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Abstract. In many domains, the data objects are described in terms of a large

number of features. The pipelined data mining approach introduced in [12] us-

ing two clustering algorithms in combination with rough sets and extended with

genetic programming, is investigated with the purpose of discovering important

subsets of attributes in high dimensional data. Their classification ability is de-

scribed in terms of both collections of rules and analytic functions obtained by

genetic programming (gene expression programming). The Leader and several

k-means algorithms are used as procedures for attribute set simplification of the

information systems later presented to rough sets algorithms. Visual data min-

ing techniques including virtual reality were used for inspecting results. The data

mining process is setup using high throughput distributed computing techniques.

This approach was applied to Breast Cancer gene expression data and it led to

subsets of genes with high discrimination power with respect to the decision

classes.

1 Introduction

As a consequence of the information explosion and the development of sensor, obser-

vation, computer and communication technologies, it is common in many domains to

have data objects characterized by a large number of attributes. This situation leads to

high dimensional databases in terms of the set of fields. For example, in biological gene

expression experiments, the genetic content of samples of tissues are obtained with

high throughput technologies (microchips) with thousands of genes being investigated.

In addition, some kinds of bio-medical research involve samples described by large

numbers of spectral properties (infrared, ultraviolet, etc). The common denominator in

many domains is that the set of data objects has a very high dimensional nature.

A hybrid soft-computing approach for finding relevant attributes in high dimen-

sional datasets based on a combination of clustering and rough sets techniques in a high

throughput distributed computing environment was presented in [13]. It also uses vir-

tual reality data representations to aid data analysis. The methodology was applied to

Leukemia gene expression data with good results. In this paper, that methodology is ex-

tended by incorporating evolutionary computation techniques (genetic programming) at

a post processing stage, in order to analytically characterize the relationships between

the interesting attributes emerging from the pipeline analysis and the decision classes.

This extended approach is applied to Breast Cancer gene expression data.
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2 Basic Concepts

2.1 Experimental Methodology

The general idea is to construct subsets of relatively similar attributes, such that a sim-

plified representation of the data objects is obtained by using the corresponding attribute

subset representatives (NP completeness of reduct computation –exact solution– invites

the use of an approximation –clustering– when the attribute set is large). The attributes

of these simplified information systems are explored from a rough set perspective [7],

[8] by computing their reducts. From them, rules are learned and applied systematically

to testing data subsets not involved in the learning process (Fig-1) following a cross-

validation scheme, in order to better characterize the classification ability of the retained

attributes. The whole procedure can be seen as a pipeline.

Fig. 1. Data processing strategy combining clustering, Rough Sets analysis and crossvalidation.

In a first step, the objects in the dataset are shuffled using a randomized approach

in order to reduce the possible biases introduced within the learning process by data

chunks sharing the same decision attribute. Then, the attributes of the shuffled dataset

are clustered using two families of clustering procedures: i) three variants of the the

leader algorithm [6] (forward, reverse and absolute best), and four variants of k-means

[1] (Forgy, Jancey, convergent and MacQueen). The leader and the k-means algorithms

were used with a similarity measure rather than with a distance; among the many pos-

sibilities, Gower’s general coefficient was used [5].



3

Each of the formed clusters of attributes is represented by exactly one of the origi-

nal data attributes. By the nature of the leader algorithm, the representative is the leader

(called an l-leader), whereas for a k-means algorithm, a cluster is represented by the

most similar object with respect to the centroid of the corresponding cluster (the k-

leader). As a next step, a new information system is built from the original by retaining

the l-leaders (or the k-leaders). The filtered information system undergoes a segmen-

tation with the purpose of learning classification rules, and testing their generaliza-

tion ability in a cross-validation framework. N-folds are used as training sets; where

the numeric attributes present are converted into nominal attributes via a discretization

process, and from them, reducts are constructed. Finally, classification rules are built

from the reducts, and applied to a discretized version of the test fold (according to the

cuts obtained previously), from which the generalization ability of the generated rules

is evaluated. Besides the numeric descriptors associated with the application of classi-

fication rules to data, the use of visual data mining techniques, like the virtual reality

space representation [10] [11], enables structural understanding of the data described

in terms of the selected subset of attributes and/or the rules learned from them. Each

stage feeds its results to the next stage of processing, yielding a pipelined data analysis

stream.

Distributed and Grid computing involves coordinating and sharing computing, ap-

plication, data, storage, or network resources across dynamic and geographically dis-

persed organizations. The use of grid technologies is an obvious choice for many data

mining tasks within the knowledge discovery process.

Condor (http://www.cs.wisc.edu/condor/) is a specialized workload

management system for compute-intensive jobs in a distributed computing environ-

ment, developed at the University of Wisconsin-Madison (UW-Madison). It provides a

job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and

resource management. All of the experiments in this paper were conducted on a Condor

pool of the Institute for Information Technology, National Research Council Canada.

A visual data mining technique -virtual reality spaces- (VR-spaces) was used as

an aid for data exploration and the interpretation of the datasets described in terms of

the subsets of attributes resulting from the data processing pipelines. This technique

extends the concept of 3D modelling to relational structures and was introduced in

http://www.hybridstrategies.com [10], [11]. The construction of a VR-

space requires the specification of several sets and a collection of mappings. Criteria

for computing the VR space may be measures of structure preservation, maximization

of class separability or combinations of several, possibly conflicting properties.

A detailed explanation about the implementation of the computational paradigm

involved in the methodology in the context of a high throughput pipeline based on

Condor is given in [12] [13].

2.2 Gene Expression Programming

Analytic functions are among the most important building blocks for modeling, and are

a classical form of knowledge. Direct discovery of general analytic functions can be ap-

proached from a computational intelligence perspective via evolutionary computation.
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There are other possibilities, such as logistic regression, but they do not have as gen-

eral model representation flexibility. Genetic programming techniques aim at evolving

computer programs, which ultimately are functions. Among these techniques, gene ex-

pression programming (GEP) is appealing [3]. It is an evolutionary algorithm as it uses

populations of individuals, selects them according to fitness, and introduces genetic

variation using one or more genetic operators. GEP individuals are nonlinear entities of

different sizes and shapes (expression trees) encoded as strings of fixed length. For the

interplay of the GEP chromosomes and the expression trees (ET), GEP uses a transla-

tion system to transfer the chromosomes into expression trees and vice versa [3]. The

set of genetic operators applied to GEP chromosomes always produces valid ETs.

The chromosomes in GEP itself are composed of genes structurally organized in

a head and a tail [4]. The head contains symbols that represent both functions (from

a function set F) and terminals (from a terminal set T), whereas the tail contains only

terminals. Two different alphabets occur at different regions within a gene. For each

problem, the length of the head h is chosen, whereas the length of the tail t is a function

of h and the number of arguments of the function with the largest arity.

As an example, consider a gene composed of the function set F={Q,+,−, ∗, /},

where Q represents the square root function, and the terminal set T={a, b}. Such

a gene looks like (the tail is shown in bold): *Q-b++a/-bbaabaaabaab,

and encodes the ET which corresponds to the mathematical equation

f (a, b) =
√

b ·
((

a + b

a

)

− ((a − b) + b)
)

simplified as f (a, b) = b·
√

b

a

GEP chromosomes are usually composed of more than one gene of equal length.

For each problem the number of genes as well as the length of the head has to be cho-

sen. Each gene encodes a sub-ET and the sub-ETs interact with one another forming

more complex multi-subunit ETs through a connection function. To evaluate GEP chro-

mosomes, different fitness functions can be used.

3 Breast Cancer Experimental Settings and Results

The breast cancer data as used in [2] was downloaded from the Gene Expression Om-

nibus (GEO) (See http://www.ncbi.nlm.nih.gov/projects/geo/gds/

gds browse.cgi?gds=360) and consists of 24 core biopsies taken from patients

found to be resistant (greater than 25% residual tumor volume, of which there are 14
biopsies) or sensitive (less than 25% residual tumor volume, of which there are 10
biopsies) to docetaxel treatment. The number of genes (probes) placed onto (and mea-

sured from) the microarray is 12, 625. Therefore, the data contains two classes resistant

and sensitive, with 12, 625 attributes.

The experimental settings used in the investigation of the breast cancer data with

the distributed pipeline [13] are reported in Table 1. A total of 168 k-leader experiments

were completed, each requiring the generation of 86 files (for 10-fold cross-validation).

For each experiment, the discretization, reduct computation and rule generation algo-

rithms are those included in the Rosetta system[8].

From the series of k-leader Breast Cancer experiments performed, those experi-

ments having a mean cross-validated accuracy ≥ 0.7 using the rules as applied to test
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Table 1. The set of parameters and values used in the experiments with the Breast Cancer data

set using the distributed pipeline environment.

Algorithm/Parameter Values

K-means Variant Forgy, Jancey, Convergent, MacQueen

Number of Clusters 2, 5, 10, 100, 300, 500

Cross-validation 10 folds

Discretization BROrthogonalScaler, EntropyScaler,

NaiveScaler, RSESOrthogonalScaler, SemiNaiveScaler

Reduct Computation JohnsonReducer, Holte1RReducer,

RSESExhaustiveReducer, RSESJohnsonReducer

Rule Generation RSESRuleGenerator

folds are reported in Table-2. Experiment 227 is the overall best result from those se-

lected, with a mean (0.917), median (1.0), standard deviation (0.18), minimum (0.5)

and maximum (1.0) 10-fold cross-validated classification accuracy. Table-2 shows that

14 of the 22 selected experimental results have a median classification accuracy of 1.0,

while all selected experiments have a maximum classification accuracy of 1.0 over all

of the 10 folds. In other words, the 22 selected experiments have classification accu-

racies skewed towards the maximum obtainable, with the majority of those attaining

the maximum in at least one of the test folds. The k-means algorithms used, with the

specific k, are also shown in Table-2. The majority of the results use the MacQueen

algorithm (9); with Convergent (7), Forgy (3) and Jancey (3) having fewer experiments

leading to results that meet the selection criteria. The Convergent algorithm leads to

experiments that rank at the lowest and at the highest of the list, while the majority al-

gorithm (MacQueen) leads to experiments that rank second lowest, and second highest.

The Forgy and Jancy algorithms appear to come in pairs (e.g. experiments 129 and 130,

experiments 177 and 154, and experiments 153 and 178).

Table-2 and Table-3 demonstrate at least two possible ways in which a small number

of attributes may be produced from the pipeline. If the investigated k value is small

then the rough-set portion of the pipeline will be constrained to output a set of genes of

cardinality less than or equal to k. If the investigated k value is large, then the rough-set

portion of the pipeline will be given many attributes from which to derive reducts. In

the afore-mentioned tables, the selected experiments with large k (the latter case) used

the Holte1RReducer algorithm. For example, experiment 359 has a large k value and

used a Holte1RReducer and likewise for experiment 355.

Each experiment selects a subset of the original attributes through preprocessing,

which are then passed to a cross-validation procedure. This results in the creation of

training and test sets, from which a set of reducts and rules are generated.

From the set of selected experiments, the overall best (227) experiment’s reducts

for each of the 10 folds, are listed in Table-4. Nine of the ten folds produce the same

reducts, with the largest reduct containing 3 attributes, and all other reducts containing

1 attribute. The tenth fold results in the production of 1 extra reduct as compared to

the 9 other folds. Informally, the largest reduct has been split into 2 reducts in Fold 9.
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Table 2. k-leader Breast Cancer experiments for which mean 10-fold cross-validated classifica-

tion accuracy ≥ 0.7. Experiment 227 is the overall best result.

No. Experiment Mean Median Standard Min. Max. K-means k

Deviation

1 347 0.7 0.75 0.35 0.0 1.0 Convergent 10

2 344 0.7 0.75 0.35 0.0 1.0 MacQueen 5

3 127 0.717 0.583 0.25 0.5 1.0 Convergent 5

4 348 0.717 0.833 0.34 0.0 1.0 MacQueen 10

5 343 0.717 1.0 0.42 0.0 1.0 Convergent 5

6 359 0.717 1.0 0.42 0.0 1.0 Convergent 500

7 276 0.733 1.0 0.42 0.0 1.0 MacQueen 10

8 228 0.733 0.917 0.34 0.0 1.0 MacQueen 10

9 300 0.733 1.0 0.42 0.0 1.0 MacQueen 10

10 204 0.733 1.0 0.42 0.0 1.0 MacQueen 10

11 129 0.733 0.917 0.34 0.0 1.0 Forgy 10

12 130 0.733 0.917 0.34 0.0 1.0 Jancey 10

13 131 0.767 0.833 0.25 0.5 1.0 Convergent 10

14 296 0.767 1.0 0.34 0.0 1.0 MacQueen 5

15 272 0.767 1.0 0.34 0.0 1.0 MacQueen 5

16 177 0.783 1.0 0.34 0.0 1.0 Forgy 10

17 154 0.783 1.0 0.34 0.0 1.0 Jancey 10

18 153 0.783 1.0 0.34 0.0 1.0 Forgy 10

19 178 0.783 1.0 0.34 0.0 1.0 Jancey 10

20 355 0.85 1.0 0.34 0.0 1.0 Convergent 500

21 224 0.85 1.0 0.24 0.5 1.0 MacQueen 5

22 227 0.917 1.0 0.18 0.5 1.0 Convergent 10

These 2 reducts contain the same 3 attributes as the largest reduct in the other 9 folds,

indicating that the attributes still contain discrimatory power on the whole data matrix.

It can be seen that the reducts listed in Table-4 for experiment 227, the highest

ranked result, contain the following set of 10 attributes selected from the original 12, 625
attributes. They are listed here, along with their simplified identifier in parenthesis:

36480 at (v0), 38230 at (v1), 1511 at (v2), 38445 at (v3), 31697 s at (v4), 36604 at

(v5), 38010 at (v6), 39288 at (v7), 1180 g at (v8), and 34211 at (v9). The next best

mean cross-validated experiment (224) yielded 5 attributes from the original 12, 625,

which are: 1961 f at, 34811 at, 41293 at, 38449 at, and 41741 at. A further investi-

gation of the properties of these attributes should be performed. Therefore, experiment

227 was selected.

A VR-space of 10 attributes from the original 12, 625 given to experiment 227 is

shown in Fig-2. Convex hulls wrap each of the two classes. It is difficult to perceive

on a static medium, but one object from the sensitive class is contained within that of

the resistant class. In the dynamic virtual world, it is possible to, for example, rotate

and more closely inspect the properties of each of the objects. This virtual reality repre-

sentation indicates the feasibility of possibly obtaining a class discrimination function.
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Table 3. k-leader Breast Cancer experiments for which mean 10-fold cross-validated classifica-

tion accuracy ≥ 0.7. Experiment 227 is the overall best result.

No. Exp. Discretization Reduct Algorithm

1 347 BROrthogonalScaler Holte1RReducer

2 344 BROrthogonalScaler Holte1RReducer

3 127 RSESOrthogonalScaler RSESExhaustiveReducer

4 348 BROrthogonalScaler Holte1RReducer

5 343 BROrthogonalScaler Holte1RReducer

6 359 BROrthogonalScaler Holte1RReducer

7 276 SemiNaiveScaler Holte1RReducer

8 228 BROrthogonalScaler RSESExhaustiveReducer

9 300 NaiveScaler Holte1RReducer

10 204 EntropyScaler RSESExhaustiveReducer

11 129 RSESOrthogonalScaler RSESExhaustiveReducer

12 130 RSESOrthogonalScaler RSESExhaustiveReducer

13 131 RSESOrthogonalScaler RSESExhaustiveReducer

14 296 NaiveScaler Holte1RReducer

15 272 SemiNaiveScaler Holte1RReducer

16 177 NaiveScaler RSESExhaustiveReducer

17 154 SemiNaiveScaler RSESExhaustiveReducer

18 153 SemiNaiveScaler RSESExhaustiveReducer

19 178 NaiveScaler RSESExhaustiveReducer

20 355 BROrthogonalScaler Holte1RReducer

21 224 BROrthogonalScaler RSESExhaustiveReducer

22 227 BROrthogonalScaler RSESExhaustiveReducer

The 10 attributes from experiment 227 were then provided to an expression finding

system (GEP), from which a functional model (discrimination function) was found. The

model contains 9 of the 10 attributes (v8 is not used) and the explicit model is:

f(v0 , v1, v2, v3, v4, v5, v6, v7, v8, v9) = (1)

v3

6
∗ v0 ∗ v9 + (−2) ∗ v2

6
∗ v0 ∗ v9 ∗ v7 + v2

6
∗ v0 ∗ v9 ∗ v4 − v2

6
∗ v0 ∗ v9 ∗ v3

−v2

6
∗ v2

0
∗ v9 + 2 ∗ v6 ∗ v2

0
∗ v9 ∗ v7 + v6 ∗ v2

0
∗ v9 ∗ v3 − v6 ∗ v2

0
∗ v9 ∗ v4

+v6 ∗ v2

0
∗ v4 ∗ v1 + v6 ∗ v2

0
∗ v1 ∗ v5 − (v6 ∗ v2

0
∗ v7 ∗ v5 + v6 ∗ v2

0
∗ v7 ∗ v4)

−(v6 ∗ v3

0
∗ v5 + v6 ∗ v3

0
∗ v4) + v2

0
∗ v7 ∗ v4 ∗ v2 − v2

0
∗ v3 ∗ v4 ∗ v2

+v0 ∗ v3 ∗ v4 ∗ v1 ∗ v2 + v0 − v0 ∗ v7 ∗ v4 ∗ v1 ∗ v2 + v9

The model was found after 12, 954 generations. Additive, multiplicative and subtractive

binary operations along with quadratic and cubic unary operations are found. The two

variables v6 and v0 appear in the model containing both cubic and quadratic forms.

These two attributes, therefore, have a greater influence upon the overall functional

value of the model.

The two attributes, v6 and v0 were extracted from the 10 attribute data matrix in

order to construct a new 2 attribute data matrix. This 2 attribute data matrix was then
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Table 4. The reducts computed within Experiement 227 for each of the 10-fold cross-validated

results. Fold-9 results in the production of 1 extra reduct.

Fold-0,1,2,3,4,5,6,7,8 Reducts Fold-9 Reducts

{36480 at, 31697 s at, 36604 at} {36480 at}
{31697 s at, 36604 at}

{38230 at} {38230 at}
{1511 at} {1511 at}
{38445 at} {38445 at}
{38010 at} {38010 at}
{39288 at} {39288 at}
{1180 g at} {1180 g at}
{34211 at} {34211 at}

used in order to find a model that might have discriminatory power over the 2 classes.

The highly non-linear model that GEP found is:

f(v0, v6 ) = cos(tan(v0) ∗ v0) ∗ v0 ∗ tan(v6) + v0 ∗ tan(v6) (2)

+v0 ∗ log(v6) ∗ sin(tan(v6) − v6) − tan(v6) ∗ v6

The model uses both of the attributes, and contains more complex functions (e.g. sine).

Superficially, no attribute seems to have higher influence than the other, so one partic-

ular attribute was chosen (v6) and a new 1 attribute data matrix was constructed (also

including the decision attribute). The GEP found the following highly non-linear model:

f(v6 ) = sin(v6) + cos(v6 ∗ (cos(v2

6
) + sin(sin(v6)))) (3)

+sin(v6 ∗ (v6 ∗ cos(v6) + cos(v6)))

A property of each of the three models, is that they all produce high classification accu-

racies over the 2 classes. In particular, the latter single attribute model, when visualized

in Fig-3 can be seen to produce almost perfect class separability. The X’s represent

objects from class sensitive and the O’s represent objects from class resistant. In par-

ticular, one object from class sensitive is contained within the class resistant, which is

in agreement with the virtual reality representation of the 10 attributes in Fig-2. The

classification rule for Fig-3 is:

IF f(v6) ≥ 0.5) −→ class = sensitive (4)

otherwise −→ class = resistant

4 Conclusions

Good results were obtained with the proposed high throughput pipeline for the dis-

covery of relevant attributes in high dimensional data. The data mining procedure is

based on a combination of clustering and rough sets techniques within a distributed
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Fig. 2. The 2 classes are wrapped by convex hulls in this static virtual reality representation of 10

attributes from experiment 227. Sammon error: 0.07400. Number of iterations: 150.

computing framework and genetic programming. The attribute reduction procedure us-

ing rough set reducts within a cross-validated experimental scheme applied to Breast

Cancer gene expression data demonstrates the possibilities of the proposed approach.

More thorough studies are required to correctly evaluate the impact of the experimental

settings on the data mining effectiveness. The gene expression programming technique

produced sets of analytic functions with high discriminatory power. Visual exploration

of the results was useful for understanding the properties of the pipeline outputs, and

the relationships between the discovered attributes and the class structure.
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