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Relevane of Entities in Reation SystemsAndrzej Ehrenfeuht1, Jetty Kleijn2,Maiej Koutny3, and Grzegorz Rozenberg1,2
1 Department of Computer Siene, University of Colorado at Boulder430 UCB Boulder, CO 80309-0430, U.S.A.andrzej�s.olorado.edu

2 LIACS, Leiden University, 2300 RA, The Netherlands{kleijn,rozenber}�lias.nl
3 Shool of Computing Siene, Newastle University, NE1 7RU, UKmaiej.koutny�nl.a.ukAbstrat. Reation systems are a model for the investigation of pro-esses arried out by biohemial reations in living ells. A reationsystem onsists of a set of reations whih transform a urrent system'sstate (a set of entities) into the suessor state. In this paper we in-vestigate whih entities are atually relevant from the point of view ofgenerating dynami proesses through suh state transformations.Keywords: reation system, living ell, natural omputing.1 IntrodutionThe investigation of the omputational nature of biohemial reations is a re-searh theme of Natural Computing. One of the goals of this researh is toontribute to a omputational understanding of the funtioning of the livingell.Reation systems [1�7℄ are a formal framework for the investigation of pro-esses arried out by biohemial reations in living ells. The entral idea ofthis framework is that the funtioning of a living ell is based on interationsbetween (a large number of) individual reations, and moreover these intera-tions are regulated by two main mehanisms: failitation/aeleration and inhi-bition/retardation. These interations determine the dynami proesses takingplae in living ells, and reation systems are an abstrat model of these pro-esses. This model is based on priniples remarkably di�erent from those under-lying other models of omputation in omputer siene. This is a onsequene ofthe fat that on the one hand the model takes into aount the basi bioener-getis of the living ell while on the other hand its (high) degree of abstrationallows it to be a qualitative rather than quantitative model.In a nutshell, a reation system onsists of a set of entities to whih variousreations an be applied, hanging the urrent state of the system. The spei�question we address in this paper is whih entities an be onsidered as relevantin the sense that state hanges are �sensitive� to them.We provide a haraterisation of relevant elements in terms of resoures ofreations. In our onsiderations we use a spei� �natural� notion of relevane,



2 A.Ehrenfeuht, J.Kleijn, M.Koutny and G.Rozenbergbut we also disuss its relationship to other possible �natural� de�nitions ofrelevane.The paper is organised in the following way. After setting up in Setion 2 somemathematial notation used in the paper, we desribe basi notions onerningreations in Setion 3, and basi notions onerning reation systems in Setion 4.In Setion 5, we introdue the entral notions of this paper: relevant/irrelevantsets and entities, and prove their basi properties. In Setion 6, we demonstratethat for a redued reation system the set of relevant entities oinides withthe resoures used by the system's reations. Then, in Setion 7, we disuss twoalternative formalisations of the notion of relevane. The last setion ontains abrief disussion of our results.2 PreliminariesThroughout the paper we use standard mathematial notation. In partiular,
∀ denotes the universal quanti�er, ∃ the existential quanti�er, ∅ the emptyset, X \ Y set di�erene, X ∪ Y set union, X ∩ Y set intersetion, X ÷ Y =
(X \ Y ) ∪ (Y \X) denotes symmetri di�erene of two sets X and Y , X ⊆ Ydenotes set inlusion, X ⊂ Y denotes strit set inlusion, and ⋃

X denotes theunion of a family of sets X . For a partial relation ≥ over a set X , the set of
≥-maximal elements omprises all x ∈ X suh that there is no y ∈ X suh that
y 6= x and y ≥ x.3 ReationsIn this setion, we reall some key de�nitions onerning reations and sets ofreations (see, e.g., [2, 4℄).Let Z be a �nite bakground set of entities. A reation over Z is a tripletof the form a = (R, I, P ), where R, I, P ⊆ Z are nonempty sets of entities suhthat R ∩ I = ∅. The three omponent sets of reation a are denoted by Ra,
Ia and Pa, respetively, and alled the reatants, inhibitors and produts. Wedenote by rac(Z) the set of all possible reations over Z.Let C ⊆ Z. A reation a ∈ A is enabled by C if Ra ⊆ C and Ia ∩C = ∅. Wedenote this by ena(C). The result of a reation a ∈ A on C is de�ned by

resa(C) =

{

Pa if a is enabled at C
∅ otherwise .Moreover, the result of a set of reations B ⊆ rac(Z) on C, denoted by resB(C),is the union of the produts of all the reations from B, that is

resB(C) =
⋃

b∈B

resb(C) .Note that resB(∅) = ∅ as the set of reatants of any reation is nonempty andso no reation is enabled at the state C = ∅, and resB(Z) = ∅ as the set ofinhibitors of any reation is nonempty and so no reation is enabled by Z.



Relevane of Entities in Reation Systems 3Let a, b ∈ rac(Z). Then b overs a if resb(C) = res{a,b}(C), for all C ⊆ Z. Wedenote this by b ≥ a; thus what a does (produes) is already overed (produed)by b. We also say that b stritly overs a if b ≥ a and a 6= b. Note that ≥ is apartial order.As a matter of fat (see [4℄), b ≥ a i� Rb ⊆ Ra, Ib ⊆ Ia and Pb ⊇ Pa. Thus
b ≥ a if b requires a subset of reatants of a and a subset of inhibitors of a butstill produes at least all the produts of a. Note that if b ≥ a then, for eah
C ⊆ Z, ena(C) implies enb(C).4 Reation systemsA reation system is a pair A = (S,A), where S is a �nite bakground setomprising the entities of A, and A is the set of reations over S. To apturethe dynami behaviour of A, we now desribe all possible transitions betweenits states, where a state of A is any set C of its entities. (Thus a reation systemwith a bakground set S has exatly 2|S| states.)Let C ⊆ S be a state of a reation system A = (S,A). Then resA(C) =
resA(C) is the result of all the reations of A enabled at C.The state transformations aptured by the above de�nition are deterministi.Thus, indeed, a reation system A = (S,A) de�nes (spei�es, implements) afuntion resA : 2S → 2S, alled the result funtion of A. In the general modelof reation systems, proesses of A are also in�uened by the �environment�whih re�ets the fat that the living ell is an open system; it ommuniatesand interats with its environment. However, for the notions that we study inthis paper it su�es to onsider ontext-independent proesses, i.e., proessesdetermined by the system A only (without in�uene of its environment). Inthis way the suessor state for a given state is determined solely by the resultfuntion resA.Note that in this ase, the suessor resA(C) of a urrent state C onsistsonly of entities from the produt sets of reations of A enabled by C. This meansthat there is no permaneny for entities A: an entity from a urrent state will bepresent in (will arry over to) the suessor state only if it is produed by at leastone reation enabled in the urrent state. This way of de�ning state transitionsin reation systems is motivated by the basi bioenergetis of the living ell, andit onstitutes a fundamental di�erene with models of omputations onsideredin omputer siene.Sine in this paper we are interested in state transitions in reation systems, itis onvenient to onvey the subsequent disussion in terms of funtions spei�edby reation systems.Proposition 1. Let A = (S,A) be a reation system. Then

⋃

X∈2S

resA(X) =
⋃

a∈A

Pa .Proof. Follows from the fat that eah reation a ∈ A is enabled at the state
C = Ra. ⊓⊔



4 A.Ehrenfeuht, J.Kleijn, M.Koutny and G.RozenbergIn other words, the entities ourring in the sets of the odomain of the resultfuntion of a reation system are all the entities whih our in the produts ofthe reations of the system.Let A = (S,A) be a reation system and b ∈ rac(S). Then b is onsistentwith A if resb(T ) ⊆ resA(T ), for all T ⊆ S; thus adding b to A yields a reationsystem with the same result funtion.A reation system A = (S,A) is redued if, for all a ∈ A,(i) resA 6= resA\{a}.(ii) there is no b ∈ rac(S) whih is onsistent with A and stritly overs a.Intuitively, (i) exludes reations whih do not add anything new to theresults produed by other reations in A. As to the seond ondition, note thatif b is onsistent with A and b stritly overs a then b is (from the point of viewof A) a more `e�ient' version of a. Therefore, ondition (ii) requires that allthe reations in A are in their most e�ient version.The two onditions in the de�nition of a redued reation system are inde-pendent. Consider, for example, the reation system A1 = (S, {a, b}), where
S = {1, 2} a = ({1}, {2}, {1}) b = ({1}, {2}, {2}) .Then both reations are neessary to speify resA1

. On the other hand, a and bare overed by c = ({1}, {2}, {1, 2}) whih is onsistent with resA1
and an beused to de�ne a more e�ient A′

1 = (S, {c}) speifying the same funtion as A1.Conversely, let us onsider the reation system A2 = (S, {a, b, c}), where
S = {1, 2, 3} a = ({1, 2}, {3}, {1, 2}) b = ({1}, {3}, {1}) c = ({2}, {3}, {2}) .In this ase, the �rst ondition is not satis�ed beause reation a is redundant(its enabledness implies enabledness of both b and c whih together also produe
{1, 2}). However, the seond ondition is satis�ed as there is no reation stritlyovering b or c, while any reation stritly overing a would be inonsistent with
resA2

.We lose this setion by demonstrating that onsidering only redued reationsystems is not a restrition as far as result funtions of reation systems areonerned.Theorem 1. For every reation system A there exists an equivalent reduedreation system A′, i.e., the two systems have the same bakground sets and thesame result funtion.Proof. Let A = (S,A). Consider the set con(A) of all the reations from rac(S)onsistent with A. Note that (S, con(A)) is equivalent with A - as a matter offat, it is the largest implementation of resA.Let D be the set of all reations in con(A) whih are ≥-maximal in con(A)(w.r.t. the partial order ≥).Now we replae, in any order, eah a ∈ A whih is not maximal in con(A)by a reation b ∈ D suh that b ≥ a, Let A′′ be the resulting set of reations.



Relevane of Entities in Reation Systems 5Clearly, A′′ = (S,A′′) is equivalent with A, and A′′ satis�es ondition (ii) fromthe de�nition of a redued system.Next, in order to ensure that also (i) is satis�ed, we inspet one by one allreations, in any order, beginning with A′′ and remove those reations fromthe urrent set of reations whih an be removed without hanging the resultfuntion. Let A′ be the �nal outome of this proedure. Clearly, A′ = (S,A′)still satis�es (ii), but it also satis�es (i). Thus A′ is redued, and moreover A′ isequivalent to A. Hene the theorem holds. ⊓⊔5 Relevane in reation systemsA entral problem in the investigation of result funtions of reation systemsis to understand when and why (for a given reation system A) resA does notdistinguish between two di�erent states T and U , i.e., resA(T ) = resA(U). In-tuitively, this means that the di�erene between T and U is irrelevant from thepoint of view of resA. In this paper, we de�ne irrelevant sets of entities as thesets suh that whenever two sets di�er by an irrelevant set, then they will not bedistinguishable by resA. Sine the operation of symmetri di�erene is a math-ematially natural way to de�ne the di�erene between two sets, we use thisoperation in our de�nition of relevane. With this idea in mind, we say that:� X ⊆ S is relevant in A if
(∃T, U ⊆ S) [T ÷ U = X and resA(T ) 6= resA(U) ] . (i)� X ⊆ S is irrelevant in A if
(∀T, U ⊆ S) [T ÷ U = X =⇒ resA(T ) = resA(U) ] . (ii)� x ∈ S is relevant in A if {x} is relevant in A, i.e.,
(∃T ⊆ S) [ resA(T \ {x}) 6= resA(T ∪ {x}) ] . (iii)� x ∈ S is irrelevant in A if {x} is irrelevant in A, i.e.,
(∀T ⊆ S) [ resA(T \ {x}) = resA(T ∪ {x}) ] . (iv)Intuitively, a set of entities X is irrelevant if any two sets of entities whih`di�er' exatly by X are transformed to the same state, hene X is irrelevantfrom the resA point of view. Thus, X is relevant if we an �nd two sets of entitieswhih `di�er' exatly byX and for whih resA yields di�erent results. It thereforefollows that X is relevant i� X is not irrelevant. What we are really interestedin is whether entities are relevant or irrelevant, as expressed by parts (iii) and(iv) of the above de�nition. However, de�ning the relevane of sets through therelevane of their elements does not work (as shown later in this setion), andso we had to de�ne (i) and (ii) �rst.Now, for a reation system A = (S,A), we de�ne:



6 A.Ehrenfeuht, J.Kleijn, M.Koutny and G.Rozenberg(i) the relevant domain of A as rdom(A) = {x ∈ S : x is relevant in A}.(ii) the irrelevant domain of A as irdom(A) = {x ∈ S : x is irrelevant in A}.Intuitively, rdom(A) omprises those entities to whih resA is `sensitive', and
irdom(A) those to whih resA is `insensitive'.It turns out that by ombining irrelevant entities we never obtain a relevantset of entities. In other words, irrelevane is persistent, as shown next.Proposition 2. Let A be a reation system. Then eah X ⊆ irdom(A) is irrel-evant in A.Proof. Let A = (S,A), and let X be a nonempty subset of irdom(A). Let T, U ⊆
S be suh that T ÷ U = X . Let T \ U = Y and U \ T = Z. (Thus X = Y ∪ Z.)Assume that Y 6= ∅, thus Y = {y1, y2, . . . , yn} for some n ≥ 1. Let T0 = T ,
T1 = T0 \ {y1}, T2 = T1 \ {y2}, . . . , Tn = Tn−1 \ {yn} = T ∩ U . Sine, for eah
i ∈ {1, . . . , n}, yi ∈ Y is irrelevant, we get
resA(T ) = resA(T1) = . . . = resA(Tn) = resA(T ∩ U) . (∗)Assume that Z 6= ∅, thus Z = {z1, . . . , zm} for some m ≥ 1. Let U0 = T ∩ U ,

U1 = U0 ∪ {z1}, U2 = U1 ∪ {z1}, . . . , Um = Um−1 ∪ {zm} = U . Sine, for eah
i ∈ {1, . . . ,m}, zj ∈ Z is irrelevant, we get
resA(T ∩ U) = resA(U0) = . . . = resA(Um) = resA(U) . (∗∗)It follows from (∗) and (∗∗) that if Y 6= ∅ and Z 6= ∅, then

resA(T ) = resA(T ∩ U) = resA(U) .Clearly, this holds also if either Y = ∅ or Z = ∅ (one only needs a `half of theproof' above). This implies that, for all T, U ⊆ S with T ÷ U = X , we have
resA(T ) = resA(U). Therefore X is irrelevant. ⊓⊔6 Charaterising relevant domainsWhen it omes to sets of relevant entities, one should expet a relationship withresoures used by the reation system. Here by the resoures of a single reation
a we mean Ma = Ra ∪ Ia. The essene of the next result is that relevant entitiesmust be resoures.Theorem 2. Let A = (S,A) be a reation system. Then

rdom(A) ⊆
⋃

a∈A

Ma .Proof. Let x ∈ S. If x /∈
⋃

a∈A Ma, then it follows diretly from the de�nition of
resA that, for eah T ⊆ S, resA(T \ {x}) = resA(T ∪ {x}). Hene x is irrelevantand so x /∈ rdom(A). ⊓⊔



Relevane of Entities in Reation Systems 7To inlusion in the formulation of the above theorem an be replaed byequality in ase of a reation system with a single reation.Proposition 3. Let A = (S, {a}) be a reation system. Then
rdom(A) =

⋃

a∈A

Ma .Moreover, every nonempty set X ⊆ Ra ∪ Ia is relevant.Proof. To show the seond part of the statement of the theorem, let X ⊆ Ra∪Iabe suh that X 6= ∅. Let X ′ = X ∩ Ra and X ′′ = X ∩ Ia. To observe that Xis relevant it then su�es to take T = Ra and U = (Ra \ X ′) ∪ X ′′. Heneall resoures are relevant, and so from Theorem 2 it follows immediately that
rdom(A) =

⋃

a∈AMa. ⊓⊔Thus we also obtained a ounterpart of Proposition 2 for sets of relevantentities in ase of a system with a single reation. However, any attempt togeneralise this to the general ase is bound to fail, as illustrated by the followingexample. Consider the reation system A3 = (S, {a, b}), where
S = {1, 2} a = ({1}, {2}, {1}) b = ({2}, {1}, {1}) .Then 1 is relevant beause {1, 2} ÷ {2} = {1} and resA3

({1, 2}) = ∅ 6= {1} =
resA3

({2}), and 2 is relevant beause {1, 2}÷{1}= {2} and resA3
({1, 2}) = ∅ 6=

{1} = resA3
({1}). However, X = {1, 2} is not a relevant set of entities is seen asfollows. If T, U ⊆ S are suh that T ÷ U = X , then either {T, U} = {{1}, {2}}or {T, U} = {∅, S}. In the former ase we obtain resA3

(T ) = {1} = resA3
(U),and in the latter resA3

(T ) = ∅ = resA3
(U).In general, not all resoures are relevant. Consider, for example, the reationsystem A4 = (S, {a, b}), where

S = {1, 2, 3} a = ({1}, {2}, {1}) b = ({1, 3}, {2}, {1}) .Then entity 3 is not relevant sine 3 is a resoure only in the presene of entity
1 and then it has no additional in�uene on the result.To strengthen the general results obtained so far, we turn our attention toredued reation systems whih, intuitively, ontain no redundant nor ine�ientreations. Moreover, by Theorem 1, any reation system is equivalent to a re-dued reation system, and so we still deal with all possible result funtions ofreation systems.It is easy to see that every reation system with a single reation is redued.In the following main result of this paper whih strengthens Theorem 2 we showthat in the ase of any redued reation system the relevant entities are preiselythe resoures used by the system.Theorem 3. Let A = (S,A) be a redued reation system. Then

rdom(A) =
⋃

a∈A

Ma .



8 A.Ehrenfeuht, J.Kleijn, M.Koutny and G.RozenbergProof (Theorem 3). By Theorem 2 it su�es to prove that⋃a∈A Ma ⊆ rdom(A).We do this by showing that:
(∀x ∈ S) [x /∈ rdom(A) =⇒ x /∈

⋃

a∈A Ma ] . ($)We will now present three lemmas, the �rst two of whih demonstrate thatall the reatants are relevant, and the third one demonstrating the same forinhibitors.Lemma 1. For eah reation a ∈ A, Ra 6⊆ irdom(A).Proof (Lemma 1). Let a ∈ A. Assume to the ontrary that Ra ⊆ irdom(A).Then, by Proposition 2, Ra is irrelevant. Sine Ra ÷∅ = Ra and resA(∅) = ∅,this means that
resA(Ra) = ∅ . (∗)On the other hand, ena(Ra) and therefore
resA(Ra) = Pa . (∗∗)But (∗) and (∗∗) imply that Pa = ∅, a ontradition with the de�nition of areation. Therefore Ra 6⊆ irdom(A). (Lemma 1) ⊓⊔Lemma 2. For eah reation a ∈ A, Ra ∩ irdom(A) = ∅.Proof (Lemma 2). Assume to the ontrary that there exists a ∈ A suh that
Ra ∩ irdom(A) 6= ∅ .Let b = (Ra \ irdom(A), Ia, Pa). By Lemma 1, Rb = Ra \ irdom(A) 6= ∅, andso b ∈ rac(S). Clearly, b stritly overs a, and so, beause A is redued, b isnot onsistent with resA. Hene, there exists T ⊆ S suh that enb(T ) and

resb = Pb 6⊆ resA(T ). Sine Pb = Pa, we get
Pa 6⊆ resA(T ) . (∗)Let U = T ′ ∪ (Ra ∩ irdom(A)). Sine enb(T

′), we have (1) Rb ⊆ T ′ and (2)
Ib ∩ T ′ = ∅. Sine Ra \ Rb = Ra ∩ irdom(A), (1) implies that Ra ⊆ U . Sine
Ib = Ia (and Ia ∩Ra = ∅), Ia ∩ U = ∅. Therefore ena(U) and, onsequently,
Pa ⊆ resA(U) . (†)Thus by (∗) and (∗∗) we get that

Pa 6⊆ resA(T ) and Pa ⊆ resA(T ∪ (Ra ∩ irdom(A))) .This implies that the set Ra∩ irdom(A) is relevant (and so not irrelevant), whihontradits Proposition 2. Therefore Lemma 2 holds. (Lemma 2) ⊓⊔Lemma 3. For eah reation a ∈ A, Ia ∩ irdom(A) = ∅.



Relevane of Entities in Reation Systems 9Proof (Lemma 3). Assume to the ontrary that Ia ∩ irdom(A) 6= ∅. Clearly,for eah T ⊆ S, resA\{a}(T ) ⊆ resA(T ). Moreover, beause A is redued, thereexists Ta ⊆ S suh that resA\{a}(Ta) 6= resA(Ta). Thus
resA\{a}(Ta) ⊂ resA(Ta) . (∗)Clearly, ena(Ta), as otherwise resA\{a}(Ta) = resA(Ta) whih ontradits (∗).Let U = Ta ∪ irdom(A). By Lemma 2, for eah b ∈ A, if Rb ⊆ U then

Rb ⊆ Ta. Consequently, if b ∈ A is enabled at U , then it is also enabled at Ta,implying that
(∀B ⊆ A) [resB(U) ⊆ resB(Ta)] . (∗∗)Sine we assumed that Ia∩ irdom(A) 6= ∅, reation a is not enabled at U and so

resA(U) ⊆ resA\{a}(U). Sine, by (∗∗), resA\{a}(U) ⊆ resA\{a}(Ta), we get then
resA(U) ⊆ resA\{a}(Ta). Consequently, by (∗), we obtain resA(U) ⊂ resA(Ta).Sine we have U = Ta ∪ irdom(A), this implies that irdom(A) is relevant in thereation system A (and so not irrelevant), ontraditing Proposition 2. HeneLemma 3 holds. (Lemma 3) ⊓⊔By Lemma 2 and Lemma 3, irdom(A) ∩

⋃

a∈A Ma = ∅, whih implies that
($) holds and, onsequently, the theorem holds. (Theorem 3) ⊓⊔This result on�rms that the notion of a redued reation system with theunderlying intuition of having �no redundanies� is well-hosen. Indeed, in aredued system all resoures are relevant, whih does not have to be the ase inarbitrary reation systems.7 Alternative notions of relevaneIn de�ning irrelevant/relevant sets of entities we relied on the operation of sym-metri di�erene. In our view, this is just one of three natural hoies to apturethe notion of irrelevane/relevane. In this setion, we analyse the relationshipsbetween them.Let X ⊆ S be a set of entities of a reation system A = (S,A).� X is 1-irrelevant in A if:

(∀T, U ⊆ S) [T ÷ U = X =⇒ resA(T ) = resA(U) ] .� X is 2-irrelevant in A if:
(∀T, U ⊆ S) [U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .� X is 3-irrelevant in A if:
(∀T ⊆ S) [ resA(T \X) = resA(T ∪X) ] .



10 A.Ehrenfeuht, J.Kleijn, M.Koutny and G.RozenbergWe denote this by irr1A(X), irr2A(X) and irr3A(X), respetively.The �rst of the above three notions of irrelevane is simply that investigatedearlier in this paper. The seond onsiders X irrelevant if removing its elementsfrom any set of entities does not hange the result. The seond notion of irrele-vane onsiders X irrelevant if adding and removing it from any set of entitiesdoes not hange the result.We now demonstrate lear and diret relationships between the above threenotions of relevane.Lemma 4. For every X ⊆ S, irr1A(X) implies irr2A(X).Proof. Let X ⊆ S and assume irr1A(X). Let T, U ⊆ S with U ⊆ T be suhthat T \ U = X . Then T ÷ U = T \ U = X , and sine irr1A(X), we get
resA(T ) = resA(U). Hene irr2A(X) and onsequently the result holds. ⊓⊔Lemma 5. For every X ⊆ S, irr2A(X) implies irr3A(X).Proof. Let X ⊆ S and assume irr2A(X), hene

(∀T, U ⊆ S) [U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .Consider arbitrary T ′ ⊆ S. Let T ′ \X = U and T ′ ∪X = T . Thus T \ U = Xand U ⊆ T . Hene, by irr2A(X), we get
resA(T ) = resA(U) . (∗)We note that
resA(T

′ ∪X) = resA(T ) and resA(T
′ \X) = resA(U) . (∗∗)By (∗) and (∗∗) we get resA(T ′ ∪X) = resA(T

′ \X). Therefore irr3A(X) andso the result holds. ⊓⊔Lemma 6. For every X ⊆ S, irr3A(X) implies irr2A(X).Proof. Let X ⊆ S and assume irr3A(X), hene
(∀T ⊆ S) [ resA(T \X) = resA(T ∪X) ] . (∗)Consider then arbitrary T, U ⊆ S suh that U ⊆ T and T \ U = X . We notethat, by X ⊆ T , we have
T ∪X = T . (∗)Moreover, by irr3A(X), we have
resA(T ∪X) = resA(T \X) . (∗∗)Hene, by (∗) and (∗∗), resA(T ) = resA(T \ X). Sine U = T \ X , we get

resA(T ) = resA(U). Therefore irr2A(X) and so the result holds. ⊓⊔



Relevane of Entities in Reation Systems 11We an therefore onlude thatTheorem 4. 1-irrelevane implies 2-irrelevane whih in turn is equivalent to3-irrelevane.Proof. The theorem follows diretly from Lemma 4, Lemma 5 and Lemma 6. ⊓⊔Hene the notion of relevant sets of entities investigated earlier on in thispaper turns out to be the strongest among those disussed in this setion, andtherefore the best hoie for formalising the intuitive notion of relevane (fromthe point of view of result funtions of reation systems).Finally, note that for singletons sets X the three notions of irrelevane o-inide. This is no longer the ase if X has two or more elements. Consider, forexample, the reation system A5 = (S, {a}), where
S = {1, 2, 3} a = ({1, 2}, {3}, {1}) .Then the set X = {1, 3} is not 1-irrelevant but it is 3-irrelevant. Hene theimpliation in the last theorem annot be reversed.8 ConlusionsIn this paper, we presented an investigation of sets of entities of reation systemswhih are relevant from the point of view of result funtions. In partiular, weproved that for the redued reation systems relevant entities are preisely thosewhih are used as resoures by the reations. We have also demonstrated that thenotion of relevane investigated in this paper is the best hoie for formalisingthe intuitive notion of a relevant set of entities.In our future work we intend to investigate derived notions of relevane whereone is interested in establishing whih entities beome irrelevant `sooner or later'.For example, one might say that a set of entities X ⊆ S is eventually irrelevantin a reation system A if

(∀T, U ⊆ S)(∃n ≥ 1) [T ÷ U = X =⇒ res
n
A(T ) = res

n
A(U) ] .In other words, eventual irrelevane implies that the initial distintion betweenstates T and U will eventually disappear with the iteration of resA wheneverthe two states di�er by the set of entities X .AknowledgementThis researh was supported by the Pasal Chair award from the Leiden Instituteof Advaned Computer Siene (LIACS) of Leiden University.
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