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Abstract

AIM

To compare liver proteolysis and proteasome activation 
in steatotic liver grafts conserved in University of 
Wisconsin (UW) and Institut Georges Lopez-1 (IGL-1) 
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solutions.

METHODS

Fatty liver grafts from male obese Zücker rats were 
conserved in UW and IGL-1 solutions for 24 h at 4 ℃
and subjected to “ex vivo ” normo-thermic perfusion 
(2 h; 37 ℃). Liver proteolysis in tissue specimens 
and perfusate was measured by reverse-phase high 
performance liquid chromatography. Total free amino 
acid release was correlated with the activation of 
the ubiquitin proteasome system (UPS: measured as 
chymotryptic-like activity and 20S and 19S proteasome), 
the prevention of liver injury (transaminases), mito-
chondrial injury (confocal microscopy) and inflammation 
markers (TNF 1 alpha, high mobility group box-1 
(HGMB-1) and PPAR gamma), and liver apoptosis 
(TUNEL assay, cytochrome c and caspase 3).

RESULTS

Profiles of free AA (alanine, proline, leucine, isoleucine, 
methionine, lysine, ornithine, and threonine, among 
others) were similar for tissue and reperfusion effluent. 
In all cases, the IGL-1 solution showed a significantly 
higher prevention of proteolysis than UW (P  < 0.05) 
after cold ischemia reperfusion. Livers conserved 
in IGL-1 presented more effective prevention of 
ATP-breakdown and more inhibition of UPS activity 
(measured as chymotryptic-like activity). In addition, 
the prevention of liver proteolysis and UPS activation 
correlated with the prevention of liver injury (AST/
ALT) and mitochondrial damage (revealed by confocal 
microscopy findings) as well as with the prevention of 
inflammatory markers (TNF1alpha and HMGB) after 
reperfusion. In addition, the liver grafts preserved in 
IGL-1 showed a significant decrease in liver apoptosis, 
as shown by TUNEL assay and the reduction of cyto-
chrome c, caspase 3 and P62 levels. 

CONCLUSION

Our comparison of these two preservation solutions 
suggests that IGL-1 helps to prevent ATP breakdown 
more effectively than UW and subsequently achieves a 
higher UPS inhibition and reduced liver proteolysis.

Key words: Liver proteolysis; Proteasome activation; 
Fatty liver preservation; Institut Georges Lopez-1; 
University of Wisconsin; High mobility group box 1; 
Cold ischemia reperfusion injury

© The Author(s) 2017. Published by Baishideng Publishing 

Group Inc. All rights reserved.

Core tip: Although several reports have confirmed that 
proteolytic activity during cold storage determines graft 
outcome after transplantation, the effect of preservation 
solution on steatotic liver graft proteolysis and on the 
activation of ATP-dependent proteasome during cold 
ischemia injury has not been fully investigated. Here, 
we compared the effect of two preservation solutions 
Institut Georges Lopez-1(IGL-1) and University of 
Wisconsin on liver proteolysis and ubiquitin-proteasome 

activation when steatotic liver grafts were subjected to 
cold storage. We provide evidence for a protective role 
of proteasome and proteolysis inhibition using IGL-1 
during steatotic liver graft preservation.

Zaouali MA, Panisello-Roselló A, Lopez A, Castro Benítez 

C, Folch-Puy E, García-Gil A, Carbonell T, Adam R, Roselló-

Catafau J. Relevance of proteolysis and proteasome activation 

in fatty liver graft preservation: An Institut Georges Lopez-1 vs 

University of Wisconsin appraisal. World J Gastroenterol 2017; 

23(23): 4211-4221  Available from: URL: http://www.wjgnet.

com/1007-9327/full/v23/i23/4211.htm  DOI: http://dx.doi.

org/10.3748/wjg.v23.i23.4211

INTRODUCTION

Functional graft recovery remains one of the major 

complications after liver surgery. Cold static preservation 

is an inherent feature of liver transplantation (LT) 

and is strongly associated with graft outcome after 

transplantation[1]. Despite continued attempts to 

improve preservation solutions, success in liver trans

plantation is always hampered by the complexity 

of ischemia reperfusion (I/R) injury[2,3]. In addition, 

exacerbated I/R injury is due, to a large extent, to 

the quality of the graft and to its conservation in 

preservation solutions[4,5]. In the liver, the presence 

of steatosis makes the graft more vulnerable to cold 

I/R injury[6] and thus aggravates the detrimental 

effects of cold I/R injury in fatty liver grafts preserved in 

commercial solutions. 

University of Wisconsin (UW) solution is considered 

to be the standard solution for liver graft preservation. 

However, alternative preservation solutions have 

been used in clinical liver transplantation, such as 

Institut Georges Lopez1 (IGL1), histidinetryptophan

ketoglutarate (HTK) and Celsior solutions. Briefly, IGL-1 
is a new preservation solution whose differences visà

vis UW are the oncotic agent used (PEG35, instead of 

HES) and its lower potassium and lower viscosity. HTK 

and Celsior solutions have no oncotic agent[2,7]. 

The ubiquitinproteasome system (UPS) is the 

principal nonlysosomal proteolytic system and is 

thought to contribute to a large variety of pathologies, 

including I/R injury associated with LT[810]. Recently, 

we showed that UPS modulation is a pharmacological 

target for improving graft preservation and for 

reducing I/R injury in the liver[10].

Moreover, it is has been well established that 

proteolysis is necessary to control protein concentra

tion and to prevent its abnormal accumulation[8]. 

Proteasomes also perform multiple intracellular func

tions, such as the degradation of damaged proteins 

and the modulation of many regulatory proteins that 

are involved in inflammatory processes including the 

cell cycle, metabolism, growth and differentiation[8]. In 
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fact, proteolytic activity is necessary for amino acid (AA) 

recycling of proteins that are no longer needed, thus 

preventing their accumulation in the cytoplasm[11,12].

The first evidence that proteolysis has a detrimental 
effect on liver graft outcome after transplantation 

was provided by Calmus et al
[13] who showed that 

the degree of proteolytic activity detected by the free 

amino acids in the effluent of human liver grafts is a 
good predictive marker for postoperative graft function 

when using UW solution. Later, Upadhya et al
[14] proved 

that the composition of the preservation solution may 

be relevant for the prevention of liver proteolysis. 

These authors demonstrated that lactobionate, a 

component of the UW solution, is a key factor for 

preventing the release of matrix metalloproteinases, 

particularly gelatinases, during cold preservation[15]. 

More recently, other solutions such as IGL1 have also 

been considered as potential alternatives to UW[1,16]. 

Despite the proven efficiency of IGL1, especially 

in steatotic liver preservation, its effects on graft 

proteolysis have not been investigated to date.

It is well known that energy breakdown following 

oxygen deprivation in liver graft is the main event 

during cold storage, and that its effects are concomitant 

with a significant decrease in ATP content which leads 
to severe graft damage[2]. It was recently reported that 

this ATP decline may activate a subset of 26S protea

somes, a celldestructive protease that contributes to 

myocardial injury during cold ischemia[17,18]. Moreover, 

this proteasome inhibition contributes to prolonging 

myocardial viability in hypothermic preservation[19]. 

Recently, we demonstrated that proteasome inhibitors 

such as MG132 and bortezomib protected fatty liver 

grafts when they were used as additives to UW 

and IGL1 solutions[10,20]. However, the role of the 

UPS system and liver proteolysis in fatty liver graft 

preservation has not been fully investigated. 

The aim of this study is to assess the potential 

relationship between proteolysis, energy breakdown 

and liver injury using UW and IGL1 solutions, in 

order to shed new light on the molecular and cellular 

mechanisms involved in liver cold I/R injury.

MATERIALS AND METHODS

Animals
Homozygous (obese [Ob]) Zücker rats aged 1618 wk 

were purchased from IffaCredo (L’Abresle, France). 

An “ex vivo” perfused rat liver model was used, as 

previously described. All procedures were performed 

under isofluorane inhalation anesthesia according to 

the European Union regulations (Directive 86/609 

EEC) for animal experiments[21].

Preservation solutions 
We used UW (gold standard) and IGL1 solutions. 

IGL1 solution is a modification of UW solution in 

which hydroxyethyl starch (HES) is substituted by 

polyethylene glycol 35 (PEG 35) and the ionic K/Na ratio 

is also reversed. 

Experimental groups and isolated perfused liver model 
Briefly, 24 rats were randomly divided into three 

groups. The abdomen was opened by midline incision, 

following cannulation of the common bile duct, and 

the portal vein, the splenic and gastroduodenal veins 

were ligated. After organ recovery the livers were 

flushed with UW (UW group) and IGL-1 (IGL-1 group) 
preservation solutions respectively, and then stored 

in each solution for 24 h at 4 ℃. Next, the preserved 

livers were flushed with a perfusion liquid consisting 

of a cell culture medium (William’s medium E, Bio 

Whitaker, Barcelona, Spain), with a KrebsHenseleit

like electrolyte composition enriched with 5% albumin 

as osmotic support. For the reperfusion, livers were 

connected via the portal vein to a recirculating 

perfusion system for 2 h at 37 ℃. The third study 

group was a Control group (Cont) in which livers were 

flushed and immediately perfused ex vivo without 

ischemic preservation. Time 0 was the point at which 

the portal catheter was satisfactorily connected to the 

circuit. During an initial equilibration period of 15 min 

of perfusion, the flow was progressively increased 

in order to stabilize the portal pressure at 12 mmHg 

(Pression Monitor BP1, Instruments, Inc., Sarasota, 

FL, United States). In order to maintain the portal 

pressure at 12 mmHg, the flow rate was modified 

using a peristaltic pump (Minipuls 3, Gilson, France). 

The buffer was continuously ventilated with a 95% O2 

and 5% CO2 gas mixture. It was subsequently passed 

through a heat exchanger (37 ℃) and a bubble trap 

prior to entering the liver[21,22].

Protocol I Proteasome activity and ATP levels 

after 24 h cold storage: In order to evaluate the 

proteasome activity and ATP breakdown in steatotic 

liver grafts following 24 hcold storage in UW or IGL1, 

aliquots of the flush effluents and liver tissue samples 
were collected and stored at 80 ℃ for subsequent 

measurement. Control livers (Cont 1 group) were 

flushed with Ringer’s lactate solution via the portal vein 

without ischemic preservation.

Protocol II Evaluation of proteasome activity and 

liver viability after 2 h reperfusion: To examine 

the role of UW and IGL1 solutions in proteasome 

activation and their subsequent effect on proteolysis, 

liver function and also liver damage, fatty livers were 

subjected to two hours of normoxic reperfusion. Then, 

the perfusate effluent and the liver tissue sample were 
collected and stored at 80 ℃ for later measurement. 

In control group (Cont 2) livers were flushed with 

Ringer’s lactate and immediately perfused ex vivo 

without ischemic preservation.

Biochemical determinations
Nucleotide analysis and ATP content: Livers 

were homogenized in perchloric acid solution, and 
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and a near infrared Titanium:Saphire laser (MaiTai, 

SpectraPhysics) for twophoton excitation running at 

800 nm. Images were acquired with resonant scan at 

8000 lines/s. Twophoton excitation was performed 

at 800 nm and emission of the different fluorescent 

dyes was captured at the following wavelength ranges: 

Evans blue dye (515560 nm), and rhodamine 123 

(500550 nm)[28,29].

Western blotting analysis of PPARγ , HMGB-1, Caspase3, 

cytochrome C, 20S5beta and 19S proteasome subunit 

and β -Actin
Liver tissue was homogenized as described else

where[30], and proteins were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis and 

transferred to polyvinylidene fluoride membranes. 

Membranes were immunoblotted with antibodies 

against 20S5beta and 19S proteasome subunits 

(BMLPW 8895,and BMLPW8825 respectively, ENZO 

Life Sciences, Madrid, Spain), PPARγ and HMGB1 

(Abcam, United Kingdom), cleaved caspase 3 and 

cytochrome C (Cell Signaling, Beverly, MA, United 

States), and βActin (Sigma Chemical, St. Louis, MO, 

United States). Signals were detected by enhanced 

chemiluminescence and quantified by scanning 

densitometry[10]. 

Terminal deoxynucleotidyl transferase-mediated dUTP 

nick end-labeling method
[31]

To detect apoptotic cells, 16μmthick frozen sections 

from livers were collected on polyLlysinecoated glass 

slides, and the nuclear DNA fragmentation of apoptotic 

cells was labeled in situ by the TUNEL method using 

an ApopTag Peroxidase In Situ Apoptosis Detection Kit 

(Intergen Co. Purchase, NY, United States). Briefly, the 
sections were fixed in 1% paraformaldehyde in PBS, 
pH 7.4 for 10 min at room temperature and, after 

washing in PBS, they were postfixed in precooled 

ethanol:acetic acid 2:1 for 5 min at 20 ℃. After 

rinsing in distilled water, the sections were treated 

with 3% hydrogen peroxide in 10% methanol for 5 

min, washed with distilled water and incubated in the 

equilibration buffer provided for 10 min. Then, the 

sections were incubated with terminal deoxynucleotide 

transferase (TdT) in the reaction buffer provided 

with digoxigenindUTP, in a humidifier chamber at 

37 ℃ for 1 h. The incorporated digoxigenindUTP was 

detected by peroxidaseconjugated antidigoxigenin 

antibody and the signal developed by incubation 

with 3,3diaminobenzidine (DAB) in the presence 

of H2O2. The slides were counterstained with Harris 

hematoxylin. Negative controls were prepared by 

replacing the antidigoxigenin antibody with phosphate 

saline buffer, and a case of breast carcinoma was 

included as positive control.

Statistical analysis
Data are expressed as means ± SD and were com

pared statistically by variance analysis, followed by the 

the adenine nucleotide pool was measured by high

performance liquid chromatography (HPLC) as pre

viously reported[23,24].

Assessment of liver proteolysis
[7]

: Free amino 

acid content in ex vivo eluates and tissue specimens 

was measured by HPLC techniques, as previously 

described[25]. Briefly, effluent and tissue homogenization 
samples were first deproteinized by ultrafiltration and 

then derivatized with phenylisothiocyanate (PITC) 

to produce phenylthiocarbamyl (PTC) amino acids. 

Amino acids were determined by automated gradient 

reverse phase HPLC and ultraviolet detection at 254 

nm. Quantitative analysis of total free amino acids was 

performed using the PICO.TAG Amino Acid Analysis 

System[25]. 

Transaminase assay: Hepatic injury was evaluated 

according to transaminase levels using a commercial 

kit from Boehringer Mannheim (Munich, Germany)[10].

Proteasome chymotryptic-like activity assay
[9,10]

: 

ATPdependent chymotryptic activity of the proteasome 

was measured using the substrate NSucLeuLeuVal

Tyraminomethylcoumarin (ENZO Life Sciences). The 

cleavage products AMC were analyzed in a fluorimeter 
(excitation/emission 380/460 nm). Product formation 

was linear with time (at least for 60 min). Background 

activity (caused by nonproteasomal degradation) was 

determined by the addition of the proteasome inhibitor 

epoxomicin at a final concentration of 20 μmol/L (ENZO 

Life Sciences). 

Glutamate dehydrogenase activity
[10]

: Liver 

mitochondrial damage was measured by GLDH activity 

levels at the end of reperfusion, as previously reported.

Inflammatory mediators: TNF alpha and IL-1/IL10 
TNF alpha levels were measured using a commercial 

immunoassay kit for rat TNF alpha from Biosource 

(Caramillo)[10,26]. IL1 beta and IL10 were measured 

by enzymelinked immunosorbent assay as previously 

reported[10,27]. Commercial kits from Amersham 

LifeScience (Amersham, United Kingdom) were used.

Confocal microscopy for mitochondrial damage
During 2 h of normothermic preservation, fatty 

livers were perfused with Krebs supplemented with 

rhodamine 123 (0.11 mg/L, Sigma, R8004) for 

mitochondrial membrane potential staining and 1% 

Evans blue dye used as a viability assay on the basis 

of its penetration into nonviable cells. Fatty livers 

were then carefully sectioned (0.5 cm3 fragments) 

and the internal side of the liver was exposed on the 

glass coverslip mounted on the stage of a Leica TCS 

SP5 resonant scan multiphoton confocal microscope 

(Leica Microsystems Heidelberg GmbH) equipped 

with a HCX IR APO L 25 × water immersion objective 

(Numerical Aperture 0.95), scanner at 400 lines/s, 

Zaouali MA et  al. Proteolysis and liver preservation
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StudentNewmanKeuls test. P < 0.05 was considered 

significant.

RESULTS

We evaluated the relevance of proteasome activity 

and proteolysis in fatty livers preserved in IGL1 

and UW solutions when subjected to normothermic 

reperfusion. As Figure 1A shows, chymotrypticlike 

proteasome activity increased in steatotic liver grafts 

during cold preservation in UW solution compared 

with control nonpreserved livers. However, steatotic 

livers preserved in IGL1 solution showed lower 

chymotrypticlike proteasome activity than those 

preserved in UW solution. 

Given the close relationship between proteasome 

activity and the ATP contents during cold preservation[18], 

we next evaluated the ATP concentration during liver 

preservation. Lower ATP levels during cold storage were 

observed in steatotic livers preserved in UW solution 

than in nonpreserved livers. ATP breakdown was more 

effectively prevented by the use of IGL1 solution (Figure 

1B). 

With these results in mind, we also evaluated the 

chymotrypticlike proteasome activity and the 19S 

and 20S proteasome protein levels after reperfusion. 

As indicated in Figure 2A, the chymotrypticlike 

proteasome activity after reperfusion follows the same 

pattern profile as those observed for cold storage. 

The 20S proteasome protein levels were reduced only 

when IGL1 preservation solution was used. In contrast, 

the 19S subset protein levels remained unchanged 

across all experimental groups (Figure 2B and C). 

Also, the AA profiling studies confirmed that 

IGL-1 offered more efficient prevention of AA release 
in tissue graft specimens and effluents after 2 

hreperfusion at 37 ℃. The AA profiles obtained in 

liver tissue (Figure 3B) and eluate samples (Figure 3A) 

were similar but were seen more in tissue samples 

than in ex vivo eluates, thus confirming the relevance 
of proteolysis (measured as free AA release) after cold 

I/R injury. The better prevention of liver proteolysis 

in grafts preserved in IGL1 solution than in UW 

was consistent with significant reductions in other 

parameters associated with the pathophysiology of 

liver I/R injury, such as transaminases (ALT and AST) 

and GLDH release as sensitive and specific markers of 

Figure 2  Chymotryptic-like activity (A) and 20S (B) and 19S (C) protein 

levels after reperfusion. Representative Western blot at the top and 

densitometric analysis at the bottom of 20S (B) and 19S (C). 
a
P < 0.05 vs 

Cont2, 
c
P < 0.05 vs UW. Cont2: Liver flushed and perfused ex vivo without cold 

preservation; UW: Liver preserved in UW solution; IGL-1: Liver preserved in 
IGL-1 solution; UW: University of Wisconsin; IGL-1: Institut Georges Lopez-1.
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in steatotic livers after cold preservation. 
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mitochondrial damage (Table 1). 

Given that proteasome activity plays a crucial 

role in the modulation of many of the regulatory 

proteins involved in inflammatory processes in fatty 

liver grafts[8], we evaluated the involvement of other 

inflammatory markers in fatty liver, such as PPARγ, in 

the proteasome changes and proteolysis inhibition in 

steatotic liver grafts subjected to cold I/R injury. As 

shown in Figure 4A, PPARγ protein levels in steatotic 

liver grafts preserved in UW solution remained 

unchanged compared with control non preserved 

grafts, but increased significantly in grafts preserved 

in IGL1 preservation solution. We also measured the 

effect of preservation solution on other cytokines such 

as high mobility group box 1 (HMGB1) which was 

recently shown to be involved in fatty liver preservation 

and transplantation[32]. IGL1 showed lower levels 

of HMGB1 than UW (Figure 4B) concomitant with 

a significant reduction in the release of other in

flammatory cytokines such as TNFα but not for IL1. 
IGL1 also increased the concomitant release of anti

inflammatory IL10 in fatty livers after reperfusion 

(Table 2). 

Next, we evaluated the effect of proteasome 

activity and proteolysis modulation on apoptosis and 

autophagy induction. Figure 5 shows a significant 

increase in cytochrome C and cleaved caspase 3 

protein levels in steatotic livers preserved in UW 

solution compared with nonpreserved ones. However, 

preservation in IGL1 solution significantly reduced 

both apoptotic markers. In addition, the autophagy

related ubiquitinbinding protein SQSTM1/p62, which 

is involved in aggresome formation and degradation 

through autophagy, is increased in steatotic livers 

preserved in UW solution compared with those pre

served in IGL1 solution (Figure 5C).

This effect on liver apoptosis in both IGL1 and UW 

solutions was also corroborated by the percentage of 

TUNELpositive hepatocytes (Figure 6). Only a few 

sinusoidal lining cells were positive to TUNEL staining 

in control nonpreserved steatotic livers (Figure 

6B). After preservation with UW and reperfusion, 

the number of positive cells significantly increased 

(Figure 6B). Preservation with IGL1 reduced apoptotic 

Table 1  ALT and AST (Liver injury) and GLDH (mitochondrial 

damage) in steatotic liver grafts preserved in University of 

Wisconsin and Institut Georges Lopez-1 solutions and then 

subjected to two hours of normothermic reperfusion

Liver injury Cont2 UW IGL-1

ALT, U/L   26.76 ± 4.095   172.1 ± 10.81a 92.99 ± 8.64a,c

AST, U/L 24.92 ± 2.42 280.93 ± 14.14a 202.24 ± 24.71a,c

GLDH, U/L 26.13 ± 6.83   425.22 ± 156.92a      143 ± 31.16a,c

a
P < 0.05 vs Cont, c

P < 0.05 vs UW. UW: University of Wisconsin; IGL-1: 

Institut Georges Lopez-1.

Zaouali MA et  al. Proteolysis and liver preservation

Figure 3  Proteolysis in effluent and liver grafts after reperfusion. Amino acid levels in the effluent and tissue after reperfusion. c
P < 0.05 vs UW. UW: Liver 

preserved in UW solution; IGL-1: Liver preserved in IGL-1 solution; UW: University of Wisconsin; IGL-1: Institut Georges Lopez-1.
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cell death (Figure 6B). In all cases, single (but 

not clustered) TUNELstained cells were observed 

more extensively in periportal and midzonal areas. 

Finally, the confocal microscopic study confirmed that 

steatotic livers preserved in IGL1 solution conserved 

the membrane potential of liver mitochondria more 

efficiently, as shown by an increase in the rhodamine 

123 cell viability marker (in green) and a decrease in 

Evans blue labeling (in red), indicating the albumin 

content and the disrupted mitochondrial membranes 

(Figure 6A).

DISCUSSION

At present, a considerable number of fatty donor livers 

have to be discarded, a situation that accentuates even 

further the critical shortage of human donor livers. 

A better knowledge of the preservation mechanisms 

of steatotic liver grafts is urgently needed to reduce 

their high vulnerability to cold I/R injury, and thus to 

improve their viability after transplantation[33,34]. 

In this study, we investigated the involvement 

of UPS activation and liver proteolysis and their 

relationship with the breakdown energy metabolism in 

steatotic liver grafts preserved in different commercial 

preservation solutions such as IGL1 and UW. We 

also associated the changes in UPS activation during 

cold I/R injury with the inflammatory events and liver 
apoptosis. Our data demonstrate that IGL1 prevented 

liver proteolysis more effectively than UW. In all cases, 

free AA levels determined in tissue specimens and 

eluates were lower in IGL1 than in UW after cold 

I/R. This improved prevention of liver proteolysis with 

IGL1 is consistent with its more effective protection 

against I/R injury. This could be explained, in part, 
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Figure 5  Liver graft apoptosis and autophagy after reperfusion. 

Representative Western blot at the top and densitometric analysis at the bottom 

of protein levels of cleaved caspase 3 (A), cytochrome C (B) and P62 (C) in 

steatotic liver grafts. a
P < 0.05 vs Cont2, 

c
P < 0.05 vs UW. Cont2: Liver flushed 

and perfused ex vivo without cold preservation; UW: Liver preserved in UW 
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Inflammation Cont2 UW IGL-1

TNFα (pg/mL) 26.17 ± 5.85   1285.89 ± 231.32a   1005.83 ± 101.94a,c

IL-1β (pg/mL)   4.29 ± 1.66     89.01 ± 10.53a 84.69 ± 7.79a

IL-10 (pg/mL) 134.89 ± 14.84 109.33 ± 17.3a 192.13 ± 7.73a,c

a
P < 0.05 vs Cont, c

P < 0.05 vs UW. UW: University of Wisconsin; IGL-1: 

Institut Georges Lopez-1.

Table 2  TNFα, IL-1 and IL-10 levels (inflammation) in 

steatotic liver grafts preserved in University of Wisconsin and 

Institut Georges Lopez-1 solutions and then subjected to two 

hours of normothermic reperfusion
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by the presence of different oncotic agents: PEG35 

in IGL1, and HES in UW. In fact, we have recently 

demonstrated that the addition of PEG35 to washout 

solution protects the liver against I/R injury by the 

inhibition of metalloproteinases MMP9 and MMP2, 

a finding that may explain its role in preventing 

liver proteolysis[21]. The presence of lactobionate (a 

common ingredient of the UW and IGL1 solutions) 

may also help to prevent liver proteolysis due its 

strong inhibitory effect on gelatinases, presumably 

via calcium or zinc chelation[13,14]. This effective pre

vention of proteolysis is also consistent with the 

significant reduction in proteasome activity reflected 

by decreases in chymotrypticlike proteasome activity 

and 20S proteasome protein levels and the better 

prevention of energy metabolism breakdown with 

IGL1 solution. In fact, a recent report established a 

functional link between 26S proteasome activity and 

ATP depletion in tissue during cold I/R injury[18]. Those 

authors advanced that ATP depletion during ischemic 

insult appears to activate the 26S proteasome which 

is formed from a multimeric proteasome core particle 

(20S proteasome) which is singly or doubly capped at 

its ends by a 19S regulator complex[17]. Taking this into 

account, we suggest that the reduced 20S proteasome 

protein levels in steatotic livers preserved in IGL1 

solution are to do some extent the consequence of the 

better preservation of ATP content in this group, which 

thus affects 26S assembly and activity. Furthermore, 

our results are in accordance with previous studies 

which have demonstrated the relevance of proteasome 

inhibition in protecting steatotic liver grafts against I/R 

injury when preservation solutions were supplemented 

with proteasome inhibitors MG132 and bortezomib[10,20].

In order to explain the mechanisms by which pro

teasome modulation and proteolysis inhibition protect 

steatotic livers against cold I/R injury, we also assessed 

levels of PPARγ and HMGB1 proteins, which are 

both involved in the modulation of the inflammatory 

response after I/R injury[3537]. It is clear that PPARγ 
belongs to the hormone nuclear receptor superfamily 

of ligandactivated transcription factors which are 

major regulators of postischemic liver injury[35]. Its 

protective effect is mediated by its anti-inflammatory 
properties via the inhibition of pro-inflammatory gene 
expression[35] in which the UPS has recently been 

implicated; the UPS is responsible for PPAR turnover 

and is also involved in the modulation of the ligand

dependent activity of these nuclear receptors[38].

The fact that the UPS is the major system for 

selective degradation of shortlived proteins in eukaryotic 

cells such as PPARγ[38] suggests that proteasome 

inhibition after steatotic liver graft preservation in IGL1 

solution may be responsible for the PPARγ accumulation 

induced, thus leading to a reduction in the expression of 

pro-inflammatory proteins[39]. These findings were also 
confirmed by the lower HMGB-1 protein levels in livers 
preserved in IGL1 solution than in livers preserved in 

UW. HMGB1 is a wellknown extracellular signaling pro

inflammatory mediator which, when released from cells, 
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leads to cell death in several pathologies including liver 

I/R[32]. Our results corroborate those of a previous study 

which demonstrated that PPARγmediated upregulation 

of miR1423p inhibits HMGB1 expression, which, 

in turn, is a novel antiinflammatory mechanism of 

PPARγ and plays an important role in the treatment 

of inflammatory diseases[40]. Moreover, HMGB1 is 

associated with apoptotic cell death[41] and autophagy 

modulation[42,43].

Next we evaluated both parameters after cold I/R 

injury in steatotic livers preserved in UW and IGL1 

solutions. Our results demonstrated that the use of 

IGL1 reduced apoptotic cell death, as reflected by 

decreases in cleaved caspase3 and cytochrome C 

protein levels when compared with UW solution. The 

relevance of cytochrome c as a reliable biomarker 

of mitochondrial damage in fatty liver disease was 

also reported by another study[44]. These results 

were correlated with a better prevention of liver 

mitochondrial damage and were also consistent with 

the finding that IGL1 solution efficiently prevented 

liver apoptosis in rat liver transplantation[45]. 

Finally, in order to explore the effect of proteasome 

modulation on autophagy, we determined the levels 

of autophagyrelated ubiquitinbinding protein 

SQSTM1/p62. This protein is involved in aggresome 

formation and degradation through autophagy which 

is associated with the liver graft selfresponse to cold 

I/R injury (the SQSTM/p62 substrate that accumulates 

in autophagydeficient cells)[46,47]. Our results de

monstrated that UW solution increased SQSTM1/

p62 protein levels, which are inversely correlated to 

autophagy, while the use of IGL1 solution reduced 

SQSTM1/p62 protein levels, thus showing autophagic 

activation, as a response to better preservation 

mechanisms. These results corroborate our previous 

finding that impaired autophagic clearance after 

steatotic liver preservation is correlated with increased 

liver injury[31].

In conclusion, we show that liver graft proteolysis 

and proteasome activation are dependent on the organ 

preservation solutions used for liver transplantation such 

as UW and IGL-1. Our results confirm the relevance of 
both markers for evaluating the graft damage caused 

by cold I/R injury in fatty liver preservation.

ACKNOWLEDGMENTS

The authors would like to thank Michael Maudsley at 

the Language Advisory Service of the University of 

Barcelona for revising the English text. 

COMMENTS

Background
Cold ischemia reperfusion (I/R) injury is a multifactorial process that 
can interfere with graft function after liver transplantation (LT). A better 
understanding of the pathophysiology of this injury is fundamental for the 
development of protective strategies able to improve the outcome of LT. The 

ischemic graft damage that occurs during cold storage of fatty liver grafts 
depends in part on the ATP-energy breakdown. It is well known that the 
prevention of ATP-breakdown during cold static preservation is associated with 
inhibition of ubiquitin-proteasome system (UPS) activity, which helps to protect 
the liver graft against reperfusion. In this context the selection of commercial 
organ solution seems crucial for modulating the UPS, as well as the graft 
proteolysis against cold I/R injury. We demonstrate that Institut Georges 
Lopez-1 (IGL-1) solution reduces cold I/R injury more efficiently by helping to 
prevent ATP- breakdown and subsequently achieving a higher UPS inhibition 
than University of Wisconsin (UW). Both these factors are modulated by the 
organ preservation solution and determine the degree of proteolysis in the liver 
graft.

Research frontiers
The authors focused on strategies for interfering with the mechanisms 
responsible for hepatic I/R injury associated with LT, and on strategies for 
enhancing the endogenous mechanisms that protect against cold ischemic 
damage. UW and IGL-1 solutions are widely used in LT. They demonstrate 
that the nature of the oncotic agent present in UW and IGL-1 solutions is 
responsible, in part, for the modulation of energy breakdown and its subsequent 
inhibitory action on the UPS, which are key factors in graft protection against I/
R insult. In the present study IGL-1 showed more hepato-protective effects than 
UW, due, in part, to the presence of the oncotic agent PEG-35.

Innovations and breakthroughs
This study demonstrates for the first time that UPS inhibition is a key factor in 
fatty liver preservation using different commercial organ preservation solutions 
such as UW and IGL-1. UPS inhibition may explain the better prevention of the 
proteolysis observed in IGL-1 than in UW, thus favoring the use of IGL-1 in fatty 
liver graft preservation.

Applications
UPS inhibition and the degree of proteolysis can be used to predict the viability 
of steatotic liver grafts after prolonged static preservation.

Terminology
The UPS system and proteolysis are involved in the complex pathophysiology of 
hepatic cold I/R injury. Both are helpful for evaluating the fatty liver preservation 
using either static or dynamic preservation (with machine perfusion) strategies.

Peer-review
The manuscript is about Relevance of proteolysis and proteasome activation in 
fatty liver graft preservation. There must be possible prospective achievement in 
this basic studies. The authors try to solve the problem of preservation of fatty 
donor liver from ischemic injury in liver transplantation, and the study design 
was reasonable. The results were also good and provided some scientific hints.
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