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In recent years, many studies indicate that children with an autism spectrum disorder

(ASD) diagnosis have brain pathology suggestive of ongoing neuroinflammation or

encephalitis in different regions of their brains. Evidence of neuroinflammation or

encephalitis in ASD includes: microglial and astrocytic activation, a unique and elevated

proinflammatory profile of cytokines, and aberrant expression of nuclear factor kappa-

light-chain-enhancer of activated B cells. A conservative estimate based on the research

suggests that at least 69% of individuals with an ASD diagnosis have microglial

activation or neuroinflammation. Encephalitis, which is defined as inflammation of the

brain, is medical diagnosis code G04.90 in the International Classification of Disease,

10th revision; however, children with an ASD diagnosis are not generally assessed

for a possible medical diagnosis of encephalitis. This is unfortunate because if a child

with ASD has neuroinflammation, then treating the underlying brain inflammation could

lead to improved outcomes. The purpose of this review of the literature is to examine

the evidence of neuroinflammation/encephalitis in those with an ASD diagnosis and to

address how a medical diagnosis of encephalitis, when appropriate, could benefit these

children by driving more immediate and targeted treatments.

Keywords: neuroinflammation, encephalitis, autism spectrum disorder, microglia, astrocytic activation,

cytokines, regression

INTRODUCTION

Autism or autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder that is
behaviorally defined and psychiatrically diagnosed based on a spectrum of qualitative impairments
in social interaction and communication, and in restricted and stereotyped patterns of behavior,
interests, and activities (American Psychiatric Association, 2013). In addition, children diagnosed
with an ASD diagnosis have a high prevalence of various co-morbid medical conditions
(Banaschewski et al., 2011; Geier et al., 2012; Ozsivadjian et al., 2014). Despite this fact, an ASD
diagnosis still remains under the diagnostic criteria of a purely psychiatric disorder.

In recent years, many studies indicate that children with an ASD diagnosis have brain
pathology suggestive of ongoing neuroinflammation or encephalitis (encephalitis is defined as
brain inflammation) in different regions of the brain (Enstrom et al., 2005; Pardo et al., 2005;
Vargas et al., 2005; Zimmerman et al., 2005; Chez et al., 2007; Morgan et al., 2010, 2012; Tetreault
et al., 2012). Encephalitis is medical diagnosis code G04.90 in the International Classification of
Disease, 10th revision, clinical modification (ICD-10-CM). However, even though the research
indicates that the brain inflammation is relatively common in these children, children with an
ASD diagnosis are not generally given the medical diagnosis of encephalitis. Instead, they continue
to be diagnosed using purely psychiatric diagnostic codes. This may be due, in part, to original
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misconceptions about the disorder when it was first identified
in 1943 by Leo Kanner, who attributed it to the emotional
unavailability of the affected child’s mother. While erroneous,
this misconception originally and lastingly branded autism as a
psychiatric disorder. Now, despite decades of published scientific
and medical literature documenting its physical symptoms,
autism is most often still treated as a psychiatric condition with
psychiatric medications.

As a result, critical new research into the physical symptoms of
autism is often neglected. Additionally, the time lag between new
research findings being published and their being incorporated
into medical practice standards further contributes to a delay
in the recognition and treatment of the physical symptoms
of autism or ASD. It is crucial that new landmark findings
from neuroscience, about the brain pathology found in ASD,
be translated into the practice of medicine because this will
drive newmedically directed and targeted treatments, which may
be more effective and safer than previous interventions guided
by psychiatric labels. The current use and safety of psychiatric
medications in autism and ASD will be discussed later in this
paper.

The purpose of this review of the literature, is to examine
the evidence of neuroinflammation/encephalitis in those with
an ASD diagnosis and to address how a medical diagnosis
of encephalitis could benefit these children by driving more
immediate and targeted treatments. The review begins with
evidence of neuroinflammation in ASD. Although there are
numerous studies that showmarkers of systemic inflammation in
ASD (Rossignol and Frye, 2014), this review focuses on the brain
and cerebral spinal fluid (CSF).

AUTISM, NEUROINFLAMMATION, AND
ENCEPHALITIS

As mentioned previously, there are many studies
showing children with an ASD diagnosis have ongoing
neuroinflammation/encephalitis in different regions of the brain
(see Table 1; Enstrom et al., 2005; Pardo et al., 2005; Vargas
et al., 2005; Zimmerman et al., 2005; Chez et al., 2007; Morgan
et al., 2010, 2012). Active neuroinflammatory processes are
found throughout the brain in both the cerebral cortex and in
the cerebellum of patients with autism (Vargas et al., 2005). Of
critical importance to this issue is that post-mortem brain tissue
studies examining the brains of children with an ASD diagnosis
reveal significant evidence of neuroinflammation/encephalitis
regardless of the child’s age, indicating that they were suffering
from sustained neuroinflammation/encephalitis processes. As
Herbert (2005) described, brain abnormalities in those diagnosed
with an ASD reveal significant ongoing neuroinflammation to be
a central element of the observed brain pathology.

These findings, showing evidence of inflammation
in brain tissue in ASD, are evidenced by biomarkers of
inflammation/encephalitis in the CSF and blood of individuals
diagnosed with an ASD (Zimmerman et al., 2005; Chez et al.,
2007). Neuroinflammation, in general, is characterized by the
reactivity of microglial cells and astrocytes, activation of inducible

NO-synthase (i-NOS), and increased expression and/or release of
cytokines and chemokines (Monnet-Tschudi et al., 2011). All of
these neuroinflammatory processes have been observed in those
with an ASD diagnosis. Table 1 summarizes evidence supporting
the presence of neuroinflammation/encephalitis in the brains
and CSF of select individuals who have an ASD diagnosis. To
date, there are at least 16 studies which reveal neuroinflammation
to be an element of the ASD pathology. The following section
discusses the specific biomarkers of neuroinflammation found in
ASD, and their relevance and interplay.

Biomarkers of Neuroinflammation in ASD
In those with an ASD diagnosis, some important biomarkers
indicative of brain inflammation, include (but are not limited to):
(1) microglial and astrocytic activation (Vargas et al., 2005); (2)
a proinflammatory profile of cytokines (Vargas et al., 2005); and
(3) nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) activation (Young et al., 2011). The presence of one or
more of these biomarkers can influence and potentiate the others.
Moreover, activated microglial and astrocytes, proinflammatory
cytokines, and aberrant NF-κB activity can ultimately create an
environment of excessive brain inflammation, which can lead to
destruction of critical brain tissue (Rodriguez and Kern, 2011). In
other words, those conditions can intensify brain inflammation
making matters worse. A brief explanation is as follows.

Microglia

Microglia are a type of glial cell. They are the resident
macrophages in the central nervous system (CNS) and act as
the first and main form of active immune defense in the brain
and spinal cord. Microglia as an innate immune response cell
react in a proinflammatory fashion to attack infectious agents or
altered proteins/cells, but then shift to a more anti-inflammatory
phenotype to remove debris and repair the damage. Microglia
can play both a beneficial and a detrimental role, and thus it
is not easy to separate their contributions in disease onset and
progression (Carson et al., 2007).

Vargas et al. (2005) and several others (e.g., Pardo et al.,
2005; see Table 1) reported that individuals who had an ASD
diagnosis had neuroinflammatory processes present in both brain
tissue and/or CSF and that microglial activation appeared to be
part of a sustained neuroinflammatory process. Unfortunately
however, when the neuroinflammatory process is sustained,
microglial activation can contribute to disease progression which
can result in loss of healthy brain tissue (Rogers et al., 2007; Smith
et al., 2012). In a sustained neuroinflammatory state, microglia
can adopt an amoebic phenotype and start engulfing synapses
and other healthy brain tissue (Rodriguez and Kern, 2011).
The consequence of synapses and other neuronal tissue being
engulfed is cell loss and reduced connectivity, both of which are
found in the brains of those with an ASD diagnosis (Rodriguez
and Kern, 2011).

Astroglia or Astrocytes

Although the inflammatory responses in the CNS are primarily
mediated by microglia, evidence suggests that astrocytes (also
a type of glial cell in found in the brain) are key regulators
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TABLE 1 | Evidence of neuroinflammation/encephalitis in the brains and cerebral spinal fluid (CSF) of subjects with autism spectrum disorder (ASD).

Studies N

Case/Control

Findings Researchers’ Conclusion

Vargas et al., 2005 15/12 (1) Marked activation of microglia and astroglia, and cytokine

profiling indicated that macrophage chemoattractant protein

(MCP)-1 and tumor growth factor-beta1, derived from

neuroglia, were the most prevalent cytokines in brain tissues

Active neuroinflammatory process in those

with an ASD diagnosis

6/9 (2) CSF showed a unique proinflammatory profile of cytokines,

including a marked increase in MCP-1

Li et al., 2009 8/8 Proinflammatory cytokines (TNF-alpha, IL-6, and GM-CSF), Th1

cytokine (IFN-gamma) and chemokine (IL-8) were significantly

increased in the brains of ASD patients compared with the

controls

Brain inflammation in those with an ASD

diagnosis and autoimmune disorder

Young et al., 2011 9/9 Neurons, astrocytes, and microglia all demonstrated increased

extranuclear and nuclear translocated NF-κB p65 expression in

brain tissue from ASD donors relative to samples from matched

controls

Part of a putative molecular cascade

leading to brain inflammation

Morgan et al., 2010 13/9 Microglial activation and increased microglial density in the

dorsolateral prefrontal cortex in those with autism

Neuropathological alteration and brain

inflammation

Morgan et al., 2012 13/9 Microglia are more frequently present near neurons in the

autism cases at a distance interval of 25 µm, as well as 75 and

100 µm

Aberrantly close microglia-neuron

association in the ASD disorder

Wei et al., 2011 6/6 Interleukin (IL)-6 increased in the cerebellum of autistic subjects Localized inflammation of the central

nervous system

Tetreault et al., 2012 11/12 Individuals with autism had significantly more microglia

compared to controls in the fronto-insular and visual cortex

The brain’s immune cells (microglia) are

probably denser throughout cerebral cortex

in ASD

Suzuki et al., 2013 20/20 Excessive microglial activation in multiple brain regions in young

adult subjects with an ASD diagnosis was found using regional

brain [11C](R)-PK11195 binding potential as a representative

measure of microglial activation

Augmented but not altered microglial

activation (brain immune-cell activation),

which is indicative of pro-inflammatory

processes in the brain

Fatemi et al., 2008 24/22 The levels of recognized indicators of inflammatory processes in

brain tissue, including Aquaporin 4 and Connexin 43 were

examined in the brains of those with an autism diagnosis. The

study found that, in contract to controls, in evaluations using

the brain’s β-actin level as a reference, Aquaporin 4 expression

was decreased significantly in cerebellum, while, in Brodmann’s

area 9 (superior frontal cortex), Connexin 43 was elevated in the

brains of those diagnosed with autism.

Inflammatory processes in ASD

Chez et al., 2007 10 Elevation of cerebrospinal fluid levels of TNF-α was significantly

higher (mean = 104.10 pg/mL) than concurrent serum levels

(mean = 2.78 pg/mL)

Indicative of CNS inflammatory

mechanisms

Laurence and Fatemi, 2005 3 Elevated levels of GFAP in the frontal, parietal, and cerebellar

cortices using age-matched autism and control post-mortem

brain specimens

Indicative of microglial and astroglial

activation

Increased GFAP levels signify gliosis,

reactive injury in those with an ASD

diagnosis

Rosengren et al., 1992 47/13 GFAP levels in CSF in children with autism were higher than

those in normal control children

Indicate reactive astrogliosis in the CNS

Ahlsen et al., 1993 47/25 Average levels of GFAP in the CSF of children with autism three

times higher than control group

Reactive gliosis

Bailey et al., 1998 6/8 Cerebellum in autism showed an increase in GFAP Reactive gliosis

López-Hurtado and Prieto, 2008 8/7 The mean density of glial cells was greater in the autistic cohort

than controls in area 22 (p < 0.001), area 39 (p < 0.01), and

area 44 (p < 0.05)

Results are consistent with accelerated

neuronal death in association with gliosis

and lipofuscin accumulation

Rose et al., 2012 12/12 3-chlorotyrosine (3-CT; an established biomarker of a chronic

inflammatory response) significantly increased in autism

cerebellum and BA22

Chronic inflammatory response

Crawford et al., 2015 14/14 Levels of GFAP immunoreactivity were significantly elevated

(P = 0.008) in anterior cingulate cortex (Brodmann area 24;

BA24) white matter of ASD compared to controls

Activation of white matter astrocytes in the

anterior cingulate cortex as a result of a yet

undefined cellular insult
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of neuroinflammation in the CNS (Guerra et al., 2011;
Cekanaviciute et al., 2014). Astrocytes are found to be activated
in those with an ASD diagnosis. Moreover, when astrocytes are
hypertrophic and proliferative, they up-regulate the expression
of glial fibrillary acidic protein (GFAP; Stichel and Muller, 1998),
and GFAP is also found to be elevated in the brains and CSF
in those with an ASD diagnosis (Ahlsen et al., 1993; Laurence
and Fatemi, 2005; see Table 1). Ahlsen et al. (1993), for example,
observed that GFAP levels were threefold higher in the CSF of
children diagnosed with an ASD in comparison to controls.

Cytokines

Cytokines are small proteins that are used in cell signaling, and
they include: chemokines, interferons, interleukins, lymphokines,
and tumor necrosis factor (TNF). Proinflammatory cytokines
promote inflammation. In those diagnosed with an ASD, the
brain and CSF have a unique and elevated proinflammatory
profile of cytokines in comparison to controls (Vargas et al., 2005;
Chez et al., 2007; Li et al., 2009; see Table 1). As reported by Li
et al. (2009), proinflammatory cytokines [TNF-alpha, interleukin
(IL)-6 and granulocyte-macrophage colony-stimulating factor],
Th1 cytokine (interferon-gamma) and chemokine (IL-8) are
increased in the brains of individuals with ASD. Proinflammatory
cytokines are also found to be increased in the peripheral blood
of those with an ASD diagnosis in comparison to controls
(Zimmerman et al., 2005; Molloy et al., 2006).

Nuclear Factor Kappa-Light-Chain-Enhancer of

Activated B Cells (NF-κB)

NF-κB is a protein found in almost all cell types. This protein
is a transcription factor that will promote gene expression
of several inflammatory mediators. It mediates the regulation
of cellular immune responses by promoting the expression of
inflammatory cytokines and chemokines and by establishing
a feedback mechanism that can produce chronic or excessive
inflammation (Young et al., 2011). Thus, when NF-κB becomes
aberrantly active, it has the potential to produce chronic or
excessive inflammation (Young et al., 2012). NF-κB activation
induces numerous proinflammatory gene products including
cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide
synthase (iNOS; Park and Youn, 2013). In individuals with an
ASD diagnosis, Young et al. (2011) found NF-κB is aberrantly
expressed in the orbitofrontal cortex, in comparison to controls,
as part of a molecular cascade leading to inflammation, especially
of resident immune cells in brain regions that are associated
with the behavioral and clinical symptoms of those with an ASD
diagnosis. Although, one study did not find aberrant NF-κB in the
brains of children with ASD (Malik et al., 2011), peripheral blood
markers confirm abnormal NF-κB activity. Naik et al. (2011)
for example, evaluated for NF-κB in peripheral blood samples
of 67 children with autism and 29 control children and found
a significant increase in NF-κB DNA binding activity in the
peripheral blood samples of children with autism. They further
stated that autism may arise, at least in part, from an NF-κB
pathway gone awry. Other studies corroborate their findings
(Ziats and Rennert, 2011).

The research findings in this section suggest that excessive
neuroinflammation is an element of the neuropathology in those
with an ASD diagnosis. The following section estimates the
percentage of children with an ASD diagnosis who may be
affected.

Estimation of the Percentage of Children
with an ASD Diagnosis Who are Affected
The percentage of children with an ASD diagnosis who have
neuroinflammation/encephalitis remains unclear. Due to the
state of various subtypes in ASD, some children diagnosed
with an ASD may not have neuroinflammation. However,
evidence from clinical research suggests that neuroinflammation
is common among those with an ASD diagnosis. An examination
of the evidence supporting a link between neuroinflammation
and autism that might be used to estimate the percentage of
children affected follows.

Of the studies that examined neuroinflammatory biomarkers
in the brain and CSF of those with an ASD diagnosis, most
suggested that all of the children examined showed signs of
brain inflammation (Vargas et al., 2005). In some studies,
the authors overtly concluded that the neuroinflammation was
found in all of the individuals they examined (Chez et al.,
2007; López-Hurtado and Prieto, 2008; Rose et al., 2012). For
example, Rose et al. (2012), who studied brain samples from
12 children with autism and 12 controls, mentioned that all
of the markers examined were significantly altered in autism,
including 3-chlorotyrosine (3-CT), an established biomarker
of a chronic inflammatory response, which was significantly
increased. López-Hurtado and Prieto (2008) also mentioned,
in their study of eight individuals with autism and seven
controls, that the autistic subjects of all ages demonstrated
greater density of glial cells in comparison to controls (up to
double).

However, there are a few studies where the authors mentioned
that the biomarkers of neuroinflammation studied were found
in some but not all of the individuals examined. For example,
Morgan et al. (2010) examined the dorsolateral prefrontal cortex
of male cases diagnosed with autism (n = 13). The authors
stated that the microglia were activated in 9 of 13 cases with
autism (69%). Tetreault et al. (2012) observed all but one
individual diagnosed with an ASD (out of the 11 studied) had
higher levels of microglial activation than controls. Thus, 91%
showed microglial activation or neuroinflammation. However,
Tetreault et al. (2012) also stated that the one individual without
the microglia activation or neuroinflammation was an outlier,
behaviorally, with respect to other individuals diagnosed with
autism and examined.

Thus, based on the available research, a conservative estimate
suggests that at least 69% of individuals with an ASD diagnosis
havemicroglial activation or neuroinflammation. However, given
the lower number of subjects analyzed in each of the presented
studies, this estimate should be considered with care. The actual
percentage could conceivably bemore or less. For amore accurate
estimate, a larger study is needed – one that quantitatively
examines multiple regions of the brain for glial activation in
concert with an assessment of other markers of activation (e.g.,
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cytokines); this would permit researchers to determine more
precisely the frequency/percentage of individuals with an ASD
diagnosis who also show microglial activation.

HOW NEUROINFLAMMATION MAY
CONTRIBUTE TO THE DEVELOPMENT
OF ASD: REGRESSION, ENCEPHALITIS,
AND CLINICAL SYMPTOMS

Knowledge of the effects of sustained and exaggerated
neuroinflammation and microglia activation on brain
connectivity is critical to understand how neuroinflammation
could contribute to the development of an ASD. Sustained
and exaggerated microglial activation can lead to cell loss
and loss of connectivity. As mentioned earlier, in a sustained
neuroinflammatory state, microglia can adopt an amoebic
phenotype and start engulfing synapses and other healthy
brain tissue with deleterious consequences for neurons and
synaptic architecture (Lu et al., 2011; Rodriguez and Kern,
2011). Furthermore, when microglia are triggered to switch to an
inflammatory phenotype, not only can this lead to microgliosis
and neuroinflammation resulting in a disruption of normal
neuroimmune homeostasis, but also this detrimental process can
continue long after the initial insult or cause for the activation
has been resolved (Lu et al., 2011).

As mentioned, the consequence of sustained microglial
activation is cell loss and reduced connectivity, both of which
are found in the brains of those with an ASD diagnosis
(Rodriguez and Kern, 2011). An examination of the scientific
literature in ASD clearly shows that connectivity is disrupted
(Wass, 2011). Numerous studies show loss of connectivity in
ASD (Kern et al., 2015). In addition, the issues of connectivity
in ASD have been shown to correlate with ASD symptom
severity – the greater the cell loss and connectivity issues, the
worse the ASD symptom severity (Kikuchi et al., 2014; Kern
et al., 2015). Neuronal cell loss and reduced connectivity could
understandably lead to neurological loss of skills and abilities or
regression. Once a threshold of sufficient neuronal cell loss and
neuronal disconnection has been reached, a child would then
become clinically symptomatic, i.e., show signs of regression or
loss of skills and abilities.

In addition, astroglial activation, usually associated with
chronic neuroinflammation and found in ASD, has beneficial
as well as detrimental effects (Kern et al., 2012; Skripuletz
et al., 2013). Astrogliosis is sometimes accompanied by
microgliosis and demyelination (Skripuletz et al., 2013).
Neuronal demyelination could also lead to neurological loss
of skills and abilities and possibly characterize the regression
scenario in ASD.

The concept of regression (loss of previously acquired skills
and abilities) in some children with ASD has been validated by
many studies (Tuchman, 1996; Davidovitch et al., 2000; Goldberg
et al., 2003; Ozonoff et al., 2005, 2010; Werner and Dawson, 2005;
Hansen et al., 2008; Stefanatos, 2008; Malhi and Singhi, 2012;
Kern et al., 2014a,b). For example, Werner and Dawson (2005)

evaluated home videotapes of children with autism between their
first and second birthday parties with and without a reported
history of regression, as well as videotapes of typically developing
children. Analyses revealed that infants diagnosed with an ASD
with regression show similar use of joint attention and more
frequent use of words and babble compared with typical infants
at 12 months of age. In contrast, infants diagnosed with an
ASD characterized by early onset of symptoms and no regression
displayed fewer joint attention and communicative behaviors at
12 months of age. By 24 months of age, both groups of toddlers
diagnosed with an ASD displayed fewer instances of word use,
vocalizations, declarative pointing, social gaze, and orienting to
name as compared with typically developing 24-month-olds.

According to Ozonoff et al. (2005), children with ASD can
be divided into three groups: an early onset group, a definite
regression group, and a heterogeneous mixed group (delays-
plus-regression). They, for example, found that approximately
52% had regressed. Similarly, in a study of 135 children
with ASD, Kern et al. (2014a) also found that children with
ASD could be divided into these three groups of children
and reported that 61% were reported to have regressed. The
skills most frequently reported to be lost were speech, eye
contact, pointing, and socialization. Other skills mentioned
were non-verbal communication, responsiveness, interest in
others, expression, ability to imitate and, to a much lesser
extent, motor skills. Problems noted were tantrums, behavioral
issues, apparent deafness, and sensory issues (oversensitivity and
undersensitivity).

CONSIDERING THE POSSIBLE FORMS
AND CAUSES OF ENCEPHALITIS IN ASD

According to the Encephalitis Society, encephalitis is
inflammation of the brain, and this inflammation is caused by
either an infection invading the brain (Infectious Encephalitis) or
the immune system attacking the brain in error (post-infectious
or Autoimmune Encephalitis; Encephalitis Society, 2015).
Autoimmune Encephalitis usually follows a viral infection (such
as those that cause rashes in childhood) or immunizations.
However, it has been recognized recently that there are other
types of Autoimmune Encephalitis resulting from the brain
being attacked by the body’s immune system. Some of these
types of Autoimmune Encephalitis include Potassium channel
complex antibody associated Encephalitis, N-methyl D-aspartate
(NMDA) receptor Encephalitis, and Hashimoto’s Encephalitis.

Importantly, in cases of brain inflammation from infection,
the pathogen does not necessarily have to enter the brain.
Brain inflammation (and microglia) can be activated by
systemic infection and inflammation (Teeling and Perry, 2009).
For example, inflammatory stimuli in the periphery [e.g.,
lipopolysaccharide (LPS) and inflammatory cytokines] can
induce transcripts for interleukin (IL)-1b, IL-6, and tumor
necrosis factor-a (TNF-a) in discrete brain areas (Ban et al., 1992;
Laye et al., 1994). Thus, pathogens and even peripheral cytokines
need not enter the brain to elicit changes. As described by Jang
and Johnson (2010), cells associated with the peripheral innate
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immune system (e.g., macrophages and monocytes) can produce
inflammatory cytokines such as IL-1b, IL-6, and TNF-a that
facilitate communication between the periphery and the brain
during infection. Additionally, several studies find that peripheral
cytokines can enter the brain (Banks and Kastin, 1991; Gutierrez
et al., 1993; Banks et al., 1994a,b, 1995).

Systemically produced pro-inflammatory mediators can signal
the brain, leading to activation of microglial cells; and even
though this process can be a normal part of our defense
(and in most individuals causes no damage to neurons),
in some susceptible individuals the systemic inflammation
leads to inflammatory responses in the brain and increased
neuronal death (Teeling and Perry, 2009). Evidence indicates
that this may be the case in some cases of ASD. As
mentioned in a previous section, sustained brain inflammation
is found in ASD, as well as neuronal cell loss (Kern et al.,
2013). In addition, studies show that children with ASD
have elevated blood inflammatory markers. For example,
Masi et al. (2015) completed a meta-analysis on studies
comparing plasma and serum concentrations of cytokines in
unmedicated individuals with ASD and controls, and they
found significantly altered concentrations of cytokines in ASD.
They stated that the findings strengthen the evidence of an
abnormal cytokine profile in ASD where inflammatory signals
dominate.

Based on this information, it is possible that an element
of encephalitis or neuroinflammation exists in ASD and can
be characterized as Post Infectious Encephalitis secondary to
a systemic infection. Notably, regression in ASD is sometimes
reported to follow fever, rashes, infection, and immunizations
(Kern et al., 2014b). However, there is also evidence for
Autoimmune Encephalitis such as NMDA Encephalitis, and
there are documented cases of NMDA Encephalitis in ASD
(which will be discussed in more detail later).

Having an autoimmune type encephalitis in ASD is certainly
biologically plausible. Children with ASD have an elevated
prevalence of specific immune-related comorbidities, such as
allergies and autoimmune diseases (Zerbo et al., 2015). Symptoms
of immune dysfunction in ASD include (but are not limited to):
neuroinflammation, presence of autoantibodies, increased T cell
responses, and enhanced innate NK cell and monocyte immune
responses, etc. (Mead and Ashwood, 2015). Moreover, these
responses are frequently associated withmore impairment in core
ASD features such as impaired socialization and communication,
and repetitive and abnormal behaviors (Mead and Ashwood,
2015).

Interestingly, neurotoxic effects and neuroinflammation
were observed in young Wistar rats that were injected
(intracerebroventricularly) with autism sera within hours after
birth. According to Kazim et al. (2015), the rats injected
with the autism sera demonstrated developmental delay and
deficits in social communication, interaction, and novelty. The
neurobiological changes and the behavioral autistic features
were ameliorated by treatment with a ciliary neurotrophic
factor (CNTF) small peptide mimetic, Peptide 6 (P6), which
is known to have neuroprotective effects (Kazim et al.,
2015).

From the evidence presented in this section, it may be
plausible that encephalitis in ASD has various underlying factors.
Importantly, studies which report a regression of patients into
an ASD diagnosis following encephalitis include infectious
encephalitis, post-infectious or Autoimmune Encephalitis, or
purely Autoimmune Encephalitis (such as NMDA Encephalitis;
Ghaziuddin et al., 2002; Creten et al., 2012; González-Toro et al.,
2013; Marques et al., 2014; Scott et al., 2014). What the possible
external triggers of this inflammatory process in children with
autism may be is the subject of the following section.

POSSIBLE EXTERNAL TRIGGERS OF
THE INFLAMMATION PROCESS IN
AUTISM

As mentioned earlier, systemic inflammation and/or infection
can gain access to the CNS via blood flow and elicit an
inflammatory response the brain (Sankowski et al., 2015).
The resulting inflammatory mediators could interfere with
neuronal and glial well-being, leading to a disruption in brain
homeostasis and persistent inflammation and immune activation
in the brain, ultimately resulting in cognitive and behavioral
manifestations (Sankowski et al., 2015). Thus, it is plausible
that systemic inflammation and/or infection could trigger the
inflammation or encephalitis seen in the brains of children with
an ASD.

In addition, the production of brain autoantibodies, notably
found in children with ASD and in specific cases of autistic
regression and encephalitis, could also be secondary to various
types of external triggers. Researchers have suggested various
exposures that can contribute to the production of brain
autoantibodies in autism (Mostafa and Refai, 2007; Mostafa and
Al-Ayadhi, 2015).

To this point, a study by Vojdani et al. (2003) provides
evidence to support the hypothesis that there are external triggers,
such as the ones mentioned previously, that can instigate the
production of brain autoantibodies in children with autism.
Vojdani et al. (2003) measured IgG, IgM, and IgA antibodies
against CD26, CD69, streptokinase (SK), gliadin, and casein
peptides and against ethyl mercury bound to human serum
albumin in patients with autism. From the results, they proposed
that bacterial antigens (SK), dietary peptides (gliadin, casein) and
Thimerosal (ethyl mercury) in individuals with pre-disposing
HLA molecules, bind to CD26 or CD69 and induce antibodies
against these molecules. Their study demonstrated that dietary
peptides, bacterial toxins, and xenobiotics bind to lymphocyte
receptors and/or tissue enzymes, resulting in and autoimmune
reaction in children with autism.

It is conceivable that this process could begin with a single
exposure or trigger; however, a combination of exposures or
factors could also trigger a cascade of events resulting in
brain inflammation and production of brain autoantibodies.
Numerous studies have shown that toxins and pathogens can
work synergistically – where the effect of the combination of their
presence is greater than the sum of their individual effects (Kern
et al., 2012).
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HOW RECOGNIZING ENCEPHALITIS OR
BRAIN INFLAMMATION AS A
POTENTIAL COMPONENT OF ASD MAY
IMPROVE TREATMENT

Issues with Current Mainstream
Treatments and Therapies
As previously mentioned, another benefit of recognizing
encephalitis in those with an ASD diagnosis is that this
recognition might lead to more targeted and potentially more
effective medical treatments. The current mainstream treatments
and therapies for those with an ASD diagnosis emphasize
educational interventions such as applied behavioral analysis
(ABA) and/or psychoactive drugs such as Risperdal. These types
of treatments do not address the patient’s underlying medical
illness or disease pathology. This may be the reason for the
dismal findings reported in a 2011 article in Pediatrics by Al-
Qabandi et al. (2011). These researchers reported that although
there are many available therapeutic approaches to childhood
autism, none are curative or have well-established efficacy. This
finding continues even with the promotion of early intervention.

In addition, the psychiatric or antipsychotic medications
frequently prescribed in ASD (e.g., risperidone or Risperdal),
have serious side effects. For example, antipsychotics such
as Risperdal can cause: neuroleptic malignant syndrome (a
potentially fatal reaction); tardive dyskinesia (abnormal facial,
shoulder and limb movements, which can be permanent); breast
swelling or tenderness; low white blood cells; low platelets; high
blood sugar; and many other serious side effects (PDR.net, 2014).

Treatment Response and Timeliness
Recent research suggests that even though parental concerns that
their child might have ASD are generally expressed early on
and reliably (Kern et al., 2014a,b; Sacrey et al., 2015), common
responses to these concerns from healthcare providers are often
reassuring or passive which subsequently delays diagnosis and
treatment (Zuckerman et al., 2015). Another possible benefit of
recognizing encephalitis or brain inflammation as a potential
component of ASD is that this may drive a more timely
response. If providers understand that the affected child may
have an identifiable medical condition which would respond to
appropriate and prompt medical treatment, they may be more
likely to initiate medical intervention.

Evidence to Suggest Effectiveness in
Treating Encephalitis in ASD
Several studies that link encephalitis with the onset of autism
or an ASD, also report the improvement or amelioration
of autism/ASD symptoms when the encephalitis was treated
(González-Toro et al., 2013; Scott et al., 2014). For example, Scott
et al. (2014) reported on a 33-month-old boy who presented
with irritability, insomnia, decreased appetite, and symptoms of
autistic regression following an upper respiratory tract infection.
He displayed loss of previously acquired skills, including:
language (eventually becoming mute and non-communicative),

the ability to interact socially, and eye contact. The child was
found to have anti-NMDA receptor encephalitis. Treatment
with intravenous (IV) immunoglobulins and steroids resulted
in the child’s reacquisition of language and social skills and
in the resolution of his abnormal movements. According to
the authors, reacquisition of language and social skills were
observed after the third day of treatment. He also began
to show interest in his parents again and his eye contact
improved. After the initial IV treatment was completed, he
was started on high-dose steroids (2 mg/kg/d) for 2 weeks,
with a slow tapering off over the next 6 weeks. During that
time, he continued to make significant improvements and
his behavior and personality were restored to their pre-illness
state. In addition, he regained the ability to use multiple short
phrases.

A similar case (González-Toro et al., 2013) involved a
5 years old female who lost previously acquired skills and
evolved into autism. After showing positive anti-NMDA receptor
antibodies in her cerebrospinal fluid, she was diagnosed with
anti-NMDA receptor encephalitis. An intravenous perfusion of
corticoids, immunoglobulins, and rituximab was used. According
the researchers, the child essentially recovered except for a slight
language disorder that was still noted 6 months after treatment.

Thus, as these reports suggest, another benefit to recognizing
encephalitis as a physical condition in those with an ASD
diagnosis is that it might lead to more targeted and possibly
more effective medical treatments. As suggested by McDougle
and Carlezon (2013), addressing the neuroimmunological
pathophysiology in ASD offers exciting new possibilities for
therapy.

In the aforementioned cases, the drugs used were intravenous
steroids and immunoglobulins (and rituximab). However, there
are several studies which report on other pharmaceutical and
nutraceutical treatments that can reduce microglial activation
and/or the levels of their associated inflammatory cytokines. If
encephalitis were routinely assessed as a component in autism
and ASD, then in those cases where it is identified, more
benign treatments might be available than the current psychiatric
medication choices, and their use might be more efficacious in
producing a positive outcome. The authors of this review are
not recommending any treatment in particular, and acknowledge
that, in any treatment regimen, the risk/benefit ratio would have
to be considered. That said, further research into the diagnosis
and treatment of encephalitis as a potential component of ASD is
merited.

DISCUSSION

The dramatic rise in ASD began in the 1990s, and in the
past two decades, the rates of ASD have increased by 289%
(Boyle et al., 2011). The sudden and dramatic rise in ASD
prevalence has, in some ways, caught the medical community
“off guard.” In the midst of the meteoric rise in rates of
autism and ASD, significant new research into the physical
symptoms has been done. The challenge now is to incorporate
this new research about the physical symptoms of autism into
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the practice of medicine that historically has stereotyped autism
as a purely psychiatric disorder. For the benefit of patients, the
physical symptoms of autism must be recognized and treated.
For children with ASD, particularly those who have begun to
regress into ASD and show other signs of neurological regression,
testing for encephalitis may be warranted. Particularly, given
the documented cases of children with regressive ASD and
NMDAEncephalitis who tested positive for anti-NMDA receptor
antibodies, routine testing for anti-NMDA receptor antibodies in
ASD should be seriously considered. The study by Scott et al.
(2014), mentioned earlier, of the child who regressed into autism
and recovered from treatment for NMDA, indicates that there is
benefit to recognizing the possibility of encephalitis in children
with ASD. The delay in incorporating new research findings into
medical practice standards is unfortunate because if a diagnosis
of autism or ASD were recognized in the medical community
as having a possible component of encephalitis that could be
tested and treated appropriately, such treatment for encephalitis

would likely reduce, and possibly eliminate, ASD symptoms
in some children. Future studies should include treatments for
neuroinflammation in ASD.
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