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Abstract. Reaction systems are a model for the investigation of pro-
cesses carried out by biochemical reactions in living cells. A reaction
system consists of a set of reactions which transform a current system’s
state (a set of entities) into the successor state. In this paper we in-
vestigate which entities are actually relevant from the point of view of
generating dynamic processes through such state transformations.
Keywords: reaction system, living cell, natural computing.

1 Introduction

The investigation of the computational nature of biochemical reactions is a re-
search theme of Natural Computing. One of the goals of this research is to
contribute to a computational understanding of the functioning of the living
cell.

Reaction systems [1-7] are a formal framework for the investigation of pro-
cesses carried out by biochemical reactions in living cells. The central idea of
this framework is that the functioning of a living cell is based on interactions
between (a large number of) individual reactions, and moreover these interac-
tions are regulated by two main mechanisms: facilitation/acceleration and inhi-
bition /retardation. These interactions determine the dynamic processes taking
place in living cells, and reaction systems are an abstract model of these pro-
cesses. This model is based on principles remarkably different from those under-
lying other models of computation in computer science. This is a consequence of
the fact that on the one hand the model takes into account the basic bioener-
getics of the living cell while on the other hand its (high) degree of abstraction
allows it to be a qualitative rather than quantitative model.

In a nutshell, a reaction system consists of a set of entities to which various
reactions can be applied, changing the current state of the system. The specific
question we address in this paper is which entities can be considered as relevant
in the sense that state changes are “sensitive” to them.

We provide a characterisation of relevant elements in terms of resources of
reactions. In our considerations we use a specific “natural” notion of relevance,
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but we also discuss its relationship to other possible “natural” definitions of
relevance.

The paper is organised in the following way. After setting up in Section 2 some
mathematical notation used in the paper, we describe basic notions concerning
reactions in Section 3, and basic notions concerning reaction systems in Section 4.
In Section 5, we introduce the central notions of this paper: relevant/irrelevant
sets and entities, and prove their basic properties. In Section 6, we demonstrate
that for a reduced reaction system the set of relevant entities coincides with
the resources used by the system’s reactions. Then, in Section 7, we discuss two
alternative formalisations of the notion of relevance. The last section contains a
brief discussion of our results.

2 Preliminaries

Throughout the paper we use standard mathematical notation. In particular,
vV denotes the universal quantifier, 3 the existential quantifier, @ the empty
set, X \ 'Y set difference, X UY set union, X NY set intersection, X +Y =
(X\Y)U (Y \ X) denotes symmetric difference of two sets X and Y, X C YV
denotes set inclusion, X C Y denotes strict set inclusion, and | J X denotes the
union of a family of sets X. For a partial relation > over a set X, the set of
>-maximal elements comprises all € X such that there is no y € X such that
y#xand y > x.

3 Reactions

In this section, we recall some key definitions concerning reactions and sets of
reactions (see, e.g., [2,4]).

Let Z be a finite background set of entities. A reaction over Z is a triplet
of the form a = (R, I, P), where R,I, P C Z are nonempty sets of entities such
that RN I = @. The three component sets of reaction a are denoted by R,,
I, and P,, respectively, and called the reactants, inhibitors and products. We
denote by rac(Z) the set of all possible reactions over Z.

Let C C Z. A reaction a € A is enabled by C if R, C C and I,NC = &. We
denote this by eng(C). The result of a reaction a € A on C' is defined by

P, if a is enabled at C
@ otherwise .

i)~

Moreover, the result of a set of reactions B C rac(Z) on C, denoted by resp(C),
is the union of the products of all the reactions from B, that is

resp(C) = U resy(C) .
beB

Note that resp(@) = & as the set of reactants of any reaction is nonempty and
so no reaction is enabled at the state C = &, and resp(Z) = @ as the set of
inhibitors of any reaction is nonempty and so no reaction is enabled by Z.
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Let a,b € rac(Z). Then b covers a if resy(C) = res(qy(C), for all C C Z. We
denote this by b > a; thus what a does (produces) is already covered (produced)
by b. We also say that b strictly covers a if b > a and a # b. Note that > is a
partial order.

As a matter of fact (see [4]), b > a iff Ry C Ry, I C I, and P, 2 P,. Thus
b > a if b requires a subset of reactants of a and a subset of inhibitors of a but
still produces at least all the products of a. Note that if b > a then, for each
C C Z, eng(C) implies eny,(C).

4 Reaction systems

A reaction system is a pair A = (S, A), where S is a finite background set
comprising the entities of A, and A is the set of reactions over S. To capture
the dynamic behaviour of A, we now describe all possible transitions between
its states, where a state of A is any set C of its entities. (Thus a reaction system
with a background set S has exactly 25! states.)

Let C' C S be a state of a reaction system A4 = (S, A). Then res4(C) =
res 4(C) is the result of all the reactions of A enabled at C.

The state transformations captured by the above definition are deterministic.
Thus, indeed, a reaction system A = (S, A) defines (specifies, implements) a
function res4 : 2° — 25, called the result function of A. In the general model
of reaction systems, processes of A are also influenced by the “environment”
which reflects the fact that the living cell is an open system; it communicates
and interacts with its environment. However, for the notions that we study in
this paper it suffices to consider context-independent processes, i.e., processes
determined by the system A only (without influence of its environment). In
this way the successor state for a given state is determined solely by the result
function res 4.

Note that in this case, the successor res 4(C) of a current state C' consists
only of entities from the product sets of reactions of A enabled by C. This means
that there is no permanency for entities A: an entity from a current state will be
present in (will carry over to) the successor state only if it is produced by at least
one reaction enabled in the current state. This way of defining state transitions
in reaction systems is motivated by the basic bioenergetics of the living cell, and
it constitutes a fundamental difference with models of computations considered
in computer science.

Since in this paper we are interested in state transitions in reaction systems, it
is convenient to convey the subsequent discussion in terms of functions specified
by reaction systems.

Proposition 1. Let A= (S, A) be a reaction system. Then
U res 4(X) = UPa.
Xe2s a€A

Proof. Follows from the fact that each reaction a € A is enabled at the state
C=R,. O
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In other words, the entities occurring in the sets of the codomain of the result
function of a reaction system are all the entities which occur in the products of
the reactions of the system.

Let A = (S, A) be a reaction system and b € rac(S). Then b is consistent
with A if resy,(T) C res4(T), for all T C S; thus adding b to A yields a reaction
system with the same result function.

A reaction system A = (S, A) is reduced if, for all a € A,

(i) resa # resa\{a}-
(ii) there is no b € rac(S) which is consistent with A and strictly covers a.

Intuitively, (i) excludes reactions which do not add anything new to the
results produced by other reactions in A. As to the second condition, note that
if b is consistent with A and b strictly covers a then b is (from the point of view
of A) a more ‘efficient’ version of a. Therefore, condition (ii) requires that all
the reactions in 4 are in their most efficient version.

The two conditions in the definition of a reduced reaction system are inde-
pendent. Consider, for example, the reaction system .4; = (5, {a,b}), where

S={12} a={1}{2}{1}) o=({1},{2},{2}).

Then both reactions are necessary to specify res 4,. On the other hand, a and b

are covered by ¢ = ({1}, {2}, {1,2}) which is consistent with res 4, and can be

used to define a more efficient A} = (S, {c}) specifying the same function as Aj;.
Conversely, let us consider the reaction system Az = (5, {a, b, c}), where

S={1,2,3} a=({125{3}{1,2}) b=({1}{3}{1}) c=({2}{3},{2}).

In this case, the first condition is not satisfied because reaction a is redundant
(its enabledness implies enabledness of both b and ¢ which together also produce
{1,2}). However, the second condition is satisfied as there is no reaction strictly
covering b or ¢, while any reaction strictly covering a would be inconsistent with
T€S Ay -

We close this section by demonstrating that considering only reduced reaction
systems is not a restriction as far as result functions of reaction systems are
concerned.

Theorem 1. For every reaction system A there exists an equivalent reduced
reaction system A’, i.e., the two systems have the same background sets and the
same result function.

Proof. Let A= (S, A). Consider the set con(A) of all the reactions from rac(S)
consistent with 4. Note that (S, con(A)) is equivalent with A - as a matter of
fact, it is the largest implementation of res 4.

Let D be the set of all reactions in con(A) which are >-maximal in con(A)
(w.r.t. the partial order >).

Now we replace, in any order, each a € A which is not maximal in con(A)
by a reaction b € D such that b > a, Let A” be the resulting set of reactions.
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Clearly, A” = (S, A”) is equivalent with A, and A" satisfies condition (ii) from
the definition of a reduced system.

Next, in order to ensure that also (i) is satisfied, we inspect one by one all
reactions, in any order, beginning with A” and remove those reactions from
the current set of reactions which can be removed without changing the result
function. Let A’ be the final outcome of this procedure. Clearly, A" = (S, A")
still satisfies (ii), but it also satisfies (i). Thus A’ is reduced, and moreover A’ is
equivalent to A. Hence the theorem holds. a

5 Relevance in reaction systems

A central problem in the investigation of result functions of reaction systems
is to understand when and why (for a given reaction system A) res 4 does not
distinguish between two different states T and U, i.e., reso(T) = resa(U). In-
tuitively, this means that the difference between T and U is irrelevant from the
point of view of res 4. In this paper, we define irrelevant sets of entities as the
sets such that whenever two sets differ by an irrelevant set, then they will not be
distinguishable by res 4. Since the operation of symmetric difference is a math-
ematically natural way to define the difference between two sets, we use this
operation in our definition of relevance. With this idea in mind, we say that:

— X C Sis relevant in A if

FT,UCS) [T+U=X and resa(T) # resa(U)] . (1)
— X C S isirrelevant in A if

VILUCS) [T+U=X = resa(T)=resa(U)]. (ii)
— x € Sis relevant in A if {x} is relevant in A, i.e.,

(BT C 8) [resa(T\ {x}) # res a(T U {z})] (i)
— x € Sis irrelevant in A if {z} is irrelevant in A, i.e.,

(VT C 8) [resa(T\ {x}) = res o(T U {z})] (iv)

Intuitively, a set of entities X is irrelevant if any two sets of entities which
‘differ’ exactly by X are transformed to the same state, hence X is irrelevant
from the res 4 point of view. Thus, X is relevant if we can find two sets of entities
which ‘differ’ exactly by X and for which res 4 yields different results. It therefore
follows that X is relevant iff X is not irrelevant. What we are really interested
in is whether entities are relevant or irrelevant, as expressed by parts (iii) and
(iv) of the above definition. However, defining the relevance of sets through the
relevance of their elements does not work (as shown later in this section), and
so we had to define (i) and (ii) first.

Now, for a reaction system A = (S, A), we define:
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(i) the relevant domain of A as rdom(A) = {x € S :  is relevant in A}.

(ii) the irrelevant domain of A as irdom(A) = {x € S : x is irrelevant in A}.

Intuitively, rdom(A) comprises those entities to which res 4 is ‘sensitive’, and
irdom(A) those to which res 4 is ‘insensitive’.

It turns out that by combining irrelevant entities we never obtain a relevant
set of entities. In other words, irrelevance is persistent, as shown next.

Proposition 2. Let A be a reaction system. Then each X C irdom(A) is irrel-
evant in A.

Proof. Let A= (S, A), and let X be a nonempty subset of irdom(A). Let T, U C
S be such that T+ U = X.Let T\U =Y and U\ T = Z. (Thus X =Y U Z.)
Assume that Y # @, thus Y = {y1,y2,...,yn} for some n > 1. Let Ty = T,
Ty =To\{n}, e =T1 \{y2}, ..., T, = T1 \ {yn} = T NU. Since, for each
i€ {l,...,n}, y; €Y is irrelevant, we get

resA(T) = resa(Th) = ... =resa(Ty) = resa(TNU) . (%)

Assume that Z # @, thus Z = {z1,...,2m} for some m > 1. Let Uy = TN U,
U, =UyU {21}, U, =U; U {21}, ey U =Up1 U {Zm} = U. Since, for each
ie{l,...,m}, z; € Z is irrelevant, we get

resA(TNU) = resa(Up) = ... =resa(Un) = resa(U) . (%)
It follows from (x) and (*x) that if Y # @ and Z # @, then
resA(T) = resa(TNU) =resa(U) .

Clearly, this holds also if either Y = & or Z = & (one only needs a ‘half of the
proof’ above). This implies that, for all T,U C S with T+ U = X, we have
res A(T) = res4(U). Therefore X is irrelevant. O

6 Characterising relevant domains

When it comes to sets of relevant entities, one should expect a relationship with
resources used by the reaction system. Here by the resources of a single reaction
a we mean M, = R, UI,. The essence of the next result is that relevant entities
must be resources.

Theorem 2. Let A= (S, A) be a reaction system. Then

rdom(A) C U M, .

a€A

Proof. Let v € S. If & ¢ |J,c 4 Ma, then it follows directly from the definition of
res 4 that, for each T C S, res (T \ {z}) = res 4(T U {x}). Hence z is irrelevant
and so = ¢ rdom(A). O
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To inclusion in the formulation of the above theorem can be replaced by
equality in case of a reaction system with a single reaction.

Proposition 3. Let A = (S,{a}) be a reaction system. Then
rdom(A) = U M, .

acA
Moreover, every nonempty set X C R, U I, is relevant.

Proof. To show the second part of the statement of the theorem, let X C R, U1,
be such that X # @. Let X' = X N R, and X" = X N I,. To observe that X
is relevant it then suffices to take T' = R, and U = (R, \ X’) U X”. Hence
all resources are relevant, and so from Theorem 2 it follows immediately that
rdom(A) = Uz s Ma- O

Thus we also obtained a counterpart of Proposition 2 for sets of relevant
entities in case of a system with a single reaction. However, any attempt to
generalise this to the general case is bound to fail, as illustrated by the following
example. Consider the reaction system Az = (S, {a,b}), where

S={12} ao={1}{21{1}) b=({2}{1}{1}).

Then 1 is relevant because {1,2} + {2} = {1} and res4,({1,2}) = @ # {1} =
res 4, ({2}), and 2 is relevant because {1,2}+{1} = {2} and res 4,({1,2}) = @ #
{1} = res 4, ({1}). However, X = {1, 2} is not a relevant set of entities is seen as
follows. If T,U C S are such that T+ U = X, then either {T,U} = {{1},{2}}
or {T,U} = {@,S}. In the former case we obtain res4,(T) = {1} = res,(U),
and in the latter res 4, (T) = @ = res.4,(U).

In general, not all resources are relevant. Consider, for example, the reaction
system Ay = (5, {a,b}), where

S = {172a3} a= ({1}a {2}7 {1}) b= ({1a3}7 {2}a {1}) :

Then entity 3 is not relevant since 3 is a resource only in the presence of entity
1 and then it has no additional influence on the result.

To strengthen the general results obtained so far, we turn our attention to
reduced reaction systems which, intuitively, contain no redundant nor inefficient
reactions. Moreover, by Theorem 1, any reaction system is equivalent to a re-
duced reaction system, and so we still deal with all possible result functions of
reaction systems.

It is easy to see that every reaction system with a single reaction is reduced.
In the following main result of this paper which strengthens Theorem 2 we show
that in the case of any reduced reaction system the relevant entities are precisely
the resources used by the system.

Theorem 3. Let A = (S5, A) be a reduced reaction system. Then

rdom(A) = U M, .

acA
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Proof (Theorem 3). By Theorem 2 it suffices to prove that | J,. 4 Ma € rdom(A).
We do this by showing that:

(Ve € S) [z ¢ rdom(A) = x¢Uyca Ma]. (%)

We will now present three lemmas, the first two of which demonstrate that
all the reactants are relevant, and the third one demonstrating the same for
inhibitors.

Lemma 1. For each reaction a € A, Ry € irdom(A).

Proof (Lemma 1). Let a € A. Assume to the contrary that R, C irdom(A).
Then, by Proposition 2, R, is irrelevant. Since R, +~ @ = R, and res4(9) = &,
this means that

resaA(Rq) = @ . (*)
On the other hand, en,(R,) and therefore
resa(Ry) = Py . (%)

But (%) and () imply that P, = &, a contradiction with the definition of a
reaction. Therefore R, Z irdom(A). (Lemma 1) O

Lemma 2. For each reaction a € A, R, N irdom(A) = &.
Proof (Lemma 2). Assume to the contrary that there exists a € A such that
Ry Nirdom(A) # & .

Let b = (R, \ rdom(A),I,, P,). By Lemma 1, Ry = R, \ irdom(A) # @, and
so b € rac(S). Clearly, b strictly covers a, and so, because A is reduced, b is
not consistent with res 4. Hence, there exists T C S such that eny(7T") and
resy, = Py € resa(T). Since P, = P,, we get

P, Z resa(T) . (%)

Let U = T U (R, N irdom(A)). Since eny(T'), we have (1) R, C 17 and (2)
I,NnT' = @. Since R, \ Ry = R, N irdom(A), (1) implies that R, C U. Since
Iy =1, (and I, "R, = @), I, NU = &. Therefore en,(U) and, consequently,

P, Cresa(U). ()
Thus by (%) and (xx) we get that
P, Z resA(T) and P, C resa(T U (Rq N irdom(A))) .

This implies that the set R, Nirdom(.A) is relevant (and so not irrelevant), which
contradicts Proposition 2. Therefore Lemma 2 holds. (Lemma 2) O

Lemma 3. For each reaction a € A, I, Nirdom(A) = @.
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Proof (Lemma 3). Assume to the contrary that I, N irdom(A) # @. Clearly,
for each T' C S, res g\ (a} (1) C resa(T). Moreover, because A is reduced, there
exists T, C S such that res 4\ (a} (Ta) # resa(Ta). Thus

res a\{a}(Ta) C resa(Ta) - (%)

Clearly, en,(T4), as otherwise res g\ (4} (Ta) = res a(T,) which contradicts (x).

Let U = T, U irdom(A). By Lemma 2, for each b € A, if R, C U then
Ry C T,. Consequently, if b € A is enabled at U, then it is also enabled at Ty,
implying that

(VBCA) [resp(U) C resp(Ty)] - (%)

Since we assumed that I, Nirdom(A) # &, reaction a is not enabled at U and so
res A(U) C res g\ (o} (U). Since, by (%), res s\ (a3 (U) C res 4\ {03 (Ta), We get then
res 4(U) C res a\{a} (Ta). Consequently, by (x), we obtain res 4(U) C res(Ta).
Since we have U = T, U irdom(A), this implies that irdom(A) is relevant in the
reaction system A (and so not irrelevant), contradicting Proposition 2. Hence
Lemma 3 holds. (Lemma 8) O

By Lemma 2 and Lemma 3, irdom(A) N |J,c 4 Ma = @, which implies that
(%) holds and, consequently, the theorem holds. (Theorem 3) O

This result confirms that the notion of a reduced reaction system with the
underlying intuition of having “no redundancies” is well-chosen. Indeed, in a
reduced system all resources are relevant, which does not have to be the case in
arbitrary reaction systems.

7 Alternative notions of relevance

In defining irrelevant /relevant sets of entities we relied on the operation of sym-
metric difference. In our view, this is just one of three natural choices to capture
the notion of irrelevance/relevance. In this section, we analyse the relationships
between them.

Let X C S be a set of entities of a reaction system A = (S, A).

— X is I-irrelevant in A if:

VILUCS) [T+-U=X = resa(T)=resa(U)].
— X is 2-irrelevant in A if:

(VILUCS) [UCT and T\U=X = resa(T)=resa(U)].
— X is 3-irrelevant in A if:

(VT CS) [resa(T\X)=resa(TUX)].
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We denote this by irrl 4(X), irr24(X) and irr34(X), respectively.

The first of the above three notions of irrelevance is simply that investigated
earlier in this paper. The second considers X irrelevant if removing its elements
from any set of entities does not change the result. The second notion of irrele-
vance considers X irrelevant if adding and removing it from any set of entities
does not change the result.

We now demonstrate clear and direct relationships between the above three
notions of relevance.

Lemma 4. For every X C S, irrio(X) implies irr24(X).
Proof. Let X C S and assume irrl4(X). Let T,U C S with U C T be such
that T\ U = X. Then T+ U = T\ U = X, and since irri4(X), we get
res A(T) = res4(U). Hence irr24(X) and consequently the result holds. O
Lemma 5. For every X C S, irr24(X) implies irr34(X).
Proof. Let X C S and assume #rr24(X), hence

(VILLUCS) [UCT and T\U=X = resa(T)=resa(U)].

Consider arbitrary 7/ C S. Let 7"\ X =U and T"UX =T. Thus T\ U = X
and U C T'. Hence, by irr24(X), we get

resA(T) = resa(U) . (%)
We note that
resA(T"UX) =resa(T) and resa(T'\ X) =resa(U) . (x%)

By (%) and (xx) we get res4(T" U X) = reso(T" \ X). Therefore irr34(X) and
so the result holds. O

Lemma 6. For every X C S, irr34(X) implies irr24(X).
Proof. Let X C S and assume rr34(X), hence
(VI C8S) [resa(T\X)=resa(TUX)]. (%)

Consider then arbitrary T,U C S such that U C T and T\ U = X. We note
that, by X C T, we have

TUX=T. (%)
Moreover, by irr34(X), we have
resA(TUX) = resa(T\ X) . (%)

Hence, by (%) and (xx), resa(T) = resa(T \ X). Since U = T \ X, we get
res A(T) = res 4(U). Therefore irr2,4(X) and so the result holds. O
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We can therefore conclude that

Theorem 4. I-irrelevance implies 2-irrelevance which in turn is equivalent to
3-irrelevance.

Proof. The theorem follows directly from Lemma 4, Lemma 5 and Lemma 6. O

Hence the notion of relevant sets of entities investigated earlier on in this
paper turns out to be the strongest among those discussed in this section, and
therefore the best choice for formalising the intuitive notion of relevance (from
the point of view of result functions of reaction systems).

Finally, note that for singletons sets X the three notions of irrelevance co-
incide. This is no longer the case if X has two or more elements. Consider, for
example, the reaction system A5 = (5, {a}), where

S:{1a273} a= ({laQ}a{S}a{l})

Then the set X = {1,3} is not l-irrelevant but it is 3-irrelevant. Hence the
implication in the last theorem cannot be reversed.

8 Conclusions

In this paper, we presented an investigation of sets of entities of reaction systems
which are relevant from the point of view of result functions. In particular, we
proved that for the reduced reaction systems relevant entities are precisely those
which are used as resources by the reactions. We have also demonstrated that the
notion of relevance investigated in this paper is the best choice for formalising
the intuitive notion of a relevant set of entities.

In our future work we intend to investigate derived notions of relevance where
one is interested in establishing which entities become irrelevant ‘sooner or later’.
For example, one might say that a set of entities X C S is eventually irrelevant
in a reaction system A if

VI,LUCS)(Fn>1) [T=U=X = resy(T)=resy(U)].
In other words, eventual irrelevance implies that the initial distinction between
states T and U will eventually disappear with the iteration of res4 whenever
the two states differ by the set of entities X.
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