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Relevance of accurate Monte Carlo modeling in nuclear medical imaging
Habib Zaidia)

Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland

~Received 23 June 1998; accepted for publication 3 February 1999!

Monte Carlo techniques have become popular in different areas of medical physics with advantage
of powerful computing systems. In particular, they have been extensively applied to simulate
processes involving random behavior and to quantify physical parameters that are difficult or even
impossible to calculate by experimental measurements. Recent nuclear medical imaging innova-
tions such as single-photon emission computed tomography~SPECT!, positron emission tomogra-
phy ~PET!, and multiple emission tomography~MET! are ideal for Monte Carlo modeling tech-
niques because of the stochastic nature of radiation emission, transport and detection processes.
Factors which have contributed to the wider use include improved models of radiation transport
processes, the practicality of application with the development of acceleration schemes and the
improved speed of computers. In this paper we present a derivation and methodological basis for
this approach and critically review their areas of application in nuclear imaging. An overview of
existing simulation programs is provided and illustrated with examples of some useful features of
such sophisticated tools in connection with common computing facilities and more powerful
multiple-processor parallel processing systems. Current and future trends in the field are also
discussed. ©1999 American Association of Physicists in Medicine.@S0094-2405~99!01904-5#
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I. INTRODUCTION AND OVERVIEW

Recent developments in nuclear medicine instrumenta
and multiple-processor parallel processing systems have
ated a need for a review of the opportunities for Monte Ca
simulation in nuclear medicine imaging. One of the aims
the medical physicist involved in nuclear medical imagi
research is to optimize the design of imaging systems an
improve the quality and quantitative accuracy of reco
structed images. Several factors affect the image quality
the accuracy of the data obtained from a nuclear medic
scan. These include the physical properties of the detec
collimator and gantry design, attenuation and scatter c
pensation and reconstruction algorithms.1,2 Integrating im-
provements in these with current tracers and sensitive
specific tracers under development will provide major adv
tages to the general nuclear medicine clinician and rese
investigator~Fig. 1!. Mathematical modeling is necessary f
the assessment of various parameters in nuclear medica
aging systems since no analytical solution is possible w
solving the transport equation describing the interaction
photons with nonuniformly attenuating body structures a
complex detector geometries.

The Monte Carlo method is widely used for solving pro
lems involving statistical processes and is very useful
medical physics due to the stochastic nature of radia
emission, transport and detection processes. The meth
very useful for complex problems that cannot be modeled
computer codes using deterministic methods or when exp
mental measurements may be impractical. The Monte C
method was named by Von Neumann3 because of the simi
larity of statistical simulation to games of chance, and
cause the city in the Monaco principality was a center
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gambling and similar pursuits. Von Neumann, Ulam a
Fermi applied the method towards neutron diffusion pro
lems in the Manhattan Project at Los Alamos during Wo
War II. But even at an early stage of these investigatio
von Neumann and Ulam refined this particular ‘‘Russi
roulette’’ and ‘‘splitting’’ methods. However, the systemat
development of these ideas had to await the work of Ka
and Harris in 1948.4 During the same year, Fermi, Metropo
lis and Ulam obtained Monte Carlo estimates for the eig
values of the Schrodinger equation. Uses of Monte Ca
methods have been many and varied since that time.
applications of the Monte Carlo method in medical phys
were few before the review paper by Raeside.5 Since that
time, there has been an increasing number of application
Monte Carlo techniques to problems in this field thanks
the several books6–9 and comprehensive review papers5,10–12

describing the principles of the Monte Carlo method and
applications in medical physics.

There has been an enormous increase and interest in
use of Monte Carlo techniques in all aspects of nuclear
aging, including planar imaging,13 single-photon emission
computed tomography~SPECT!,14–18 positron emission to-
mography ~PET!19–22 and multiple emission tomograph
~MET!.23 However, due to computer limitations, the meth
has not yet fully lived up to its potential. With the advent
high-speed supercomputers, the field has received incre
attention, particularly with parallel algorithms which hav
much higher execution rates. Our main purpose in this pa
is to present a framework for applying Monte Carlo simu
tions for a wide range of problems in nuclear medical ima
ing. Emphasis is given to applications where photon and
electron transport in matter is simulated. Some compu
574/574/35/$15.00 © 1999 Am. Assoc. Phys. Med.
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575 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 575
tional aspects of the Monte Carlo method, mainly related
random numbers, sampling and variance reduction are
cussed. Basic aspects of nuclear medicine instrumenta
are reviewed, followed by the presentation of potential
plications of Monte Carlo techniques in different areas
nuclear imaging such as detector modeling and systems
sign, image reconstruction and scatter correction techniq
internal dosimetry and pharmacokinetic modeling. Wide
used Monte Carlo codes in connection with computing fac
ties, vectorized and parallel implementations are describ
Current trends and some strategies for future developme
the field are also discussed.

II. THE MONTE CARLO METHOD: THEORY AND
COMPUTATIONAL ISSUES

Numerical methods that are known as Monte Carlo me
ods can be loosely described as statistical simulation m
ods, where statistical simulation is defined in quite gene
terms to be any method that utilizes sequences of ran
numbers to perform the simulation. A detailed description
the general principles of the Monte Carlo method is given
a number of publications,5,11,24,25and will not be repeated
here. Figure 2 illustrates the idea of Monte Carlo or stati

FIG. 1. Scientific and technical strategy for recording accurate functio
images. In bold, the parts where Monte Carlo simulation plays an impor
role ~adapted from an illustration by Professor Terry Jones, MRC!.
Medical Physics, Vol. 26, No. 4, April 1999
o
is-
on
-
f
e-
s,

-
d.
in

-
h-
al
m
f
n

i-

cal simulation as applied to an imaging system. Assum
that the behavior of the imaging system can be described
probability density functions~pdf’s!, then the Monte Carlo
simulation can proceed by sampling from these pdf’s, wh
necessitates a fast and effective way to generate ran
numbers uniformly distributed on the interval@0, 1#. Photon
emissions are generated within the phantom and are tr
ported by sampling from pdf’s through the scattering m
dium and detection system until they are absorbed or esc
the volume of interest without hitting the crystal. The ou
comes of these random samplings, or trials, must be accu
lated or tallied in an appropriate manner to produce the
sired result, but the essential characteristic of Monte Carl
the use of random sampling techniques to arrive at a solu
of the physical problem.

The major components of a Monte Carlo method a
briefly described below. These components comprise
foundation of most Monte Carlo applications. The followin
sections will explore them in more detail. An understandi
of these major components will provide a sound foundat
for the developer to construct his own Monte Carlo meth
although the physics and mathematics of nuclear imaging
well beyond the scope of this paper. The primary comp
nents of a Monte Carlo simulation method include the f
lowing.

~i! Probability density functions~pdf’s!: the physical sys-
tem must be described by a set of pdf’s.

~ii ! Random number generator: a source of random nu
bers uniformly distributed on the unit interval must b
available.

~iii ! Sampling rule: a prescription for sampling from th
specified pdf’s.

~iv! Scoring: the outcomes must be accumulated into ov
all tallies or scores for the quantities of interest.

~v! Error estimation: an estimate of the statistical er
~variance! as a function of the number of trials an
other quantities must be determined.

~vi! Variance reduction techniques: methods for reduc
the variance in the estimated solution to reduce
computational time for Monte Carlo simulation.

~vii ! Parallelization and vectorization algorithms to allo

l
nt

FIG. 2. Principles of Monte Carlo simulation of an imaging system.
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Monte Carlo methods to be implemented efficien
on advanced computer architectures.

A. Random numbers generation

Computational studies requiring the generation of rand
numbers are becoming increasingly common. All rand
number generators~RNG! are based upon specific mat
ematical algorithms, which are repeatable. As such, the n
bers are just pseudo-random. Here, for simplicity, we sh
term them just ‘‘random’’ numbers. Formally, random is d
fined as exhibiting ‘‘true’’ randomness, such as the time
tween ‘‘tics’’ from a Geiger counter exposed to a radioact
element. Pseudo-random is defined as having the appea
of randomness, but nevertheless exhibiting a specific, rep
able pattern. Quasi-random is defined as filling the solut
space sequentially~in fact, these sequences are not at
random, they are just comprehensive at a preset leve
granularity!. Monte Carlo methods make extensive use
random numbers to control the decision making when
physical event has a number of possible results. The RN
always one of the most crucial subroutines in any Mo
Carlo-based simulation code.24 A large number of generator
are readily available,26 and many of these are suitable for th
implementation on any computer system,27 since today there
is no significant distinction in floating point processing cap
bilities between a modern desktop and a mainframe c
puter. A typical simulation uses from 107 to 1012 random
numbers, and subtle correlations between these num
could lead to significant errors.28 The largest uncertaintie
are typically due more to approximations arising in the f
mulation of the model than those caused by the lack of r
domness in the RNG. Mathematically speaking, the seque
of random numbers used to effect a Monte Carlo mo
should possess the following properties.29

~i! Uncorrelated sequences: the sequences of ran
numbers should be serially uncorrelated. Most es
cially, n-tuples of random numbers should be ind
pendent of one another.

~ii ! Long period: ideally, the generator should not repe
practically, the repetition should occur only after th
generation of a very large set of random numbers

~iii ! Uniformity: the sequence of random numbers sho
be uniform, and unbiased. That is, suppose we de
n-tuples m i

n5(ui 11 ,....,ui 1n) and divide the
n-dimensional unit hypercube into many equal su
volumes. A sequence is uniform if in the limit of a
infinite sequence all the sub-volumes have an eq
number of occurrences of randomn-tuples.

~iv! Reproducibility: when debugging programs, it is ne
essary to repeat the calculations to find out how
errors occurred. The feature of reproducibility is al
helpful while porting the program to a different ma
chine.

~v! Speed: It is of course desirable to generate the rand
numbers fast.

~vi! Parallelization: The generator used on vector m
chines should be vectorizable, with low overhead.
Medical Physics, Vol. 26, No. 4, April 1999
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massively parallel architectures, the processors sho
not have to communicate among themselves, exc
perhaps during initialization.

Although powerful RNGs have been suggested includ
shift register, inversive congruentional, combinatorial a
‘‘intelligent’’ methods such as those implemented in t
MCNP code,30 the most commonly used generator is the line
congruential RNG~LCRNG!.31 Recently, Monte Carlo re-
searchers have become aware of the advantages of la
Fibonacci series~LFRNG!. With extremely long periods
they are generally faster than LCRNG and have excel
statistical properties.32 Those generators are briefly describ
below.

1. Linear congruential generators

The LCRNG has the form31

un115a~un1c!mod~m!, ~1!

where m is the modulus,a is the multiplier andc is the
additive constant or addend. The size of the modulus c
strains the period, and is usually chosen to be either prim
a power of 2.33 An important subset of LCRNG is obtaine
by settingc50 in Eq. ~1!, which defines the multiplicative
linear congruential RNG~MLCRNG!. This generator~with m
a power of 2 andc50) is the de facto standard included wi
FORTRAN and C compilers.34 One of the biggest disadvan
tages to using a power of 2 modulus is that the least sign
cant bits of the integers produced by these LCRNGs h
extremely short periods. For example,mnmod(2j ) will have
a period of 2j .33 In particular, this means the least-significa
bit of the LCRNG will alternate between 0 and 1. Som
cautions to the programmer are in order:~i! the bits ofmn

should not be partitioned to make several random numb
since the higher order bits are much more random than
lower order bits;~ii ! the power of 2 modulus in batches o
powers of 2 should be avoided;~iii ! RNGs with large modu-
lus are preferable to ones with small modulus. Not only
the period longer, but the correlations are lower. In parti
lar, one should not use a 32 bit modulus for applicatio
requiring a high resolution in the random numbers. In sp
of this known defect of power of 2 LCRNGs, 48 bit mult
pliers ~and higher! have passed many very stringent rando
ness tests.

The initial seed should be set to a constant initial val
such as a large prime number~it should be odd, as this will
satisfy period conditions for any modulus!. Otherwise, the
initial seed should be set to a ‘‘random’’ odd valu
Anderson35 recommends setting the initial seed to the fo
lowing integer:

u05 iyr11003„imonth211123~ iday21131

3„ihour1243~ imin1603 isec!…!…, ~2!

where the variables on the right-hand side are the inte
values of the date and time. Note that the year is 2 dig
long, i.e., the domain ofiyr is @0–99#. However, it may be
preferable to introduce the maximum variation in the se
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into the least significant bits by using the second of t
century, rather than the most significant bits. The followi
equation is preferable:

u05 isec1603„imin1603~ ihour124

3„iday211313~ imonth21112iyr!…!… ~3!

Generally, LCRNGs are best parallelized by parameteriz
the iteration process, either through the multiplier or the
ditive constant. Based on the modulus, different parame
zations have been tried.35

2. Lagged-Fibonacci generators

The lagged-Fibonacci series RNG~LFRNG! have the fol-
lowing general form:26

un5un2 l ^ un2k mod~m!, l .k, ~4!

where ^ may be one of the following binary arithmetic op
erators1, 2,* , l and k are the lags andm is a power of
2(m52P). In recent years the additive lagged-Fibona
RNG ~ALFRNG! has become a popular generator for se
as well as scaleable parallel machines36 because it is easy to
implement, it is cheap to compute and it does well on st
dard statistical tests, especially when the lagk is sufficiently
high ~such ask51279). The maximal period of the AL
FRNG is (2k21)2p21 and has 2(k21)(p21) different full-
period cycles.37 Another advantage of the ALFRNG is tha
one can implement these generators directly in a float
point to avoid the conversion from an integer to a floatin
point that accompanies the use of other generators. Howe
some care should be taken in the implementation to av
floating-point round-off errors.

Instead, the ALFRNG can be parameterized through
initial values because of the tremendous number of differ
cycles. Different streams are produced by assigning e
stream a different cycle. An elegant seeding algorithm t
accomplishes this is described by Mascagni.36 An interesting
cousin of the ALFRNG is the multiplicative lagged
Fibonacci RNG ~MLFRNG!. While this generator has
maximal-period (2k21)2p23, which is a quarter the length
of the corresponding ALFRNG, it has empirical properti
considered to be superior to ALFRNGs.26 Of interest for
parallel computing is that a parameterization analogous
that of the ALFRNG exists for the MLFRNG. This latte
algorithm was used for generating uniformly distributed ra
dom numbers on a parallel computer based on the MIM
principle.38 The sequence of 24 bit random numbers ha
period of about 2144 and has passed stringent statistical te
for randomness and independence.32

B. Photon transport

For radiation transport problems, the computatio
model includes geometry and material specifications.39 Ev-
ery computer code contains a database of experimentally
tained quantities, known as cross-sections, that determine
probability of a particle interacting with the medium throug
which it is transported. Every cross-section is peculiar to
Medical Physics, Vol. 26, No. 4, April 1999
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type and energy of the incident particle and to the kind
interaction it undergoes. These partial cross-sections
summed to form the total cross-section; the ratio of the p
tial cross-section to the total cross-section gives the proba
ity of this particular interaction occurring. Cross-section da
for the interaction types of interest must be supplied for e
material present. The model also consists of algorithms u
to compute the result of interactions~changes in particle en
ergy, direction, etc.! based on the physical principles th
describe the interaction of radiation with matter and t
cross-section data provided. Therefore, it is extremely imp
tant to use an accurate transport model as the Monte C
result is only as valid as the data supplied.

When a photon~having an energy below 1 MeV! passes
through matter, any of the three interaction processes~pho-
toelectric, incoherent scattering, coherent scattering! may oc-
cur. The probability of a photon of a given energyE under-
going absorption or scattering when traversing a layer
materialZ can be expressed quantitatively in terms of a l
ear attenuation coefficientm ~cm21! which is dependent on
the material’s density,r ~g.cm23!,

m5mphoto1m incoh1mcoh. ~5!

In the case of photoelectric absorption, the total photon
ergy is transferred to an atomic electron and the random w
is terminated. In an incoherent photon interaction, a fract
of the photon energy is transferred to the atomic electr
The direction of the scattered photon is changed to cons
the total momentum of the interaction. The Klein–Nishi
expression for the differential cross-section per electron
an incoherent interaction is used to sample the energy
the polar angle of the incoherently scattered photon.40 The
coherent scattering only results in a change in the direc
of the photon since the momentum change is transferre
the whole atom. The kinetic energy loss of the photon
negligible. Coherent scattering of a photon could be gen
ated using the random number composition and rejec
technique4 to sample the momentum of the scattered pho
and the scattering angle according to the form factor dis
bution.

It is common to neglect coherent scattering in PET Mo
Carlo simulation of photon transport because of its low co
tribution to the total cross-section at 511 keV. In the follow
ing examples, the relative importance of the various p
cesses involved in the energy range of interest~below 1
MeV! are considered for some compounds and mixtu
used in nuclear medicine to justify some of the approxim
tions made in Monte Carlo codes. Figure 3 illustrates
relative strengths of the photon interactions versus energy
water, cortical bone, sodium iodide~NaI! and bismuth ger-
manate~BGO!, respectively. For water, a moderately low-Z
material, we note two distinct regions of single interacti
dominance: photoelectric below and incoherent above
keV. The almost order of magnitude depression of the coh
ent contribution is some justification for the approximatio
discussed. The coherent contribution to the total cro
section is less than 1% for energies above 250 keV. Ho
ever, this contribution is in the order of 7% for high-Z ma-
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FIG. 3. Components of photon cross
sections for different tissues (H2O and
cortical bone! and detector materials
~NaI and BGO! of interest in nuclear
imaging, illustrating the relative con-
tribution of each process.
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terials like BGO. Therefore, efforts should be made to tr
the coherent scattering process adequately for detector m
rials. In a recent investigation, photon cross-section libra
~NIST, PHOTX!41,42 and parametrizations implemented
simulation packages~GEANT, PETSIM!43,44were compared
to the recent library provided by the Lawrence Livermo
National Laboratory~EPDL97!45 for energies from 1 keV to
1 MeV for a few human tissues and detector materials
interest in nuclear imaging.46 The cross-section data for mix
tures and compounds are obtained from the equation:

m5r(
i

wi~m/r! i , ~6!

where r is the density of the material,wi the fraction by
weight of the i th atomic constituent, as specified in ICR
Report 4447 and (m/r) i the mass attenuation coefficient
Different photon cross-section libraries show quite lar
variations as compared to the most recent EPDL97 data fi
It is recommended that Monte Carlo developers only use
most recent version of this library.46

A calculation of the distances between interactions in
medium are performed by sampling from the exponen
attenuation distribution@Eq. ~10! below#. Different tech-
niques have been proposed to improve the computa
Medical Physics, Vol. 26, No. 4, April 1999
t
te-
s

f

e
s.
e

a
l

n

speed when sampling from the probability distribution
They are described in more detail in Secs. II D and II E.

C. Electron transport

In principle, electron transport should be included wh
simulating the complete electromagnetic cascade~micro-
scopic techniques!. However, the large number of interac
tions that may occur during electron slowing down make
unrealistic to simulate all the physical interactions~macro-
scopic techniques!.10 Secondary electrons are generally a
sumed to deposit all their energy at the point of interact
because of the low energies involved in nuclear medici
and therefore the short ranges of the electrons generated
their negligible bremsstrahlung production. Therefore, el
tron transport has not received particular attention in nuc
imaging applications of the Monte Carlo method. Howev
a number of investigators considered this effect mainly
dosimetry calculations.48–50

Most existing electron transport algorithms are based
the multiple collision models for scattering and energy lo
The complexity of the techniques used in microscopic m
els varies considerably, although a common approach i
neglect bremsstrahlung interactions. Simple models
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based on the simulation of all the scattering events, calcu
ing the step length between consecutive collisions with
elastic mean-free path. Energy losses are determined
the Bethe theory of stopping power and an approximat
included to account for the energy-loss straggling. T
model has been improved later by taking inelastic collisio
into account.10 Macroscopic techniques classify the physic
interactions of electrons into groups that provide an ove
picture of the physical process. Berger51 divided electron
transport algorithms into two broad classes~class I and class
II ! distinguished by how they treat individual interactio
that lead to the energy losses of the primary electrons and
production of bremsstrahlung photons and/or knock-on e
trons. The condensed-history technique for electron trans
has been reviewed51 and comparisons of class I with class
algorithms and of Goudsmit and Saunderson multip
scattering theory have also been made.10,40 The Moliere
theory contains a small-angle approximation52 and requires a
certain minimum number of scattering events to occ
whereas the Goudsmit and Saunderson theory is exact
single-scattering cross-section. It has been shown, howe
that the effects of the small-angle approximation can
compensated.51 An improved model for multiple scatterin
into the voxel Monte Carlo algorithm comparable in acc
racy with the Parameter Reduced Electron-Step Trans
Algorithm ~PRESTA!53 has been developed recently.54

A systematic error is introduced in low energy transp
when the algorithm does not account for the change i
discrete interaction cross-section with energy.55 To over-
come this problem, Ma56 developed an algorithm to accou
properly for the change in an electron discrete interact
cross-section as a function of energy for low energy elect
transport.

D. Analog sampling

Analog Monte Carlo attempts to simulate the full statis
development of the electromagnetic cascade. If we ass
that a large number of particle histories,N, are included in a
batch, the individual batch estimates can be considere
drawn from a normal distribution. For a given calculatio
the estimated uncertainty is proportional to the inverse of
square root of the number of histories simulated. The e
ciency e of a Monte Carlo calculation can therefore be d
fined as57

e5
1

s2T
, ~7!

whereT is the calculation time to obtain a variance estim
s2. For largeN, e should be constant as long as the calcu
tion technique remains the same.

As described earlier, the imaging system can be descr
in terms of pdf’s. These pdf’s, supplemented by additio
computations, describe the evolution of the overall syst
whether in space, energy, time or even some higher dim
sional phase space. The goal of the Monte Carlo method
simulate the imaging system by random sampling from th
pdf’s and by performing the necessary supplementary c
Medical Physics, Vol. 26, No. 4, April 1999
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putations needed to describe the system evolution. In
sence, the physics and mathematics are replaced by ran
sampling of possible states from pdf’s that describe the s
tem. Thus, it is frequently necessary to sample some phys
event, the probability of which is described by a known p
Examples include the distance to the next interaction and
energy of a scattered photon. Letx be the physical quantity
to be selected andf (x) the pdf. Among the properties of th
pdf is that it is integrable and non-negative. Assume that
domain of f (x) is the interval@xmin ,xmax# and that it is nor-
malized to unit area. The cumulative distribution functio
F(x) of the frequency functionf (x) gives the probability
that the random variablet is less or equal tox. It is defined
as

F~x![probability~t<x!5E
xmin

x

f ~t!dt. ~8!

A stochastic variable can be sampled by the use of unifor
distributed random numbersR in the range@0–1# using one
of the techniques described below.

1. Direct method

This method can be used if the inverse of the cumulat
distribution functionF21(x) is easily obtainable. SinceF(x)
is uniformly distributed in@0–1#, the sampled value ofx
could be obtained by substitutingF(x) in Eq. ~8! by a uni-
form random numberR, that is, x5F21(R). A practical
example of using this technique is the calculation of the d
tance to the next interaction vertex. The inversion is not
ways possible, but in many important cases the invers
readily obtained.

2. Rejection method

Another method of performing this when it is too comp
cated to obtain the inverse of the distribution function is
use the rejection technique,4 which follows the following
steps:~i! define a normalized functionf 8(x)5 f (x)/ f max(x),
wheref max(x) is the maximum value off (x); ~ii ! sample two
uniformly distributed random numbersR1 andR2; ~iii ! cal-
culatex using the equationx5xmin1R1(xmax2xmin); and~iv!
if R2 is less than or equal tof 8(x), thenx is accepted as a
sampled value; otherwise a new value ofx is sampled.

Over a large number of samples, this technique will yie
a set of values ofx within the required distribution. It does
however, require two random numbers per trial and ma
trials may be required depending on the area under of
curve of f (x). A typical example of using this technique
the photon energy and scattering angle resulting from in
herent scattering.

3. Mixed methods

When the previous two methods are impractical, t
mixed method that combines the two may be used.57 Assume
that the pdf can be factored as follows:

f ~x!5h~x!•g~x!, ~9!
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whereh(x) is an invertible function andg(x) is relatively
flat but contains most of the mathematical complexity. T
method consists of the following steps:~i! normalizeh(x)
producing h8(x) such that*xmin

xmaxh8(x)dx51; ~ii ! normalize

g(x) producing g8(x) such that g8(x)<1 for x in
@xmin ,xmax#; ~iii ! use the direct method to select anx using
h8(x) as the pdf;~iv! usex and apply the rejection metho
usingg8(x), i.e., choose a random numberR, if g8(x)<R,
acceptx; otherwise go back to step~iii !.

E. Nonanalog sampling ‘‘variance reduction
techniques’’

A direct Monte Carlo simulation using true probabili
functions may require an unacceptable long time to prod
statistically relevant results. Photons emission is isotropic
directional parameters may be sampled uniformly with
their individual ranges. Nuclear imaging systems have a
geometrical efficiency because of the small solid angle
fined by the collimator and/or the small axial apertu
Therefore, the calculation would be very ineffective in term
of required computing time.58 It is thus desirable to bias th
sampling ~nonanalog sampling! by introducing different
types of importance sampling and other variance reduc
techniques to improve the computational efficiency of
Monte Carlo method.59 The results obtained by nonanalo
simulation are, however, biased by the variance reduc
technique and a correction for this is required. A parti
history weight,W, is introduced, which describes the pro
ability of the particle following the current path. This weig
is calculated for each particle history, and used in the ca
lation of the results. If an event occurs, the weightW is
added to the counter rather than incrementing the counte
one unit. Bielajew and Rogers57 divided variance reduction
techniques in three categories: those that concern ph
transport only, those that concern electron transport o
and other more general methods. The most useful techni
are described below.

1. Photon-specific methods

Interaction forcing.In an analog Monte Carlo simulation
photons are tracked through the object until they either
cape the object, are absorbed or their energy drops belo
selected threshold. The probability function for a photon
teraction is given by

p~x!5me2mx. ~10!

The probability that a photon will travel a distanced or less
is given by

p~d!5E
0

d

me2mx dx512e2md. ~11!

To sample the pathlength, a uniform random numberR is
substituted forp(d) and the problem is solved ford:

d52
log~12R!

m
. ~12!
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Since the maximum distancedmax, the photon travels before
interaction is infinite, and the number of photon mean fr
paths across the geometry in any practical situation is fin
there is a large probability that photons leave the geom
of interest without interacting. To increase the statistical
curacy in the imparted energy calculation, we force the p
tons to interact by assigningdmax a finite distance, e.g., the
thickness of the detector being simulated.57 A true distrib-
uted photon pathlengthd within dmax can be sampled from
the equation

d52
1

m
ln~12R@12e2mdmax# !. ~13!

The photon’s weight must be multiplied by the interacti
probability,

Wn115Wn@12e2mdmax#. ~14!

In emission computed tomography, the photon is allowed
interact through coherent or incoherent interactions o
within the phantom since photoabsorption does not cont
ute to energy imparted in the crystal. The weight is th
multiplied by the probability for the photon being scattere

Wn115WnFm incoh1mcoh

m G , ~15!

wherem incoh andmcoh are the cross-section data for incohe
ent and coherent scattering, respectively, andm is the total
linear attenuation coefficient.

Stratification.Stratification refers to the process of dete
mining the frequencies with which the various regions
state space are used to start a particle.60 The solid angle of
acceptance of the detector array,Vmax, is small due to col-
limation and to the size of the detector array itself. Th
results in significant computational inefficiencies with anal
Monte Carlo simulation, because only a few percent of
photons generated and tracked will actually be detected.
goal of stratification is to simulate only photons that a
emitted in directions within the solid angle, which can
calculated from the maximum acceptance angle,umax,
which, in turn, can be estimated from the dimensions of
phantom and the detection system. The solid angle does
change in magnitude when simulating source locations
center. The photon escaping from the phantom is either
mary or scattered. If the photon happens to be a prim
photon, its direction within the solid angle could be samp
from

cos~u!512R@12cosumax#. ~16!

In this case, the weight is multiplied by the probability
escape without interaction in the solid angleVmax,

Wn115Wn

@12cosumax#

2
. ~17!

Exponential transform, russian roulette and particle spl
ting. The exponential transform is a variance reduction te
nique used to bias the sampling procedure to give more
teractions in the regions of interest and thus improve
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efficiency of the calculation for those regions. To impleme
this method, the distance to the next interaction in numbe
mean free paths,dl , should be sampled from57

dl52
ln~R!

~12C cosu!
, ~18!

where C is a parameter that adjusts the magnitude of
scaling andu the angle of the photon with respect to th
direction of interest. The new weighting factor is given b

Wn115Wn

exp~2dlC cosu!

~12C cosu!
. ~19!

Note that the new weighting factor is dependent ondl . If
0,C,1, the particle pathlength is stretched in the forwa
direction, which is used for shielding problems. F
21,C,0, the average distance to the next interaction
shortened in the forward direction, which is used for surfa
problems. ForC50, we recover the unbiased sampling. T
optimal choice of this parameter is dependent on the prob
to be solved. The general guideline is to avoid to use la
weighting factors because they may increase the varianc57

Russian roulette and splitting are often used together w
the exponential transform although they are still effect
when used independently. In Russian roulette, a rand
number is selected and compared to a threshold,l. If the
random number turns out to be smaller thanl, the particle is
allowed to survive but the weight should be updated acco
ingly, Wn115Wn /l. In particle splitting, a particle coming
from a region of interest can be divided intoN particles, each
having a new weighting,Wn115Wn /N.

2. Electron-specific methods

Electron range rejection.A fundamental difference be
tween the transport of photons and electrons in a conden
history simulation code is that photons travel relatively lo
distances before interacting while electron tracks are in
rupted not only by geometrical boundaries but also by m
tiple scattering ‘‘steps.’’ A large amount of simulation tim
is spent on checking boundaries and selecting deflec
angles and so on. Electron range rejection means that
electrons with their residual range smaller than the dista
to the nearest boundary or to the region of interest in
simulation will be terminated to save computing time. D
ferent methods have been suggested for electron range r
tion. The reduced interrogation of geometry~RIG! method
calculates the distance to the nearest boundary and com
it to the maximum multiple-scattering step length. If th
electron cannot reach any of the boundaries during this s
the boundary checking routine will not be called and this w
save computing time. Another method called ‘‘disrega
within a zone’’ is usually used with RIG to further speed
the simulation. It consists of disregarding electrons wh
energies are so low that they cannot reach the nearest bo
ary. Those methods are, however, inefficient for simulatio
involving curved surfaces,57 where the time required to ca
culate the distance to the closest boundary may be cons
able. An alternative way is to use a range-related ‘‘reg
Medical Physics, Vol. 26, No. 4, April 1999
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rejection’’ technique. In this method, different energy cu
offs are chosen for the regions surrounding the region wh
energy deposition is to be scored, each energy cut-off be
chosen according to the distance to the nearest bounda
the region of interest.

Parameter reduced electron step.This algorithm allows
us to use small electron steps in the vicinity of interfaces a
boundaries and large steps elsewhere.53 Its components are
the following: a path-length correction algorithm which
based on the multiple scattering theory of Moliere and wh
takes into account the differences between the straight p
length and the total curved pathlength for each electron s
a lateral correlation algorithm which takes into account l
eral transport; and a boundary crossing algorithm which
sures that electrons are transported accurately in the vic
of interfaces. The algorithm has been implemented in
EGS4 code system and proved that substantial savings
computing time may be realized when using this method

3. General methods

Correlated sampling.The correlated sampling techniqu
can be used in the transport of both photons and electron
is especially effective for calculating ratios or differences
two quantities which are nearly equal. The basic idea is t
the simulations of the geometries of interest are kept
closely correlated as possible so that most of the statis
fluctuations will cancel in the ratios and differences. The r
difference between the two geometries will be better
flected in the ratios and the differences obtained. The ca
lational uncertainties in the ratios and the differences
tained with correlated sampling are, in general, smaller t
those obtained from uncorrelated simulations.

There are several ways of doing correlated sampling
radiation transport. In coupled photon–electron transpor
simple method has been used in which random number s
of the particle histories, for which a primary particle or an
of the secondaries has deposited energy in the region o
terest for one geometry, is stored and used for the sim
tions of the alternative geometry.57 A new correlated sam-
pling method for the transport of electrons and photons
been developed in which a main particle history is split
whenever a particle meets the boundary of the region wh
the medium differs between the two or more cases.61 This
particle is then followed separately for each case until it a
all its descendants terminate. Holmes62 described a corre-
lated sampling technique which forces histories to have
same energy, position, direction and random number see
incident on both a heterogeneous and homogeneous w
phantom. This ensures that a history that has, by cha
traveled through only water in the heterogeneous phan
will have the same path as it would have through the hom
geneous phantom, resulting in a reduced variance whe
ratio of the heterogeneous dose to the homogeneous do
formed.

Use of geometry symmetry.The use of some of the inher
ent symmetry of the geometry may realize a considera
increase in efficiency. If both the source and target confi
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rations contain cylindrical planar or spherical–conical sim
lation geometries, the use of symmetries is more obvio
Other uses of symmetry are less obvious, but the savin
computing time is worth the extra care and coding.

III. NUCLEAR MEDICAL IMAGING TECHNIQUES

Recent advances in detector design focus on enha
sensitivity and spatial and temporal resolution, and on
possibility of using conventional photon and coincidence
tection ~two back-to-back photons, each with an energy
511 keV! simultaneously. In this section, we describe inst
mentation advances in nuclear medical imaging.

A. Planar gamma camera imaging

Gamma camera imaging requires the collimation
gamma rays emitted by the radiopharmaceutical distribu
within the body. Collimators are typically made of lead
tungsten and are about 4 to 5 cm thick and 20 by 40 cm
a side. The collimator contains thousands of squares, ro
or hexagonal parallel channels through which gamma r
are allowed to pass. Although quite heavy, these collima
are placed directly on top of a very delicate single crysta
NaI~Tl!. Any gamma camera so equipped with a collima
is called an Anger camera.63 Gamma rays traveling along
path that coincides with one of the collimator channels w
pass through the collimator unabsorbed and interact with
NaI~Tl! crystal creating light. Behind the crystal, a grid
light sensitive photomultiplier tubes collect the light for pr
cessing. It is from an analysis of these light signals that
ages are produced. Depending on the size of the Anger c
era, whole organs such as the heart and liver can be ima
Large Anger cameras are capable of imaging the entire b
and are used, for example, for bone scans.

A typical Anger camera equipped with a low-energy c
limator detects roughly one in every ten thousand gamma
photons emitted by the source in the absence of attenua
This number depends on the type of collimator used. T
system spatial resolution also depends on the type of c
mator and the intrinsic resolution of the Anger camera.
typical modern Anger camera has an intrinsic resolution o
to 9 millimeters. Independent of the collimator, system re
lution cannot get any better than intrinsic resolution. T
same ideas also apply to sensitivity: system sensitivity
always worse than intrinsic~crystal! sensitivity. A collimator
with thousands of straight parallel lead channels is calle
parallel-hole collimator, and has a geometric or collima
resolution that increases with the distance from the gam
ray source. The geometric sensitivity, however, is invers
related to geometric resolution, which means improving c
limator resolution decreases collimator sensitivity, and v
versa. High resolution and great sensitivity are two pa
mount goals of gamma camera imaging. Therefore, resea
ers must always consider this trade-off when working
new collimator designs. There have been several collim
designs in the past fifteen years, which optimized
resolution/sensitivity inverse relation for their particul
design.64 Converging hole collimators, for example, fa
Medical Physics, Vol. 26, No. 4, April 1999
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beam and cone-beam65 have been built to improve the trade
off between resolution and sensitivity by increasing t
amount of the Anger camera that is exposed to the radio
clide source. This increases the number of counts, wh
improves sensitivity. More modern collimator designs, su
as half-cone-beam and astigmatic, have also been conce
Sensitivity has seen an overall improvement by the introd
tion of multi-camera SPECT systems. A typical tripl
camera SPECT system equipped with ultra-high resolu
parallel-hole collimators can achieve a resolution of from
to 7 millimeters.2 Other types of collimators with only one o
a few channels, called pinhole collimators, have been
signed to image small organs and human extremities, suc
the wrist and thyroid gland, in addition to research anim
such as rats.66,67

B. Single-photon emission computed tomography

SPECT has, in recent years, become one of the m
tools for thein vivo localization of radiopharmaceuticals i
nuclear medicine studies. SPECT systems are now wid
available and important clinical areas of SPECT imaging
clude cardiology, neurology, psychiatry and oncology.
conjunction with new and existing radiopharmaceutica
quantitative SPECT may be used to noninvasively meas
blood-flow, metabolic function, receptor density and dr
delivery. In oncology, it is important in radiation dosimet
and treatment planning for internal radionuclide therapy
general and radioimmunotherapy~RIT!, in particular.2

Transverse tomographic images can be reconstructed
projection data acquired at discrete angles around the ob
Many mathematical approaches have been used for im
reconstruction in SPECT. Two broad categories ha
emerged, which we refer to as analytic and iterative al
rithms. The common characteristic of analytic methods
that they utilize exact formulas for the reconstructed ima
density. The most popular method is filtered backproject
where the acquired projection data are filtered with a ra
filter before being backprojected. The iterative approach
based on the process of matching the measured projectio
the calculated projections. The calculated projections are
termined from an initial reconstruction and are compared
the measured data. The difference between the two data
is used to correct the calculated projections. This proced
is repeated until some predefined error level has b
reached. Statistical reconstruction techniques such as
maximum-likelihood expectation-maximization~ML-EM !
algorithm seek a source distribution which will maximize t
ML function relating the estimated and the measured pro
tions.

The quantitative determination of the radioactivity conte
in tissues is required in both diagnostic and therape
nuclear medicine. Planar scintillation camera imaging h
been used to estimate activity in tumors and vario
organs.68 The drawback with this technique is, however, t
lack of information regarding the variation of activity wit
depth. The acquired images are, furthermore, distorted by
activity content in overlapping structures. In contra
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SPECT has great potential for the quantitation of activ
distributions in vivo due to its three-dimensional imagin
capability. There are, however, several factors that mus
considered in quantitative imaging. Some of these factors
the system sensitivity and spatial resolution, dead-time
pulse pile-up effects, the linear and angular sampling in
vals of the projections, the choice of reconstruction filter a
the size of the object and attenuation and scatter.1 Since im-
age quality in nuclear medicine is limited by statistics, t
administered dose and the imaging time are extremely
portant. In practice, the limited count statistics in most cli
cal studies affect the accuracy and precision of quantita
SPECT. However, the two most significant effects are
photon attenuation in the object and the contribution in
images of events arising from photons scattered in the ob
These effects limit the accuracy of quantitative measu
ments and result in decreased contrast and blurred edg
the reconstructed activity distribution in the image.2

C. Positron emission tomography

Measurement of the tissue concentration of a positr
emitting radionuclide is based on coincidence detection
the two photons arising from positron annihilation. Follow
ing the administration of a positron-emitting radioisotop
detector arrays surrounding the patient detect the emer
annihilation photons. After being sorted into parallel proje
tions, the lines of response~LORs! defined by the coinci-
dence channels are used to reconstruct the three-dimens
~3D! distribution of the positron-emitter tracer within the p
tient. In two-dimensional~2D! PET, each 2D transverse se
tion of the tracer distribution is reconstructed independen
of adjacent sections. In fully three-dimensional~3D! PET,
the data are sorted into sets of LORs, where each se
parallel to a particular direction, and is therefore a 2D pa
lel projection of the 3D tracer distribution. Coincidences a
collected for each LOR and stored in a 2D array, or sin
gram. In each sinogram, there is one row containing
LORs for a particular azimuthal angle; each such row co
sponds to a 1D parallel projection of the tracer distribution
a different coordinate along the scanner axis. An even
registered if both crystals detect an annihilation pho
within a coincidence time window of the order of 10 n
depending on the timing properties of the scintillator. A p
of detectors is sensitive only to events occurring in the tu
joining the two detectors, thereby registering direction inf
mation~electronic collimation!. Coincidence detection offer
significant advantages over single-photon detection: e
tronic collimation eliminates the need for physical collim
tion, thereby significantly increasing sensitivity. Accura
corrections can be made for the self-absorption of phot
within the patient so that absolute measurements of tis
tracer concentration can be made.

While the physics of positron annihilation limits the sp
tial resolution to, at best, 2–3 mm, the statistical accurac
related to the sensitivity of the detection system. In the p
twenty years, there has been a significant evolution in P
instrumentation from a single ring of bismuth german
Medical Physics, Vol. 26, No. 4, April 1999
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~BGO! detectors with a spatial resolution of 15 mm,19 to
multiple rings of small BGO crystals offering a spatial res
lution of 5 mm.69 The spatial resolution improvements ha
been achieved through smaller crystals and the efficient
of photomultipliers and position readout based on Ang
logic. The tomograph design which has proved successfu
recent years represents a compromise between maxim
sensitivity while keeping detector dead time and contami
tion from scattered and random coincidences at a reason
level. To achieve this performance, multi-ring tomograp
incorporate collimators~or septa! between the detector rings
with coincidences acquired only within a ring or betwe
adjacent rings.70 Thus, in the interest of maximizing th
signal-to-noise ratio and quantitative accuracy, compa
tively little use has been made of electronic collimation, o
of the main advantages of coincidence counting. Con
quently, an increase in sensitivity by a factor of 4–5 has b
achieved by removing the septa and acquiring coinciden
between detectors in any two rings71 ~Fig. 4!. It is also found
that tomographs without septa can be operated more e
tively with lower activity levels in the field-of-view.

A modern tomograph with inter-ring septa detects a
records only 0.5% of the photon pairs emitted from the
tivity within the tomograph field-of-view. This increases

FIG. 4. ~a! Schematic representation of a volume-imaging multi-ring P
scanner.~b! A block detector consists of a set of crystals having cuts
different depths acting as light guides and segmenting the block into
(838) detection elements in this example. The block is coupled to f
photomultiplier tubes at the back, and the crystal in which photoabsorp
occurs is identified by comparing the outputs of the four photomultip
tubes.
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over 3% when the septa are removed.69 However, even if the
detector system is 100% efficient for the detection of an
hilation photons, the angular acceptance of modern scan
would record only 4.5% of the coincidences. The spa
resolution obtained with modern tomographs is about 5
mm in all three directions. Most use detectors based
5cm35cm blocks of BGO. Each BGO block is cut into 8 b
8 individual detector cells and read out by four photomu
plier tubes. Light sharing schemes are used to identify
active detector cell. Energy resolution at 511 keV of su
BGO detector blocks is decreased from an intrinsic value
about 15% FWHM to around 23% up to 44%, depending
the cell, because of scintillation light losses resulting fro
the cuts applied to the detector block.

Compton scatter in the field-of-view is another effect
fluencing sensitivity and represents more than 30% of
data acquired with a 3D scanner.70 Increasingly sophisticated
scatter correction procedures are under investigation, par
larly those based on accurate scatter models, and
subtraction–convolution approaches.72,73 Monte Carlo meth-
ods give further insight and might in themselves offer a p
sible correction procedure. The development of fully 3D
construction algorithms has been necessary in order to
advantage of the acquisition of PET data without septa.74–76

In the most widely used 3D filtered backprojection~FBP!
algorithm of Kinahan and Rogers,75 unmeasured oblique pro
jection data, not accessible within the finite axial extens
of the scanner, are estimated by forward-projecting throug
low-statistics image reconstructed by 2D-FBP from tra
saxial projections. The completed 2D projections are th
reconstructed by the FBP technique: each 2D projectio
convolved with a 2D filter kernel, and then backprojected
3D through the image volume.

D. Multiple emission tomography

In recent years, there has been an increased intere
using conventional SPECT scintillation cameras for PET
aging, however, the count rate performance is a limiting f
tor. A sandwich-like construction of two different crysta
allows the simultaneous use of gamma and positron rad
harmaceuticals referred to as multiple emission tomogra
~MET!.77 This may be implemented with solid-state phot
diode readouts, which also allows electronically collimat
coincidence counting~Fig. 5!. The resultant images will pro
vide finer imaging resolution~less than 5 mm!, better con-
trast and a ten-fold improvement in coincidence sensitiv
when compared to what is currently available. Although
photodiode noise might be a major problem, this can
solved to some extent but with a significant increase in c

The performance of a detector block design which wo
have high resolution and high count rate capabilities in b
detection modes was recently evaluated.23 The high light
output of LSO~approximately 5–6 times BGO! allows the
construction of a detector block that would have similar
trinsic resolution characteristics at 140 keV as a conventio
high resolution BGO block detector at 511 keV. Howev
the intrinsic radioactivity of LSO prevents the use of th
Medical Physics, Vol. 26, No. 4, April 1999
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scintillator in a single-photon counting mode. YSO is a sc
tillator with higher light output than LSO but worse absor
tion characteristics than LSO. YSO and LSO could be co
bined in a phoswich detector block, where YSO is placed
a front layer and is used for low energy SPECT imaging a
LSO in a second layer is used for PET imaging.23 Events in
the two detector materials can be separated by pulse s
discrimination, since the decay times of the light in YSO a
LSO are different~70 and 40 ns, respectively!.

IV. APPLICATIONS OF THE MONTE CARLO
METHOD IN NUCLEAR MEDICAL IMAGING

A. Detector modeling

Monte Carlo simulation of detector responses and e
ciencies is one of the areas which has received consider
attention.5–10 The critical component of emission tomogr
phy is the scintillation detector. Increased light per gam
ray interaction, faster rise and decay times, greater stop
power and improved energy resolution are the desired c
acteristics. Table I summarizes these properties for sele
scintillators under development and currently in use. I
provements in these characteristics enable detectors t
divided into smaller elements, thus increasing resolution
minimizing dead-time losses.

An early contribution to the field providing a detailed d
scription of the techniques used was due to Zerby.78 Tabula-
tions of the response of NaI~Tl! detectors were performe
between 100 keV and 20 MeV,79 and the simulations of in-
cident photons above 300 keV impinging on cylindrical d
tectors of different materials due to Rogers.80 Simulations of
NaI~Tl! detectors with different shapes and volumes bel
300 keV have also been reported.81 A detailed investigation
of energy responses of germanium detectors and the us
Monte Carlo simulations to correct the measured spectra
been performed by Chan82 and comparisons of efficienc
calculations for BGO scintillators between Monte Carlo a
measurements reported.83 The detection efficiency of a high
pressure, gas scintillation proportional chamber, designed
medical imaging in the 30–150 keV energy range, has b
investigated through measurement and Monte Carlo sim
tion with the aim to design an optimized detector for use
specialized nuclear medicine studies.84 An approximate ex-

FIG. 5. The possible detector design of a multiple emission tomogra
camera. The detector blocks employ two separate crystals: one for si
photon emitters~yttrium oxyorthosilicate, YSO! and one for positron emit-
ters ~lutenium oxyorthosilicate, LSO!. Rectangular photomultiplier tube
~PMTs! are preferred because they reduce the dead spaces betwee
PMTs when compared to those of the circular ones.
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TABLE I. Characteristics of scintillator crystals under development and currently used in nuclear medicine imaging systems.

Scintillator NaI~Tl! BGO BaF2 LSO GSO LuAP YAP

Formula NaI~Tl! Bi4Ge3O12 BaF2 Lu2SiO5:Ce Gd2SiO5:Ce LuAlO3:Ce YAlO3:Ce
Density ~g/cc! 3.67 7.13 4.89 7.4 6.71 8.34 5.37
Light yield ~%! 100 15–20 3–20 75 20–25 25–50 40
Effective Z 51 75 53 66 60 65 34
Decay constant~ns! 230 300 1/700 42 30–60 18 25
Peak wavelength~nm! 410 480 195–220 420 440 370 370
index of refraction 1.85 2.15 1.56 1.82 1.95 1.95 1.56
Photofraction~%!a/b 17.3/7.7 41.5/88 18.7/78.6 32.5/85.9 25/82.3 30.6/85.1 4.5/48.
Mean free path~cm!a/b 2.93/0.4 1.04/0.08 2.19/0.27 1.15/0.1 1.4/0.16 1.05/0.1 2.17/0.
Hygroscopic Yes No No No No No No

aAt 511 keV.
bAt 140 keV.
lla
a
n

e

i
,
n

r o
n
ng
ria
m
n

T
to

ta
ns

to
a
in
hu
T.
or
it
n
b
n

on
io
r-

ti
tio
or
m
a

d
e

f a
has
osi-
dial
o

-
OI
le

N

of

on
f a
nte

lti-

ool
T

illa-
he
n
ph
by

s of
mu-
ing
n-
of

ca-

of
ral
orp-

for
ra-
f

pression for the count rate characteristics of Anger scinti
tion cameras has been derived, and validated by Monte C
simulations85 while the EGS4 Monte Carlo code has bee
used to evaluate the response of HgI2 crystal in terms of
efficiency, energy and space resolutions versus photon
ergy in the diagnostic energy range~20–100 keV!.86

Many detector modeling applications were developed
the PET field, including the pioneering work of Derenzo87

who simulated arrays of detectors of different materials a
sizes to study the effect of the inter-crystal septa and late
to optimize the optical coupling between BGO crystals a
PMTs88 by taking into account the reflection and scatteri
along the detection system. The search for an approp
detector for this imaging modality was conducted in a co
parative study of several crystals including BGO, CsF a
NaI~Tl!,89 BaF2 used in time-of-flight PET,90 and liquid
Xenon.91 Binkley92 modeled the impulse response of a PM
front-end amplifier, and constant fraction discriminator
evaluate the effects of front-end bandwidth and cons
fraction delay and fraction for timing-system optimizatio
of BGO scintillation detectors.

The penetration of annihilation photons into the detec
material before interaction is a statistical process which le
to significant displacement and anisotropy of the po
spread function. Compensation for crystal penetration is t
an important issue to recover the spatial resolution in PE93

Comanor94 investigated algorithms to identify and correct f
detector Compton scatter in hypothetical PET modules w
333330 mmBGO crystals coupled to individual photose
sors. The true crystal of first interaction was determined
the simulation for eventual comparison with the crystal ide
tified by a given algorithm. They reported a misidentificati
fraction of 12% if the detector has good energy and posit
resolution when using position of interaction to identify fo
ward scatter.

Numerous strategies have been proposed for construc
detector modules that measure the depth of interac
~DOI!, but most of them proved impractical to implement
provided insufficient DOI measurement resolution. Two i
portant questions can be addressed through Monte C
simulation:~i! what fraction of events will be mis-identifie
because of noise fluctuations in the photomultiplier tub
Medical Physics, Vol. 26, No. 4, April 1999
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~PMT’s! or photodiode array and~ii ! how will the DOI mea-
surement resolution affect the reconstructed resolution o
PET camera? The position-dependent light distribution
been used to measure the 511 keV photon interaction p
tion in the crystal on an event by event basis to reduce ra
elongation.95 Different geometrical modifications were als
simulated, leading to a proposal of a 2.235330 mmBGO
crystal, for which a 2.2 mm FWHM light distribution is pre
dicted, which should yield a PET detector module with D
measurement resolution of 3.6 mm FWHM. A test modu
with one 333330 mmBGO crystal, one 3 mm square PI
photodiode and one PMT operated at220 °C with an ampli-
fier peaking time of 4ms, and a measured DOI resolution
5 to 8 mm FWHM has been proposed by Moses.96 Simula-
tions predicted that this virtually eliminates radial elongati
in a 60 cm diameter BGO tomograph. The performance o
single detector element must be extrapolated using Mo
Carlo simulations to predict the performance of a mu
element module or a complete PET camera.

The Triumph PET group has developed a simulation t
to model position encoding multicrystal detectors for PE
that treats the interactions of energetic photons in a scint
tor, the geometry of the multi-crystal array, as well as t
propagation and detection of individual scintillatio
photons.97 Design studies of a whole-body PET tomogra
with the capacity to correct for the parallax error induced
the DOI of gamma-rays were also performed.98 The experi-
mental energy, depth and transverse position resolution
BGO block detectors were used as main inputs to the si
lations to avoid extensive light transport in position encod
blocks. An improved model for energy resolution which i
cludes the nonproportionality of the scintillation response
BGO and the statistical noise from photoelectron amplifi
tion in the PMT’s was also proposed.99 Simulation studies
have also been carried out to investigate the feasibility
using a triangular detection module for PET with neut
networks to reconstruct the coordinates of the photon abs
tion point and thus recover the DOI information.100 Another
exciting application is the use of a PET imaging system
monitoring the dose delivered by proton and gamma-ray
diotherapy beams.101 By measuring the amount and ratio o



tr

ic
to
a

th

s
in

in
tia
ly
rs
-

pt
be
e
a

-
e

at
en
to

-
as
ec
tr

lyz
m

th
r
f

ol
te
on

o
ne
le
R
ne
m
t
m
o
t
th
he
v
rlo

is-
en
tion
as
n.
el-

rgy

for
oid
in-
and

er-
nses
o-
o-
ate

de-
so-
te

n-
a

ec-

es
ght
nd

nts
li-
e

nte
arge
ch

lly
two
ral
to-
ise
ar-

ple
a
er
cer-
ve
ted

and
of
lli-
nce

586 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 586
the beam-induced positron-emitting activity, the dose dis
bution and tissue composition may be determined.

B. Imaging systems and collimators design

Image modeling was employed by Schulz,102 who devised
a computer program simulating a rectilinear scanner wh
was used to study the influence of different imaging pro
cols on the detectability of lesions. Simulation of gamm
camera imaging to assess qualitatively and quantitatively
image formation process and interpretation103 and to assist
development of collimators104 using deterministic method
and simplifying approximations have been developed ma
to improve speed of operation.

In gamma camera imaging, the choice of collimator
volves a compromise between sensitivity and spa
resolution.64,65 The proper choice of collimator is especial
difficult at the cut-off energy level of low-energy collimato
~e.g.,123I; 159 keV! and in multiple tracer studies. The rela
tionships between sensitivity, spatial resolution and se
penetration of a given set of collimators have to
studied.1,105 The physicist has to determine which of th
available collimators provides superior image quality for
given acquisition time.106 To that end, in addition to its quan
titative clinical applications, Monte Carlo simulation may b
a useful research tool for tasks such as evaluating collim
design and optimizing gamma camera motion. In rec
years, there is an increased use of specialized collima
such as fan-beam,65 convergent-beam,64 concave,107 variable
focus ~cardiofocal! and long-bore collimators. The improve
ment in image quality results from the fact that the incre
in resolution is greater than the loss of sensitivity. The eff
of collimation in a Compton-scatter tissue densitome
scanner has been studied in a detailed paper.108

Monte Carlo techniques were extensively used to ana
the performance of new collimators design for planar gam
camera,109,110 SPECT111 and PET imaging.112,113 Practical
guidance could be offered for understanding trade-offs
must be considered for clinical imaging. Selective compa
sons among different collimators could also be presented
illustrative and teaching purposes. Approaches to the c
mator optimization problem, as well as more sophistica
‘‘task-dependent’’ treatments and important considerati
for collimators design have been performed.114 The well-
known imaging performance parameters of parallel-hole c
limators could be compared with those of fan- and co
beam collimators106,115 which have enjoyed considerab
success in recent years, particularly for brain SPECT.
duced noise and higher sensitivity was reported for co
beam collimators compared to other collimators having si
lar geometric resolutions. Webb109 proposed a rotating-sli
collimator which collects one-dimensional projections fro
which the planar image may be reconstructed by the the
of computed tomography. A spatial resolution of 6 mm a
distance of 100 mm from the collimator with seven times
sensitivity of a parallel-hole collimator was achieved. T
imaging properties of optimally designed planar-conca
collimators were evaluated by means of Monte Ca
Medical Physics, Vol. 26, No. 4, April 1999
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simulations.111 The authors showed that the image noise d
tribution along the object radius became more uniform wh
the curved collimator was used and that the spatial resolu
of the lateral cortex when using the curved collimator w
significantly improved due to improved radial resolutio
Monte Carlo calculations were also used to aid in the dev
opment of a method for imaging therapeutic doses of131I by
using thick Pb sheets to the front face of a high-ene
parallel-hole collimator.116

There has been renewed interest in pinhole collimation
high resolution imaging of small organs such as the thyr
since it provides an improved spatial resolution and an
crease in sensitivity as the distance between the source
the pinhole aperture decreases.67 Wang117 simulated point
response functions for pinhole apertures with various ap
ture span angle, hole size and materials. The point respo
were parameterized using radially circularly symmetric tw
dimensional exponential functions which can be incorp
rated into image reconstruction algorithms that compens
for the penetration effect. The effect of pinhole aperture
sign parameters on angle-dependent sensitivity for high re
lution pinhole imaging was also investigated using Mon
Carlo modeling.118 Simulated131I SPECT studies for uni-
form cylinders showed that activity concentrations were u
derestimated toward the outside of the cylinders when
sin3 u rather than the correct sinx u sensitivity correction was
applied in image reconstruction, wherex is a parameter andu
is the angle of the incident ray with the surface of the det
tor crystal.

In a similar way in the PET field, Monte Carlo techniqu
were used to determine the effects of crystals with strai
and pointed tips and septa on spatial resolution a
efficiency,119 to compare the singles to true coincident eve
ratios in well collimated single, multi-slice and open col
mator 3D configurations,112 to evaluate tungsten inter-plan
septa of different thicknesses and geometries113 and to assess
the effect of collimation on the scatter fraction.120

The design of SPECT and PET systems using the Mo
Carlo method has received considerable attention and a l
number of applications were the result of su
investigations.121,122 Bradshaw121 used this tool for the de-
sign of a detector suitable for use in a SPECT cylindrica
shaped scintillation camera. Detection characteristics of
scintillator materials and the optical performance of seve
geometric configurations were studied. The design of pro
type systems that utilize solid-state detectors and low-no
electronics to achieve improved energy resolution were c
ried out using simulated SPECT projections of a sim
myocardial perfusion phantom.123 The results showed that
FWHM energy resolution of 3–4 keV is sufficient to rend
the error due to scatter insignificant compared to the un
tainty due to photon statistics. Monte Carlo simulations ha
also been performed to evaluate the design of collima
detectors used to measure125I or 131I in the thyroid gland.124

Two detector sizes were simulated for each radioisotope
activity was placed in both the gland and the remainder
the body in varying amounts to assess the efficacy of co
mation. This study showed that a wide angle of accepta
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587 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 587
and sufficient detector crystal thickness take precedence
collimation and shielding.

The Monte Carlo method has also been used in the de
of single-slice19,122 and multi-slice PET scanners.70,71 A
VME bus-based microcomputer system has been use
implement a model for simulation of the flux of gamma ra
in cylindrical PET detector systems.125 The program is ca-
pable of tracing over one million photons per hour and h
been used to explore some of the effects of ‘‘opening u
planar detector geometries into volumetric image
Rogers126 compared some of the performance parameter
a tomograph based on large area NaI~Tl! detectors to similar
parameters of conventional small crystal machines. Mich70

used theGEANT package from CERN43 to study the respons
function and the scatter fraction in two PET scanners w
and without inter-plane septa. The simulation of a lar
multi-plane PET camera named HISPET127 and a planar im-
aging system made of two matrices, each one consistin
400 (232330 mm3) crystals of YAP:Ce128 using theEGS4

system have also been reported. Thompson129 investigated
the effects of detector material and structure on PET spa
resolution and efficiency in terms of the number of intera
tions and tangential component of the mean square dist
between the centroid and the point of first interaction.

Several researchers used Monte Carlo simulation meth
to study potential designs of dedicated small animal posit
tomographs.130,131 An important conclusion drawn from
these studies is that unlike human imaging where both s
sitivity and spatial resolution limitations significantly affe
the quantitative imaging performance of a tomograph,
imaging performance of dedicated animal tomographs is
most solely based upon its spatial resolution limitations132

Recently, a conceptual design for a PET camera designe
image the human brain and small animals has b
presented.133 The authors performed a Monte Carlo simu
tion to predict the spatial resolution for a single plane P
camera with 3 mm LSO crystals. They concluded that
detector modules must be able to measure the DOI on
event by event basis in order to eliminate radial elongat
artifacts, and that such depth information can be incorpora
into the reconstruction algorithm in an artifact free way w
a simple rebinning method.

C. Image reconstruction algorithms

Monte Carlo simulations have been shown to be very u
ful for validation and comparative evaluation of image r
construction techniques since it is possible to obtain a re
ence image to which reconstructed images should
compared. Three different algorithms for performing PE
image reconstruction have been compared using Mo
Carlo phantom simulations.134 The results demonstrate th
importance of developing a complete 3D reconstruction
gorithm to deal with the increased gamma detection s
angle and the increased scatter fraction that result when
interslice septa are removed from a multi-ring tomogra
The Eidolon Monte Carlo package135 was used to simulate
projection data of the cold rod phantom both with and wi
Medical Physics, Vol. 26, No. 4, April 1999
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out scatter simulation. Figure 6 shows transaxial slices of
phantom reconstructed using four analytic algorithms:
reprojection algorithm~PROMIS!,75 the fast volume recon-
struction algorithm~FAVOR!,76 the Fourier rebinning algo-
rithm ~FORE!136 and the single-slice rebinning algorithm
~SSRB!.74 Using simulated data, Hanson137 validated a
method of evaluating image recovery algorithms based
the numerical computation of how well a specified visu
task can be performed on the basis of the reconstructed
ages. Task performance was rated on the basis of the de
ability index derived from the area under the receiver op
ating characteristic curve. Three-dimensional pho
detection kernels characterize the probabilities that phot
emitted by radioisotopes in different parts of the source
gion will be detected at particular projection pixels of th
projection images.138 Smith139 used Monte Carlo modeling to
study these kernels for the case of parallel-hole collimato
The authors also proposed a reconstruction method using

FIG. 6. Reconstructions of Monte Carlo data sets of the Jaszczack’s cold
phantom generated without~left! and with ~right! scatter simulation using
from top to bottom the PROMIS, FAVOR, FORE, and SSRB algorithm
The cold rod diameters are from top right counter clockwise: 4.8, 6.4,
9.5, 11.1 and 12.7 mm. Approximately 25 Mcounts were recorded for b
types of simulations.
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588 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 588
3D kernels in which projection measurements in three a
cent planes are used simultaneously to estimate the so
activity of the center plane. The matrix equations for ima
reconstruction are solved using generalized matrix inver
King140 conducted a Monte Carlo study to investigate t
artifacts caused by liver uptake in SPECT perfusion imag
and to verify the hypothesis that the cardiac count chan
are due to the inconsistencies in the projection data inpu
reconstruction. A correction of the causes of these incon
tencies before reconstruction, or including knowledge of
physics underlying them in the reconstruction algorith
would virtually eliminate these artifacts.

Floyd141 evaluated convergence properties of the ML-E
algorithm for SPECT image reconstruction as a function
Poisson noise, precision of the assumed system resolu
model and iteration number. It was also shown that les
contrasts and signal-to-noise ratios in ML-EM estimates
SPECT images can be improved by considering Comp
scattering when calculating the photon detection probab
matrix.142 Bayesian reconstruction methods introduce pr
information, often in the form of a spatial smoothness re
larizer. More elaborate forms of smoothness constraints m
be used to extend the role of the prior beyond that o
stabilizer in order to capture actual spatial information ab
the object.143 In recent years, many investigators propos
Gibbs prior models to regularize images reconstructed fr
emission computed tomography data. Unfortunately, the
perparameters used to specify Gibbs priors can greatly in
ence the degree of regularity imposed by such priors and
a result, numerous procedures have been proposed to
mate hyperparameter values from observed image d
Higdon144 used recent results in Markov chain Monte Ca
sampling to estimate the relative values of Gibbs partit
functions. Using these values, sampling was performed f
joint posterior distributions on image scenes. This allows
a fully Bayesian procedure which does not fix the hyper
rameters at some estimated or specified value, but ena
uncertainty about these values to be propagated through
estimated intensities.

Maximum a posteriori ~MAP! reconstruction has bee
shown to have significant advantages over traditional
methods in terms of noise performance, but these advant
are highly dependent on the choice of the distribution use
model the prior knowledge about the solution image. A MA
approach for iterative reconstruction based on a weigh
least-squares conjugate gradient~WLS-CG! algorithm was
proposed and validated using simulated hot-sphere phan
SPECT data and patient studies.145 The ill-posed nature of
tomography leads to slow convergence for standard grad
based iterative approaches such as the steepest descent
conjugate gradient algorithm. Chinn and Huang146 proposed
a preconditioned conjugate gradient~PCG! iterative algo-
rithm for WLS reconstruction in order to accelerate the co
vergence rate of iterative reconstruction. Using simula
PET data of the Hoffman brain phantom, the authors h
shown that the convergence rate of PCG can reduce the n
ber of iterations of the standard conjugate gradient algori
Medical Physics, Vol. 26, No. 4, April 1999
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by a factor of 2–8 times depending on the convergence
terion.

The search for unified reconstruction algorithms led to
development of inverse Monte Carlo~IMC! reconstruction
techniques.147 The concept of IMC was introduced in 1981
an attempt to describe a numerical method for solving a c
of inverse problems.148 The IMC method converts the in
verse problem, through a noniterative simulation techniq
into a system of algebraic equations that can be solved
standard analytical or numerical techniques. The princi
merits of IMC are that, like direct Monte Carlo, the metho
can be applied to complex and multivariable problems, a
variance reduction procedures can be applied. The nonit
tive IMC is strongly related to the variance reduction tec
nique in direct simulation called importance sampling whe
the sampling process is altered by using random numb
from a modified distribution. Floyd149 used IMC to perform
tomographic reconstruction for SPECT with simultaneo
compensation for attenuation, scatter and distance-depen
collimator resolution. A detection probability matrix i
formed by Monte Carlo solution to the photon transp
equation for SPECT acquisition from a unit source activity
each reconstruction source voxel. The measured projec
vectorpj will equal the product of this detection probabilit
matrix Ai j with the unknown source distribution vectorsi :

@pj #5@Ai j #@si #. ~20!

The resulting large, nonsparse system of equations
solved for the source distribution using an iterative ML-E
estimator. The IMC technique proved to provide compen
tion for the collimator effects in addition to providing highe
resolution.150 It is worth noting that although the techniqu
was developed for SPECT, it is also valid for other imagi
techniques like PET and transmission CT.

The ability to theoretically model the propagation of ph
ton noise through emission computed tomography rec
struction algorithms is crucial in evaluating the reconstruc
image quality as a function of parameters of the algorith
Wilson151 used a Monte Carlo approach to study the no
properties of the ML-EM algorithm and to test the pred
tions of the theory. The ML-EM statistical properties we
calculated from sample averages of a large number of ima
with different noise realizations. The agreement between
more exact form of the theoretical formulation and t
Monte Carlo formulation was better than 10% in most ca
examined, and for many situations the agreement was wi
the expected error of the Monte Carlo experiments. The sa
methodology was also followed to analyze a MAP-EM alg
rithm incorporating an independent gamma prior, and a o
step-late~OSL! version of a MAP-EM algorithm incorporat
ing a multivariate Gaussian prior, for which familia
smoothing priors are special cases.152

D. Attenuation and scatter correction techniques

The presence of scatter and attenuation in the images
its the accuracy of quantification of activity.1 With no cor-
rections, the uncertainty could be as high as 50–1002
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FIG. 7. ~a! Schematic view of a99mTc
line source placed at the centre of
water-filled cylinder to a scintillation
camera. ~b! A comparison between
calculated~solid line! and experimen-
tal ~dots! energy spectra for a line
source on the axis of a water-filled
cylinder. Distribution of the various
orders of scattered and nonscatter
photons are shown by broken lines
~Reprinted by permission from Ref
158!.
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Scatter does not produce major artifacts comparable to
tenuation but reduces image contrast by including a lo
frequency blur in the image. The impact of scatter gener
depends on the photon energy, camera energy resolution
energy window settings, besides the object shape and
source distribution.153,154Many of these parameters are no
stationary which implies a potential difficulty when develo
ing proper scatter and attenuation correction techniqu
However, correction for scatter remains essential, not o
for quantification, but also for lesion detection and ima
segmentation.155 For the latter case, if the boundary of a
activity region is distorted by scatter events, then the ac
racy in the calculated volume will be affected.156 Monte
Carlo calculations have been found to be powerful tools
quantify and correct for photon attenuation and scattering
nuclear medicine imaging since the user has the ability
separate the detected photons into their components: prim
events, scatter events, contribution of down-scatter eve
etc. Monte Carlo modeling thus allows a detailed investi
tion of the spatial and energy distribution of Compton sca
which would be difficult to perform using present expe
mental techniques, even with very good energy resolu
detectors.157

In gamma camera imaging and SPECT, simulation p
grams have been used to obtain information on the diffe
processes occurring within the phantom and the detec
For example, energy pulse-height distribution, point-spr
function and the scatter fraction can be obtained.158 The scat-
tered events in the energy–pulse-height distribution can
separated according to the number of scattering events in
phantom~Fig. 7!. It is clearly shown that a significant num
ber of scattered events will be accepted by the photop
energy window. The scatter fraction is of great importan
for quantitative estimation of the scattering contribution.159 It
is defined as the ratio between the number of scattered
tons and the total number of photons~scattered and unsca
tered!. The scatter fraction is generally measured by sc
ning a line source placed at the center of a water-fil
cylinder. Line spread functions~LSFs! are generated and th
scatter fraction determined by fitting the scatter tails of
LSFs to a mono-exponential function~Fig. 8!. The scatter
Medical Physics, Vol. 26, No. 4, April 1999
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fraction is calculated as scatter/total where total and sca
are calculated as the integral of the LSF and the fit within
diameter of the field-of-view. Figure 9 compares scatter fr
tions for different source depths and energy window si
calculated with different Monte Carlo codes simulating sc
tillation camera characteristics.13–15Beekman160 developed a
fast analytic simulator of tomographic projection data taki
into account attenuation, distance-dependent detector
sponse and scatter based on an analytical point spread
tion ~PSF! model. Several simplifying approximations we
also adopted to improve the speed of operation; restrictio
the extent of the primary and scatter PSFs, coarse samp
of the PSFs in the direction perpendicular to the camera f
and use of a circularly symmetric scatter function.161

A study of the factors mostly responsible for spectral co
tamination~overlapping of unscattered and scattered eve
throughout the energy spectrum! including nuclear medicine
imaging instrumentation itself has been performed.162

Frey163 generated scatter response functions~SRFs! using
Monte Carlo techniques and investigated the characteris

FIG. 8. Experimental determination of the scatter fraction by fitting t
scatter tails to a monoexponential function. The scatter fraction is calcul
as the integral of the scatter tails~gray area! to the integral of the LSF,
within the diameter of the FOV.



g
ud
ri-
ly
an
-

th
at

s
a
a
f-

f
m

a
in
ll
.
lin
h

ph
id
t

tra
en

d
T.
si
o

tio
pa

c of
arlo
ous
n
was
ing

-
ed
of

or
so

nty
he
ing
-

u-

ub-
ted
ini-
.
tter
that

the
ugh
h of
ch-

alue
f a
ob-

is-
at-
the
sian
nte
ly

tion
also
and

w
ed
wo
ro-
e-

imu-
gy
i-

om
een
ed

rc
d

590 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 590
of the scattered radiation by fitting the SRFs with fittin
functions. The parameters of the fitting functions were st
ied as a function of source position in a water-filled cylind
cal phantom with circular cross-section. A third-order po
nomial for modeling the SRF and an approximately const
fitting window was also proposed.164 SRFs were also simu
lated for inhomogeneous scattering media.165,166This model
has been implemented in a projector–backprojector pair
makes iterative reconstruction based scatter compens
feasible.167

Ljungberg168 simulated both parallel and fan-beam tran
mission imaging to study the effect of down-scatter from
emission99mTc radionuclide into the energy window for
transmission153Gd radionuclide. An investigation of the e
fects of scattered photons in gamma-ray transmission CT
several types of data acquisition systems was also perfor
including a flood source and a parallel-hole collimator,
collimated flood source and a parallel-hole collimator, a l
source and a symmetric fan-beam collimator and a co
mated line source and a symmetric fan-beam collimator169

The results showed that a fan-beam collimator and
source rejected most of the scattered collimated emitted p
tons at the object side, and that almost all the scattered
tons could be rejected at the collimator on the detector s
Speller and Horrocks170 studied multiple scatter effects a
lower energies, including incident diagnostic x-ray spec
and obtained correction factors for clinical use in tissue d
sitometry.

Much research and development has been concentrate
the scatter compensation required for quantitative SPEC1,2

Floyd171 used Monte Carlo simulations to validate the ba
assumptions underlying the empirical implementation
their scatter subtraction algorithm. Three scatter correc
techniques for SPECT have been assessed and com

FIG. 9. A comparison of simulated scatter fractions for different sou
depths and energy window sizes obtained with different Monte Carlo co
simulating scintillation camera characteristics.
Medical Physics, Vol. 26, No. 4, April 1999
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where scatter coefficients and parameters characteristi
each technique have been calculated through Monte C
simulations and experimental measurements for vari
source geometries.172 The Compton scatter correctio
method based on factor analysis of dynamic structures
evaluated both on planar imaging and SPECT data us
Monte Carlo simulations and real phantoms.173 A compari-
son with the modified dual-window~DW! method was also
presented. Ljungberg174 derived a method based on the com
bined use of 3D density information provided by comput
tomography to correct for attenuation and the application
Monte Carlo simulated build-up factors to correct f
build-up in the projection pixels. A similar method was al
proposed for planar imaging.175 The effects of tissue-
background activity, tumor location, patient size, uncertai
of energy windows and definition of the tumor region on t
accuracy of quantification were investigated by calculat
the multiplier which yields correct activity for the volume
of-interest when using the DW method.176

A scatter correction method in which Monte Carlo sim
lated scatter line-spread functions~SLSF! for different depth
and lateral positions has been developed.177 The uncorrected
reconstructed images are convolved with the SLSF and s
tracted from the projection data to yield scatter-correc
projections. The method was further validated using a cl
cally realistic, nonhomogeneous, computer phantom178

Naude179 studied the accuracy of the channel ratio sca
correction technique which is based on the assumption
the ratio of the scatter components in the two windows~H
value! is constant and independent of the relative size of
scatter contribution. The results have shown that altho
the true H value depends on both source size and dept
the source in the scattering medium, the channel ratio te
nique can be applied successfully when an average H v
is used. Welch180 developed a method based on the use o
transmission map to define the inhomogeneous scattering
ject for modeling the distribution of scattered events in em
sion projection data. The probability of a photon being sc
tered through a given angle and being detected in
emission energy window was approximated using a Gaus
function whose parameters were determined using Mo
Carlo generated parallel-beam SLSFs from a nonuniform
attenuating phantom. A combined scatter and attenua
correction that does not require a transmission scan was
proposed and validated using measured planar data
simulated SPECT for111In imaging.181

Hademenos182 applied a modified dual photopeak windo
~DPW! scatter correction method to Monte Carlo simulat
201Tl emission images. This method was also applied to t
views of an extended cardiac distribution within an anth
pomorphic phantom, resulting in at least a six-fold improv
ment between the scatter estimate and the Monte Carlo s
lated true scatter. A simulation study of the triple ener
window ~TEW! method was conducted in a mult
radionuclide (99mTc/201Tl) SPECT study.183 A good agree-
ment between the activity distributions reconstructed fr
primary photons and those from corrected data has b
shown. A spill-down correction method was also propos
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FIG. 10. ~a! A comparison between measured and simulated single energy spectra of the ECAT-953B PET scanner~reprinted with permission from Ref. 191!.
~b! The energy distribution due to scattered photons resulting from the simulation of a line source placed in the center of a 20 cm diameter water-fille
is separated into different contributions~total scattering or different orders of photon scattering!. Energy resolution is proportional to the inverse square r
of the deposited energy and is simulated by convolving the deposited energy with a Gaussian function whose FWHM is 23% for 511 keV photon
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for the 201Tl window image in simultaneous dual-isotop
99mTc/201Tl SPECT imaging based on a single acquisiti
into three energy windows.184 Using Monte Carlo tech-
niques, the fractional amount of99mTc and201Tl spill-down
in the 201Tl window with respect to the total counts from th
spill-down window, was calculated for simulated images
point sources at varying depths within a water-filled elliptic
tub phantom.

The DW and the convolution~CV! scatter correction tech
niques were compared using projection data, simulated
the Monte Carlo method.185 The scatter distributions pre
dicted by the CV technique were found to be consisten
lower than those simulated by the Monte Carlo method in
part of the scatter distribution corresponding to the locati
of the sources while the DW technique gave lower estima
of the scatter distribution. Further comparisons of four sc
ter correction methods: DW, DPW, TEW and CV were a
performed using simple phantoms and a clinically realis
source distribution simulating brain imaging.186 The authors
concluded that performing scatter correction is essential
accurate quantification, and that all four methods yield
good, but not perfect, scatter correction. Buvat187 compared
nine scatter correction methods based on spectral anal
Simulations and physical phantom measurements were
used to compare the accuracy and noise properties of
transmission-dependent convolution subtraction and
TEW scatter correction techniques.188 The TEW had the
worst signal-to-noise ratio in the heart chamber of a sim
lated chest phantom.

In the PET imaging world, Compton scattering effects
water on profiles of activity have been simulated.189 Figure
10~a! shows a comparison between measured and simul
Medical Physics, Vol. 26, No. 4, April 1999
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single energy spectra of the ECAT-953B PET scanner.
energy resolution of 23% FWHM has been assumed, si
this is the typical value for BGO block detectors.135 An en-
ergy pulse-height distribution obtained by simulation of
line source in the center of a water-filled cylindrical phanto
where scattered events have been separated according
number of scatterings is also shown@Fig. 10~b!#. The accu-
racy of experimental methodologies used for scatter frac
and scatter pair spatial distribution determination were eva
ated using the Monte Carlo method.190 Figure 11 shows com-
parisons between measured and simulated scatter fractio
a function of the lower energy threshold.191 Barney192 devel-
oped an analytical simulation for single and multipl
scattered gamma rays in PET. The multiple-scatter mo
showed good agreement with a Monte Carlo simulation
total object scatter. The authors also proposed a scatter
rection method which uses the analytical simulation and
ploits the inherent smoothness of the scatter distribution
account for three-dimensional effects in scatter distribut
and object shapes. Scatter components in PET divided
primaries, object scatter, gantry scatter and mixed scatter
their effects on the degradation of reconstructed images w
also investigated.193 Quantification of those components for
small animal PET prototype were also reported.194 A Monte
Carlo study of the acceptance to scattered events in a d
encoding large aperture camera made of position enco
blocks modified to have DOI resolution through a variati
in the photopeak pulse height was performed.191 It was re-
ported that the poorer discrimination of object scatters w
depth sensitive blocks does not lead to a dramatic increas
the scatter fraction.

Although several approaches have been proposed for s
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ter correction for 3D PET, six basic approaches have b
taken to this correction: multi-energy window approach
integral transformation approaches, an approach relying
an auxiliary, septa extended scan, curve-fitting approac
model-based approaches, and direct Monte Carlo techniq
Levin195 developed a correction method that uses the
reconstructed image volume as the source intensity distr
tion for a photon-tracking Monte Carlo simulation. The h
tory of each annihilation photon’s interactions in the scatt
ing medium is followed, and the sinograms for the scatte
and unscattered photon pairs are generated in a simulate
PET acquisition. The calculated scatter contribution is u
to correct the original data set. Monte Carlo techniques w
used to estimate ‘‘best possible’’ weighting functions for d
ferent energy-based scatter correction schemes and to e
ine the optimal number of energy windows for NaI~Tl! and
BGO scintillators.196 Ollinger72 developed a model-base
scatter correction method that uses a transmission scan
emission scan, the physics of Compton scatter and a m
ematical model of the scanner in a forward calculation of
number of events for which one photon has undergon
single Compton interaction. A single-scatter simulation te
nique for scatter correction where the mean scatter contr
tion to the net true coincidence data is estimated by simu
ing radiation transport through the object was also sugge
and validated using human and chest phantom studies.73

E. Dosimetry and treatment planning

There is no doubt that the area where early Monte Ca
calculations in the field have been performed is dosime
modeling and computations.10 The approach adopted by th
Medical Internal Radiation Dose~MIRD! committee was
first proposed in 1968 and published in a series of sup

FIG. 11. A comparison between measured and simulated scatter fractio
the ECAT-953B as a function of the lower energy threshold~reprinted with
permission from Ref. 191!.
Medical Physics, Vol. 26, No. 4, April 1999
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ments to theJournal of Nuclear Medicineas different
pamphlets.197–199 Some of these pamphlets made extens
use of Monte Carlo calculations to derive specific absorb
fractions for electron and photon sources uniformly distr
uted in organs of mathematical phantoms. Cristy200 demon-
strated that the reciprocity theorem which states that for
pair of regions in a uniform isotropic or uniform scatterle
model, the specific absorbed fraction is independent of wh
region is designated source and which is designated ta
may also be valid for heterogeneous phantoms for cer
conditions. Comparisons between measured and calcul
doses when the uncertainties associated with both techni
are considered validated the experimental validity of t
approach.201 Other approaches using the MIRD formalis
have also been proposed.202 Poston203 calculated photon spe
cific absorbed fractions for both the Cristy and Eckerm
gastrointestinal tract and their revised model and repo
differences between electron absorbed fraction values w
and without electron tracking. The calculation of absorb
fractions for positron emitters relevant to neurologic stud
were also reported.204 Interest in Monte Carlo-based dos
calculations withb-emitters has been revived with the app
cation of labeled monoclonal antibodies to RIT.

In a review article on tumor dosimetry forb-emitters,
Leichner and Kwok205 divided the various approaches in
several classes, namely numerical, analytical or Mo
Carlo. It is also necessary to consider hybrid approach
namely numerical approaches using Monte Carlo data.
use of Monte Carlo codes enables the absorbed fractio
energy to be calculated directly for a given radionuclide re
tive to its geometry and emission spectrum. This can be d
for relatively simple geometries206 but the main trend of
Monte Carlo approaches is that they allow complex simu
tions involving inhomogeneities.48,207–211 Sometimes, the
Monte Carlo technique is used just to simulate random d
tribution of sources or targets whereas the actual dosime
calculation is performed using dose-point kernels.212,213

Mono-energetic dose-point kernels which indicate variatio
in energy delivered at a distance from mono-energetic p
ton or electron point sources are commonly used data s
The scaled point kernelF(x/r 0 ,E0) is defined by the equa
tion

FS x

r 0
,E0D54Prx2F~x,E0!, ~21!

wherer is the density of the medium,r 0 is the range in the
continuous slowing down approximation~CDSA! at energy
E0 and F(x,E0) is the specific absorbed fraction. The
point kernels are calculated from Monte Carlo codes. Th
Monte Carlo codes are often reported in the literatu
ETRAN,197,198,214ACCEPT215 and EGS4.207,216,217Although re-
sults obtained withETRAN versions prior to 1986 may diffe
from those obtained withEGS4,40 due to an incorrect sam
pling of the energy-loss straggling inETRAN, there are no
important differences in the results obtained with these t
codes. It must be noted that the results reported in MI
pamphlet 7,198 do not share the error described above. O

in
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FIG. 12. Dose kernels generated in an infinite wat
medium for radionuclides of potential interest in radio
immunotherapy.
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major limitation in applying these codes to dosimetry
b-emitting radionuclides is that they cannot deal satisfac
rily with electron energies below 10 keV.40 The EGS4 code
was also used to characterize the spatial and energy dist
tion of bremsstrahlung radiation from beta point sources
portant to RIT in water.217 This study provided the initia
data required for modeling and analyzing the scatter, atte
ation, and image formation processes in quantitative imag
of bremsstrahlung for RIT dosimetry.

Leichner218 proposed a unified approach to photon a
b-particle dosimetry. This approach is based on a fit of Be
er’s tables for photons197 and electrons.198 The empirical
function proposed is equally valid for photons a
b-particles. Therefore both point-kernel and Monte Ca
techniques can be effectively employed to calculate abso
dose to tissue from radionuclides that emit photons or e
trons. The latters are much computationally intensive, ho
ever, point-kernel methods are restricted to homogeneous
sue regions that can be mathematically described
analytical geometries, whereas Monte Carlo methods h
the advantage of being able to accommodate heterogen
tissue regions with complex geometric shapes. Recen
Furhang219 generated photon point dose kernels and
sorbed fractions in water for the full photon emission sp
trum of radionuclides of interest in nuclear medicine,
simulating the transport of particles using Monte Carlo te
niques. The kernels were then fitted to a mathematical
pression. Figure 12 shows dose kernels generated in an
nite water medium for selected radionuclides of poten
interest in RIT.219

The most recently available version of theMIRDOSE3

code,220 developed by the Radiation Internal Dose Inform
tion Center~Oak Ridge Institute for Science and Educatio!
allows the calculation of the absorbed dose as well as
effective dose and the effective dose equivalent. The p
gram deals with three phantoms representing the preg
woman at 3, 6 and 9 months of gestation and allows the d
Medical Physics, Vol. 26, No. 4, April 1999
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delivered to the fetus to be calculated at different stages
growth. A phantom of the adult woman has also been
cluded in the program which differs from that of the 15-yea
old adolescent. TheMABDOS program221 starting with a ref-
erence man allows for the definition of a spherical tum
target and ‘‘on the fly’’ Monte Carlo calculations to b
made.222 This code was also used to show that neglecting
photon contribution from131I photon spectrum underest
mates the tumor dose by 10–25%.223

Akabani224 usedEGS4 Monte Carlo calculations to esti
mate absorbed doses to the blood and to the surface o
blood vessel wall as well as to a mathematical model o
Haversian canal.225 Calculation of the dose to the upper spin
region near the thyroid resulting from the administration
3700 MBq of131I and assuming a thyroid uptake of 10% w
also performed.226 A Monte Carlo model has also been d
veloped for the simulation of dose delivery to skeletal m
tastases by the bone surface-seeking radiopharmaceu
186Re~Sn! HEDP to optimize treatment planning and do
response evaluations of therapeutic bone-seek
radiopharmaceuticals.227 Beta-particle dosimetry of variou
radionuclides used in radiation synovectomy, an int
articular radiation therapy to treat rheumatoid arthritis w
also estimated using theEGS4Monte Carlo code.228,229

It seems as if we are on the way to a more and m
personalized human dosimetry with radiolabeled antibo
dosimetry one of the aims. The dose distribution pattern
often calculated by generalizing a point source do
distribution,230,231 but a direct calculation by Monte Carl
techniques is also frequently reported because it allows
dia of inhomogeneous density to be considered.232 The de-
velopment of a 3D treatment planner based on SPECT/P
imaging is an area of considerable research interest and
eral dose calculation algorithms have been developed.223 Fig-
ure 13 lists the essential steps required in developing a
treatment planning program for RIT. Projection data a
quired from an emission tomographic imaging system
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594 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 594
processed to reconstruct transverse section images w
yields a count density map of source regions in the bo
This count density is converted to an activity map using
sensitivity derived from a calibration phantom. In the fin
step, this activity distribution is converted to a dose rate
dose map by convolving the activity distribution with dos
point kernels or by direct Monte Carlo calculations. T
elaborate a treatment plan for an individual patient, prosp
tive dose estimates can be made by using a tracer activit
radiolabeled antibody to obtain biodistribution informatio
prior to administration of a larger therapeutic activity. T
clinical implementability of treatment planning algorithm
will depend to a significant extent on the time required
generate absorbed dose estimates for a particular patien

In particular, Sgouros213 proposed real 3D treatment plan
ning for RIT in which patient data~cumulative activity vox-
els! are convolved with dose-point kernels in order to det
mine the isodose distribution.233,234 This is then
superimposed on the target visualized in 3D by computeri
tomography~CT! or MRI. The methodology was extende
later to develop a dosimetry algorithm based on a Mo
Carlo procedure that simulates photon and electron trans
and scores energy depositions within the patient.50,231,235

Microdosimetric approaches are required when the r
tive deviations from the mean of the local dose in the tar
exceed 20%. Humm236 developed a full Monte Carlo simu
lation of the stochastic variation of particle hits and ene
deposition in cell nuclei under two extreme geometric co
ditions, namely, when211At is retained in the capillary and
when it is homogeneously distributed in the tumor.
method which allows dose calculations to be made to in
vidual target cells in different regions of mouse bone marr
exposed to alpha particles emitted from bone was a
developed.237

FIG. 13. A diagram showing the essential steps required in developin
three-dimensional internal dosimetry program based on quantitative e
sion computed tomography.
Medical Physics, Vol. 26, No. 4, April 1999
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F. Pharmacokinetic modeling

Pharmacokinetic modeling is a useful component for
estimation of cumulated activity in various source organs
the body. A few applications of Monte Carlo techniqu
have been reported in the field of pharmacokinetic mode
and are discussed in this section.

Casciari238 developed a compartmental model of@F-18#
fluoromisonidazole transport and metabolism to compute
volume average kappa in tissue regions from@F-18# fluo-
romisonidazole PET time–activity data and characterize
using Monte Carlo simulations and PET time–activity da
This model was able to accurately determine kappa fo
variety of computer generated time–activity curves, inclu
ing those for hypothetical heterogeneous tissue regions
poorly perfused tissue regions. Compartmental models al
also the in vivo analysis of radioligand binding to recep
sites in the human brain. Benzodiazepine receptor bind
was studied using a three-compartmental model.239 The va-
lidity of the results of the coefficient of variation of eac
parameter were verified with statistical results provided
Monte Carlo simulation. Burger240 examined the possibility
of mathematical metabolite correction, which might obvia
the need for actual metabolite measurements. Mathema
metabolite correction was implemented by estimating the
put curve together with kinetic tissue parameters. The g
eral feasibility of the approach was evaluated in a Mo
Carlo simulation using a two tissue compartment model
simplified approach involving linear-regression straight-li
parameter fitting of dynamic scan data was developed
both specific and nonspecific models.241 Monte-Carlo simu-
lations were used to evaluate parameter standard deviat
due to data noise, and much smaller noise-induced bia
The authors reported good agreement between regres
and traditional methods.

Welch242 investigated and quantified the effect of typic
SPECT system resolution and photon counting statistics
the bias and precision of dynamic cardiac SPECT para
eters. The simulation of dynamic SPECT projection data w
performed using a realistic human torso phantom assum
both perfect system resolution and a system resolution t
cal of a clinical SPECT system. The results showed that
rate constant characterizing the washing of activity into
myocardium is more sensitive to the region of interest po
tion than is the washout rate constant, and that the m
effect of increased photon noise in the projection data is
decrease the precision of the estimated parameters.

Computer simulations demonstrate that an estimation
the kinetic parameters directly from the projections is mo
accurate than the estimation from the reconstruc
images.243 A strategy for the joint estimation of physiolog
cal parameters and myocardial boundaries was proposed
evaluated by simulated myocardial perfusion studies ba
on a simplified heart model.244 A method allowing the esti-
mation of kinetic parameters directly from SPECT con
beam projections was also proposed and validated wit
simulated chest phantom.245 The results showed that myoca
dial uptake and washout parameters estimated by con
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tional analysis of noiseless simulated cone-beam data
biases ranging between 3–26% and 0–28%, respectiv
while uncertainties of parameter estimates with this met
ranged between 0.2–9% for the uptake parameters and
tween 0.3–6% for the washout parameters.

V. OBJECT MODEL AND SOFTWARE PHANTOMS

Mathematical descriptions of human bodies and anthro
morphic phantoms are useful in radiation transport calcu
tions. They are widely used in computer calculations
doses delivered to the entire body and to specific organs,
are valuable tools in the design and assessment of im
reconstruction algorithms. Software phantoms modeled
imaging situations were historically limited to simple poin
rod, and slab shapes of sources and attenuating media.
simple geometries are useful in studying fundamental iss
of scatter and attenuation, but clinically realistic distributio
cannot be evaluated by such simple geometries. A pre
modeling of the human body requires appropriate inform
tion on the location, shape, density and elemental comp
tion of the organs or tissues.

A. Object modeling

Object modeling is fundamental for performing phot
and electron transport efficiently by means of a Monte Ca
method. It consists of a description of the geometry and m
terial characteristics for an object.246 The material character
istics of interest include density and energy-dependent cr
sections. The modeling includes simple geometry~SG!,
shape-based~SB!, and voxel-based~VB! approaches. The
three approaches use a piecewise uniform distribution of
ject characteristics to model an object. With the SG mod
an object is composed of a simple combination of primitiv
such as cylinders and spheres. The SB approach repre
the boundaries of shapes by mathematical equations. Re
shapes such as sphere, cylinder, rectangular solid, etc.
been used to approximate irregularly-shaped regions.
VB approach discretizes an object into tiny cubes~voxels!
with uniform characteristics. An object is thus represented
a union of voxels of the same size.

Extensions of SG and SB models such as the s
geometry-based~SGB! approach247 includes more primitives
~ellipsoids, elliptic cylinders, tapered elliptic cylinders, rec
angular solids, and their subsets: half, quarter, and eig!
and uses an inclusion tree data structure to provide relat
ships between primitives. These extensions provide sim
irregular shape modeling. To allow anthropomorphic mod
ing the composite model248 which is an extension to the SG
approach adds to the primitives a voxelized rectangular s
primitive. An object model based on a combination of mo
fied SG, SB and VB models without restriction in the com
bination set was also proposed.249 The data are structured i
a hierarchical and adjacence tree associated with an effic
tree scanning to reduce the computation time. Combinato
approaches to solid modeling, which describe complex st
tures as set-theoretic combinations of simple objects, are
ited in their ease of use and place unrealistic constraints
Medical Physics, Vol. 26, No. 4, April 1999
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the geometric relations between objects such as exclu
common boundaries. An approach to volume-based s
modeling has been developed which is based upon topol
cally consistent definitions of boundary, interior and exter
of a region.250 From these definitions, union, intersection a
difference routines have been developed that allow involu
and deeply nested structures to be described as set-theo
combinations of ellipsoids, elliptic cylinders, prisms, con
and planes that accommodate shared boundaries.

An octree-based method~OCT! which describes an objec
by using several sizes of cubic regions was proposed
Ogawa251 to increase the calculation speed in photon tra
port since the number of voxels is much smaller than tha
the VB approach. The ‘‘octree string’’ is generated from
set of serial cross-sections automatically. The same au
developed a modeling method called the maximum rect
gular region~MRR! method.246 In this approach, a MRR for
a given voxel is selected within a homogeneous, irregula
shaped region from a set of cross-sections. The searc
performed by checking the six sides of a box~MRR! includ-
ing the voxel of interest. With the MRR representation of t
object, high speed calculation of photon transport can
accomplished because an object can be described by m
of fewer regions than in the VB or the OCT representat
methods. Figure 14 illustrates the calculation time requi
for the VB OCT and MRR approaches for different ima
matrix sizes.

B. Anthropommorphic phantoms

Modeling of imaging and other medical applications
best done with phantom models that match the gross par
eters of an individual patient. Computerized anthropom
phic phantoms can either be defined by mathematical~ana-
lytical! functions, or digital volume arrays. The mathematic
specifications for phantoms that are available assume a

FIG. 14. Calculation times for VB, OCT, and MRR representation of
object ~reprinted with permission from Ref. 246!.



va
ev
nt

is
u
th

in

in
e
ng
an
d
r

t.
at
b
u
i

th

r–
te
a

in
d
as
r-
p

o
io

th
iv
in
om
n
m
he
d

am
th
el
tri
ns
c
r

e
ti
te
he

ws

nta-
CT,
an-
as

nt
s, in
ain
ivity
od

ar-
er,
A

g-

al
ale
e

as
dex
ter-
gn a
er-
lete
or
edi-
tion
re-
and

eld

d at
to

596 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 596
cific age, height and weight. People, however, exhibit a
riety of shapes and sizes. In the first MIRD pamphlets, s
eral organs including the skeletal system, were represe
schematically using geometric forms~cylinders, cones and
ellipsoids!.199 The representation of internal organs with th
mathematical phantom is very crude since the simple eq
tions can only capture the most general description of
organ’s position and geometry.202 A version of this phantom
has been updated to include female organs.252 The most stud-
ied phantom is defined as the reference man weigh
70 kg.253

Mathematical phantoms are still evolving and are be
constantly improved. The heterogeneity of the body has b
taken into account by including soft tissues, bone and lu
with different compositions and densities. For certain org
such as the stomach and the bladder, a distinction shoul
made between the organ contents and the organ wall. A
vised head and brain models was developed by Bouche254

Unlike previous head models, the neck and head are tre
as two separate compartments. The neck is represented
circular cylinder. It is topped by a cylindrical head region c
in the back by a cone, so that its bottom base coincides w
the top of the neck. Two vertical planes on the back join
cone to the cylinder of the head. The top of the head
defined by a half ellipsoid. The trunk region of the Snyde
Fisher phantom without its internal organs is incorpora
into the model. Based on the atlas of sectional hum
anatomy, a 3D computer model of a human torso, includ
four cavities of the heart, two lobes of the lung and the bo
surface and a 3D model of the myocardium w
developed.255 The torso model, with more than 10000 su
face triangles, depicts the structures and appropriate pro
tions of the internal organs, especially of the heart.

The Mathematical CArdiac Torso~MCAT! phantom is an
anthropomorphic phantom, developed at the University
North Carolina at Chapel Hill, that has been used in emiss
computed tomography imaging research.256 Using math-
ematical formulas, the size, shape and configurations of
major thoracic structures and organs such as the heart, l
breasts and rib cage are realistically modeled for imag
purposes. Though anatomically less realistic than phant
derived from CT or MR images of patients, the MCAT pha
tom has the advantage that it can be easily modified to si
late a wide variety of patient anatomies. In addition, t
MCAT phantom simulates a dynamic, beating heart inclu
ing changes in myocardial wall thickness, changes in ch
ber volumes, apical movement and heart rotation during
cardiac cycle. The phantom consists of two physical mod
a 3D distribution of attenuation coefficients and a 3D dis
bution of radionuclide uptake for the various thoracic orga
The 3D attenuation coefficient phantom classifies all thora
tissues into one of 5 types: muscle~vasculature and othe
soft tissues!, lung, fat ~such as in the breasts!, trabecular
bone and cortical bone. The MCAT phantom has becom
valuable tool in imaging studies where reasonably realis
but anatomically variable patient data needs to be simula
The graphic in Fig. 15 illustrates the MCAT phantom. T
Medical Physics, Vol. 26, No. 4, April 1999
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graphic is a volume-rendering of anterior and posterior vie
with some sections removed for visualization purposes.

Some calculations make use of more accurate represe
tions of individuals based on volumetric scans, such as
MRI, and PET. As an improvement to the mathematical
thropomorphic phantoms, a new family of phantoms w
constructed from CT data.257 The human phantoms prese
advantages towards the location and shape of the organ
particular, the hard bone and bone marrow. A physical br
phantom has also been developed to simulate the act
distributions found in the human brain in the cerebral blo
flow and metabolism studies currently employed in PET.258

The phantom utilizes thin layers of Lucite to provide app
ent relative concentrations of 4, 1 and 0 for gray matt
white matter and ventricles, respectively, in the brain.
clinically realistic source distribution simulating brain ima
ing was created in digital format.259 Zubal59,260 developed a
typical anthropommorphic VB adult phantom by manu
segmentation of CT transverse slices of a living human m
performed by medical experts. A computerized 3D volum
array modeling all major internal structures of the body w
then created. Each voxel of the volume contains an in
number designating it as belonging to a given organ or in
nal structure. These indexes can then be used to assi
value, corresponding to, e.g., density or activity. Two v
sions of the phantom exist, representing either the comp
human torso with an isotropic voxel resolution of 1.5 mm,
a dedicated head phantom with 0.5 mm voxel size. The d
cated brain phantom was created from the high resolu
MRI scans of a human volunteer. This volume array rep
sents a high resolution model of the human anatomy
serves as a VB anthropomorphic phantom.

VI. MONTE CARLO COMPUTER CODES

Many Monte Carlo programs have been in use in the fi
of nuclear imaging14,16,17,261 and internal
dosimetry,50,220,232,234with many of them available in the

FIG. 15. Surface rendered images of the 3D MCAT phantom develope
Chapel Hill. ~a! Anterior view with outer body surface and ribs removed
show the various organs modeled.~b! Posterior view with the rib cage
present~reprinted with permission from Ref. 256!.
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Medical Physics, Vo
TABLE II. Key features of Monte Carlo codes used in nuclear medical imaging.

MC code General description

EGS4 ~Ref. 262! Coupled photons/electrons transport in any mate
through user specified geometries. Simulation
imaging systems not specifically included and requir
an extensive amount of user programming inMORTRAN.

ITS including TIGER, CYLTRAN,
andACCEPT ~Ref. 263!

Coupled photons/electrons transport in any mate
through slabs, cylinders or combinatorial. Simulation
imaging systems not specifically included and requir
an extensive amount of user programming inFORTRAN.

MCNP ~Ref. 264! Coupled neutrons/photons/electrons transport in a
material through user generalized geometry. Simulat
of imaging systems not specifically included an
requires an extensive amount of user programming
FORTRAN.

GEANT ~Ref. 43! Coupled photons/electrons transport in any mate
through combinatorial geometry. Simulation of imagin
systems not specifically included and requires
extensive amount of user programming inFORTRAN.

SIMSET ~Ref. 21! Photons transport in any material through voxel-bas
phantoms. Simulation of SPECT and PET imagin
systems included. User modules written in C could
linked.

SIMIND ~Ref. 15! Photons transport in any material through voxel-bas
phantoms. Simulation of SPECT imaging system
included. User modules written inFORTRAN could be
linked.

SIMSPECT~Ref. 265! Coupled photons/electrons transport in any mate
through voxel-based phantoms. Simulation of SPEC
imaging systems included. User modules written
FORTRAN/C could be linked.

MCMATV ~Ref. 266! Photons transport in any material through voxel-bas
phantoms. Simulation of SPECT imaging systems
included. User modules written inFORTRAN could be
linked.

PETSIM ~Ref. 20! Photons transport in any material through shape-ba
phantoms. Simulation of PET imaging systems include
User modules written inFORTRAN could be linked.

EIDOLON ~Ref. 135! Photons transport in any material through shape-base
voxel-based phantoms. Simulation of 3D PET imagi
systems included. User modules written in C/Objectiv
C could be linked.
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public domain.9,10 Table II ~Refs. 262–266! lists Monte
Carlo codes widely used together with a short description
their key features.

EGS4. The electron gamma shower~EGS! computer code
system is a general purpose package for Monte Carlo si
lation of the coupled transport of electrons and photons in
arbitrary geometry for particles with energies from a fe
keV up to several TeV.262 The code represents the state-o
the-art of radiation transport simulation because it is v
flexible, well-documented and extensively tested. Some h
referred to theEGS code as thede factogold standard for
clinical radiation dosimetryEGS is written in MORTRAN, a
FORTRAN pre-processor with powerful macro capabilitie
EGS is a ‘‘class II’’ code that treats knock-on electrons a
bremsstrahlung photons individually. Such events requ
predefined energy thresholds and pre-calculated data for
threshold, determined with the cross-section gener
PEGS.

ITS. The IntegratedTIGER Series~ITS! of coupled electron/
l. 26, No. 4, April 1999
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photon Monte Carlo transport codes is a powerful tool
determining state-of-the-art descriptions of the product
and transport of the electron/photon cascade in tim
independent, multi-material, multi-dimensional env
ronments.263 ITS is a collection of programs sharing a com
mon source code library that can solve sophisticated ra
tion transport problems. A total of eight codes are in t
collection which can be split into six groups: theTIGER codes
~for 1D slab geometries!, the CYLTRAN codes~for 2D cylin-
drical geometries!, theACCEPTcodes~for arbitrary 3D geom-
etries!, the standard codes~for normal applications!, the P
codes~for applications where enhanced ionization/relaxat
procedures are needed!, and the M codes~for applications
which involve 2- or 3D macroscopic electromagnetic field!.
The user selects the appropriate code from the library
supplies it with any special requirements and the phys
description of the problem to be solved in an input file.

MCNP. MCNP is a general-purpose Monte Carlo code th
can be used for neutron, photon, electron or coupled neut
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photon/electron transport.264 The code treats an arbitrar
three-dimensional configuration of materials in geome
cells bounded by first- and second-degree surfaces
fourth-degree elliptical tori. For photons, the code takes
count of incoherent and coherent scattering, the possibilit
fluorescent emission after photoelectric absorption, abs
tion in pair production with local emission of annihilatio
radiation and bremsstrahlung. A continuous slowing do
model is used for electron transport that includes positro
k-shell x-rays, and bremsstrahlung but does not include
ternal or self-induced fields. Important features that ma
MCNP very versatile and easy to use include a powerful g
eral source, criticality source, and surface source; both
ometry and output tally plotters; a rich collection of varian
reduction techniques; a flexible tally structure; and an ext
sive collection of cross-section data.

GEANT . The GEANT package was originally designed fo
high energy physics experiments, but has found applicat
also outside this domain in the areas of medical and biolo
cal sciences, radiation protection and astronautics.43 The
main applications ofGEANT are the transport of particle
through an experimental setup for the simulation of detec
response and the graphical representation of the setup a
the particle trajectories. The two functions are combined
the interactive version ofGEANT. This is very useful, since
the direct observation of what happens to a particle inside
detector makes the debugging easier and may reveal pos
weakness of the setup.

SIMSET. The simulation system for emission tomograp
~SIMSET! is a software application designed to perfor
Monte Carlo simulation of photon creation and transp
through heterogeneous attenuators for both SPECT
PET.21 The package has been in the public domain since
beginning of 1996 and includes the photon history gener
~PHG!, the object editor, a collimator module and detecti
and binning modules. The PHG is the module that gener
and tracks photons within the FOV of the tomograph be
simulated. The code is continuously being improved inclu
ing, for instance, the implementation of incoherent scat
ing, random events detection and simulation of coincide
imaging using conventional dual-head gamma cameras.

SIMIND . The SIMIND code simulates a clinical SPEC
scintillation camera and can easily be modified for alm
any type of calculation or measurement encountered
SPECT imaging,15 including transmission imaging.168 The
entire code has been written inFORTRAN-90and includes ver-
sions that are fully operational on VAX-VMS, most UNIX
platforms and on MS-DOS~Lahey LF90 compiler!. In sum-
mary, the code works as follows: photons emitted fro
simulated decay in the phantom are followed step by s
towards the scintillation camera.SIMIND includes an accurate
treatment of photon interaction in the phantom, a protect
layer and in the crystal of the detector. The simulation
back-scattering from light guides and photomultipliers is a
included. Different types of collimators can be selected.SI-

MIND can take advantage of anthropomorphic voxel-ba
phantoms developed for simulating realistic imaging sit
tions. The program has been shared among several gr
Medical Physics, Vol. 26, No. 4, April 1999
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and has been found a very useful research tool. TheSIMIND

code has been widely used for collimators design111 and to
evaluate attenuation and scatter correct
techniques.174,176–179,185–186

SIMSPECT. TheSIMSPECTcode developed at MIT is base
on theMCNP Monte Carlo transport code for photon trackin
and interaction algorithms. It has been extensively modifi
to allow complete collimator and source modeling and dir
manipulation of the geometric and physical parameters
countered in SPECT imaging.18,265 The simulation package
allows full tomographic simulation of data from physical
realistic nonuniform and asymmetric 3D source objects. P
ton transport in the detector crystal, light pipe and PMT’s
not simulated. The use of positron emitters in SPECT im
ing has also been modeled viaSIMSPECT in order to better
understand the potential improvements of different collim
tors design on 511 keV gamma camera imaging.

MCMATV . The Monte Carlo Matrix Vectorized~MCMATV !
program models photon transport in both homogeneou266

and heterogeneous media.267 The code is designed to mode
both projection data for simulated SPECT studies and
compute photon detection kernels, which can be used
build system matrices for use in matrix-based ima
reconstruction.139 The vectorized code is written inFOR-

TRAN77 and run on a Stellar GS1000 computer for pipelin
computations. It uses an event-based algorithm in wh
photon history data are stored in arrays and photon his
computations are performed within DO loops. The code
adapted from a history-based Monte Carlo code in wh
photon history data are stored in scalar variables and ph
histories computed sequentially. Without the use of the v
tor processor the event-based code is faster than the his
based code because of numerical optimization perform
during conversion to the event-based algorithm.

PETSIM . A series of programs calledPETSIM have been
developed to model the source distribution and its atten
tion characteristics, as well as the collimator and detector
PET.20,44 The different modules are connected by comp
gamma history files which are stored on a disk or tape. T
storage of intermediate results on tape reduces simula
time, since most common source geometries need be ge
ated only once. The simulation results include spectr
analysis, sensitivity to true coincident events, scattered c
cident and single events and the effects of these param
of detector dead-time. The sensitivities in multi-slice syste
are presented as matrices of coincident crystal planes.
matrix shows the true count sensitivity and the scatter fr
tion together for each valid combination of planes. This p
sentation is very useful for assessing the effects of vari
degrees of inter-plane collimation. The spatial resolut
analysis includes the effects of positron range, noncolinea
of the gamma rays, multiple interaction within the detecto
and the effects of quantization into single crystals
multiple-crystal block detectors. Each of these effects can
turned on or off without repeating the simulation. Sing
crystals, blocks and crystals with DOI encoding can be sp
fied, so that the detector geometry can be optimized.

EIDOLON . The Monte Carlo simulator,EIDOLON, was de-
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veloped using modern software engineering techniq
mainly for fully 3D PET imaging.22,135The code was written
in Objective-C, an object-oriented programming langua
based on ANSI C. The first version of the program was
veloped using the NextStep development environment
modular design featuring dynamically loadable program e
ments or bundles was adopted for software design. The b
building block is amodel elementobject class which allows
us elements to be browsed, inspected, adjusted, created
destroyed through a graphical inspector. The user inter
allows the user to select scanner parameters such as the
ber of detector rings, detector material and sizes, energy
crimination thresholds and detector energy resolution. It a
allows us to choose either a complex anthropomorphic ph
tom or a set of simple 3D shapes, such as parallelepi
ellipsoid or cylindroid for both the annihilation sources a
the scattering media, as well as their respective activity c
centrations and chemical compositions. The user has the
sibility to view the reference source image and sinogram d
sets as they are generated and are periodically updated
implementation of the software on a high-performance p
allel platform was also reported.38

VII. SCALAR VERSUS VECTORIZED AND
PARALLEL MONTE CARLO SIMULATIONS

Although variance reduction techniques have been de
oped to reduce computation time, the main drawback of
Monte Carlo method is that it is extremely time-consumin
To obtain the high statistics (;107 counts! required for im-
age reconstruction studies requires us to track hundred
millions of particles. Consequently, a large amount of C
time ~weeks or even months! may be required to obtain use
ful simulated data sets. The development of advanced c
puters with special capabilities for vectorized or parallel c
culations opened a new way for Monte Carlo research
Parallel computers are becoming increasingly accessibl
medical physicists.268 This allows research into problem
that may otherwise be computationally prohibitive to be p
formed in a fraction of the real time that would be taken
a serial machine. Historically, however, most programs a
software libraries have been developed to run on se
single-processor computers. A modification or adaptation
the code is therefore a prerequisite to run it on a para
computer. However, it is worth pointing out that among
simulation techniques of physical processes, the Monte C
method is probably the most suitable one for parallel co
puting since the results of photon histories are comple
independent from each other. Moreover, computer aided
allelization tools designed to automate as much as poss
the process of parallelizing scalar codes are becom
available.269 Although parallel processing seems to be t
ideal solution for Monte Carlo simulation, very few inves
gations have been reported and only a few papers have
published on the subject.270

The theoretical peak performance of a computer is de
mined by counting the number of floating-point additio
and multiplications that can be completed during period
Medical Physics, Vol. 26, No. 4, April 1999
s

e
-
A
-

sic

and
ce
m-

is-
o
n-
d,

n-
os-
ta
An
r-

l-
e
.

of

-
-
s.
to

-

d
l,
f
l

l
lo
-
ly
r-
le
g

en

r-

f

time, usually the cycle time of the machine.271 Today’s large
machines measure their speed in GFlops (109 operations/s!.
Each CPU generally contains 2 multiply and 2 add pip
When all of these can be employed simultaneously as
instance, in a dot product or a vector update operation
Flops/cycle can be attained. The Cray T90 has a cycle t
of 2.2 ns and a maximum number of 32 processors, thus
peak performance is 4 operations/1 cycle31 cycle/2.2 ns
332 processors558.2 GFlops. Easily portable Monte Car
user codes are generally used for timing benchmark purp
on different computers.272 According to van der Steen an
Dongarra,273 the classification of high-performance compu
ers is based on the way instructions and data streams
arranged and comprises four main architectural clas
These include the following.

Single Instruction Single Data stream „SISD… ma-
chines.These are the conventional systems that contain
CPU and hence can accommodate one instruction stream
is executed serially. Nowadays many large mainframes m
have more than one CPU but each of these execute ins
tion streams that are unrelated. Therefore, such systems
should be regarded as~multiple! SISD machines acting on
different data spaces. Examples of SISD machines are
instance most workstations like those of DEC Hewle
Packard and Sun Microsystems.

Single Instruction Multiple Data stream „SIMD … ma-
chines.Such systems often have a large number of proce
ing units, ranging from 1,024 to 16,384 that all may exec
the same instruction on different data in lock-step. So
single instruction manipulates many data items in paral
Examples of SIMD machines in this class are the CPP D
Gamma II and the Alenia Quadrics. Another subclass of
SIMD systems are the vector processors which act on ar
of similar data rather than on single data items using s
cially structured CPUs. When data can be manipulated
these vector units, results can be delivered with a rate of o
two and in special cases of three per clock cycle. So, ve
processors execute on their data in an almost parallel way
only when executing in vector mode. In this case they
several times faster than when executing in conventional
lar mode. For practical purposes, vector processors are th
fore mostly regarded as SIMD machines. An example
such systems is, for instance, the Hitachi S3600.

Multiple Instructions Single Data stream „MISD … ma-
chines. Theoretically in these types of machines multip
instructions should act on a single stream of data. As yet
practical machine in this class has been constructed nor
such systems easy to conceive.

Multiple Instructions Multiple Data streams „MIMD …

machines. These machines execute several instruct
streams in parallel on different data. The difference with
multi-processor SISD machines mentioned above lies in
fact that the instructions and data are related because
represent different parts of the same task to be executed
MIMD systems may run many sub-tasks in parallel in ord
to shorten the time-to-solution for the main task to be e
ecuted. There is a large variety of MIMD systems includi
those that behave very differently like a four-processor C
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Y-MP T94 and a thousand processor nCUBE 2S. An imp
tant distinction between two subclasses of systems sho
however, be made: Shared memory~SM! and distributed
memory~DM! systems.

~i! Shared memory systems.SM systems have multiple
CPUs, all of which share the same address space. This m
that the knowledge of where data is stored is of no concer
the user as there is only one memory accessed by all C
on an equal basis. Shared memory systems can be
SIMD or MIMD. Single-CPU vector processors can be r
garded as an example of the former, while the multi-C
models of these machines are examples of the latter.
Cray J90 and T90 series belong to this class of compute

~ii ! Distributed memory systems.In this case, each CPU
has its own associated memory. The CPUs are connecte
some network and may exchange data between their res
tive memories when required. In contrast to SM machin
the user must be aware of the location of the data in the lo
memories and will have to move or distribute these d
explicitly when needed. Again, DM systems may be eith
SIMD or MIMD. The first class of SIMD systems, men
tioned above, operate in lock step and all have distribu
memories associated to the processors. For the DM-MI
systems again a subdivision is possible: those in which
processors are connected in a fixed topology and thos
which the topology is flexible and may vary from task
task. The class of DM-MIMD machines is undoubtedly t
fastest growing part in the family of high-performance co
puters.

Another trend that has come up in the last few years
distributed processing. This takes the DM-MIMD conce
one step further: instead of many integrated processor
one or several boxes, workstations, mainframes, etc.,
connected by Ethernet, for instance and set to work con
rently on tasks in the same program. Conceptually, this is
different from DM-MIMD computing, but the communica
tion between processors is often orders of magnitude slo
Many commercial, and noncommercial packages to rea
distributed computing are available. Examples of these
Parallel Virtual Machine~PVM!,274 and Message Passing In
terface~MPI!.275 PVM and MPI have been adopted for in
stance by HP/Convex, SGI/Cray, IBM and Intel for the tra
sition stage between distributed computing and Massiv
Parallel Processing~MPP! systems on the clusters of the
favorite processors and they are available on a large am
of DM-MIMD systems and even on SM-MIMD systems fo
compatibility reasons. In addition, there is a tendency
cluster SM systems, for instance by HIPPI channels, to
tain systems with a very high computational power, e.g.,
NEC SX-4 and the Convex Exemplar SPP-2000X have
structure, although the latter system could be seen as a m
integrated example~the software environment is much mo
complete and allows SM addressing!. Other interesting re-
search systems like the Intel ASCI Option Red system
Sandia National Laboratory~with a measured performanc
of 1.3 TFlops!, the CP-PACS at the University of Tsukub
~measured performance of 368 GFlops! and the Numerical
Wind Tunnel at the National Aerospace Lab. in Japan~230
Medical Physics, Vol. 26, No. 4, April 1999
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GFlops!, are not marketed and only available at the Institu
mentioned and, therefore, not of much benefit to the sup
computer community at large. It is worth noting that th
market of parallel and vector machines is highly evasive;
rate with which systems are introduced and disappear a
is very high and therefore the information provided w
probably be only approximately valid.

Sequential programs make the most effective use of
available processing power: they alone guarantee maxim
use of the CPU. In parallel programs, communication m
agement introduces an unavoidable overhead, resultin
less efficient use of the overall CPU power. Moreover,
cording to Amdahl’s law,276 parallelization efficiency is de-
creased by a factor representing the fraction of operati
that must be executed in sequential order. When this frac
reaches one we are confronted with a wholly unparalleliza
code, and the speed-up is zero no matter how many pro
sors are used. The efficiency of parallel programs is furth
more reduced by a factor equal to the fraction of proces
idle time, which is highly dependent on the software par
lelization techniques used by the programmer. Scalar or
rial Monte Carlo codes track the history of one particle a
time, and the total calculation time is the sum of the tim
consumed in each particle history. Many Monte Carlo app
cations have characteristics that make them easy to map
computers having multiple processors. Some of these pa
lel implementations require little or no inter-processor co
munication and are typically easy to code on a parallel co
puter. Others require frequent communication a
synchronization among processors and in general are m
difficult to write and debug. A common way to paralleliz
Monte Carlo is to put identical ‘‘clones’’ on the various pro
cessors; only the random numbers are different. It is the
fore important for the sequences on the different proces
to be uncorrelated so each processor does not end up s
lating the same data.277 That is, given an initial segment o
the sequence on one process, and the random numbe
quences on other processes, we should not be able to pr
the next element of the sequence on the first process.
example, it should not happen that if we obtain random nu
bers of large magnitude on one process, then we are m
likely to obtain large numbers on another. In developing a
parallel Monte Carlo code, it is important to be able to r
produce runs exactly in order to trace program execution

Since a Monte Carlo particle history is a Markov cha
the next interaction or movement of a particle is always
termined by the current state of the particle. The histories
two particles became identical only when the same rand
number sequence is used to sample the next state. To en
that the seed tables on each processor are random and u
related, Mascagni36 described a canonical form for initializ
ing separate cycles of the Fibonacci generators. There
however, many approaches to vectorized and parallel
dom number generation in the literature.278–280We can dis-
tinguish three general approaches to the generation of
dom numbers on parallel computers: centralized, replica
and distributed. In the centralized approach, a sequen
generator is encapsulated in a task from which other ta
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FIG. 16. A comparison between history-based sca
processing, event-based vector processing and hist
based parallel processing. In history-based scalar p
cessing, one particle history is tracked at a time.
history-based parallel processing, each parti
(p1 ,p2 ,...,pm) is assigned to one process which trac
its complete history (e1 ,e2 ,...,en). In event-based vec-
tor processing, a process treats only part of each part
history (e1 ,e2 ,...,en) and particles (p1 ,p2 ,...,pm)
‘‘flow’’ from process to process.
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request random numbers. This avoids the problem of ge
ating multiple independent random sequences, but is unlik
to provide a good performance. Furthermore, it makes re
ducibility hard to achieve: the response to a request depe
on when it arrives at the generator, and hence the re
computed by a program can vary from one run to the next
the replicated approach, multiple instances of the same
erator are created~for example, one per task!. Each generator
uses either the same seed or a unique seed, derived, fo
ample, from a task identifier. Clearly, sequences generate
this fashion are not guaranteed to be independent and
deed, can suffer from serious correlation problems. Howe
the approach has the advantages of efficiency and eas
implementation and should be used when appropriate. In
distributed approach, responsibility for generating a sin
sequence is partitioned among many generators, which
then be parceled out to different tasks. The generators ar
derived from a single generator; hence, the analysis of
statistical properties of the distributed generator is simplifi
There are two possibilities for parallelisation of Monte Ca
codes.

~i! Particle or history-based parallelization: each parti
is assigned to one of the parallel processes and
histories of assigned particles are processed within
process.

~ii ! Task- or event-based parallelization: a process tre
Medical Physics, Vol. 26, No. 4, April 1999
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only part of random walk events or tasks, thus p
ticles ‘‘flow’’ from process to process according t
their events.

The difference between the different algorithms is illustra
in Fig. 16. In a review of vectorized Monte Carlo, Marti
and Brown281 described variations of event-based algorith
together with speed-up results published by different grou

During the last two decades, investigations were carr
out to run different Monte Carlo codes on multiple
transputer systems,282,283 vector parallel super-
computers,266,267,284,285parallel computers38,286,287and a clus-
ter of workstations in a local area network using PVM.288

There are large discrepancies in the performance ratio
ported by different authors. In particular, Miura285 reported a
speed-up of about 8 with the vectorizedESG4code~EGS4V!.
A factor varying between 2.9 and 5.1 was also reported
MCMATV 266 depending on whether the detection of scatte
photons is modeled or not. A linear decrease in comput
time with the number of processors used was also repo
with EIDOLON.38

VIII. CONCLUSIONS AND FUTURE PROSPECTS

Nuclear medicine has historically been the field in whi
most of the early Monte Carlo calculations in medical phy
ics were performed. The large number of applications
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ferred to in this paper shows the usefulness and consider
success of the Monte Carlo method as a tool in differ
areas of nuclear imaging. The availability of Monte Ca
codes in the ‘‘public domain,’’ developed and tested wor
wide in a variety of applications by many users should p
vide confidence for their use as research tools in the diffe
fields of nuclear imaging. The use of Monte Carlo calcu
tions to validate scatter and attenuation correction meth
has been useful. Furthermore, scatter images can, in p
ciple, be calculated for any arbitrary source distributio
Simulated realistic emission images~including both primary
and scatter! can be corrected for attenuation and scatter,
be compared with scatter- and attenuation-free ideal ima
The accuracy in correction methods can thus be evaluate
an unbiased way since systematic errors can be controll

The lack of inherent error estimates and relatively sl
convergence is a well known limitation of the Monte Car
technique. In many situations, one can predict the statis
error ~variance! on the estimated parameters from Mon
Carlo simulations, and hence estimate the number of tr
needed to achieve a given error. A few investigations h
been carried out to quantify the accuracy of Monte Ca
simulations. However, some authors reported discrepan
between experimental measurements and results obta
with Monte Carlo programs. For example, it has been
ticed that the measured energy spectra for a small p
source has a larger magnitude low-energy tail than is
tained with Monte Carlo simulations.164,165There are severa
possible explanations for this effect. The background rad
tion always present in scanning rooms is a possibility to
considered. A potential source of those events might
‘‘scatter’’ from photomultiplier tubes back into the detectio
crystal.165 This effect could also be caused by the charac
istics of the scinitillation camera electronics.164 Discrepan-
cies also observed in quantification of parameters like
scatter fraction could be explained by the sharp ene
threshold model used in most codes,70,191i.e., the experimen-
tally observed variations in crystal energy response is ha
taken into account in the analysis of simulated data135

Therefore, it is important that most simulations of compl
phantom geometries be matched with scatter-free sim
tions. There are other problems associated with the detec
system which are too camera specific for Monte Carlo to
worthwhile. A typical example for scintillation cameras
the uniformity variation and shift of energy spectra with r
tation angle. Faster software implementations might be p
sible by using post-simulation modules incorporating mod
for those effects based on experimental measurements.

Future developments in detector design, together w
faster computer systems, will improve image quality, tem
ral resolution, patient throughout and quantitation. It is e
pected that Monte Carlo calculations will enter the clinic
and scientific arena and will become a method of choice
develop and to implement patient-specific dosimetry and
age correction techniques and to optimize instrumenta
and clinical protocols.
Medical Physics, Vol. 26, No. 4, April 1999
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