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Abstract
Key message When competing for nitrogen with other tree species, organic N is more important than inorganic N 
for most species
Abstract Competition for nitrogen (N) in the rhizosphere is a key process regulating a seedling´s chances for growth and 
survival. However, only few studies have investigated this at the individual species´ level when using a community approach. 
In this study, 15N incubation experiments were conducted to quantify inorganic (i.e. ammonium and nitrate) and organic (i.e. 
glutamine-N and arginine-N) net N-uptake capacity of seven temperate woody species co-occurring on calcareous substrate 
and to investigate the consequences of intra- vs. interspecific competition in a woody seedling community. The results showed 
that short-term net inorganic and organic N uptake capacity was unrelated to a seedling´s fast or slow growth. Furthermore, 
competition with other tree species did not change a seedlings´ overall capacity to take up inorganic and organic N sources. 
Organic N was preferred over inorganic N for most species and the preferences for specific N source shifted with competition 
regime and tree species. Overall, this study indicates the importance of organic N sources for N uptake in woody seedlings.

Keywords Amino acids · Glutamine · Arginine · Inorganic nitrogen · Nitrogen uptake · Nitrogen acquisition

Introduction

Forest ecosystems play a crucial role for the future of human 
society, not only for mitigating climate change via the cap-
ture and long-term storage of carbon (C), but also via the 
provision of fundamental ecosystem services including 
resources (timber, food) and recreation (MEA 2005; FAO 
2015; Sabatini et al. 2019; Simon and Adamczyk 2019). 
Thus, a sustainable management of forests is vital when 
facing today´s ecological challenges. Currently discussed 
strategies for a sustainable management of forest ecosys-
tems in the future include the transition of forest monocul-
tures to heterogenous mixed-species stands (Pretzsch 2020) 

because of their enhanced resilience to abiotic stressors (e.g. 
Fares et al. 2015; Mina et al. 2018). However, studies using 
multi-species approaches focus on the overall effect in plant 
communities, whereas the role of individual species in the 
game of competition and facilitation might be masked (e.g. 
Rewald and Leuschner 2009; Tobner et al. 2016; Fichtner 
et al. 2018; Trogisch et al. 2021). Furthermore, key pro-
cesses in the rhizosphere are still not fully understood 
(Trinder et al. 2013; Weemstra et al. 2016; Pommerening 
and Sánchez Meador 2018), especially related to the acqui-
sition of tree-growth limiting nitrogen (N) (Körner 2003; 
Millard et al. 2007; Millard and Grelet 2010).

Tree N acquisition from the soil is a key aspect when it 
comes to competition for N in the rhizosphere and is influ-
enced by a variety of factors including the availability of 
different N forms (e.g. Näsholm et al. 2009; Stoelken et al. 
2010; Hodge and Fitter 2013; Simon et al. 2017; Bueno 
et al. 2019) and/or a species´ functional traits—for exam-
ple fast vs. slow growth (Trinder et al. 2013; Li et al. 2015; 
Simon et al. 2017; Freschet et al. 2021). Growth strategy 
and N acquisition might be linked. For example, when 
competing with a fast-growing pioneer species slow grow-
ing Fagus sylvatica seedlings showed a reduced uptake 
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of inorganic N, whereas inorganic N uptake increased in 
the pioneer species (Fotelli et al. 2002, 2005). In addi-
tion, preferring certain N forms is a mechanism with the 
potential to avoid competition (Simon et al. 2014, 2017). 
However, most competition studies only included inor-
ganic N sources. Furthermore, only few studies have inves-
tigated the competition for N between trees at the species 
level (Simon et al. 2010, 2014; Li et al. 2015; Bueno et al. 
2020; Reuter et al. 2021). Hence, the relevance of inor-
ganic vs. organic N forms for the interactions between 
woody species still needs to be further elucidated (Tegeder 
and Perchlik 2018; Moreau et al. 2019). N acquisition is 
particularly crucial for woody seedlings when competing 
for limiting soil N (e.g. Körner 2003; Millard et al. 2007) 
due to their limited storage capacities for N (Millard and 
Grelet 2010).

Thus, the overall aim of this study was to investigate the 
consequences of competition in tree seedling communities 
including seven temperate woody species—co-occurring on 
calcareous soil—on inorganic and organic N acquisition. 
The specific hypotheses were: (1) Inorganic and organic N 
acquisition by the roots differs among tree species based on 
their physiological and morphological properties, such as 
growth rate and/or nutrient demand (e.g. Miller et al. 2007; 
Andersen et al. 2017; Simon et al. 2017; Liese et al. 2018; 
Bueno et al. 2019). For example, fast-growing species have 
a higher N demand and thus take up more N from the soil 
compared to slow-growing species, especially at the seedling 
stage (Millard and Grelet 2010). (2) Inorganic and organic 
N acquisition changes from intra- and interspecific com-
petition depending on the competing species (Miller et al. 
2007; Simon et al. 2010; Li et al. 2015; Bueno et al. 2019). 
For example, inorganic and organic N acquisition in Euro-
pean beech was significantly reduced when competing for 
N with sycamore maple (Simon et al. 2010). (3) Within a 
tree species´, its preference for certain N sources changes 
when competing for N with other tree species (e.g. Ashton 
et al. 2008; Simon et al. 2010; 2017; Bueno et al. 2019) 
which could be a means to avoid competition with other spe-
cies. For example, when grown in competition, seedlings of 

European beech prefer organic N, whereas sycamore maple 
favours inorganic N (Simon et al. 2010, 2017).

Materials and methods

Plant material

One-year-old mycorrhizal seedlings of seven temperate 
tree species (provenance southwestern Germany) were pur-
chased from a commercial tree nursery (Müller Münchehof 
Pflanzen GmbH (Seesen/Münchehof, Germany). Species 
included Fagus sylvatica L. (Fagaceae, ectomycorhizal—
EM), Acer pseudoplatanus L. (Sapindaceae, arbuscular 
mycorrhizal—AM), Carpinus betulus L. (Betulaceae, EM), 
Fraxinus excelsior L. (Oleaceae, AM), Prunus avium L. 
(Rosaceae, AM), Quercus robur L. (Fagaceae, EM), and 
Tilia cordata Mill. (Malvaceae, EM). F. sylvatica was cho-
sen as a model species because it represents the dominant 
tree species of the potential natural vegetation in moist to 
moderately dry areas of the sub-mountainous altitude range 
in Central Europe (Ellenberg and Leuschner 2014; Simon 
et al. 2021). Although beech can grow on different soils, it 
commonly occurs on soil derived from limestone which is 
highly susceptible to water deprivation; the other tree spe-
cies were chosen because they co-occur in beech forest eco-
systems on calcareous substrate (Ellenberg and Leuschner 
2014). Furthermore, the species used here display different 
growth strategies and nutrient requirements, as well as toler-
ance to shade and drought (see Table 1), thus providing ideal 
target species to study the consequences of plant interactions 
on inorganic and organic N acquisition in woody seedlings. 
From here on, species used in this study will be referred 
to by their corresponding genus names, i.e. Fagus, Acer, 
Carpinus, Fraxinus, Prunus, Quercus, and Tilia.

Experimental design

In a multi-species community approach, individuals were 
grown in sand/vermiculite (1:1 mixture) in mesocosms (30 

Table 1  Description of target 
tree species regarding their 
growth strategies, nutrient 
requirements, shade tolerance 
and drought sensitivity at the 
seedling stage

a According to Professur für Waldbau und Professur für Forstschutz & Dendrologie der ETH Zürich 
(2002)bAccording to Ellenberg and Leuschner (2014)

Growtha Nutrient  requirementsa Shade  toleranceb Droughtb

Fagus sylvatica Slow Low-Medium Very high High
Acer pseudoplatanus Fast High High Medium
Carpinus betulus Slow Medium-High High Medium
Fraxinus excelsior Slow Medium-High High High
Prunus avium Fast Medium-High High Medium
Quercus robur Fast Low Very low Very low
Tilia cordata Slow Medium Medium Low



1585Trees (2023) 37:1583–1591 

1 3

L) either in interspecific competition (i.e. one individual 
of each species) or in intraspecific competition (i.e. seven 
individuals of one species as a control) to quantify the inor-
ganic and organic net N uptake capacity for each species. 
For each mesocosm (5–8 replicates per target species and 
competition regime), the target species was planted in the 
center surrounded by 6 other individuals at equal distance. 
Mesocosm were planted in October and stayed outside under 
a shaded roof with 30% shading (H. Nitsch & Sohn GmbH 
& Co. KG, Kreuztal, Germany) over winter until the end 
of the experiment in July the following year. Mesocosms 
were irrigated with tap water depending on the weather 
conditions to ensure a sufficient water supply. From April 
onwards, mesocosms received additionally 100 ml of an 
artificial low N nutrient solution (pH 6.5) once a week: 100 
µM  KNO3, 90 µM  CaCl2*2H2O, 70 µM  MgCl2*6H2O, 50 
µM KCl, 24 µM  MnCl2*4H2O, 20 µM NaCl, 10 µM  AlCl3, 
7 µM  FeSO4*7H2O, 6 µM  K2HPO4, 1 µM  NH4Cl, 25 µM 
glutamine, and 25 µM arginine mimicking the soil solution 
of a low N field site (Dannenmann et al. 2009). Glutamine 
and arginine were chosen as the dominant amino acids in 
forest soil and the concentration used in this study was 
within the range of previously reported estimates (Insels-
bacher et al. 2011). Mean annual temperature and precipita-
tion were 9.8 °C and 845 mm, respectively, at the weather 
station Konstanz (#2712, 47.6774, 9.1901, 443 m above sea 
level; 1981–2010, Deutscher Wetterdienst DWD). During 
the experiment (Oct–Jul), mean air temperature was 9.3 °C.

15N uptake experiments and harvest

For quantification of inorganic (i.e. ammonium, nitrate) and 
organic (i.e. glutamine-N, arginine-N) net N uptake capacity 
of the target seedlings in the center of the mesocosms, the 15N 
enrichment technique described by Gessler et al. (1998) and 
modified by Simon et al. (2010) was used. Seedlings were 
carefully removed from the mesocosms. The root system was 
thoroughly washed with tap water to remove any adhering 
substrate particles. Fine roots still attached to the seedlings 
were then incubated for 2 h (between 10 am and 2 pm to avoid 
diurnal variation in N uptake (Gessler et al. 2002) in 4 ml of 
the artificial low N soil solution (Dannenmann et al. 2009; 
see above). The artificial soil solution contained all four N 
sources, with only one labelled as either 15NH4

+, 15NO3
−, 13 

C/15 N-glutamine, or 13C/15 N-arginine. Natural abundance 
was accounted for by non-labelled controls. After incubating 
for 2 h, the submersed root tips and moistened upper parts 
(~ 8–10 cm) were cut off, washed twice with 0.5 µM  CaCl2 
to remove excess 15 N on the root surface, dried with cellu-
lose paper and oven-dried for 48 h at 60 °C. Fresh and dry 
weight was determined. The roots not incubating during the 
15N uptake experiments were wrapped in wet tissue to prevent 
desiccation. Following the 15N uptake experiments, seedlings 

were separated into leaves, stems, and roots. Leaf area was 
measured for each seedling (LI-3100 C Area Meter, LI-COR, 
Lincoln, USA) to calculate specific leaf area (SLA). Fresh and 
dry weight (after 48 h at 60 °C) were determined for all plant 
tissues. Root:shoot ratio was calculated as the ratio between 
total belowground biomass (i.e. root biomass) and total above-
ground biomass (i.e. leaves and stem biomass).

Quantification of 15N, 13C, and total N and C 
in the fine roots

For the quantification of 15N, 13C, and total N and C, the 
fine roots were dried (48 h, 60 °C) and ground into a fine 
homogenous powder using a ball mill. Aliquots of 1.2–2 mg 
were transferred into tin capsules (IVA Analysentechnik, 
Meerbusch, Germany). Samples were sent to Agroisolab 
GmbH (Jülich, Germany) where they were analysed using 
an elemental analyser (EA; Carlo Erba Instruments NA 1500 
series 2, CE Instruments, Milan, Italy) coupled to an isotope 
ratio mass spectrometer (IRMS; Nu Horizon, Nu Instru-
ments Ltd., Wrexham, UK). Working standards (L-leucine) 
calibrated against the primary standards IAEA-CH-6 (sucrose, 
delta 13CPDB = −1 0.449), IAEA-CH-7 (polyethylene, delta 
13CPDB = − 32.151), IAEA-N-1 (ammonium sulfate, delta 
15Nair = + 0.4), and IAEA-N-2 (ammonium sulfate, delta 
15Nair = + 20.3) were analysed after every 12th sample to 
detect a potential instrument drift over time. Inorganic and 
organic net N uptake capacity (nmol / g fw / h) was calcu-
lated based on the incorporation of 15N into the fine roots 
and the respective plant biomass according to Gessler et al. 
(1998):Net N uptake capacity = (

(

15Nl −
15 Nc

)

× Ntot × dw × 105) ∕

∕ (MW × fw × t)−1  where 15Nl and 15Nc are the atom % of 
15N in labeled  (Nl) and unlabeled control plants  (Nc, natural 
abundance), respectively,  Ntot is the total N percentage, MW is 
the molecular weight (15N g  mol−1), dw is the dry weight, fw 
is the fresh weight, and t is the incubation time. Amino acids 
were double-labelled with 13C and 15N to determine whether 
they were taken up as intact molecules (Simon et al. 2011). Net 
uptake capacity of glutamine and arginine was lower based on 
13C compared to that based on 15N incorporation suggesting 
that amino acids degraded in the solution or on the surface of 
the roots, and/or the respiration of amino acid-derived C inside 
the roots (Simon et al. 2011).

Statistical analyses

Data were tested for normality and homogeneity of vari-
ance. Differences among species as well as preferences of 
N sources within a species were tested using ANOVA on 
Ranks followed by Dunn´s test. Differences between com-
petition regimes within a given species were tested using 
Rank Sum test. Significant differences (p ≤ 0.050) were 
tested using Sigmaplot 14 (Systat Software GmbH, Erkrath, 
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Germany) for all statistical analysis. In addition, principal 
component analysis (PCA) was conducted to expose poten-
tial differences in the combination of the four N sources 
taken up by the roots of the different species using Metabo-
Analyst (Chong et al. 2018, 2019; Xia et al. 2009, 2011a, b 
, 2012, 2015, 2016). Before PCA, data were pre-processed 
by log transformation.

Results and discussion

In a tree community, net inorganic and organic N 
uptake capacity is unrelated to a seedling´s fast 
or slow growth

Inorganic and organic N acquisition strategies differ among 
tree species based on their physiological and morphologi-
cal properties (e.g. Miller et al. 2007; Andersen et al. 2017; 
Simon et al. 2017; Liese et al. 2018; Bueno et al. 2019). For 
example, fast-growing species need more N because of their 
higher investment in new growth compared to slow-growing 
species (e.g. Reich et al. 1997; Miller and Hawkins 2007). 
Especially higher amounts of fine roots could explore more 
soil volume (Comas and Eissenstat 2004) and in turn lead to an 
increased N uptake (e.g. Ryser 1996; Craine et al. 2001; Reuter 
et al. 2021). In the present study, the tree species differed in 
their growth and biomass indices when grown in intraspecific 

competition (Supplemental Table 1). More specifically, Fraxi-
nus had higher leaf, stem, and total biomass than Fagus, higher 
stem and total biomass than Carpinus, higher root biomass 
than that of Acer and Quercus (p < 0.001), and higher total 
biomass than Prunus (p ≤ 0.003). For Acer, root biomass and 
root:shoot ratio were higher compared to Carpinus (p < 0.001). 
Root:shoot ratio in Quercus and Fagus was higher compared 
to that of Carpinus when grown in intraspecific competition 
(p < 0.001). However, these differences in biomass allocation 
were only partly reflected in differences in organic but not inor-
ganic net N uptake capacity (Fig. 1; Table 2): Glutamine-N net 
uptake capacity was lower in Fraxinus compared to Carpinus 
and Tilia (p ≤ 0.002) and arginine-N net uptake capacity was 
lower in Fraxinus than in Carpinus and Quercus (p < 0.001) 
when seedlings were grown in intraspecific competition. Thus, 
there is no evidence that supports the hypothesis that a spe-
cies´ growth rate or N demand is directly related to its short-
term N acquisition strategies. However, as seedlings used in 
this experiment were 1-year old and species grow at different 
rates, certain biomass effects cannot be excluded. Furthermore, 
seedlings of Fraxinus excelsior are classified slow-growing 
by the Professur für Waldbau und Professur für Forstschutz 
& Dendrologie der ETH Zürich (Zürich 2002) which was the 
basis in this study, whereas Schulz et al. (2011) considers them 
as fast-growing.

The lower uptake of organic N by Fraxinus been reported 
previously (Reuter et al. 2021) and could be explained by a 

Table 2  Inorganic and organic 
N uptake (nmol N/g fw h)—
mean and standard error of 
different species grown in intra- 
and interspecific competition

Ammonium Nitrate Glutamine-N Arginine-N

  Acer pseudoplatanus
Intraspecific 6.137 ± 5.234 104.338 ± 58.099 40.110 ± 12.958 6.227 ± 20.448
Interspecific 8.353 ± 5.763 74.705 ± 79.766 31.354 ± 16.631 29.742 ± 12.305
 Carpinus betulus
Intraspecific 18.543 ± 13.247 62.052 ± 29.373 78.638 ± 30.898 129.003 ± 51.847
Interspecific 20.932 ± 6.038 47.078 ± 13.755 93.030 ± 44.957 107.333 ± 47.744
 Fagus sylvatica
Intraspecific 14.384 ± 14.771 61.280 ± 28.308 70.892 ± 43.874 70.396 ± 24.685
Interspecific 12.630 ± 7.625 36.849 ± 8.412 63.881 ± 30.133 83.107 ± 84.929
 Fraxinus excelsior
Intraspecific 10.541 ± 6.055 116.650 ±104.883 18.171 ± 6.009 14.106 ± 4.151
Interspecific 11.245 ± 8.754 75.903 ± 35.788 16.672 ± 7.798 16.786 ± 6.472
 Prunus avium
Intraspecific 9.824 ± 4.404 55.240 ± 26.445 68.326 ± 32.742 61.926 ± 11.149
Interspecific 13.986 ± 9.377 47.415 ± 24.730 47.823 ± 25.332 72.582±32.894
 Quercus robur
Intraspecific 15.517 ± 8.339 54.404 ± 49.470 77.336 ± 58.079 124.332 ± 58.326
Interspecific 13.757 ±10.322 71.112 ±73.868 41.759 ± 26.601 93.067 ± 23.644
 Tilia cordata
Intraspecific 10.822 ± 3.877 55.139 ± 33.119 90.566 ± 58.391 63.269 ± 25.311
Interspecific 13.257 ±12.977 37.182 ± 33.038 83.754 ± 16.515 85.378 ± 48.523
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higher density of nitrate transporters in the root membranes 
and chemical properties (Jacob and Leuschner 2015) as well 
as a positive interaction between arbuscular mycorrhiza and 
the uptake of nitrate (Liu et al. 2018; Reuter et al. 2021). 
Furthermore, N acquisition is related to species-specific root 
traits such as root hair length and density, root branching 
density, and/or specific root length (Freschet et al. 2021). 
These results are similar to those by Reuter et al. (2021) 
studying six of the seven species used here in the field who 
found that tree species and not mycorrhization type influ-
enced net N uptake capacity overall.

Similarly, with interspecific competition, tree species 
differed partly in their growth and biomass indices (Sup-
plemental Table 1) but only in organic and not inorganic 
net N uptake capacity (Table 2): Glutamine-N net uptake 
capacity was lower in Fraxinus compared to Carpinus, Tilia, 
and Fagus grown in interspecific competition (p < 0.001). 
Arginine-N net uptake capacity was lower in Fraxinus com-
pared to Carpinus, Tilia, and Quercus grown in interspecific 
competition and in Acer compared to Carpinus (p < 0.001). 
These results suggest that regardless of competition regime, 
differences among species are consistent with regard to the 
specific N sources they take up (e.g. Simon et al. 2017; 
Bueno et al. 2019; 2020; Reuter et al. 2021). Differences 
among species were found only for organic but not inorganic 
N sources highlighting the relevance of organic N as sources 
of N for trees.

Considering the different N sources, principal component 
analysis  (Figs. 1a and b ; Table 3) indicated that net uptake 
of ammonium, nitrate, glutamine-N, and arginine-N differed 
between species. When grown in intraspecific competition, 
55.8% of the variation was explained by nitrate and 19.6% 
by arginine-N, whereas when grown in interspecific compe-
tition, 49.6% of the variation was explained by nitrate and 
25.1% by ammonium. Inorganic N uptake differentiated spe-
cies more than organic N uptake. Furthermore, comparing 
among species when grown in intra- vs. interspecific com-
petition (Fig. 1a and b ), the results indicate the relevance of 
specific N sources for tree N acquisition depending on their 
biotic environment.

In a community, a seedling's capacity to take 
up inorganic and organic N sources does not change 
in competition with other tree species

Competition for N in the rhizosphere leads to a shift in 
inorganic and organic N acquisition strategies in trees (e.g. 
Simon et al. 2010; Li et al. 2015; Bueno et al. 2019). For 
example, when grown in competition, Fagus sylvatica had 
a generally lower organic and inorganic N uptake, whereas 
inorganic, but not organic N acquisition of Acer pseudopla-
tanus increased (Simon et al. 2010). In the present study, 
growth and biomass indices did not differ significantly 

Fig. 1  a. Two-dimensional score plot of principal component analysis 
computed with net N uptake capacity of ammonium, nitrate, glutamine-
N, and arginine-N for tree seedlings grown in intra-specific competi-
tion. Species are shown in different colours: Acer—A. pseudoplatanus, 
Carpinus—C. betulus, Fagus—F. sylvatica, Fraxinus—F. excelsior, Pru-
nus—P. avium, Quercus—Q. robur, Tilia—T. cordata. The explained 
variances (in percentage) are shown in x- and y-axes in the plot b. Two-
dimensional score plot of principal component analysis computed with 
net N uptake capacity of ammonium, nitrate, glutamine-N, and arginine-
N for tree seedlings grown in inter-specific competition. Species are 
shown in different colours: Acer—A. pseudoplatanus, Carpinus—C. 
betulus, Fagus—F. sylvatica, Fraxinus—F. excelsior, Prunus—P. avium, 
Quercus—Q. robur, Tilia—T. cordata. The explained variances (in per-
centage) are shown in x- and y-axes in the plot
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between competition regimes for most species, except for 
a lower SLA in Fraxinus in inter- compared to intraspecific 
competition (p = 0.040). Similarly, inorganic and organic net 
N uptake capacity did not change from intra to interspecific 
competition for any of the study species which might be due 
to the high variation in net N uptake capacity displayed by 
the individuals in this study. Only trends were found for a 
higher glutamine-N (Quercus, p = 0.073) and nitrate (Fagus, 
p = 0.056) net uptake capacity when grown in intra- com-
pared to interspecific competition. These results are in con-
trast with previous studies investigating the consequences of 
competition for N for inorganic and organic N acquisition 
using two-species approaches (e.g. Fotelli et al. 2004; Simon 
et al. 2010 , 2014; Li et al. 2015). Liese et al. (2018) used a 
community approach with four species grown together in a 
mesocosm; however, they only measured total N uptake and 
not that of the different tree species. Overall, the results of 
the present study suggest that the interactions between seed-
lings in a community and with regard to N uptake are more 
complex. In the multi-species approach used here, the conse-
quences of potential competition and/or facilitation between 
certain individual species—such as a negative effect with 
one species, but a positive effect of another—might have 
canceled each other out and thus might have masked any 

individual species´ effects. However, the trends of reduced 
inorganic or organic N acquisition found in the present study 
for certain N sources and species suggests a negative effect 
of competition with certain species.

N source preferences shift with competition regime 
and tree species

Tree species prefer different N sources when competing for 
N (e.g. Ashton et al. 2008; Simon et al. 2010; 2017; Bueno 
et al. 2019; Reuter et al. 2021). This hypothesis was con-
firmed in the present study. When seedlings were grown in 
intraspecific competition, the preferred N sources in short-
term uptake experiments varied depending on the species 
(Table 4): Fagus showed no preferences, whereas Carpinus, 
Quercus, Prunus, and Tilia preferred organic N over ammo-
nium (p ≤ 0.011). Acer preferred nitrate over ammonium and 
Fraxinus nitrate over ammonium and arginine-N (p < 0.001). 
Preferences for N also differed among species when grown 
in interspecific competition: Organic N was favoured over 
ammonium for Carpinus, Acer, and Tilia; glutamine-N was 
preferred over ammonium for Fagus, arginine-N over ammo-
nium for Quercus and Prunus, and nitrate over ammonium 
for Acer (p ≤ 0.017). Fraxinus took up more nitrate than glu-
tamine-N or ammonium (p < 0.001). These results highlight 
the significance of organic N for tree N acquisition for most 
of the studied species, except for Fraxinus.

Looking at how N source preferences of the study spe-
cies shifted when seedlings were from intra- to interspecific 
competition treatments, five patterns were found (Table 4): 
(1) Acer included organic N  as preferred N sources over 
ammonium; (2) Fagus preferred glutamine-N compared to 
no preferences in intraspecific competition; (3) Fraxinus 
switched between amino acids, but still preferred nitrate; 
(4) Prunus and Quercus no longer preferred glutamine-N 
over ammonium, and (5) Carpinus and Tilia showed no dif-
ferences between competition regimes. Thus, the preference 
to take up specific N sources depends on the species and 
is regulated by underlying physiological traits, such as, the 

Table 3  Principal Component Analysis—factor loadings for the 
measured parameters. Levels of net N uptake capacity  of arginine, 
glutamine, nitrate, and ammonium via the roots of seven temperate 
woody species grown in intra- and interspecific competition

N source Intraspecific competition Interspecific competition

Loadings 1 Loadings 2 Loadings 1 Loadings 2

Arginine-N − 0.9755 0.11443 0.21488 − 0.04388
Glutamine-N − 0.16825 − 0.92486 0.22122 − 0.17491
Nitrate  0.12124 − 0.3627 0.94872 − 0.02120
Ammonium − 0.07342 0.00017 0.06939 0.98338
The parameter explaining most of the variation is highlighted in 

bold

Table 4  Preferences of 
ammonium  (NH4

+), nitrate 
 (NO3

−), glutamine-N (Gln), 
and arginine-N (Arg) net uptake 
capacity (nmol N / g fw h) of 
seven temperate tree species

Species Intraspecific competition Interspecific competition

N preferences P-values N preferences P-values

Acer pseudoplatanus NO3
− >  NH4

+ <0.001 NO3
− / orgN >  NH4

+ 0.004
Carpinus betulus orgN >  NH4

+ <0.001 orgN >  NH4
+ 0.002

Fagus sylvatica n.a.  0.085 Gln-N >  NH4
+  0.017

Fraxinus excelsior NO3
− >  NH4

+/Arg-N  0.002 NO3
- >  NH4

+/Gln-N <0.001
Prunus avium orgN >  NH4

+  0.011 Arg-N >  NH4
+  0.013

Quercus robur orgN >  NH4
+ <0.001 Arg-N >  NH4

+  0.002
Tilia cordata orgN >  NH4

+  0.002 orgN >  NH4
+  0.004

Significant differences are marked in bold. n.a : not applicable. Results are based on ANOVA on Ranks 
with N source as main factor followed by posthoc Dunn´s test for each species combination (p≤0.050)
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density of specific transporters (Näsholm et al. 2009; Jacob 
and Leuschner 2015), as well as free amino acid synthesised 
when ammonium is assimilated (e.g. Imsande and Touraine 
1994; Kreuzwieser et al. 1997; Collier et al. 2003; Reuter 
et al. 2021). Organic N uptake is an important N source for 
certain tree species, particularly when N is limiting. As the 
assimilation process can be bypassed, organic N acquisition 
requires less energy (Moreau et al. 2019).

In conclusion, short-term net inorganic and organic N 
uptake capacity are not related to a seedling´s inherent 
growth rate when grown in a tree community and do not 
shift in response to competing species, but the preferences 
for certain N sources can change.
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