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Relevance of saddle-splay elasticity in complex
nematic geometries†

Žiga Kos*a and Miha Ravnikab

We demonstrate the relevance of saddle-splay elasticity in nematic liquid crystalline fluids in the context

of complex surface anchoring conditions and the complex geometrical confinement. Specifically, nematic cells

with patterns of surface anchoring and colloidal knots are shown as examples where saddle-splay free energy

contribution can have a notable role which originates from nonhomogeneous surface anchoring and the

varying surface curvature. Patterned nematic cells are shown to exhibit various (meta)stable configurations of

nematic field, with relative (meta)stability depending on the saddle-splay. We show that for high enough values

of saddle-splay elastic constant K24 a previously unstable conformation can be stabilised, more generally

indicating that the saddle-splay can reverse or change the (meta)stability of various nematic structures

affecting their phase diagrams. Furthermore, we investigate saddle-splay elasticity in the geometry of highly

curved boundaries – the colloidal particle knots in nematic – where the local curvature of the particles

induces complex spatial variations of the saddle-splay contributions. Finally, a nematic order parameter tensor

based saddle-splay invariant is shown, which allows for the direct calculation of saddle-splay free energy from

the Q-tensor, a possibility very relevant for multiple mesoscopic modelling approaches, such as Landau-de

Gennes free energy modelling.

1 Introduction

The complex geometrical confinement of nematic liquid crystal-

line fluids by micro and nano-sized cavities, channels, topological

objects and colloids is today an interesting direction for devel-

oping novel optical,1 photonic,2,3 rheological,4,5 topological6,7 and

microfluidic8materials. In such systems, themain variabilities are

the geometry of the confining surfaces6–8 and the alignment of the

nematic imposed by the surfaces (i.e. surface anchoring).8,9

Complex surface conditions for nematic ordering can be

achieved by patterning the surfaces with different surfactants,

e.g. that impose partly perpendicular, partly inplane orientation

of nematic molecules. In flat nematic cells, such an approach

can lead to sub-millisecond switching times of the nematic

with electric field and is interesting for fast switching high-

resolution displays.9 Flat patterned cells may also exhibit a

variety of nematic states with topological defects.10 The patterned

surface can be applied also to spheres11–14 or tori,15 thus produ-

cing Janus colloids.

Geometric variability of the nematic confinement is today

impressively achieved by producing complex-shaped colloidal

particles that take the shape of knots,6 nematic defect condi-

tioned fibres,16 faceted particles17–20 or handlebodies.7,21 Con-

tact surfaces between nematic fluid and the confining geometry

can also be made micro-structured, with surface corrugations22

and surface wrinkles.23,24 The geometry and surface anchoring

can be designed to give a working key-lock mechanism.25

Another approach towards complex shaped objects is also by

considering emulsions of nematic in host fluids, leading to

complex shaped droplet fibres3 and foams.26

Nematic liquid crystalline fluids are soft materials with

a long range orientational order – characterised by nematic

director n with n 2 �n symmetry – that effectively respond

elastically to external stimuli imposed by external fields or

surfaces. Three basic elastic modes of nematic ordering are

known to emerge – splay, twist and bend – which importantly

are further combined with elastic deformation modes know as

saddle-splay and splay-bend. The elasticity effects are typically

considered at the mesoscopic level, relying on the phenomeno-

logical expansion of the nematic free energy, as for example in

Frank–Oseen or Landau–de Gennes formulation.27,28 Notably,

the Landau–de Gennes free energy minimisation is today used

as one of the central approaches for modelling and predicting

nematic liquid crystal fields because it can well account for the

formation of topological defects.29–37 It is actually well known

that besides the standard splay, twist and bend elastic modes also

saddle-splay elasticity is inherently incorporated into the Landau–de

Gennes free energy (even with only one elastic constant), but
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typically little attention is paid to its actual relevance when

interpreting the results.

Saddle-splay elasticity has been of interest in experimental

and theoretical studies. Periodic stripe deformation patterns

were observed experimentally in a nematic confined between a

homeotropic and a planar surface.38,39 Numerical analysis has

revealed the saddle-splay elasticity to be the driving force of the

creation of a stripe pattern. In similar geometries a set of point

defects and strings was also observed, allowing for an estima-

tion of the saddle-splay elastic constant.40 In nematic droplets,

various configurations are observed and predicted, depending

on the droplet size, anchoring of nematic molecules, and nematic

elasticity. Saddle-splay was revealed to be a key element when

calculating their stability criteria.41–43 Experiments performed on

biphenylic liquid crystals confined to cylindrical capillaries with

homeotropic anchoring44,45 show at least four distinct configura-

tions, whose stability is used to analytically determine the saddle-

splay elastic constant. Numerical results confirm a great role of

saddle-splay in capillaries, specifically in the weak anchoring

regime.46 An experimental and theoretical study of lyotropic

chromonic liquid crystals confined to capillaries with planar

degenerate boundary conditions reveals a chiral structure, which

is a result of a large saddle-splay elastic modulus.47 Similarly,

saddle-splay was attributed to the chiral symmetry breaking in

torus-shaped droplets.21,48 Finally, the role of saddle-splay was

investigated theoretically even for cholesteric liquid crystals

under capillary confinement49 and nematic shells.50

Experimental21,38,44,45 and numerical51 studies on saddle-

splay free energy and its K24 elastic constant agree that K24 is

indeed substantial and can be comparable in size to the

standard Frank elastic constants (K1, K2, K3), at least in a typical

nematic representative 5CB material. Furthermore, recently

unconventional elastic regimes have been reached in experiments,

as for example in chromonic liquid crystals52,53 or in twist-bend54–56

and splay-bend57 phases. Actual values of the saddle-splay elastic

constant in such materials are mostly unknown, however, it might

be possible that such or similar materials could also have

an unconventional saddle-splay elastic constant (as predicted

in ref. 47) thus exhibiting some of the effects presented in

this article.

If the nematic degree of order (scalar order parameter)

is homogeneous, the saddle-splay elastic free energy can be

rewritten into a form of a surface term, effectively renormalising

the surface anchoring. Typically, this is the main reason why its

contribution to the total free energy is (and can be) ignored.

However, if the nematic geometry is complex and has complex

boundaries, this surface integral may be of the same size as the

splay, twist or bend elastic contributions and importantly, also

spanning over regions which are defects (e.g. boojums or other).

Even in view of the homogeneous order parameter and defect-

free configurations, there are two reasons how saddle-splay can

be important: (i) if the surface anchoring is small enough to

allow for deviations from the preferred order at the boundary, as

is the case in ref. 38 and 39. (ii) If the anchoring is made

degenerate, saddle-splay is made important by the local curvature

of the boundary,21,47,48 or by patterning the surface with different

anchoring regimes, as shown in this article. The idea of this paper

is to show that in distinct complex confining geometries and

surface anchoring configurations it is essential to consider also

the saddle-splay elasticity, when exploring nematic fields. The

examples of such geometries and surfaces include patterned cells9

and complex shaped colloidal particles, like knots.6

In this paper, we explore the saddle-splay free energy of

nematic liquid crystalline fluids in complex geometries and in

complex surface anchoring profiles, specifically demonstrating

the important role of saddle-splay elasticity in patterned cells

and in nematic colloidal knots. We consider saddle-splay

elasticity in surface and volume free energy density formula-

tions, taking advantage of both descriptions to demonstrate

its role. Notably, we explore saddle-splay elasticity formulated

by tensor order parameter free energy terms rather than the

standard director based formulation. We analyse the role of the

elastic anisotropy in homeotropic-planar patterned cells for

local hybrid aligned nematic and for boojum structures, find-

ing that relative (meta)stability of the structures can be strongly

affected by the actual value of the saddle-splay constant. We

extend our analysis to colloidal knots, showing that regions

of nematic boojum defects (which form at largest curvature

regions of the particle knots) contribute via the saddle-splay as

much as 37% to the total elastic free energy if assuming single

Landau elastic constant approximation (2K24 = Ki = K). Finally,

we evaluate the mutual relation between tensor and director

based formulation of the saddle-splay free energy.

2 Model and methods

The relevance of saddle-splay nematic deformation is explored

within the general framework of the mesoscopic free energy,

formulated in terms of nematic order parameter tensor

Qij ¼
S

2
3ninj � dij
� �

þ
P

2
e
ð1Þ
i e

ð1Þ
j � e

ð2Þ
i e

ð2Þ
j

� �

, which besides the

scalar order parameter S and the director n includes also

the biaxial ordering around second director e(1) with biaxiality

parameter P. The free energy is most commonly written in the

Landau–de Gennes form:27,58,59

F ¼

ð

V

A

2
QijQji þ

B

3
QijQjkQki þ

C

4
QijQji

� �2

�

þ
L1

2

@Qij

@xk

@Qij

@xk
þ
L2

2

@Qij

@xj

@Qik

@xk

�

dV

þ

ð

Suni

1

2
Wuni Qij �Q0

ij

� �2

dS

þ

ð

Sdeg

Wdeg ~Qij � ~Q?
ij

� �2
�

þ ~Qij
2 �

9

4
SS

2

	 
2

dS:

#

(1)

The first line of eqn (1) describes the nematic bulk phase

behaviour, where A, B, and C are material constants which

determine the bulk equilibrium nematic degree of order Seq.
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The second line corresponds to the effective nematic elastic

free energy which we will denote also as Fel. L1 and L2 are

temperature independent (tensorial) elastic constants. Third

line characterises the homeotropic anchoring surface free

energy integrated over surface Suni. Q0
ij is the surface-preferred

order parameter tensor imposing homeotropic orientation of

the director and bulk equilibrium value of the nematic degree

of order and Wuni the surface anchoring strength. Fourth and

fifth line give planar degenerate surface free energy where W deg

is the anchoring strength Q̃ij = Qij + SSdij/2, Q̃
>

ij = PikQ̃klPlj, Pij =

dij � ninj, and ni is the surface normal. SS is the surface-imposed

degree of order which is set to Seq. Generally, the first two lines

of eqn (1) form the Landau–de Gennes free energy FLdG and the

last three lines form the surface anchoring free energy Fa. The

main advantage of the Q-tensor formulation of the free energy

is that – besides the deformation of the director field – it also

allows for modelling of the spatial variation of the nematic

degree of order, thus better describing various experimental

systems, in particular those with nematic defects. The director

symmetry n2 �n is also inherently incorporated in the tensor

approach, making it a strong choice when calculating the

nematic field profiles.

Nematic elastic free energy Fel formulated via the nematic

order parameter tensor Qij can be rewritten (as well known from

the literature27,28) into the form based on derivatives of the

nematic director field n, if assuming uniaxial Qij and the homo-

geneous nematic degree of order. The result is the Frank–Oseen

FF–O and saddle-splay F24 free energy:27,28

FF�O ¼

ð

V

dV
1

2
K1ðr � nÞ2 þ

1

2
K2ðn � r � nÞ2

�

þ
1

2
K3ðn�r� nÞ2

�

;

(2)

F24 ¼ �

ð

V

dV K24r � ½nðr � nÞ þ n�r� n�f g; (3)

where F24 ¼
Ð

V
dVf vol24 , K1, K2, K3, and K24 are splay, twist, bend,

and saddle-splay elastic constants, respectively. The elastic con-

stants depend on temperature (or concentration, if considering

lyotropic liquid crystals) and as such on the nematic degree of

order S. Here, primarily for simplicity, we use only two (tensorial)

elastic constants L1 and L2, which correspond to K1 = K3.

This identity can be broken by including the third (tensorial)

elastic constant. The correspondence between the two used tem-

perature independent (tensorial) elastic constants Li (i = 1, 2) and

Frank elastic constants Ki is as follows: K1 ¼ K3 ¼
9S2

4
2L1 þ L2ð Þ,

K2 ¼
9S2

2
L1, and K24 ¼

K2

2
. For liquid crystal materials, the Ki set

of elastic constants is typically measured. In the free energy

formulation, splay-bend elastic terms can be also included,28,60–62

which includes r2n elastic free energy term. This is a higher order

contributions; therefore we do not consider it in this article.

Our numerical simulations are performed by minimising

the total free energy by using the finite difference relaxation

algorithm on a cubic mesh.37 The notable advantage of using

this computationally simple method is that it is fast and

also not very computer memory demanding, allowing us to

simulate rather large simulation volumes, which qualitatively

and even quantitatively compare well with experiments.6,16

The minimisation is performed with the full symmetric

Qij tensor, and only after the equilibrium configuration is

achieved, the director, the nematic degree of order and other

possible variables are calculated from the equilibrium Qij

profile. In the simulations, the following values of the para-

meters are used: A = �0.172 � 106 J m�3, B = �2.13 �

106 J m�3, C = 1.73 � 106 J m�3, and mesh resolution Dx =

10 nm which is sufficient to avoid defect pinning by the mesh.

x0, y0, and z0 are used to denote the size of the simulation box

in x, y, and z directions. Mesh box equals 140 � 140 � 71

points for patterned cells and 300 � 300 � 300 points for

colloidal knots. In the regime of a single elastic constant, we

use L1 = 4 � 10�11 N (and L2 = 0). Chosen parameters roughly

correspond to cyanobiphenilic liquid crystals.63,64 In the elas-

tically anisotropic regime, we use different ratios between

elastic constants denoting the elastic anisotropy within the

Frank–Oseen formulation as K1/K2. To preserve the lower

estimate for the correlation length x = 6.63 nm (important

for numerical stability), the larger of the two elastic constants

is increased when changing the elastic anisotropy at the

constant nematic degree of order, while keeping the relations

K3 = K1 and K24 = K2/2 preserved. The above material para-

meters correspond to dimensionless numerical parameters,

set by L1(K1 = K2) = 1 and x = 1, as follows: A = �0.118, B =

�2.341, C = 1.901, Dx = 1.5. Preserving the lower estimate of

the correlation length, the following transformation of dimen-

sionless L1 and L2 is performed to characterise the K1/K2 ratio:

L1 = K2/K1, L2 = 2(1 � K2/K1) in the case of K1/K2 r 1, and L1 = 1,

L2 = 2(K1/K2 � 1) in the case of K1/K2 Z 1. Experimentally,

similar elastic regimes could be achieved by the proper choice

of the nematic material52–57 or by tuning the temperature,

and thus taking advantage of large deviations of elastic con-

stants near nematic–isotropic64,65 or nematic–smectic66,67

phase transition.

2.1 Surface form of saddle-splay elasticity

Considering the Gauss theorem, the saddle-splay free energy

can be rewritten into the surface integral form in the regime of

the homogeneous nematic degree of order:28

F24 ¼ �

ð

S

dSn � K24 nðr � nÞ þ n�r� n½ � (4)

where n is the surface normal. Notably, in such formulation F24
can be considered as a surface free energy term, where the

integration is performed over the whole surface of a nematic.

Defect cores are in principle excluded from the bulk integral in

eqn (2) and (3), which has to be considered also when defining

the nematic surface in eqn (4). Please note that we write K24

under the integral, since in principle it depends on the inhomo-

geneous scalar order parameter (K24 = K24(S)). In that way, it

is possible to achieve a more accurate analysis of f surf24 in
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boojum structures (Section 3.2), nevertheless still neglecting

rS (and biaxiality) terms. In that case the surface integral in

eqn (4) can be performed over the whole outer surface of

the nematic, regardless of the defect cores. However, due to

inhomogeneity of S, eqn (4) is only approximate as also spatial

derivatives of S should have been included. For selected

examples, the relative contributions are tested and reported

in the paper. We mark f surf24 as a saddle-splay surface free energy

density (F24 ¼
H

S
dSf surf24 ), in contrast to bulk saddle-splay

free energy density f bulk24 . We provide the analysis of saddle-

splay elasticity in complex nematic systems in view of volume

(eqn (3)) and surface (eqn (4)) free energy density, which

are calculated after the Q-tensor relaxation of the free energy

(eqn (1)) has been performed.

If we consider a nematic cell, bounded by two horizontal

planes and periodic boundary conditions in the lateral direc-

tions (as for example in Fig. 1a), the eqn (4) can be further

rewritten into

F24 ¼ 2

I

S

dSK24 nk � r
� �

n?; (5)

where n> = n�n and nJ = n � n>n. Considering eqn (5), we see

that fsurf24 is proportional to the derivatives of the normal

component of the director along the in-plane director compo-

nent. This indicates that the saddle-splay can become notable if

the director varies within the plane of the surface; for example,

if the anchoring is rather weak or if there is a border between

different (strong) anchoring regimes (for example, boundary

between strong homeotropic and strong planar anchoring).

Alternatively, eqn (4) can be understood in terms of the

curvature of the boundary.48,68 Under the assumption of strong

(degenerate) planar surface anchoring, eqn (4) can be rewritten

into:48

F24 ¼

ð

S

dSK24 k1n1
2 þ k2n2

2
� �

; (6)

where k1 and k2 are the principal curvatures of the boundary

and n1 and n2 are the components of the director along the

directions of principal curvatures. This relation indicates that

highly curved surfaces can also yield notable saddle-splay free

energy contributions.

2.2 Tensor form of saddle-splay elasticity

Elastic anisotropy in liquid crystals is at the mesoscopic level

generally described by introducing multiple invariants in the

total free energy, each typically with different elastic con-

stants, which account for different elastic responses.69–71

Saddle-splay is generally explored in the framework of the

nematic director, but today the majority of (numerical) calcu-

lations are performed with the nematic order parameter

tensor. Therefore, specifically writing down the Q-tensor

invariants that correspond to the saddle-splay seems to be a

reasonable consideration, allowing for the direct evaluation

of the saddle-splay elasticity. A possible formulation of the

tensor-based saddle-splay volume free energy density f ten24 can

be written as:

f ten24 ¼ L24

@Qjk

@xi

@Qik

@xj
�
@Qij

@xj

@Qik

@xk

	 


(7)

where L24 can be taken as the tensorial saddle-splay constant.

Eqn (7) is based on the well known and established relation

between the director-based Frank–Oseen free energy and the

Q-tensor-based Landau–de Gennes free energy, which can be

Fig. 1 Saddle-splay free energy in nematic cells with patterned surface
anchoring. (a) Scheme of the nematic cell with patterned surface anchoring
and periodic boundary conditions. (b) Director profile in a given cross-
section and the corresponding tensor based saddle-splay free energy
density f ten24 at z = 0 for the one elastic constant regime (K1 = K2 = K3) and
(c) the elastically anisotropic regime (K1 = 2K2 = K3). For comparison,
director based volume f vol24 and surface f surf24 saddle-splay free energy
densities are drawn for elastically isotropic (d and e) and anisotropic
(f and g) regimes, respectively. (h and i) Director field in given cross-
sections for the elastically anisotropic regime. (j) Saddle-splay free energy
surface density along the z = 0, x = x0/2 axis. From (c) it is clearly seen that in
the case of elastic anisotropy the symmetry of the saddle-splay density
along the y = y0/2 axis is broken (see especially the region close to the
planar-homeotropic anchoring border). Patch diameter equals x0/2.
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related by assuming the uniaxial form of the Q tensor and the

homogeneous profile of the nematic degree of order. Indeed,

the Q tensor based saddle-splay free energy in eqn (7) can be

rewritten – by assuming the uniaxial form of the Q-tensor – into:

f ten24 ¼ � K24r � ½nðr � nÞ þ n�r� n�

�
2K24

S
ðr � nÞðrS � nÞ þ

2K24

S
ðrSÞ½ðn � rÞn�;

(8)

where L24 = 4K24/9S
2. The fact that together both terms in eqn (7)

correspond to the saddle-splay contribution was already consid-

ered in the past.50,69,70 In the case of two elastic constants L1 and

L2, the relations between L1, L2, and K24 give L24 = L1. In the ESI,†

we show that for L24 = 4K24/9S
2, eqn (7) can be mapped into

eqn (3) plus additional contributions arising from biaxiality and

inhomogeneous S, as was also considered in the past.50,69,70

We use tensor based and director based formulations of

saddle-splay volume and surface density to demonstrate the

importance of saddle-splay elasticity in the complex geometrical

confinement. Specifically, the two exemplary setups – as consid-

ered in eqn (5) and (6) – provide us with a direct insight into the

relevance of saddle-splay elastic free energy and are considered in

the next sections. The importance of eqn (5) can be demonstrated

in nematic cells with patterned surface anchoring, where n>
changes along the cell’s boundary, whereas eqn (6) clearly comes

into account in nematics, confined by curved boundaries, as for

example in the systems of knotted colloidal particles dispersed

in nematic fluid.

3 Saddle-splay elasticity in nematic
cells with patterned surface anchoring

In our first example we investigate saddle-splay elasticity in

patterned cells, where anchoring at the one cell surface (top) is

homeotropic whereas at the other surface (bottom) there is a

circular patch of planar degenerate anchoring surrounded by

homeotropic anchoring conditions (see Fig. 1a). In Sections 3.1

and 3.2 we simulate two elasticity regimes K1 = K2 = K3 and K1 =

2K2 = K3 (with Wuni = Wdeg = 2 � 10�3 J m�2), respectively. In

Section 3.3 we investigate the nematic field for high values of

K2, which is not a typical elastic anisotropy regime of nematic

liquid crystals but such elastic anisotropy is shown to allow for

the formation of novel field configurations.

3.1 Local hybrid aligned nematic (HAN) configuration

A nematic profile with a local hybrid aligned nematic director

profile emerges in patterned cells in the regime of materials

with roughly equal or similar elastic constants (K1 = 2K2 = K3)

(see Fig. 1). The director field in such a configuration shows

a gradual transition from inplane orientation at the planar

degenerate surface patch to the perpendicular at the home-

otropic surfaces, as shown in Fig. 1b–e.

In one elastic constant regime (K1 = K2 = K3), the in-plane

director component nJ is homogeneous throughout the bottom

surface patch, with the actual direction of nJ being arbitrary.

The orientation along the y axis was chosen for an easier analysis.

The saddle-splay free energy density – calculated as surface free

energy density f surf24 or as volume free energy density f vol24 – turns

out to be substantial at the border line regions between the

homeotropic and degenerate anchoring. The sign of saddle-

splay free energy density locally depends on the structure of the

nematic director, which is effectively determined by the direc-

tion of the hybrid alignment (i.e. the bend), as seen in Fig. 1e

and f. Due to the symmetry of nJ, the locally negative and the

positive values of f surf24 and f vol24 add up to zero (when performing

the integration over the surface or over the bulk), giving no net

saddle-splay free energy F24.

In the elastically anisotropic regime (K1 = 2K2 = K3), the

symmetry of the inplane director nJ breaks and the net saddle-

splay free energy F24 becomes non-zero, and actually notably

contributes to the total elastic free energy (see Table 1). The

regions contributing to this net value are close to the planar-

homeotopic anchoring transition, where the director field gets

additionally distorted compared to the elastically isotropic

regime (Fig. 1b and c).

3.2 Boojum nematic configuration

The surface patterned cells allow – besides the local HAN

configuration presented above – also for the formation of the

nematic profile with a surface boojum defect in the center of

the planar patch, as shown in Fig. 2. Actually, in the considered

patterned cell, we were able to generate three different boojum

configurations via the initial conditions: a radial boojum, a

hyperbolic boojum with a winding number +1 (which we

further call +1 hyperbolic boojum), and a hyperbolic boojum

with a winding number �1 (�1 hyperbolic boojum), all of them

are presented in Fig. 2. Once formed, they turned out to be

long-lived but were ultimately unstable and gradually deformed

into a defect-free state (i.e. the local HAN configuration). Such

behaviour is also reported to be observed experimentally.72 The

free energy of these induced boojum states is several 10%

higher than the free energy of the HAN configuration.

The boojum configurations allow us to evaluate the saddle-

splay free energy in comparison to other free energy contributions

(Table 1), and to analyse the spatial profiles of the saddle-splay

contributions to the free energy, especially in the view of topo-

logical defects. The saddle-splay free energy density profiles are

distinctly different, as compared to the HAN configuration

where locally positive and negative contributions mostly cancelled

each other out in the total saddle-splay free energy F24. In the

boojum configurations, the saddle-splay volume free energy den-

sity f vol24 is substantial close to the degenerate surface, butmoreover

in the region of the central boojum defect (Fig. 2b, c, g, h, l andm).

Table 1 Saddle-splay free energy F24 contributions to the total elastic free
energy Fel in patterned cells. F24 is calculated as the bulk integral (eqn (3))

F24/Fel for
K1 = K2 = K3

F24/Fel for
K1 = 2K2 = K3

HAN configuration 0 4.9
Radial boojum �0.34 �0.15
+1 hyperbolic boojum 0.36 0.27
�1 hyperbolic boojum �0.012 0.038
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For the radial boojum in (Fig. 2a–e), f vol24 is mostly positive. For

the +1 hyperbolic boojum in Fig. 2f–j, f vol24 has regions of both

negative an positive values with leadingly positive regions. For

the �1 hyperbolic boojum structure (Fig. 2k–o), f vol24 shows a

complex spatial profile where regions of positive and negative

f vol24 mostly cancel each other out and F24 thus contributes only

little to the total elastic free energy (Table 1). The profile of the

saddle-splay volume density in boojum configurations explains

the substantial contributions of saddle-splay elasticity to the

total elastic free energy for radial and +1 hyperbolic configura-

tions and much smaller saddle-splay free energy for a �1

hyperbolic boojum. Since the main contributions arise from

regions close to boojum defect cores, the knowledge of boojums

could potentially suffice to deduce the amount (or the sign)

of saddle-splay free energy in general systems with surface

boojum defects.

Considering the saddle-splay as the surface term f surf24 , it is

primarily conditioned by the contributions from the the planar-

homeotropic anchoring boundary. At this boundary region,

f surf24 is negative for the radial boojum (Fig. 2d and e), it is

positive for the +1 hyperbolic boojum (Fig. 2i and j), and the

sign varies for the �1 hyperbolic boojum (Fig. 2n and o). The

f surf24 shows variations close to the defect cores; however, they

are suppressed by the low values of the nematic degree of order.

Although contributions of f surf24 arise from the director distor-

tions at the planar-homeotropic anchoring border, the total

value of F24 is still conditioned by the possible occurrence of a

boojum at the center of a planar degenerate surface. In the

absence of a boojum (i.e. HAN configuration) or in the case of a

�1 hyperbolic boojum, f surf24 at the planar-homeotropic anchor-

ing border mostly cancel each other out. In the case of a radial

or a +1 hyperbolic boojum, the sign of F surf
24 stays the same

throughout the planar-homeotropic anchoring transition and

thus f surf24 contributes a substantial amount to the total elastic

free energy (Table 1).

Changing the elastic constants to K1 = 2K2 = K3 has little

effect on the nematic field in boojum states. The free energy of

boojum states remains a few 10% higher than the free energy of

HAN configuration. In radial and +1 hyperbolic configuration,

the change of the elastic constants mostly increased the weight

of splay and bend deformations thus reducing the saddle-splay

contribution to the elastic energy, while in the �1 hyperbolic

state the applied change in elastic anisotropy changed the

balance towards a positive value of F24. Free energy contribu-

tions for higher elastic anisotropy are given in Table 1. We see

that for HAN configuration an anisotropic elastic condition was

necessary to induce a nonzero saddle-splay elasticity. For radial

and +1 hyperbolic boojum configurations F24 contributed a

larger amount to the total elastic free energy also in the one

elastic constant regime. The change of elastic constants affected

the F24/Fel ratio, however the saddle-splay free energy remains

substantial. Compared to other boojum states, F24 for a �1

hyperbolic boojum is relatively small, which does not change

much in the different elastic regime.

We use the calculated boojum and HAN configurations to

test the relevance of eqn (4) (the surface director formulated

saddle-splay free energy density). For the HAN configuration,

we can calculate eqn (4) at the homogeneous nematic degree of

order Seq without the numerical difficulties due to singularities

in the director field. The results agree with F24, calculated from

eqn (3) up to a negligible numerical relative error of 4 � 10�6.

However, if spatially dependent nematic degree of order S is

taken as calculated from the order parameter tensor, eqn (4)

can deviate from eqn (3) for up to 24%.73 This discrepancy is

rather notable not only in the boojum configurations, but

actually emerges also in the elastically anisotropic hybrid aligned

configuration (Section 3.1). Therefore, more generally, if the

nematic degree of order S varies throughout the sample, eqn (4)

can be taken (as expected) only as an estimate for calculating the

the saddle-splay free energy contribution. For exact computation

Fig. 2 Saddle-splay free energy in configurations with boojum defects. Director field profiles and the corresponding tensor based saddle-splay volume
free energy density (1st, 2nd, and 3rd column) and director based saddle-splay surface free energy density (4th and 5th column) in the xy (first and fifth
column), xz (second column), yz (fourth column) cross-sections for (a–e) radial boojum, (f–j) +1 hyperbolic boojum, and (k–o) �1 hyperbolic boojum.
Graphs in the 4th column represent the variation of saddle-splay surface free energy density along the y axis (and x in (n)) through the center of the
bottom plane as marked by dotted lines.
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of the saddle-splay free energy, the bulk formulation of the saddle-

splay free energy needs to be evaluated (eqn (3)).

3.3 Stabilisation of radial boojum via saddle-splay

Strongly negative values of the saddle-splay free energy of the

radial boojum configuration suggest that for high saddle-splay

coupling such a state could potentially become not only long-

lived but metastable or even stable. Indeed, we demonstrate

that this can be achieved by increasing the elastic anisotropy

ratio K2/K1 where K24 = K2/2 and K1 = K3, effectively increasing

the saddle-splay elastic constant K24. The free energy of the

radial boojum configuration falls below the free energy of the

HAN configuration at K2/K1 B 2 and becomes the equilibrium

configuration, which is shown in Fig. 3. When increasing the

K2/K1 ratio, the free energy configurations show a decrease in

the difference between Frank–Oseen free energies, but a rather

constant large difference between the saddle-splay free energies

of the two states, which causes the stabilisation that can be

attributed to the saddle-splay. More broadly, this indicates that

the actual values of the saddle-splay constant in different

systems can be a major factor in determining stability, metast-

ability or non-stability of different structures.

Models which include only Frank–Oseen and not the saddle-

splay free energy could not properly predict the stability of a

radial boojum at K2/K1 B 2. Fig. 3 indicates that Frank–Oseen

free energy of a radial boojum should fall below the Frank–

Oseen free energy of the HAN configuration at much higher

elastic anisotropy than K2/K1 B 2 and therefore, such behaviour

could not be fully explained in terms of solely Frank–Oseen

elasticity.

4 Saddle-splay elasticity in planar
degenerate colloidal knots

The relevance of curved boundaries in the saddle-splay free

energy is demonstrated for the case of colloidal knots with

planar degenerate boundary conditions. Experimentally and

with numerical modelling they were explored in ref. 6. We

simulate the trefoil (3,2) and pentafoil (5,3) torus knots as tubes

of the following parametric curves:

r(3,2) = (2.1R(cosf � 2.25 cos 2f),

2.1R(sinf + 2.25 sin 2f), 6R sin 3f), (9)

r(5,3) = (2.75R(cos 3f � 3 cos 2f), 2.75R(sin 3f + 3 sin 2f),

6R sin 5f), (10)

similar to ref. 6 where f A [0,2p) and R = 10Dx is the knot size

parameter. Knots are of the width d0 = 12.5Dx. The director field

at the boundaries of the simulation box is assumed to be homo-

geneous along the z direction. One elastic constant approxi-

mation and anchoring strength of Wdeg = 4 � 10�3 J m�2

are used.

The trefoil knot generates 12 boojums as shown in (Fig. 4b–e

in red color), which emerge at the regions of the highest local

curvature, i.e. local saddle points and local peaks. These boojums

emerge as + and � pairs, satisfying the topological constraints of

the knot.6 Analogously as the trefoil knot, the pentafoil knot

generates 20 boojums, again at highest-local curvature locations,

as seen from Fig. 4.

The saddle-splay free energy density f surf24 shows for both the

trefoil and pentafoil knots a distinctive pattern, which can be

partially explained by eqn (6). Possible values of f surf24 depend on

the local curvature of the particle knot and since the major part

of the knot’s surface has a positive curvature f surf24 is mostly

positive. In the vicinity of the hyperbolic boojums (bottom one

in Fig. 4b and c), f surf24 4 0 if the director bends along the

direction of the positive principal curvature, and f surf24 o 0 if the

director bends along the direction of the negative principal

curvature. However, besides eqn (6) there are additional surface

contributions to the saddle-splay free energy, which arise due to

finite anchoring strength. In the vicinity of +1 hyperbolic

boojums, the normal component of the director increases

along the surface in a manner that is similar to the planar-

homeotropic alignment border in the case of a radial boojum in

a patterned cell (Fig. 2b and c). This variation of the director

field along the surface explains negative areas of f surf24 around +1

hyperbolic boojums, as seen in Fig. 4a. Elsewhere along

the surface, the variations from the surface-preferred director

orientation are (i) not strong enough or (ii) in agreement with

saddle-splay contributions arising from the local curvature and

cause no specific pattern to occur.

Fig. 4f and g show saddle-splay volume free energy density

f vol24 . Close to the +1 hyperbolic boojum, f vol24 is mostly positive.

This shows similarity to f vol24 in patterned cells, only that in the

case of knots the area with negative f vol24 is suppressed near +1

hyperbolic boojums. There is even greater similarity in the case

Fig. 3 Stabilisation of boojum configuration via saddle-splay. (a) Free
energy contributions of the HAN configuration (superscript HAN, in red)
and the radial boojum configuration (superscript r, in blue) as dependent
on the elastic anisotropy K2/K1 where K24 = K2/2. At higher values of K2/K1,
the free energy of the radial boojum falls below the value of the HAN
configuration. Note that the relative amount of the saddle-splay energy
increases with the elastic anisotropy. FLdG is plotted as a difference to the
Landau–de Gennes free energy of an undistorted homogeneous nematic
of the same volume. The snapshots of the director field at the bottom
degenerate planar patch are presented for (b and c) the HAN configuration
and (d) radial boojum configuration. Surface anchoring was set to Wuni =
0.01 J m�2 and Wdeg = 0.01 J m�2.
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of �1 hyperbolic boojum. Both Fig. 2l and m and 4f show a

region of f vol24 4 0, surrounded by two regions where f vol24 o 0.

More generally, the calculated results agree with anticipat-

ing positive saddle-splay free energy because of the primarily

positive curvature of the investigated colloidal knots. The

analysis of the saddle-splay elasticity in combination with flat

and curved geometry now also suggests that boojums indicate

the structure of saddle-splay free energy density, where in

particular +1 hyperbolic boojums give positive contributions

to the saddle-splay free energy and radial boojums give negative

contributions to F24. Calculating the total saddle-splay free

energy of the knotted colloids F24, it is in fact positive and

represents a substantial part of the total elastic free energy Fel
for a trefoil and a pentafoil knot as shown in Table 2.

5 Comparison between tensor and
director formulated saddle-splay free
energy

Exact comparison between tensorial and director-based con-

sideration of saddle-splay is important when exact values of free

energies are needed, e.g. when predicting stability or structural

transitions between different nematic (meta)stable structures

or profiles. Fig. 1 and 4 reveal clearly similar profiles of the

director based and tensor based saddle-splay free energy den-

sity, however, selected differences between both approaches

can be observed. We show the use of Q-tensor saddle-splay free

energy F ten
24 for the example of a radial boojum structure in a

patterned cell within one elastic constant regime (Fig. 2a–e,

Section 3.2). The results are presented in Table 3, whererS and

biaxial contributions, total discrepancy between F24 and F ten
24 ,

and the error resulting from finite mesh resolution are calcu-

lated at two mesh resolutions. Note that the tensorial saddle-

splay free energy eqn (7) is not explicitly incorporated as a new

free energy contribution to the total free energy, but is actually

already an inseparable part of the standard one elastic constant

Landau–de Gennes free energy FLdG. Single elastic invariant

@Qij

@xk

@Qij

@xk
from FLdG incorporates not only splay, bend, and twist

deformation modes but also saddle-splay.

There are three main differences between the tensor based

saddle-splay free energy F ten
24 and the director based saddle-splay

free energy F24: (i) possible local biaxiality of Qij (in particular in

the defect cores), (ii) rS terms (relevant in the defect regions),

and (iii) numerical error due to finite mesh resolution (we use

Dx/x = 1.5). The biaxial contribution to Ften24 is evaluated by taking

only the uniaxial part of the calculated Qij and re-evaluating

eqn (7). The rS contributions are calculated explicitly from

the diagonalisation of the Q-tensor profile. The rest of the

Fig. 4 Saddle-splay free energy in complex curved geometry of knotted
colloidal particles. (a) Saddle-splay surface free energy density plotted at
the surface of the trefoil colloidal knot. Surface of the particle is plotted in
yellow, green color corresponds to the isosourface of positive saddle-
splay surface free energy density f surf24 = 10�21 J m�2, and blue to the
isosurface of negative saddle-splay surface free energy density f surf24 =
�10�21 J m�2. Director far-field is marked by n0. (b and c) Two detailed
views of the director field in given cross-sections with indicated boojums
as isosurfaces of S = 0.4 shown in red. (d and e) Boojum defects at the
particle knots drawn in red as isosurfaces of S = 0.4. (f and g) Volume
density of a director based saddle-splay free energy F24 compared to the
(h and i) tensor based F ten

24 shows little difference, supporting the fact that
primarily the director deformations are responsible for the tensor based
free energy density profiles. The isosurfaces are drawn at 5 � 10�21 J m�3

in light blue and at �0.6 � 10�21 J m�3 in purple. ( j) Saddle-splay surface
free energy density f surf24 of the pentafoil knot. Surface of the particle is
plotted in yellow, green color corresponds to the isosourface of f surf24 =
10�21 J m�2, and blue to the isosurface of f surf24 = �10�21 J m�2.

Table 2 Saddle-splay contribution to the total elastic free energy in
colloidal knots with planar degenerate anchoring

Trefoil particle knot (3,2) Pentafoil particle knot (5,3)

F24/Fel 0.37 0.34

Table 3 Relative contributions in Q-tensor saddle-splay free energy Ften24

as compared to director based F24. They are calculated at the resolution Dx

and at Dx/2 keeping the same physical sample size. Finite resolution error
in the last column is calculated by explicitly subtracting rS and biaxial

contributions from F ten
24 and reevaluating

F24 � F ten
24

F24

Mesh
resolution

rS terms
(eqn (8))

Biaxial
contribution

F24 � F ten
24

F24

Finite resolution
error

Dx �0.11F dir
24 �0.07F dir

24 0.39 0.21

Dx/2 �0.12F dir
24 �0.08F dir

24 0.33 0.13
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discrepancy between F ten
24 and F24 is attributed to finite resolu-

tion, which we quantify by modelling exactly the same structure

with two resolutions (Dx = 10 nm and Dx/2 = 5 nm). Indeed, the

finite difference algorithm with rather large mesh resolution

(Dx/x B 1) suffers from rather low precision at the determina-

tion of the exact value of the total free energy. Especially the

explicit calculation of saddle-splay free energy, as done in this

article at sharp surface anchoring boundaries, gives a limited

precision of B20% due to finite resolution. Finer resolution or,

especially in the case of curved interfaces, finite element

methods could be used to investigate saddle-splay free energy

density with higher precision. Table 3 shows that director

deformations are still the most significant part of f ten24 , which

is in agreement with the comparison between director based

and tensor based free energy density profiles in Fig. 4.

To generalise, f ten24 represents an easy-to-implement measure

of saddle-splay elasticity in terms of the Q-tensor. Due to the

nature of Q-tensor formalism, discrepancy between saddle-splay

free energy, calculated in the director or tensorial approach, may

occur and is actually expected to occur – in particular in systems

with large variations of the nematic degree of order and possibly

even biaxiality, which is often the case in complex geometrical

confinements.

6 Conclusions

We have explored the relevance of saddle-splay elasticity in

complex nematic geometries, with particular focus on nematic

systems with inhomogeneous (patterned) surface anchoring

and with complex surface curvatures. Saddle-splay elasticity

was analysed in the view of volume and surface density, where

specifically, we investigated the saddle-splay elasticity in patterned

cells and around colloidal knots.

In the first example of patterned cells, the large saddle-splay

contributions F24 to the total free energy emerge from the

border region between the planar and homeotropic anchoring

patches, as seen from both surface and volume saddle-splay

free energy formulations. To vary the magnitude of the saddle-

splay free energy F24, elastic anisotropy is used, which helps in

achieving a larger stability window of the simulations. Negative

values of F24 of a radial structure on the surface patch make it

possible to reduce its free energy below the free energy of the

hybrid aligned configuration if K2 and K24 are large enough,

showing that saddle-splay elasticity can condition the ground

state of nematic in geometries with a complex surface.

In the second example of colloidal knots, the largest saddle-

splay contributions to the total free energy are shown to emerge

from the highest local curvature regions, which actually also

coincide with the locations of surface boojum defects. Gener-

ally, in the colloidal knots, F24 is large due to surface variations

of the normal director component and due to the high curvature

of colloidal knots. The spatial profiles of the saddle-splay volume

free energy are calculated, and shown to distinctly depend on the

boojum-type, i.e. its topological structure. Indeed, boojum struc-

tures that appear at the trefoil (3,2) and pentafoil (5,3) colloidal

knots have a similar spatial profile of the saddle-splay free

energy density fvol24 to that in patterned cells.

We explored saddle-splay formulated as a Q-tensor (not

director) term
@Qjk

@xi

@Qik

@xj
�
@Qij

@xj

@Qik

@xk
. The contributions to the

tensor-based saddle-splay free energy are shown to be in the

range of several 10% with the magnitudes strongly depending

on the actual considered nematic geometry, in particular on

the presence of topological defects. Such tensor based saddle-

splay free energy is significantly influenced by rS and biaxial

terms, but represents a directly implementable way to calculate

saddle-splay contribution to the free energy in a given nematic

field.

More generally, in the explored structures, the saddle-splay

free energy is found to contribute substantially to the total free

energy, thus affecting the stability or metastabilty of the structures.

Nematic profiles in complex geometries typically form a range of

(meta)stable states, with their mutual stability or metastability

conditioned by the exact value of the total free energy minimum.

Therefore, when considering phase-diagrams or stability in

complex nematic structures the relevance of saddle-splay – i.e.

the actual value of saddle-splay elastic constant K24 – has to be

considered. Finally, the presented work is a contribution

towards understanding the stability and formation of complex

structures in general nematic complex fluids, including liquid

crystal and active nematics.
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