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Wireless sensor networks (WSNs) are a widely studied area in the field of networked embedded computing. They are made up of
several sensor nodes, which keep track of a variety of physical and environmental parameters, like temperature and humidity. The
nodes are autonomous, self-configuring, and wireless. A significant problem in WSNs is that sensors in these networks consume a
lot of energy. Energy consumption is a big issue when it comes to the deployment of sensor networks. The reason for this is the
cost of operating a sensor node and the cost incurred due to energy consumption. Energy optimization is based on intelligent
energy management. This paper presents a reinforcement learning-based and clustering-enhanced method. Reinforcement
learning is a set of algorithms inspired by operant conditioning in animal behavior, and clustering-based methods have been
extensively used for devising energy-efficient protocols. The proposed method is able to plan and schedule the nodes to ensure
an extended network lifetime. In this work, we aim to assess and increase the efficiency of power consumption and reduce
sensor node energy loss. The simulation results prove that the presented protocol effectively reduces the energy consumption
of sensor nodes and ensures a prolonged lifetime of the sensor network.

1. Introduction

A wireless sensor network (WSN) is made up of sensors and
sink nodes that operate in an ad hoc network to interpret,
accumulate, and monitor events; sense physical and physio-
logical parameters in the area they are deployed; and collab-
oratively transmit sensor information of conditions like
temperature and humidity to multiple sink nodes.

In the previous two decades, WSN has been used in the
medical area, structural health monitoring, habitat tracking,
target detection in battles, disaster recovery, and chemical
monitoring. WSNs achieved sustained development, espe-

cially after the advancement of the Internet of Things
(IoT) [1].

Specific requirements are needed to support many
devices in WSNs, including energy efficiency, complexity,
delay, robustness, security, and sensor location. The archi-
tecture of a WSN may alter because a node may escape from
an operating network owing to high battery exhaustion, and
sensor nodes and sink nodes relocate in some situations. To
preserve and calculate the energy efficiency, it is vital to run
a fully working network for the longest extended time
achievable, particularly for nodes deployed in severe condi-
tions where battery charging and changing are difficult.
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To improve the overall efficiency to extend the lifetime
of the network operation has received great attention in
research and has remained part of the objective, because sen-
sor nodes may be put in difficult situations.

Various protocols have been established for the progress
of routing protocols in WSNs. However, certain improve-
ments are needed to be made. Routing protocols presume
nodes of the same kind. In this instance, conventional
methods such as the maximum available power, minimum
number of hops route, and minimal energy route may per-
form sufficiently. Also, networks will begin to have limited
network longevity and lower power efficiency in heteroge-
neous networks. That is why the diversity of nodes in terms
of transmission of data and energy capabilities must be
examined. Flat or hierarchical protocols are the protocols
that are usually preferred. Flat routing is a multihop routing
method in which each node is operational and the same
tasks are assigned to all nodes. In flat network topology, all
nodes help to achieve sensing tasks. The standard adopted
lifetime definition is when the first node is dead regarding
optimizing a lifetime. This time is not very significant
because when an individual node is dead, the complete net-
work remains to operate.

Machine learning systems have shown great promise
and results in various areas including intrusion detection.
Bhadoria et al. used different ensemble feature selection
methods with different ML models for intrusion detection
and found hybrid approaches like random forest with a
support vector machine delivering improved real-time per-
formance for intrusion detection in power systems [2].

In past years, there is an increasing interest in adding an
artificial intelligence method called RL to different schemes
in WSN to increase network performance. RL is a subfield
of machine learning methods that reward desired behavior
and punish undesired. The agent determines by taking
sequential actions in its environment, examining the state
of the environment and taking a reward. The agent must
learn a policy approach to choose which action to take in
any state. A reinforcement learning agent, in general, can
detect and comprehend its surroundings, act, and learn
through trial and error.

This method has caused dynamic routing and adaptive
capability in data transmission related to standard routing
methods [3].

A range of methods can be interpreted using reinforce-
ment learning models, and lastly, different networking perfor-
mances can be enhanced utilizing reinforcement learning
algorithms.

WSNs consume a lot of energy, and this is a deterrent to
their large-scale deployment and usage. The reason for this
is the cost of operating a sensor node and the cost incurred
due to energy consumption. The following work is proposed
as a solution to this long-standing problem, by reducing
energy used for communication by giving an optimal route.

The research work can be broken down into two parts,
namely, clustering (which involves cluster-head selection
and cluster formation) and the application of reinforcement
learning. Routing protocols that employ clustering are found
to have a higher stability period and longer network life-

times. We use both clustering and RL to give an optimal
routing protocol.

While conducting literature review, we made a startling
observation that many authors view the routing problem
through a partisan prism, either focussing too much on the
residual energy; disregarding multihop communication,
which is very prevalent in contemporary times; or laying
excessive emphasis on the number of hop parameter, when
both need equal consideration to work well in the real world.
In addition, reinforcement learning has established itself as
an exemplary approach for sequential decision making and
has shown how probabilistic decision making works better
in the longer run as compared to its counter, deterministic
approaches. This research work is motivated by the afore-
mentioned ideas.

We present a routing algorithm for WSNs that is
essentially based on RL. This work is aimed at improving
packet delivery and depreciating delivery time. The sug-
gested ReLeC balances energy dissipation in WSN devices,
thereby extending network lifetime and improving network
scalability. ReLeC additionally offers efficient pathways uti-
lizing a technique to share data as a reward, it is estimated
by using hop count and remaining energy, and the hop
count variable can lower the edge delay. To observe the
overall results of ReLeC, we carried out computations, and
the outcomes demonstrate that ReLeC performs that energy
consumption is efficient, also prolongs the lifetime, and is
adaptable for considerable WSNs.

2. Related Work and Existing Methodologies

Wang et al. [4] found that the different properties of WSNs
cause optimization issues when creating energy-efficient
routing methods. The majority of current routing strategies
are designed to achieve one of several objectives. There are
so many scholars who have conducted research on the opti-
mization, the routing, and energy consumption algorithms
and achieved certain results.

There are two kinds of clustering algorithms: centralized
and distributed. Because the global knowledge of the net-
work is required for a centralized clustering algorithm to
select the number of cluster heads (CHs) that improved
allocation, this proposed method is limited to wide-ranging
networks. A distributed clustering algorithm, on the other
hand, does not require access to the network’s global data.
Instead, the nodes in the system do the clustering operation
separately based on local information, which reduces energy
usage and is more appropriate for wide-ranging networks.

According to Heinzelman et al. [5], LEACH (Low-
Energy Adaptive Clustering Hierarchy) is a hierarchical
clustering algorithm that uses a randomized rotation of local
CHs to evenly distribute the energy load across the nodes.
LEACH can be utilised in dynamic networks with localised
coordination, which allows for scalability, robustness, and a
reduction in the amount of data sent to the sink node. The
information is transmitted by the CH to all its neighbours
to notify them that it became a CH. Wang et al. suggested
that this protocol does not require large communication
overhead [4].
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Smaragdakis et al., suggested that SEP (Stable Election Pro-
tocol) is used to achieve heterogeneity between nodes. Nodes
holding the equivalent energy level are normal nodes, and some
having higher energy than others are the advanced nodes [6].

In 2006, HCR was introduced, which uses optimization
algorithms to improve the method. These algorithms choose
the optimal solution among all the alternatives. To obtain
the effective CHs, HCR (Intelligent Hierarchical Clustered
Routing protocol) uses a genetic algorithm (GA).

The fitness value is calculated using energy consumption
and node density, as discussed by Matin and Hussain [3].

Raghavendra [7] considered PEGASIS to be an
improved form of LEACH. It is a routing protocol based
on a chain that can save more energy than LEACH. The
message can be aggregated along the chain and sent directly
to the sink node by one random node in the chain. The
fundamental flaw is that PEGASIS necessitates a global
understanding of the entire network.

During CH selection, the HEED clustering procedure
considers the residual energy as the primary parameter and
the node’s degree as a secondary parameter. Because the
CHs are well dispersed, according to Chand et al. [8], it
can minimise control overhead and increase network life-
time more than other clustering methods like LEACH.
Importantly, no comprehensive network information is
required, and all judgements are made by nodes. GSPR,
introduced by Karp and Kung [9], are proximity-based rout-
ing methods that try to discover the shortest routing path.

Shah and Rabaey described a routing method that con-
siders the sensor node residual energy and depicted that
choosing the low-energy paths may not be optimum. They

presented a novel system to maximize these measures called
energy-aware routing that uses suboptimal paths occasion-
ally to provide substantial gains [10]. Now, for balancing
the load, the strategy of directed diffusion was taken into
account. The strategy of reinforcement learning was taken
into account to optimize all the goals together.

Littman and Boyan [11] were the first to propose the
embedding of a learning module in each node of a given packet
switched network. They concluded that theQ-routing approach
performs well in comparison to the conventional shortest-path
approaches in the case of high network traffic. Q-learning is a
popular temporal-difference reinforcement learning algorithm
which often explicitly stores state values using lookup tables
they proclaimed in their seminal paper in 1992.

The fuzzy logic system and reinforcement learning are
based on the nodes’ remaining energies on the routes, the
available bandwidth, and the distance to the sink, according
to Akbari and Tabatabaei in a new method to find a high
reliable route in IoT by using reinforcement learning and
fuzzy logic [12]. Oddi et al. [13] presented a RL-based rout-
ing system, which assisted in optimising multihop commu-
nication, extending the lifetime of the devices, balancing
their energy, and lowering network overhead.

2.1. Reinforcement Learning Overview. Reinforcement learn-
ing or RL is a branch of machine learning that tries to learn
control policies using trial and error, without explicitly
knowing the value of any state, action, or state-action com-
bination concerned with how agents should act in a given
environment to maximize the cumulative reward. This con-
trasts with model-based learning, where a value for the state,

for each node i, do
set Deuclidean= Euclidean(node i, sink)
set NH = ðDeuclidean/Transmission RangeÞ
set Q = ðp × ðEresidual/Emax − EminÞÞ + ðð1 − pÞ × ðNH × log ð1/NHÞÞÞ

end
while len(CHlist)≤CHtotal , do
set Qmax = max Q
for each node i, do
if MINthreshold≤Deuclidean <MAXthreshold , then

if CHlist is empty, then
add node i to CHlist
pop node i from stack

else
for head⟵ 1 to len(CHlist), do

dist = Euclideanðnode i, CH headÞ
if dist ≥ MINthreshold , then
set flag=1

else
set flag=0
break

end
if flag==1, then
add node i to CHlist
pop node i from stack

end

Algorithm 1: Network set-up and cluster-head selection.
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action, or state-action combination is predicted, and thus
has a forward planning phase [14]. RL has been applied to
games, robotics, artificial intelligence, and self-driving vehi-
cles. In many cases, learning has been found to be more

efficient than planning and has a potential for better
generalization.

Reinforcement learning problems is often conceptual-
ized as Markov Decision Processes or MDPs, in which the

Network set-up & Cluster-head selection

Check for every node i

Euclidean distance = Euclidean
(node i,sink)

The hop count is calculated

Initial Q-value is calculated

Length of CH llist<= CH total

True

Qmax = MaxQ

For each node i

Minimum threshold <=
Euclidean Distance <

Max threshold

False

Trure

Trure

Trure

Trure
Add node i to CH list

Pop node i from stack

END

Break

False

False

False

Flag = 0Flag = 1

Flag = 1

CH list is empty

Add node i to
CH list

pop node i
from stack

Checking every head node

Distance = Euclidean
(node i, CH head)

Distance >= Minimum
threshold

Figure 1: Flowchart of network set-up and cluster-head selection.

4 Wireless Communications and Mobile Computing



state of an agent can be defined as the state of the world and
the action as a choice between performing one of a set of
actions at a given time. The actions and states are stochastic.
The dynamics of the stochastic process are governed by a set
of probabilistic rules and parameters known as a policy,
which can be represented as a function that maps state to
probability of action. The reward is a scalar that measures
how successful the agent is at following the policy. The RL
agent aims to find a policy that maximizes the expected
reward over time. This is the standard RL setting, which is
applicable in an array of problems. The state is not explicitly
given during the learning process but is inferred by the agent
by performing some action and observing its effect on the
state, which is called an episode. The episode terminates
when the agent reaches its goal or some maximum number
of steps is reached. The most common RL framework is Q
-learning, which learns a value for the state that is a function
of the action [14].

The value function is incremented when the agent per-
forms an action in the state, which decreases the probability
of performing it again. The value function becomes a map of
how valuable the state is. The current state value is com-
pared to the current value function to select a new state:
the new state is chosen if the value of the new state is lower
than the current state and the action for which the current
state is the goal. A state value function is defined where
f ðs ; aÞ is a function of the state, a is the action selected,
s is the current state, and r is the reward and is a discount
factor that controls how much weight is given to the
future.

In the real world, not all states are immediately observ-
able to the agent, which leads to a problem generally referred
as the credit assignment problem. Since the goal is to maxi-
mize the reward, the policy is “discounted” for the future. If
the state is not visited during an episode, the Q-learning is

reset to some baseline value. Learning is achieved by using
the Bellman equation, which calculates the Q-reward
received from the state-action pair under the current policy
and uses it to update the Q-value for the state-action pair
received under the new policy. This is then used to update
the policy to the new state-action pair. Since this process is
repeated over time, the policy iteratively improves. Also,
the state value functions must be initialized arbitrarily to
avoid the problem of learning bias. The RL algorithm is to
maximize a sum of state values discounted by the length of
the episode. A learning rate is used to adjust the learning rate
to the agent’s current performance, and the learning rate
diminishes as the agent becomes more successful [15]. This
makes sure that the agent is always trying to improve but
does not use an unrealistically large learning rate.

To effectively use RL for routing decision problems, we
need to clearly define the essential components of canonical
RL problem in terms of WSN. Each device in the network
is mapped as an agent, and the state space for each device is
mapped as the collection of possible routes through its sur-
rounding devices to the sink. The action space is defined as
the collection of all feasible neighbours via which packets to
the sink can be relayed, and the way the devices in the net
network or the way the agents behave is defined as a policy.
Mutombo et al. [16] and Mutombo et al. [17] suggested that
the policy iteration is then used to evaluate and improve the
given policy which maps the state-action pair, maximizing
the long-term reward to get the best policy.

3. Methodology

3.1. ReLeC Protocol. By sharing local information with the
neighborhood, the proposed ReLeC protocol allows devices
to make more accurate routing decisions, allowing them to
improve next-hop selection and lower energy consumption.

for head in len(CHtotal), do
for each node i, do
set distCH(node i; CH head) =Euclidean ðnode i, CH headÞ

if distCHðnode i, CH headÞ ≤ Transmission Range, then
CH head invites node i

end
end
for each node j, do

if Deuclidean≤Transmission Range, then
set node j’s destination = bstn

else
for head in lenðCHtotalÞ, do

if CH head invites node j, then
if distCHðnode j, CH headÞ ≤
minðdistCHðnode j, :ÞÞ, then
set node j’s destination = head

create neighbour
add node i to Cluster j
end

end
for each node j, do

Algorithm 2: Cluster formation.
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Routing tables of neighboring devices get modified as per the
packet header contents of communicating device, whereas
the sender inserts local data in the packet header. The local
data sent includes ids, residual energy value, location coordi-
nates, and NH . Similar to other efficient, clustering-based
routing protocols, ReLeC has three levels: network initializa-
tion, CH election and cluster creation, and communication
phase.

3.2. Network Initialization. The set-up permits nodes of the
network to determine the initial Q-value using local data.
The base station then sends out a message to communicate
its location coordinates. Individual nodes then keep the posi-

tion of the base station after accepting the packet and use
equations given to calculate the initial Q-value using resid-
ual, Emin, Emax, NH , and probabilistic parameter p. This work
proposes a modest extension to [16] by introducing
Shannon-entropy inspired modification in finding initial Q
-value. We also assume that all nodes have varying degrees
of energy. To reduce network overhead, we establish a (dis-
tance) threshold, as a criterion between the cluster heads and
base station, or sink and make it simpler for sensors placed
distant from the base stations to identify a CH. Furthermore,
a CH must not be on the network’s edge to avoid connec-
tions diverging from a base station rather than converging,
as this might result in energy waste due to the increased
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communication distance. The CH election procedure is
represented by Algorithm 1. The initial Q-value is calculated
as below.

Q =
NH × log

1
NH

� �� �
Emax = Emin,

p ×
Eresidual

Emax − Emin

� �� �
+ 1 − pð Þ × NH × log

1
NH

� �� �� �
Emax ≠ Emin:

8>>><
>>>:

ð1Þ

The hop count (NH) is approximated as the ratio of
Euclidean distance to the transmission range, i.e., NH ≈
Deuclidean/transmission range, as discussed by Wang et al. [4].

3.3. Cluster-Head Election and Cluster Formation. Figure 1
has displayed the flowchart of network set-up and cluster-
head selection.

Following the election phase, each CH transmits an
invitation message to each and every device that falls into
its transmission range, informing them that CH has been
selected. The initial Q-value, the id, and the location coordi-
nates are also included in the invitation. Every non-CH
nodes determines the cluster it will join and sends a request
to that particular CH, providing its data, depending on
distance. Furthermore, if a node receives a number of invita-
tions, i.e., if the situation rises where the node is at the join-
ing point of multiple clusters, the node can choose the one
with the closest CH [18]. Once all of the devices have sent
requests, then it confirms that the membership is formed
between clusters. The procedure of formation of clusters is
explained in Algorithm 2.

Nodes in their transmission range with base station need
not join a cluster; they communicate directly with the sink to
conserve energy. ReLeC can also be used for different methods
of communication such as intercluster and intracluster. Inter-
cluster communication is concerned with multihop communi-
cation between CHs; for example, a CH located a far away

from the sink can route the packets through CHs closer to the
sink [19].

When devices inside the cluster can transmit data
either directly or via multihop to the CH, intracluster
communication is comparable; a node can get connected
with other devices in the cluster even if they are far away.
Nodes have varying energy levels and transmission ranges,
as previously indicated. The cluster formation is depicted
in Figures 2 and 3.

3.3.1. Energy Consumption Model. To calculate the succes-
sive residual energy of each node after a round, the radio
model is employed, given by Shah and Rabaey [10]. Eelec =
50nJ/bit gets dissipated to power the transmitter/receiver,
and εamplification = 100pJ/bit/m2 is a proportionality constant
for the power consumption in the message amplification

for each node i, do
if E of node i >0, then

set Qmax = max(Q(node i; :))
if Dl Transmission Range, then

if node i is to be the next hop, then
collate data and send to bstn

else
send data to bstn

else if node i is not a CH then
if CH is within Transmission Range,
then
send data to CH

else
locate and send data to neighbour

evaluate Rt+1
update Q to Qt+1 (s; a)

end

Algorithm 3: Data transmission.

K bit packet Transmit
electronics

Tx Amplifier

Receive
electronics

Eelec
⁎k

Eelec
⁎k

ETX(d)

ERx

𝜀amp
⁎k⁎d2

K bit packet

d

Figure 4: First-order radio model.
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over a distance d. For transmission, the energy dissipated is
computed with the following formula:

Etransmission k, dð Þ = Eelec × k + εamplification × k × dw, ð2Þ

where w = 2 or 4.
Similarly, for reception of the k-bit message over a dis-

tance d, EreceptionðkÞ is expended, which can be computed
using the following formula:

Ereception kð Þ = Eelec × k: ð3Þ

First-order radio model is presented in Figure 4.

3.4. Communication Phase. The energy consumption model
described above provides us with the updated value of
Eresidual; the residual energy of the node after subtracting
the energy dissipated during package transmission. These
updated values of Eresidual and NH are used to compute

Rt+1, the next reward, using the reward function discussed
at depth in the coming sections. Over time, each node, acting
as an agent, learns as it updates the Q-value using rewards
obtained by performing successive actions, to sequentially
give a better routing strategy. The key equations to this are

Data Trasmission

For every node

Set Qmax = Max Q-value among all the nodes

Energy of node > 0

Distance in transmission range

S(i) is next-hop

False

False

False

Local and send data to
neighbor

Node i is not a CH
CH is within range

Evaluate Rt + 1
update Q to Qt + 1

End

Send data to CHSend data to bstn

Collate data and send to Bstn

False

True

True

True

True

Figure 5: Flow chart of data transmission.

Table 1: Parameters for simulation.

Parameters Values

Sensing field dimensions 100 × 100
Number of agents/devices 50-250

Transmission range 20m

E0 1-2 J

Data 4000 bits

Eelec 50 × 10−9 J/bit
Eamp 100 × 10−12 J/bit/m2

γ 0.95

α 1
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the reward function and the update rule described in this
section.

3.4.1. Application of Reinforcement Learning. WSNs can be
used to monitor temperatures in different areas of forests
to prevent disasters like forest fires. The data can be analyzed
using hybrid model, RFVR, a combination of support vector
machine and random forest regression by Bhadoria et al.
These new models have achieved high accuracy with low
variance and can be used in conjunction with WSN to pre-
vent forest fires [20].

Unlike the phase before, to calculate the hop count, Dl
(between sender and neighbour nodes, respectively) is used
instead of simple Euclidean distance, Deuclidean. Dl can be
calculated as follows:

D1 =Di,j +Dj,bstn: ð4Þ

Here, Dl is the distance between the sender and the
neighbour node.

Di,j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 + yi − yj

� �2
r

: ð5Þ

Di,j is the distance between the ith and the jth node, and
it is calculated using equation (5).

Dj,bstn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xbstnð Þ2 + yj − ybstn

� �2
r

: ð6Þ

Dj,bstn is the distance between the jth node and the base
station; it is calculated using equation (6).

Further, the data transmission is done as per Algorithm 3
[19, 21].

The flow chart for data transmission is shown in
Figure 5.

3.4.2. Reward Function and Update Rule. A key step in rein-
forcement learning is the selection of the reward function.
We must define a function that captures the goal of the
learning process. In our model, we use an energy and
hop-count weighted sum as the reward function. p is the
probabilistic parameter for Eresidual, and q is the probabilis-
tic parameter for the competing factor NH : the trade-off
between the two probabilistic parameters helps optimize
enhancing the performance of the protocol as a greater p
favours a node with higher residual energy to be next
hop whereas q favours a closer node to be the next hop.
The competing efforts result in the next hop to be closer
to the current node and possessing high residual energy.

If Eresidual is 0, a negative reward is assigned to the then
prospective next hop and finds another next-hop node.
The next hop follows the same procedure until the message
is received at the base station while continuously sending
feedbacks.

Rt+1 (next reward) is calculated using the following
equation:

Rt+1 =

NH ×
1
NH

� �� �
Emax = Emin,

p ×
Eresidual − Emin
Emax − Emin

� �� �
+ q × NH ×

1
NH

� �� �� �
Emax ≠ Emin,

−100 Er ≤ 0,

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

where q = 1 and p = q − 1.
The updated Q-value is finally used as an argument in

the policy function for updating the policy, which finds the
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best policy. It is calculated using equation (8). The above
methods of policy and update are given below [14].

Qπ s, að Þ = E Gt St = s, At = aj½ �, ð8Þ

Gt = 〠
∞

k=0
γk × Rt+k+1: ð9Þ

Gt calculates the discounted reward using equation (9),
where k is the discount factor.

Qπ∗ =Q∗ s, að Þ, ð10Þ

V∗ s, að Þ =max Q s, að Þð Þ, ð11Þ

Qt+1 s, að Þ = 1 − αð ÞQt s, að Þ
+ α Rt+1 s, að Þ + γ max Q S′, a

� �� �
:

ð12Þ

Equations (10)–(12) show the equations used and update
rule to get the best policy [14, 22].

The model, reward function, and update rule are
updated with the calculated values, but the policy is updated
with the best value at that point of time. The update is per-
formed at the end of every step, and the new values are
stored as the Q-values.

4. Performance Evaluation

To measure ReLeC’s performance, we used MATLAB to run
a simulation in which 100 nodes were dispersed over a field
of 100∗100m in a randomized manner. With (50, 50) coor-
dinates, in the sensing field, the base station was put in the

centre. Furthermore, we expected that the network would
be heterogeneous, with devices ranging in energy from 1 to
2 joules. Table 1 summarises the parameters taken.

4.1. Simulation Parameter Tuning. The proposed procedure,
as previously stated, analyzes both numbers of hops and
remaining energy, and probabilistic values such as p and q
= 1 p have been allocated to both remaining energy and
number of hops. A larger value of p gives more weightage
to nodes having higher energy. A large value of q, on the
other hand, enhances the chances of nodes with fewer hops
to the base station being chosen. As a result, to improve the
performance of ReLeC, we experimented with various values
of these parameters to find the optimum ones. With varying
p and q, the performance evaluation yielded slightly varied
results. However, both the probabilistic parameters are
equal, the network lifetime is improved while the energy bal-
ance remains favorable. p equals 0.4 and q equals 0.6 can also
obtain similar outcomes in some cases.

4.2. Network Lifetime and Energy Efficiency Evaluation. The
fundamental goal of the research is to improve the efficiency
and network longevity. When the data transmission
becomes no longer possible is termed as the lifetime of the
network. By contrasting the proposed approach with
existing clustering techniques like LEACH and PEGASIS,
we assessed its energy efficiency and network longevity.
For comparison, we used the following metrics:

(1) The number of sensor nodes that are alive each
round; this parameter also helps examine the
network’s lifespan
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Figure 7: (a) Energy consumption of LEACH protocol. (b) Energy consumption of PEGASIS protocol. (c) Energy consumption of ReLeC
protocol.
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Table 2: Comparison of LEACH, PEGASIS, and ReLeC.

Parameters LEACH PEGASIS ReLeC

Energy consumption range (J) 0.05 J-0.3 J 0.0494 J-0.0512 J 0.005 J-0.05 J

Network lifespan (rounds) 1662 2427 3130

Average stability period 825 1915 1150
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(2) The energy expended per round. It is the amount of
all the devices’ energy consumed per round

(3) The time frame in which the first node dies. These
are the parameters that are used to estimate energy
efficiency

Figure 6(a) displays the graph based on LEACH node
deployment whereas Figure 6(b) shows the PEGASIS node
deployment and Figure 6(c) has shown the cluster formation
of ReLeC.

Figures 7(a)–7(c) show the energy consumption of
LEACH, PEGASIS, and ReLeC. It is clear from the figures
that ReLeC shows the best results in terms of energy
consumption.

Using several sensor nodes, we measured the network
lifetime of the proposed protocol in the figure mentioned
below. We also compared LEACH and PEGASIS to show
that the proposed protocol is effective. ReLeC outperforms
LEACH and PEGASIS with both 30 and up to 100 devices.
With a more extended network lifetime, the suggested pro-
tocol outperforms current protocols. In order to optimize
network longevity, we considered both residual energy and
hop count. When transmitting data, the power can be higher
if the distance is too greater. In Figures 8(a) and 8(b), we
compared the stability region; the suggested approach out-
performed LEACH and PEGASIS in all test conditions.
We can conclude from the foregoing that the protocol pro-
posed performs better in a large-scale network than these
canonical approaches. Still, the LEACH and PEGASIS pro-
tocol performs better in a small-scale network (less than 50
devices).

Table 2 has shown the comparison of models based on
various parameters. We have analyzed the number of alive
nodes at different rounds of iterations, energy consumption,
and number of dead nodes for ReLeC at different values of p
and q.

Figure 9 shows the number of alive nodes at different
rounds of iterations for ReLeC, and it is clear from the figure
that p = 0:5 and q = 0:5 shows the best results.

Figure 9 shows the energy consumption for ReLeC, and
evidently, p = 0:6 and q = 0:4 gives the best results.

Figure 9 depicts the number of alive nodes at different
rounds of iterations for ReLeC and the values p = 0:6 and
q = 0:4, respectively, lead to the desired results.

Table 3 represents the ReLeC algorithm assessment
based on different values of probabilistic parameters.

5. Conclusion

This paper proposes ReLeC protocol, a reinforcement
learning-based, clustering-enhanced strategy for energy-
efficient routing in WSNs and potentially other spatially dis-
persed IoT networks. The protocol strives to find an effective
data transmission route using clustering and RL. This was
done in three phases: first being network initialization and

Table 3: ReLeC algorithm assessment at different values of
probabilistic parameters.

Parameters
p = 0:4
q = 0:6

p = 0:5
q = 0:5

p = 0:6
q = 0:4

Operational nodes 15 13 35

Average stability period (rounds) 3850 4100 3985
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Figure 9: (a) Number of alive nodes at different rounds of iterations for ReLeC. (b) Number of dead nodes at different rounds of iterations
for ReLeC. (c) Energy consumption at different rounds of iterations for ReLeC.
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preliminary setup followed by CH election on the basis of
the initial energy of devices and hop count. The second
phase consisted of cluster formation for efficient inter- and
intracluster communication on transmission range-based
invitation. The third and final phase is the data transmission
or communication phase, which is learning-driven based on
reinforcement learning. The proposed protocol ReLeC out-
performed LEACH by the percentage of 88.32% and PEGA-
SIS by the percentage of 28.9% in terms of network lifespan
for 3000 rounds.

6. Future Work and Limitations

As mentioned under limitations section, careful testing
followed by analysis needs to be done for assessing the per-
formance and computational viability of the protocol. Addi-
tionally, to make the protocol more scalable, the protocol
can be optimized to work on the “edge,” to get a new gener-
ation of intelligent, edge-computing-enabled wireless sensor
networks. The major limitation of the presented work is
real-world application. For this study, we ran simulations
with varying parameters like sensing field dimensions, range,
and number of sensor nodes. Tests need to be performed to
analyze the protocols’ performance in the real world and
find other areas of improvement.

Data Availability

The code has been implemented using MATLAB. The
MATLAB code for the proposed work is available.
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