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.ukAbstra
t. Rea
tion systems are a model for the investigation of pro-
esses 
arried out by bio
hemi
al rea
tions in living 
ells. A rea
tionsystem 
onsists of a set of rea
tions whi
h transform a 
urrent system'sstate (a set of entities) into the su

essor state. In this paper we in-vestigate whi
h entities are a
tually relevant from the point of view ofgenerating dynami
 pro
esses through su
h state transformations.Keywords: rea
tion system, living 
ell, natural 
omputing.1 Introdu
tionThe investigation of the 
omputational nature of bio
hemi
al rea
tions is a re-sear
h theme of Natural Computing. One of the goals of this resear
h is to
ontribute to a 
omputational understanding of the fun
tioning of the living
ell.Rea
tion systems [1�7℄ are a formal framework for the investigation of pro-
esses 
arried out by bio
hemi
al rea
tions in living 
ells. The 
entral idea ofthis framework is that the fun
tioning of a living 
ell is based on intera
tionsbetween (a large number of) individual rea
tions, and moreover these intera
-tions are regulated by two main me
hanisms: fa
ilitation/a

eleration and inhi-bition/retardation. These intera
tions determine the dynami
 pro
esses takingpla
e in living 
ells, and rea
tion systems are an abstra
t model of these pro-
esses. This model is based on prin
iples remarkably di�erent from those under-lying other models of 
omputation in 
omputer s
ien
e. This is a 
onsequen
e ofthe fa
t that on the one hand the model takes into a

ount the basi
 bioener-geti
s of the living 
ell while on the other hand its (high) degree of abstra
tionallows it to be a qualitative rather than quantitative model.In a nutshell, a rea
tion system 
onsists of a set of entities to whi
h variousrea
tions 
an be applied, 
hanging the 
urrent state of the system. The spe
i�
question we address in this paper is whi
h entities 
an be 
onsidered as relevantin the sense that state 
hanges are �sensitive� to them.We provide a 
hara
terisation of relevant elements in terms of resour
es ofrea
tions. In our 
onsiderations we use a spe
i�
 �natural� notion of relevan
e,



2 A.Ehrenfeu
ht, J.Kleijn, M.Koutny and G.Rozenbergbut we also dis
uss its relationship to other possible �natural� de�nitions ofrelevan
e.The paper is organised in the following way. After setting up in Se
tion 2 somemathemati
al notation used in the paper, we des
ribe basi
 notions 
on
erningrea
tions in Se
tion 3, and basi
 notions 
on
erning rea
tion systems in Se
tion 4.In Se
tion 5, we introdu
e the 
entral notions of this paper: relevant/irrelevantsets and entities, and prove their basi
 properties. In Se
tion 6, we demonstratethat for a redu
ed rea
tion system the set of relevant entities 
oin
ides withthe resour
es used by the system's rea
tions. Then, in Se
tion 7, we dis
uss twoalternative formalisations of the notion of relevan
e. The last se
tion 
ontains abrief dis
ussion of our results.2 PreliminariesThroughout the paper we use standard mathemati
al notation. In parti
ular,
∀ denotes the universal quanti�er, ∃ the existential quanti�er, ∅ the emptyset, X \ Y set di�eren
e, X ∪ Y set union, X ∩ Y set interse
tion, X ÷ Y =
(X \ Y ) ∪ (Y \X) denotes symmetri
 di�eren
e of two sets X and Y , X ⊆ Ydenotes set in
lusion, X ⊂ Y denotes stri
t set in
lusion, and ⋃

X denotes theunion of a family of sets X . For a partial relation ≥ over a set X , the set of
≥-maximal elements 
omprises all x ∈ X su
h that there is no y ∈ X su
h that
y 6= x and y ≥ x.3 Rea
tionsIn this se
tion, we re
all some key de�nitions 
on
erning rea
tions and sets ofrea
tions (see, e.g., [2, 4℄).Let Z be a �nite ba
kground set of entities. A rea
tion over Z is a tripletof the form a = (R, I, P ), where R, I, P ⊆ Z are nonempty sets of entities su
hthat R ∩ I = ∅. The three 
omponent sets of rea
tion a are denoted by Ra,
Ia and Pa, respe
tively, and 
alled the rea
tants, inhibitors and produ
ts. Wedenote by rac(Z) the set of all possible rea
tions over Z.Let C ⊆ Z. A rea
tion a ∈ A is enabled by C if Ra ⊆ C and Ia ∩C = ∅. Wedenote this by ena(C). The result of a rea
tion a ∈ A on C is de�ned by

resa(C) =

{

Pa if a is enabled at C
∅ otherwise .Moreover, the result of a set of rea
tions B ⊆ rac(Z) on C, denoted by resB(C),is the union of the produ
ts of all the rea
tions from B, that is

resB(C) =
⋃

b∈B

resb(C) .Note that resB(∅) = ∅ as the set of rea
tants of any rea
tion is nonempty andso no rea
tion is enabled at the state C = ∅, and resB(Z) = ∅ as the set ofinhibitors of any rea
tion is nonempty and so no rea
tion is enabled by Z.



Relevan
e of Entities in Rea
tion Systems 3Let a, b ∈ rac(Z). Then b 
overs a if resb(C) = res{a,b}(C), for all C ⊆ Z. Wedenote this by b ≥ a; thus what a does (produ
es) is already 
overed (produ
ed)by b. We also say that b stri
tly 
overs a if b ≥ a and a 6= b. Note that ≥ is apartial order.As a matter of fa
t (see [4℄), b ≥ a i� Rb ⊆ Ra, Ib ⊆ Ia and Pb ⊇ Pa. Thus
b ≥ a if b requires a subset of rea
tants of a and a subset of inhibitors of a butstill produ
es at least all the produ
ts of a. Note that if b ≥ a then, for ea
h
C ⊆ Z, ena(C) implies enb(C).4 Rea
tion systemsA rea
tion system is a pair A = (S,A), where S is a �nite ba
kground set
omprising the entities of A, and A is the set of rea
tions over S. To 
apturethe dynami
 behaviour of A, we now des
ribe all possible transitions betweenits states, where a state of A is any set C of its entities. (Thus a rea
tion systemwith a ba
kground set S has exa
tly 2|S| states.)Let C ⊆ S be a state of a rea
tion system A = (S,A). Then resA(C) =
resA(C) is the result of all the rea
tions of A enabled at C.The state transformations 
aptured by the above de�nition are deterministi
.Thus, indeed, a rea
tion system A = (S,A) de�nes (spe
i�es, implements) afun
tion resA : 2S → 2S, 
alled the result fun
tion of A. In the general modelof rea
tion systems, pro
esses of A are also in�uen
ed by the �environment�whi
h re�e
ts the fa
t that the living 
ell is an open system; it 
ommuni
atesand intera
ts with its environment. However, for the notions that we study inthis paper it su�
es to 
onsider 
ontext-independent pro
esses, i.e., pro
essesdetermined by the system A only (without in�uen
e of its environment). Inthis way the su

essor state for a given state is determined solely by the resultfun
tion resA.Note that in this 
ase, the su

essor resA(C) of a 
urrent state C 
onsistsonly of entities from the produ
t sets of rea
tions of A enabled by C. This meansthat there is no permanen
y for entities A: an entity from a 
urrent state will bepresent in (will 
arry over to) the su

essor state only if it is produ
ed by at leastone rea
tion enabled in the 
urrent state. This way of de�ning state transitionsin rea
tion systems is motivated by the basi
 bioenergeti
s of the living 
ell, andit 
onstitutes a fundamental di�eren
e with models of 
omputations 
onsideredin 
omputer s
ien
e.Sin
e in this paper we are interested in state transitions in rea
tion systems, itis 
onvenient to 
onvey the subsequent dis
ussion in terms of fun
tions spe
i�edby rea
tion systems.Proposition 1. Let A = (S,A) be a rea
tion system. Then

⋃

X∈2S

resA(X) =
⋃

a∈A

Pa .Proof. Follows from the fa
t that ea
h rea
tion a ∈ A is enabled at the state
C = Ra. ⊓⊔



4 A.Ehrenfeu
ht, J.Kleijn, M.Koutny and G.RozenbergIn other words, the entities o

urring in the sets of the 
odomain of the resultfun
tion of a rea
tion system are all the entities whi
h o

ur in the produ
ts ofthe rea
tions of the system.Let A = (S,A) be a rea
tion system and b ∈ rac(S). Then b is 
onsistentwith A if resb(T ) ⊆ resA(T ), for all T ⊆ S; thus adding b to A yields a rea
tionsystem with the same result fun
tion.A rea
tion system A = (S,A) is redu
ed if, for all a ∈ A,(i) resA 6= resA\{a}.(ii) there is no b ∈ rac(S) whi
h is 
onsistent with A and stri
tly 
overs a.Intuitively, (i) ex
ludes rea
tions whi
h do not add anything new to theresults produ
ed by other rea
tions in A. As to the se
ond 
ondition, note thatif b is 
onsistent with A and b stri
tly 
overs a then b is (from the point of viewof A) a more `e�
ient' version of a. Therefore, 
ondition (ii) requires that allthe rea
tions in A are in their most e�
ient version.The two 
onditions in the de�nition of a redu
ed rea
tion system are inde-pendent. Consider, for example, the rea
tion system A1 = (S, {a, b}), where
S = {1, 2} a = ({1}, {2}, {1}) b = ({1}, {2}, {2}) .Then both rea
tions are ne
essary to spe
ify resA1

. On the other hand, a and bare 
overed by c = ({1}, {2}, {1, 2}) whi
h is 
onsistent with resA1
and 
an beused to de�ne a more e�
ient A′

1 = (S, {c}) spe
ifying the same fun
tion as A1.Conversely, let us 
onsider the rea
tion system A2 = (S, {a, b, c}), where
S = {1, 2, 3} a = ({1, 2}, {3}, {1, 2}) b = ({1}, {3}, {1}) c = ({2}, {3}, {2}) .In this 
ase, the �rst 
ondition is not satis�ed be
ause rea
tion a is redundant(its enabledness implies enabledness of both b and c whi
h together also produ
e
{1, 2}). However, the se
ond 
ondition is satis�ed as there is no rea
tion stri
tly
overing b or c, while any rea
tion stri
tly 
overing a would be in
onsistent with
resA2

.We 
lose this se
tion by demonstrating that 
onsidering only redu
ed rea
tionsystems is not a restri
tion as far as result fun
tions of rea
tion systems are
on
erned.Theorem 1. For every rea
tion system A there exists an equivalent redu
edrea
tion system A′, i.e., the two systems have the same ba
kground sets and thesame result fun
tion.Proof. Let A = (S,A). Consider the set con(A) of all the rea
tions from rac(S)
onsistent with A. Note that (S, con(A)) is equivalent with A - as a matter offa
t, it is the largest implementation of resA.Let D be the set of all rea
tions in con(A) whi
h are ≥-maximal in con(A)(w.r.t. the partial order ≥).Now we repla
e, in any order, ea
h a ∈ A whi
h is not maximal in con(A)by a rea
tion b ∈ D su
h that b ≥ a, Let A′′ be the resulting set of rea
tions.



Relevan
e of Entities in Rea
tion Systems 5Clearly, A′′ = (S,A′′) is equivalent with A, and A′′ satis�es 
ondition (ii) fromthe de�nition of a redu
ed system.Next, in order to ensure that also (i) is satis�ed, we inspe
t one by one allrea
tions, in any order, beginning with A′′ and remove those rea
tions fromthe 
urrent set of rea
tions whi
h 
an be removed without 
hanging the resultfun
tion. Let A′ be the �nal out
ome of this pro
edure. Clearly, A′ = (S,A′)still satis�es (ii), but it also satis�es (i). Thus A′ is redu
ed, and moreover A′ isequivalent to A. Hen
e the theorem holds. ⊓⊔5 Relevan
e in rea
tion systemsA 
entral problem in the investigation of result fun
tions of rea
tion systemsis to understand when and why (for a given rea
tion system A) resA does notdistinguish between two di�erent states T and U , i.e., resA(T ) = resA(U). In-tuitively, this means that the di�eren
e between T and U is irrelevant from thepoint of view of resA. In this paper, we de�ne irrelevant sets of entities as thesets su
h that whenever two sets di�er by an irrelevant set, then they will not bedistinguishable by resA. Sin
e the operation of symmetri
 di�eren
e is a math-emati
ally natural way to de�ne the di�eren
e between two sets, we use thisoperation in our de�nition of relevan
e. With this idea in mind, we say that:� X ⊆ S is relevant in A if
(∃T, U ⊆ S) [T ÷ U = X and resA(T ) 6= resA(U) ] . (i)� X ⊆ S is irrelevant in A if
(∀T, U ⊆ S) [T ÷ U = X =⇒ resA(T ) = resA(U) ] . (ii)� x ∈ S is relevant in A if {x} is relevant in A, i.e.,
(∃T ⊆ S) [ resA(T \ {x}) 6= resA(T ∪ {x}) ] . (iii)� x ∈ S is irrelevant in A if {x} is irrelevant in A, i.e.,
(∀T ⊆ S) [ resA(T \ {x}) = resA(T ∪ {x}) ] . (iv)Intuitively, a set of entities X is irrelevant if any two sets of entities whi
h`di�er' exa
tly by X are transformed to the same state, hen
e X is irrelevantfrom the resA point of view. Thus, X is relevant if we 
an �nd two sets of entitieswhi
h `di�er' exa
tly byX and for whi
h resA yields di�erent results. It thereforefollows that X is relevant i� X is not irrelevant. What we are really interestedin is whether entities are relevant or irrelevant, as expressed by parts (iii) and(iv) of the above de�nition. However, de�ning the relevan
e of sets through therelevan
e of their elements does not work (as shown later in this se
tion), andso we had to de�ne (i) and (ii) �rst.Now, for a rea
tion system A = (S,A), we de�ne:



6 A.Ehrenfeu
ht, J.Kleijn, M.Koutny and G.Rozenberg(i) the relevant domain of A as rdom(A) = {x ∈ S : x is relevant in A}.(ii) the irrelevant domain of A as irdom(A) = {x ∈ S : x is irrelevant in A}.Intuitively, rdom(A) 
omprises those entities to whi
h resA is `sensitive', and
irdom(A) those to whi
h resA is `insensitive'.It turns out that by 
ombining irrelevant entities we never obtain a relevantset of entities. In other words, irrelevan
e is persistent, as shown next.Proposition 2. Let A be a rea
tion system. Then ea
h X ⊆ irdom(A) is irrel-evant in A.Proof. Let A = (S,A), and let X be a nonempty subset of irdom(A). Let T, U ⊆
S be su
h that T ÷ U = X . Let T \ U = Y and U \ T = Z. (Thus X = Y ∪ Z.)Assume that Y 6= ∅, thus Y = {y1, y2, . . . , yn} for some n ≥ 1. Let T0 = T ,
T1 = T0 \ {y1}, T2 = T1 \ {y2}, . . . , Tn = Tn−1 \ {yn} = T ∩ U . Sin
e, for ea
h
i ∈ {1, . . . , n}, yi ∈ Y is irrelevant, we get
resA(T ) = resA(T1) = . . . = resA(Tn) = resA(T ∩ U) . (∗)Assume that Z 6= ∅, thus Z = {z1, . . . , zm} for some m ≥ 1. Let U0 = T ∩ U ,

U1 = U0 ∪ {z1}, U2 = U1 ∪ {z1}, . . . , Um = Um−1 ∪ {zm} = U . Sin
e, for ea
h
i ∈ {1, . . . ,m}, zj ∈ Z is irrelevant, we get
resA(T ∩ U) = resA(U0) = . . . = resA(Um) = resA(U) . (∗∗)It follows from (∗) and (∗∗) that if Y 6= ∅ and Z 6= ∅, then

resA(T ) = resA(T ∩ U) = resA(U) .Clearly, this holds also if either Y = ∅ or Z = ∅ (one only needs a `half of theproof' above). This implies that, for all T, U ⊆ S with T ÷ U = X , we have
resA(T ) = resA(U). Therefore X is irrelevant. ⊓⊔6 Chara
terising relevant domainsWhen it 
omes to sets of relevant entities, one should expe
t a relationship withresour
es used by the rea
tion system. Here by the resour
es of a single rea
tion
a we mean Ma = Ra ∪ Ia. The essen
e of the next result is that relevant entitiesmust be resour
es.Theorem 2. Let A = (S,A) be a rea
tion system. Then

rdom(A) ⊆
⋃

a∈A

Ma .Proof. Let x ∈ S. If x /∈
⋃

a∈A Ma, then it follows dire
tly from the de�nition of
resA that, for ea
h T ⊆ S, resA(T \ {x}) = resA(T ∪ {x}). Hen
e x is irrelevantand so x /∈ rdom(A). ⊓⊔



Relevan
e of Entities in Rea
tion Systems 7To in
lusion in the formulation of the above theorem 
an be repla
ed byequality in 
ase of a rea
tion system with a single rea
tion.Proposition 3. Let A = (S, {a}) be a rea
tion system. Then
rdom(A) =

⋃

a∈A

Ma .Moreover, every nonempty set X ⊆ Ra ∪ Ia is relevant.Proof. To show the se
ond part of the statement of the theorem, let X ⊆ Ra∪Iabe su
h that X 6= ∅. Let X ′ = X ∩ Ra and X ′′ = X ∩ Ia. To observe that Xis relevant it then su�
es to take T = Ra and U = (Ra \ X ′) ∪ X ′′. Hen
eall resour
es are relevant, and so from Theorem 2 it follows immediately that
rdom(A) =

⋃

a∈AMa. ⊓⊔Thus we also obtained a 
ounterpart of Proposition 2 for sets of relevantentities in 
ase of a system with a single rea
tion. However, any attempt togeneralise this to the general 
ase is bound to fail, as illustrated by the followingexample. Consider the rea
tion system A3 = (S, {a, b}), where
S = {1, 2} a = ({1}, {2}, {1}) b = ({2}, {1}, {1}) .Then 1 is relevant be
ause {1, 2} ÷ {2} = {1} and resA3

({1, 2}) = ∅ 6= {1} =
resA3

({2}), and 2 is relevant be
ause {1, 2}÷{1}= {2} and resA3
({1, 2}) = ∅ 6=

{1} = resA3
({1}). However, X = {1, 2} is not a relevant set of entities is seen asfollows. If T, U ⊆ S are su
h that T ÷ U = X , then either {T, U} = {{1}, {2}}or {T, U} = {∅, S}. In the former 
ase we obtain resA3

(T ) = {1} = resA3
(U),and in the latter resA3

(T ) = ∅ = resA3
(U).In general, not all resour
es are relevant. Consider, for example, the rea
tionsystem A4 = (S, {a, b}), where

S = {1, 2, 3} a = ({1}, {2}, {1}) b = ({1, 3}, {2}, {1}) .Then entity 3 is not relevant sin
e 3 is a resour
e only in the presen
e of entity
1 and then it has no additional in�uen
e on the result.To strengthen the general results obtained so far, we turn our attention toredu
ed rea
tion systems whi
h, intuitively, 
ontain no redundant nor ine�
ientrea
tions. Moreover, by Theorem 1, any rea
tion system is equivalent to a re-du
ed rea
tion system, and so we still deal with all possible result fun
tions ofrea
tion systems.It is easy to see that every rea
tion system with a single rea
tion is redu
ed.In the following main result of this paper whi
h strengthens Theorem 2 we showthat in the 
ase of any redu
ed rea
tion system the relevant entities are pre
iselythe resour
es used by the system.Theorem 3. Let A = (S,A) be a redu
ed rea
tion system. Then

rdom(A) =
⋃

a∈A

Ma .



8 A.Ehrenfeu
ht, J.Kleijn, M.Koutny and G.RozenbergProof (Theorem 3). By Theorem 2 it su�
es to prove that⋃a∈A Ma ⊆ rdom(A).We do this by showing that:
(∀x ∈ S) [x /∈ rdom(A) =⇒ x /∈

⋃

a∈A Ma ] . ($)We will now present three lemmas, the �rst two of whi
h demonstrate thatall the rea
tants are relevant, and the third one demonstrating the same forinhibitors.Lemma 1. For ea
h rea
tion a ∈ A, Ra 6⊆ irdom(A).Proof (Lemma 1). Let a ∈ A. Assume to the 
ontrary that Ra ⊆ irdom(A).Then, by Proposition 2, Ra is irrelevant. Sin
e Ra ÷∅ = Ra and resA(∅) = ∅,this means that
resA(Ra) = ∅ . (∗)On the other hand, ena(Ra) and therefore
resA(Ra) = Pa . (∗∗)But (∗) and (∗∗) imply that Pa = ∅, a 
ontradi
tion with the de�nition of area
tion. Therefore Ra 6⊆ irdom(A). (Lemma 1) ⊓⊔Lemma 2. For ea
h rea
tion a ∈ A, Ra ∩ irdom(A) = ∅.Proof (Lemma 2). Assume to the 
ontrary that there exists a ∈ A su
h that
Ra ∩ irdom(A) 6= ∅ .Let b = (Ra \ irdom(A), Ia, Pa). By Lemma 1, Rb = Ra \ irdom(A) 6= ∅, andso b ∈ rac(S). Clearly, b stri
tly 
overs a, and so, be
ause A is redu
ed, b isnot 
onsistent with resA. Hen
e, there exists T ⊆ S su
h that enb(T ) and

resb = Pb 6⊆ resA(T ). Sin
e Pb = Pa, we get
Pa 6⊆ resA(T ) . (∗)Let U = T ′ ∪ (Ra ∩ irdom(A)). Sin
e enb(T

′), we have (1) Rb ⊆ T ′ and (2)
Ib ∩ T ′ = ∅. Sin
e Ra \ Rb = Ra ∩ irdom(A), (1) implies that Ra ⊆ U . Sin
e
Ib = Ia (and Ia ∩Ra = ∅), Ia ∩ U = ∅. Therefore ena(U) and, 
onsequently,
Pa ⊆ resA(U) . (†)Thus by (∗) and (∗∗) we get that

Pa 6⊆ resA(T ) and Pa ⊆ resA(T ∪ (Ra ∩ irdom(A))) .This implies that the set Ra∩ irdom(A) is relevant (and so not irrelevant), whi
h
ontradi
ts Proposition 2. Therefore Lemma 2 holds. (Lemma 2) ⊓⊔Lemma 3. For ea
h rea
tion a ∈ A, Ia ∩ irdom(A) = ∅.
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e of Entities in Rea
tion Systems 9Proof (Lemma 3). Assume to the 
ontrary that Ia ∩ irdom(A) 6= ∅. Clearly,for ea
h T ⊆ S, resA\{a}(T ) ⊆ resA(T ). Moreover, be
ause A is redu
ed, thereexists Ta ⊆ S su
h that resA\{a}(Ta) 6= resA(Ta). Thus
resA\{a}(Ta) ⊂ resA(Ta) . (∗)Clearly, ena(Ta), as otherwise resA\{a}(Ta) = resA(Ta) whi
h 
ontradi
ts (∗).Let U = Ta ∪ irdom(A). By Lemma 2, for ea
h b ∈ A, if Rb ⊆ U then

Rb ⊆ Ta. Consequently, if b ∈ A is enabled at U , then it is also enabled at Ta,implying that
(∀B ⊆ A) [resB(U) ⊆ resB(Ta)] . (∗∗)Sin
e we assumed that Ia∩ irdom(A) 6= ∅, rea
tion a is not enabled at U and so

resA(U) ⊆ resA\{a}(U). Sin
e, by (∗∗), resA\{a}(U) ⊆ resA\{a}(Ta), we get then
resA(U) ⊆ resA\{a}(Ta). Consequently, by (∗), we obtain resA(U) ⊂ resA(Ta).Sin
e we have U = Ta ∪ irdom(A), this implies that irdom(A) is relevant in therea
tion system A (and so not irrelevant), 
ontradi
ting Proposition 2. Hen
eLemma 3 holds. (Lemma 3) ⊓⊔By Lemma 2 and Lemma 3, irdom(A) ∩

⋃

a∈A Ma = ∅, whi
h implies that
($) holds and, 
onsequently, the theorem holds. (Theorem 3) ⊓⊔This result 
on�rms that the notion of a redu
ed rea
tion system with theunderlying intuition of having �no redundan
ies� is well-
hosen. Indeed, in aredu
ed system all resour
es are relevant, whi
h does not have to be the 
ase inarbitrary rea
tion systems.7 Alternative notions of relevan
eIn de�ning irrelevant/relevant sets of entities we relied on the operation of sym-metri
 di�eren
e. In our view, this is just one of three natural 
hoi
es to 
apturethe notion of irrelevan
e/relevan
e. In this se
tion, we analyse the relationshipsbetween them.Let X ⊆ S be a set of entities of a rea
tion system A = (S,A).� X is 1-irrelevant in A if:

(∀T, U ⊆ S) [T ÷ U = X =⇒ resA(T ) = resA(U) ] .� X is 2-irrelevant in A if:
(∀T, U ⊆ S) [U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .� X is 3-irrelevant in A if:
(∀T ⊆ S) [ resA(T \X) = resA(T ∪X) ] .



10 A.Ehrenfeu
ht, J.Kleijn, M.Koutny and G.RozenbergWe denote this by irr1A(X), irr2A(X) and irr3A(X), respe
tively.The �rst of the above three notions of irrelevan
e is simply that investigatedearlier in this paper. The se
ond 
onsiders X irrelevant if removing its elementsfrom any set of entities does not 
hange the result. The se
ond notion of irrele-van
e 
onsiders X irrelevant if adding and removing it from any set of entitiesdoes not 
hange the result.We now demonstrate 
lear and dire
t relationships between the above threenotions of relevan
e.Lemma 4. For every X ⊆ S, irr1A(X) implies irr2A(X).Proof. Let X ⊆ S and assume irr1A(X). Let T, U ⊆ S with U ⊆ T be su
hthat T \ U = X . Then T ÷ U = T \ U = X , and sin
e irr1A(X), we get
resA(T ) = resA(U). Hen
e irr2A(X) and 
onsequently the result holds. ⊓⊔Lemma 5. For every X ⊆ S, irr2A(X) implies irr3A(X).Proof. Let X ⊆ S and assume irr2A(X), hen
e

(∀T, U ⊆ S) [U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .Consider arbitrary T ′ ⊆ S. Let T ′ \X = U and T ′ ∪X = T . Thus T \ U = Xand U ⊆ T . Hen
e, by irr2A(X), we get
resA(T ) = resA(U) . (∗)We note that
resA(T

′ ∪X) = resA(T ) and resA(T
′ \X) = resA(U) . (∗∗)By (∗) and (∗∗) we get resA(T ′ ∪X) = resA(T

′ \X). Therefore irr3A(X) andso the result holds. ⊓⊔Lemma 6. For every X ⊆ S, irr3A(X) implies irr2A(X).Proof. Let X ⊆ S and assume irr3A(X), hen
e
(∀T ⊆ S) [ resA(T \X) = resA(T ∪X) ] . (∗)Consider then arbitrary T, U ⊆ S su
h that U ⊆ T and T \ U = X . We notethat, by X ⊆ T , we have
T ∪X = T . (∗)Moreover, by irr3A(X), we have
resA(T ∪X) = resA(T \X) . (∗∗)Hen
e, by (∗) and (∗∗), resA(T ) = resA(T \ X). Sin
e U = T \ X , we get

resA(T ) = resA(U). Therefore irr2A(X) and so the result holds. ⊓⊔



Relevan
e of Entities in Rea
tion Systems 11We 
an therefore 
on
lude thatTheorem 4. 1-irrelevan
e implies 2-irrelevan
e whi
h in turn is equivalent to3-irrelevan
e.Proof. The theorem follows dire
tly from Lemma 4, Lemma 5 and Lemma 6. ⊓⊔Hen
e the notion of relevant sets of entities investigated earlier on in thispaper turns out to be the strongest among those dis
ussed in this se
tion, andtherefore the best 
hoi
e for formalising the intuitive notion of relevan
e (fromthe point of view of result fun
tions of rea
tion systems).Finally, note that for singletons sets X the three notions of irrelevan
e 
o-in
ide. This is no longer the 
ase if X has two or more elements. Consider, forexample, the rea
tion system A5 = (S, {a}), where
S = {1, 2, 3} a = ({1, 2}, {3}, {1}) .Then the set X = {1, 3} is not 1-irrelevant but it is 3-irrelevant. Hen
e theimpli
ation in the last theorem 
annot be reversed.8 Con
lusionsIn this paper, we presented an investigation of sets of entities of rea
tion systemswhi
h are relevant from the point of view of result fun
tions. In parti
ular, weproved that for the redu
ed rea
tion systems relevant entities are pre
isely thosewhi
h are used as resour
es by the rea
tions. We have also demonstrated that thenotion of relevan
e investigated in this paper is the best 
hoi
e for formalisingthe intuitive notion of a relevant set of entities.In our future work we intend to investigate derived notions of relevan
e whereone is interested in establishing whi
h entities be
ome irrelevant `sooner or later'.For example, one might say that a set of entities X ⊆ S is eventually irrelevantin a rea
tion system A if

(∀T, U ⊆ S)(∃n ≥ 1) [T ÷ U = X =⇒ res
n
A(T ) = res

n
A(U) ] .In other words, eventual irrelevan
e implies that the initial distin
tion betweenstates T and U will eventually disappear with the iteration of resA wheneverthe two states di�er by the set of entities X .A
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