, as the name implies,
allows memory accesses before making sure the memory has
not been reclaimed, and only then checks the validity of the
access by reading a specific warning-bit. If the access cor-
responds to reclaimed memory, the result is ignored and the
procedure is restarted from a memory location known to be
valid. However, modifying operations cannot be performed
in an optimistic manner as an optimistic CAS could incor-
rectly succeed due to an ABA problem [6]. For that, OA uses
a hazard pointer strategy, so before performing any atomic
CAS (Compare-and-Swap) update operation, it first protects
all memory addresses involved by assigning hazard pointers to
them and then performs a single additional validity check by
reading the warning-bit, therefore ensuring that the memory
was valid when it was protected by the hazard pointers. These
hazard pointers are then used to prevent the recycling of the
memory they are assigned to.

The OA memory recycling mechanism is composed by three
pools: (i) the ready pool that contains all the nodes ready
to be allocated, (ii) the retire pool to which nodes are added
when they are retired from the data structure, and (iii) the
processing pool that holds the nodes that are in the process
of being recycled. The recycling mechanism works in phases,
and a new phase is triggered when the ready pool is exhausted.
At the start of a new phase, the nodes present in the retire
pool before the phase stars are moved to the processing pool.
Next, all threads are informed of the current recycling by their
warning-bit being set. Finally, the nodes in the processing
pool that are protected by hazard pointers are moved back to
the retire pool, the ones not protected are moved to the ready
pool. Threads that try to retire an node during the process
of moving nodes from the retire pool to the processing pool
need to help finish the move before retiring the node. Threads
that try to start a new recycling phase while one is already in
progress need to help finish the current phase before starting
a new one.

While the recycling mechanism is complex and time con-
suming, it is rarely executed, which mitigates its cost. For
the more frequent operations, such as the traversal of the data
structure, this method only needs to perform an extra read per
node traversed instead of a write, as it is the case for the haz-
ard pointers memory reclamation method, and it also requires
a much less expensive memory barrier, which in total store or-
dering (TSO) architectures like x86-64, translates to a simple
compiler barrier and no additional hardware instructions are
emitted. Also note that writing operations only require one
validity check for setting multiple hazard pointers and conse-
quentially only one expensive memory barrier, compared to the
hazard pointers method which requires one per node. These
characteristics make the optimistic access memory reclama-
tion method extremely efficient and performant compared to
the state-of-the-art, while also having low memory bounds and
not requiring any specific support from the operating system.

A consequence of allowing optimistic accesses to possibly
reclaimed nodes is that nodes need to remain accessible after

being reclaimed. However, there is no need for the contents
of the node to be maintained, as the result of the access will
be ignored in the case it was invalid. To ensure the nodes are
accessible after being reclaimed, the recycling mechanism is
used, which allows nodes to be reused, but never released to
the memory allocator or the operating system.

3 Our Approach

In this section, we start by introducing how we make LRMalloc
compatible with the OA memory model and how we can use
it to simplify the OA method. Next, we present how we can
exploit virtual memory in order to allow memory to be released
to the operating system.

3.1 Memory Recycling at the Allocator Level

As mentioned before, in a program using a lock-free data struc-
ture in combination with the OA memory reclamation method,
the memory reclaimed can be reused by the data structure but
it cannot be reused by other parts of the program, at least with-
out extensive modifications both to the memory reclamation
method and to the rest of the program.

Our solution is to handle this restriction at the memory
allocator level by making sure that memory can be accessed
even after being freed. The allocator would still not provide
any guarantees of the contents of the freed memory, and we
would not be allowed to write to it either, as it could lead
to corruption if such memory was already reused in another
allocation. To achieve this we extended LRMalloc with a new
function that we named palloc() (persistent alloc).

To implement palloc(), we follow the same process as regu-
lar a allocation, but the superblock that contains the memory
block being allocated is marked as persistent. This mark is
then used to guarantee that persistent superblocks never reach
the empty state, even if all its blocks are available. This change
ensures that memory allocated with palloc() is never released
to the operating system, but can still be reused by future al-
locations anywhere on the same process. Figure |2| shows the
state diagram for superblocks before and after being marked
as persistent.
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Figure 2: State diagram for superblocks



By having an allocator that satisfies these properties, we can
now extensively simplify the memory reclamation method. As
we no longer need the memory recycling mechanism employed
originally in the OA method, we can use a much simper mech-
anism, similar to the one used by the hazard pointers memory
reclamation method, as shown in Alg.

Algorithm 1 Retire(Node N)

LimboList.add(N)
if LimboList.full() then
for T in Threads do
T.warning_bit.set()
end for
MemoryBarrier()
for T in Threads do
HPSet.add(T.hazard_pointers)
end for
for M in LimboList do
if not HPSet.contains(M) then
LimboList.remove(M)
Free(M)
end if
end for
HPSet.reset()
end if

The idea is as follows. When a node is retired, we add
it to the reclaiming thread’s limbo list, and when the list’s
size reaches a certain threshold, we perform the reclamation
procedure. During such procedure, we only need to set all the
other threads’ warning-bit and then free all nodes that are not
protected by a hazard pointer.

This mechanism however is not ideal for data structures with
long chains, such as linked lists, since as we trigger more warn-
ings, more restarts are needed. These restarts are inexpensive
on data structures with short chains, such as hash tables, but
not so much in linked lists, not only because the amount of
work lost by a restart is high, but also because the beginning
of the chain is most likely out of the L1 cache by the time of
the restart.

To mitigate this issue, we implemented another warning
mechanism that is based on the one used in the Version Based
Reclamation (VBR) method [2I]. In this mechanism instead
of having a warning bit per thread, we have a monotonic global
variable that we increment when we want to send a warning to
all threads, and threads check for the warning by comparing
the last value seen in the global variable with the current value.
With this mechanism we can allow threads to piggy back of
each other warnings, as we can forego sending a warning if one
has happened since the time the nodes we want to reclaim was
retired. Note that we not only take advantage of other threads
warnings when we see the increment in the global variable, but
also when we try to increment it with a CAS and it fails, what
means that a warning was successfully fired by another thread
and we can take advantage of it. Algorithm |Z| shows the retire
procedure and how it is able to piggy back of other threads.
Note that this is not possible on the previous method as the

warnings are not atomic with one warning-bit per thread. In
this algorithm, the GlobalClock variable represents the global
monotonic variable, the LocalClock is a local variable used to
store the last seen value of the global variable, and the Las-
tRetireTime is a local variable used to take advantage of the
other threads warnings.

Algorithm 2 Retire(Node N)

if LimboList.full() then
if LastRetireTime = LocalClock then
CAS(GlobalClock, LocalClock, LocalClock + 1)
LocalClock <« GlobalClock
end if
end if
if LastRetireTime < LocalClock and LimboList.size() > X
then
MemoryBarrier()
for T in Threads do
HPSet.add(T.hazard_pointers)
end for
for M in LimboList do
if not HPSet.contains(M) then
LimboList.remove(M)
Free(M)
end if
end for
HPSet.reset()
end if
LastRetireTime < LocalClock
LimboList.add(N)

As mentioned earlier, with this method we end up with
memory that we can never release to the operating system
throughout the lifetime of the process. In the case that a large
amount of memory is allocated with palloc(), that memory will
continue in the process even if the amount of memory it re-
quires for the remainder of its lifetime is much lower. The main
advantage of this mechanism is that it requires no additional
features from the operating system or hardware compared to
any other lock-free memory allocator.

3.2 Using Virtual Memory

Now that we have made the memory allocator compatible with
the optimistic access model, we next focus on the interaction
with the operating system. Remember that the memory allo-
cator cannot release superblocks marked as persistent to the
operation system because they need to remain accessible.

If we take a closer look to this problem, taking into ac-
count the virtual memory system, we can observe that what
actually needs to remain accessible is the address range of the
superblocks marked as persistent and not the backing phys-
ical memory, as there is no requirement regarding accessing
the contents of the reclaimed memory. Thus, the problem
can be solved if we can release the physical memory associ-
ated with such superblocks but maintain the addresses range



accessibleﬂ To do so, we can remap the address range of a per-
sistent superblock becoming empty into a default pre-reserved
frame. Thus, independently of how many empty superblocks
we have, they will just consume a single frame of physical mem-
ory. This single frame could even be a frame already in use
by the process, as long as we can ensure it will remain accessi-
ble throughout the lifetime of the process. Figure [3]illustrates
this remapping process. In Fig. [3a] we show multiple persistent
superblocks using 2 pages each, with each page mapped to a
different frame, and in Fig. [3B] we show how the superblocks
can be remapped in order to release all their frames while keep-
ing the access to them valid.

Virtual Physical Virtual Physical
Addresses Memory Addresses Memory
Reserved Reserved

(a) Before (b) After
Figure 3: Memory mappings before and after the remapping
process

However, we need to be careful as the virtual address space
is an abundant but limited resource. So, some mechanism to
recycle the virtual addresses of the remapped superblocks still
needs to be used. But this is almost already done by LRMalloc
when it needs to recycle the descriptors that contain the meta-
data of a superblock. Remember that when a non-persistent
superblock becomes empty, the superblock is unmapped and
the descriptor is added to the recycling pool. Later, when a
new superblock is requested, first, a descriptor is obtained from
the recycling pool, then a superblock is mapped from the OS,
and finally the metadata in the descriptor is rewritten with
the metadata of the new superblock. So, if we use instead
the address range stored in the descriptor obtained from the
recycling pool to map the new superblock, we are effectively
recycling the virtual address space by piggy backing on the de-
scriptor. In the actual implementation, we added an additional
recycling pool with this mechanism, which we give priority to
obtain blocks from, and keep the original for descriptors orig-
inated from non-persistent superblocks. The reason for the
second pool will become clearer in section @

For the actual remapping process, we propose 2 meth-
ods. The first method is to advise the operating system
that the memory will not be needed. In Linux, this is ac-
complished by the use of the madvise() system call with the
MADV_DONTNEED flag, which reverts the memory mapping

INote that now we are considering again that all superblocks can
become empty, i.e., ready to be released to the operating system.

to a state similar to when the superblock was first allocated,
i.e., all pages are mapped to a single copy on write zero filled
frame. This frees all physical memory previously associated
with the map until it is written again. Note that reads to
these ranges of memory do not cause a page fault, but only an
actual read from the zero filled frame. With this method, when
we get a descriptor from the recycling pool, we do not need to
do any extra work for remapping as the original address range
is already valid and ready to use.

This first method has the advantage of being simpler and
more efficient, but has two main disadvantages. One disadvan-
tage is that even though this system call and flag are defined
in the POSIX standard, the standard itself does not imposes
the behavior observed in Linux, which makes this method not
portable. Another disadvantage is that some optimistic access
derived methods, like VBR [21], use DWCAS (Double-Width
Compare-and-Swap) on reclaimed memory, even though the
DWCAS is certain to failf] as otherwise it would lead to cor-
ruption, the operating system is unable to ascertain that and
faults a frame in through the copy on write mechanism. This
does not cause a correctness issue but could lead to some mem-
ory leaking, as some pages would be reserved for unallocated
superblocks.

The second method is to use the shared memory mechanism.
We start by defining a shared memory region and then, when
we want to deallocate a superblock, we map its address range
to the shared memory region. We can choose a size for the
shared memory region that varies from the size of a page to
the size of a superblock, which can lead to different perfor-
mance trade-offs as we need one system call to do the remap
if we choose the size of a superblock, two system calls if we
choose half the size of a superblock, and so on. Note that the
physical memory associated with the shared memory region
could be used to store something useful in the meantime. For
example, it could be used to store the descriptors. Later, to
reuse the virtual range of the superblock we need to remap
it again to new memory. Note that this remap only requires
one system call, independently of the size of the shared mem-
ory region. In Linux, this method is accomplished with the
use of the mmap() system call with the flags MAP_FIXED
and MAP_SHARED to release the physical memory, and
MAP_FIXED, MAP_PRIVATE and MAP_ANON to reuse the
superblock.

Although this method might look a bit abusive, it is sup-
ported by the POSIX standard. However, this support is not
explicit and, in Linux, the memory statistics go haywire, as it
counts all the ranges mapped to the shared mapping into the
resident set size (RSS) of the process, even though it only uses
one shared mapping of physical memory. This method can also
be used in other operating systems outside the POSIX world,
and does not lead to memory leakage when CAS instructions
are used on reclaimed memory. It requires extra system calls
but we were not able to measure any performance degradation
caused by them.

2Tt uses tagged pointers as an ABA prevention mechanism.



4 Limitations

The LRMalloc memory allocator uses a size class allocation
strategy, which means that allocations up to a reasonable size
(16KiB) are handled through this mechanism. For all size
class allocations, LRMalloc uses superblocks of the same size
(2MiB), which simplifies our remapping logic as we can reuse
retired supeblock addresses to different size classes. This is
ideal in most scenarios, as most allocations fall into the size
class range. However, for allocations larger than the biggest
size class, it requires a different mechanism. For such allo-
cations, LRMalloc relies directly on the operating system, as
other lock-free memory allocators do [16} 8] 20} 13]. Relying on
the operating system for large allocations does not meaning-
fully impact performance as this kind of allocations are uncom-
mon. Large allocations work similarly to size class allocations,
but the thread caches are skipped and a superblock with the
exact size needed is mapped to satisfy the allocation.

This way of dealing with large allocations is not ideal, as it
requires a different mechanism in order to recycle the range of
virtual addresses of such allocations. In this regard, we have
chosen to restrict the persistent memory allocation to sizes that
are compatible with the size classes. This is not a problem in
most situations as lock-free data structures tend to either use
small allocations for their internal structure, or the large allo-
cations last the lifetime of the data structure and as such need
no reclamation, one example being Michael’s lock-free hash
tables [14]. The exceptions are lock-free hash maps that use
large arrays that are resizable, as during the resizing process
they need to allocate a new array and reclaim the old one.
Data structures with these mechanisms are rather uncommon
as the resizing processes tend to be complex and synchroniza-
tion heavy, which leads to performance loss. As such, we leave
the resolution of this limitation to future work.

This limitation is also the reason why we need another recy-
cling pool for descriptors when a superblock becomes empty.
If the superblock is not marked as persistentﬂ, the superblock
is unmapped and the descriptor is added to the pool with the
original behavior. If the superblock is marked as persistent,
we remap the superblock as shown in the previous section and
add the descriptor to the new pool. When we need a new
descriptor we try to obtain one using the following priority:
(i) the new pool that already has the virtual range of the su-
perblock associated with it and as such is only compatible with
superblocks intended for size class allocations; (ii) the original
pool that has generic descriptors; and finally, (iii) we allocate
a new descriptor. We only go down the priority list if either
the pool is incompatible or is exhausted.

5 Experimental Results

In order to evaluate the impact of our changes to the OA
method, we compare the results of our two implementations
of the OA method, the one with warning-bits and the one
with the monotonic global variable, against the original OA

3Note that only superblocks used for size class allocations can become
persistent.

method, and against no reclamation, in which memory is never
reclaimed, reused or freed. From this point onwards, we will
refer to our simplified OA method with the warning-bit per
thread as OA-BIT, the alternative with the monotonic global
variable as OA-VER, and the no reclamation alternative as
NR.

5.1 Methodology

The hardware used was a machine with 2 AMD Opteron(TM)
Processor 6274 with 16 cores each, 16KiB of L1 cache per core,
2MiB of L2 cache per pair of cores and 12MiB of usable shared
L3 cache per CPU. It has a total of 32GiB of DDR3 memory.

‘We benchmarked the four methods with the commonly used
Michael’s lock-free hash tables [14] and Harris-Michael’s lock-
free linked lists [I5]. For all benchmarks, we use LRMalloc as
the memory allocator, and although for our simplified versions
it uses the new palloc() procedure for allocation, for both the
original OA and no reclamation it uses the regular malloc()
procedure. Note that the OA method only uses the allocator
to create its memory pool before the benchmark begins and
performs no allocations during the benchmark itself.

The benchmarks were run with varying ratios of searches,
inserts and removes, but we kept the ratio between inserts and
removes at 1:1 in order to keep the size of the data structure
constant throughout the benchmark. For linked lists, we ran
the benchmarks with 5K nodes pre-inserted. For hash tables,
we used both 10K and 1M nodes and a load factor of 0.75. The
results are the mean of 10 runs of 1 second each, and we show
the results in the form of throughput (number of operations
per second) for every combination of threads from 1 to 32.

For all these experiments, we are not showing compar-
isons between the different approaches to memory remapping
because we were unable to measure any difference in per-
formance (outside a margin of error) between keeping the
memory in the allocator, advising the operating system with
MADV_DONTNEED and remapping with a shared memory
region.

5.2 Results

Figure@ shows the results for the benchmark using linked lists
with 5K nodes pre-inserted. Figure shows the case with
only modifying operations (50% inserts and 50% removes) and
Fig. shows a more balanced set of operations (50% searches,
25% inserts and 25% removes). Figures[5]and [6] then show the
results for the benchmarks using hash tables with 10K nodes
and 1M nodes, respectively. For both benchmarks, we also
have the case with only modifying operations (50% inserts and
50% removes) and with a more balanced set of operations (50%
searches, 25% inserts and 25% removes).

For linked lists with only modifying operations, the OA-
VER method shows significant improvements to the OA-BIT
method due to its ability to fire less warnings. This effect is
somewhat reduced for linked lists with 50% searches, as there
are less removes, and becomes negligible in both benchmarks
using hash tables (Figs. [5| and E[) due to the much shorter
chains.
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For low amounts of threads, we can see that both OA-BIT
and OA-VER outperform the OA and even the NR method
for linked lists. This happens because with low amounts of
threads our methods use less memory, keeping most of the
memory used in lower level caches. With increasing number of
threads, our two methods start using more memory due to the
per thread caches of LRMalloc and thus loose this advantage
to the OA method that has a memory pool of a fixed size and
to the NR method that suffers from less overhead caused by
synchronisation between the many threads. A memory alloca-
tor with different characteristics could show a different behav-
ior here. Linked lists are an unresting example to study the
behavior of the system but they are not the ideal tool when
performance matters due to their asymptotic complexity char-
acteristics.

The benchmarks using hash tables show a kind of inversion
of the results. In general, the OA method shows slightly bet-
ter performance than our methods for low amounts of threads,
but a clear lack of scalability for higher thread counts. Here,
since we are working with much higher throughputs and larger
amounts of memory, the weight of synchronization becomes
much more relevant compared to memory usage and thus cache
locality. The fixed size of the memory pool in the OA method
proves detrimental as it requires much more recycling phases
as the throughput and thread counts increase, causing syn-
chronization to increase as well. In both our methods, we do
not suffer from these drawbacks as the thread caches in the
allocator and private limbo lists allow for less synchronization
and thus better scalability.

Please remember that the main contribution of this paper
is the added ability of releasing memory to the memory al-
locator/operating system and the simplification of the mem-
ory reclamation method, not the performance and scalability
gains, even thought they are welcome.

6 Related and Future Work

Since the proposal of the OA method, some other proposals
have been developed focusing on making OA easier to use and
compatible with more data structures. One such example is
the Automatic Optimistic Access (AOA) method [4], which al-
lows the data structure programmer to forego the retire call by
making use of garbage collector like techniques. A second ex-
ample is the Free Access (FA) method [3] that requires the pro-
grammer to annotate the data structure functions, which then,
through a combination of garbage collection techniques and
compiler steps, is able to apply OA like memory reclamation to
the data structure without the need for it be written in a nor-
malized form [22]. Another example is the VBR method [21]
that is able to extend OA to write operations through the use
of DWCAS (Double-Width Compare-and-Swap) with tagged
pointers.

We already discussed how our modifications to LRMalloc
can be compatible with the optimistic DWCAS of VBR, so
we leave it to future work the simplification and adaptation
of VBR in order to also make it able to release memory back
to the memory allocator/operating system. We could also use

the extended LRMalloc in order to allow a dynamic resizing
of the memory pool (in a garbage collector like manner) both
in the AOA and FA methods, allowing the memory pool to
be shrunk by releasing it to the memory allocator/operating
system. Our results for the linked list benchmark show that
this could also lead to performance improvements.

Further work also includes the removal of the limitation dis-
cussed in Section EL which requires a mechanism capable of
splitting and coalescing virtual address ranges in a lock-free
manner.

7 Conclusion

Starting from a lock-free general purpose memory allocator
named LRMalloc, we showed how to extend it to support
the memory model required by the OA memory reclamation
method in such a way that we can guarantee memory alloca-
tions to be readable even after we free such allocations. We
were able to eliminate the major drawback of the OA method
while ensuring that it remains one of the most efficient mem-
ory reclamation methods. While doing so, we were also able
to simplify the implementation of the OA method, and obtain
results showing performance improvements.
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