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A recent burst of dynamic single-cell data makes it possible to characterize the stochastic dynamics of cell
division control in bacteria. Different models were used to propose specific mechanisms, but the links between
them are poorly explored. The lack of comparative studies makes it difficult to appreciate how well any particular
mechanism is supported by the data. Here, we describe a simple and generic framework in which two common
formalisms can be used interchangeably: (i) a continuous-time division process described by a hazard function
and (ii) a discrete-time equation describing cell size across generations (where the unit of time is a cell cycle).
In our framework, this second process is a discrete-time Langevin equation with simple physical analogues.
By perturbative expansion around the mean initial size (or interdivision time), we show how this framework
describes a wide range of division control mechanisms, including combinations of time and size control, as well
as the constant added size mechanism recently found to capture several aspects of the cell division behavior of
different bacteria. As we show by analytical estimates and numerical simulations, the available data are described
precisely by the first-order approximation of this expansion, i.e., by a “linear response” regime for the correction
of size fluctuations. Hence, a single dimensionless parameter defines the strength and action of the division
control against cell-to-cell variability (quantified by a single “noise” parameter). However, the same strength of
linear response may emerge from several mechanisms, which are distinguished only by higher-order terms in the
perturbative expansion. Our analytical estimate of the sample size needed to distinguish between second-order
effects shows that this value is close to but larger than the values of the current datasets. These results provide a
unified framework for future studies and clarify the relevant parameters at play in the control of cell division.
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I. INTRODUCTION

Today, quantitative data of single dividing cells across
generations and lineages can be produced with high throughput
and spatiotemporal resolution. Such state-of-the-art data have
renewed the investigation of bacterial growth and division.
Due to the intrinsic stochasticity of these systems, approaches
based on statistical physics play a primary role. One example
is the decision mechanism by which a cell divides, which has
a key role in its size determination.

Several recent findings have progressed this field by joint
use of theoretical models and single-cell experiments. Namely,
(i) interesting scaling behavior emerges for the distributions of
key variables such as doubling times and cell sizes across con-
ditions and species [1–4], suggesting the existence of universal
parameters setting these variables; (ii) fluctuations of different
quantities bear intriguing relationships—for example, cell size
and doubling time fluctuations are interlinked relative to the
average growth rate [1,5]; (iii) the mechanisms of division
control can be explored using theoretical models, formulated
as stochastic processes (of different kinds) whose dynamic
variables are cell size, time, and division events [1,5–8].
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These mechanisms of division control are the most studied
due to their direct biological relevance. The data typically
rule out control mechanisms based on measurement of either
cell size or cell cycle time alone [5,7,9,10]. Concerted controls
where multiple variables (e.g., time and size) may enter jointly
have been proposed [6,7]. Several studies in Escherichia
coli [5,8] and other microbes [5,10–12] have argued for a
mechanism in which the size extension in a single cell cycle is
nearly constant and independent of the initial size of the cell
(sometimes called “adder” mechanism of division control).
However, it is clear that the constant added size is not the only
trend found in the data [5,8,13–15], and that it is not a necessary
and sufficient condition for the observed scaling behavior and
fluctuation patterns [1]. More broadly, the question of how
much a mechanism can be isolated and specified with available
data is still open.

Additionally, existing studies so far have relied on dif-
ferent modeling approaches and raise the need for a unified
framework. Specifically, two dominant formalisms emerge.
The first describes the continuous-time division process by a
hazard function. The hazard function defines the probability
per unit time that a cell divides, as a function of the values
of measurable variables such as initial and/or current size,
incremental or multiplicative growth, and elapsed time from
cell division [5,7,16]. The second formalism describes cell size
across generations as a discrete-time autoregressive process
(where a unit of time is a cell cycle) [6,10,12].
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Here, we propose a unified framework linking explicitly
these two formalisms and we pose the question of the
general possibility to distinguish mechanisms from data. By
expanding around the mean initial size or interdivision time
(generalizing the approach of Ref. [6]), we show explicitly
how this framework describes a wide range of division
control mechanisms, including combinations of time and size
control, as well as control by constant added size. As we
show by analytical estimates and numerical simulation, the
available data are characterized with great precision by the
first-order approximation of this expansion. Hence, a single
dimensionless parameter defines the strength and the action of
the division control against cell-to-cell variability. However,
this parameter may emerge from several mechanisms,
which are distinguished only by higher-order terms in our
perturbative expansion. Finally, we estimate the sample size
needed to distinguish between second-order effects, and show
that it is larger than the size of currently available datasets.

II. BACKGROUND

A. Theoretical description of division control

This section describes the basic definitions and ingredients
of the modeling framework. We will assume exponential
growth of the cell size x(t) = x0e

αt , which is well supported
in the literature [2,5,7,8] and, as in previous studies, we
neglect fluctuations of the growth rate α [2,5,7]. A cell divides
at a size xf into two cells of equal size xf /2 (we thus do
not consider the small fluctuations around binary fission,
the process of filamentation and recovery, or species with
nonbinary division [7,10,14,17]).

A control mechanism defines the division size xf . In
absence of this control, fluctuations of cell size may grow
indefinitely in time. The full information on division con-
trol is encoded by the function p(xf |x0,α), the conditional
probability that a cell, born at size x0 and growing with
a growth rate α, divides at size xf . The growth-division
process is therefore defined by four variables x0,x,t,α, with the
constraint of exponential growth (which reduces to three the
number of independent variables) and the model assumption of
negligibile fluctuations in α. This allows different equivalent
parametrization of the process. A quantity of interest is the
size at birth of a cell, followed across generations. Given the
probability pi

b(x0|α) of observing a cell at generation i with
initial size x0, the following Chapman-Kolmogorov equation
gives the same probability at the subsequent generation:

pi+1
b (x0|α) := 2

∫ ∞

0
dy p(2x0|y,α)pi

b(y|α), (1)

where p(xf |x0,α) plays the role of a transition probability.
These probabilities quantify the variability of single cells.
Strictly speaking, Eq. (1) applies only along isolated, or at least
nonoverlapping, lineages. Population averages (when averages
are computed over a population of cells that share common
ancestors) are in fact different from single-cell averages, since
the latter neglect the correlations among cells in a population
[4]. On the other hand, the approach of Eq. (1) has been
previously applied to cell lineages within a population in
microcolony data with fairly satisfactory results [1].

The assumption of exponential single-cell growth implies
that in this process the noise on doubling times has a multiplica-

(a)

(b)

FIG. 1. The division-control function follows finite-size scaling.
(A) Collapse of the probability distribution of rescaled logarithmic
cell size log(x0/〈x0〉α) across different conditions and strains (colors)
[equivalent to the condition in Eq. (3)]. (B) Collapse of the functions
f (·), defining the mechanism of division control in the discrete-time
Langevin framework [Eq. (7)], obtained from experimental data in
different conditions. The collapse of f (·) is obtained, as predicted
by Eq. (9). The function is evaluated as the conditional average of
a cell’s birth size (y axis) given the mother’s birth size [x axis, see
Eq. (7)]. Data from Ref. [1] refer to two strains, P5-ori (a BW25113
derivative strain) and MRR, grown on agarose pads in four nutrient
conditions (Glc, CAA, RDM, and LB). Data from Ref. [19] (orange
triangle) refer to MG1655 strain in a microfludic device with LB as
growth medium.

tive effect. Consequently, it is useful to introduce the quantity
q = log(x/x∗), which measures logarithmic deviations in size.
At this stage, x∗ is an arbitrary scale, necessary to make the
argument of the logarithm dimensionless. With this choice of
parametrization the exponential growth maps into the linear
relation q(t) = q0 + αt . The mechanism of division control
can be equivalently specified in terms of q, by introducing the
transition probability

ρ(qf |q0,α) := x∗eqf p(x∗eqf |x∗eq0 ,α). (2)

The transition probability p(xf |x0,α), and therefore the
mechanism of division control, determines the stationary
distribution (if it exists) of initial sizes observed in a steadily
dividing population or genealogy, denoted by p∗

b(x0,α). This
quantity can be obtained as the fixed point of the iteration
defined by Eq. (1) (see Appendix A). Equivalently, the
stationary distribution for interdivision times td derives from
the mechanism of division control. A change of condition, e.g.,
nutrients or temperature, corresponds to a change of the growth
rate α, which in turn affects division control. Experimental data
(Fig. 1) show that the stationary distributions of both initial
size and interdivision time, measured in different conditions,
collapse when rescaled by their means [1,2,5,18]. In the
following, we will assume this scaling property, which implies
some constraints on the control defined by p(xf |x0,α) [1].
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B. Scaling laws for size and doubling-time distributions
as a result of division control

This section derives explicitly the constraints on division
control emerging from finite-size scaling [Fig. 1(a)], following
Ref. [1]. In this case, the scaling condition reads

p∗
b(x0|α) = 1

〈x0〉α F

(
x0

〈x0〉α

)
, (3)

where we defined

〈x0〉α :=
∫

dx p∗
b(x|α)x, (4)

and the scaling function F (·) describes the shape of the plot
in Fig. 1(a), assumed to be invariant in all conditions [1,3]. A
similar equation applies to the interdivision time distribution
using 〈td〉α , i.e., the average interdivision time conditional
on a growth rate. While the scaling properties for cell size
have been observed in numerous studies [1–3,14], the scaling
of interdivision time distribution is less widely studied and
appears to vary across strains and conditions [1,4].

When the fluctuations of α are neglected, the collapse can be
explained as a result of division control but does not by itself
isolate a specific mechanism [1]. Specifically, the observed
collapse of the doubling-time and initial-size distributions
implies that the conditional distribution p(xf |x0,α) (for a
growth condition with a given mean growth rate) has to
collapse when both variables are rescaled by 〈x0〉α ,

p(xf |x0,α) = 1

〈x0〉α G

(
xf

〈x0〉α ,
x0

〈x0〉α

)
. (5)

The function G(·) represents the invariant functional form of
the conditional probability distribution, analogous to F (·) in
Eq. (3). This calculation is discussed in Appendix A. Another
important consequence of the scaling of the doubling time
distributions is that the product α〈τ 〉α does not depend on the
mean growth rate in a given condition α (see Appendix A).

Finally, Eq. (5) implies that the division control depends
on a single “internal” size scale, which, in turn, sets the value
of 〈x0〉α . In conclusion, the joint universality in doubling time
and size distributions can be explained by division control
mechanisms based on a single size (volume) scale and 1/α

as the unique time scale. While this condition does not
imply any mechanism, it can be applied to different modeling
frameworks, allowing model-independent predictions.

III. RESULTS

A. A unified modeling framework connects different
descriptions of the growth-division process

This section shows the equivalence of the two theoreti-
cal formalisms discussed in the Introduction and explicitly
provides the map connecting them. The result is a generic
framework describing the cellular growth and division process,
which can be compared with data to investigate the possible
mechanism of division control. Specifically, the map leads us
to a discrete-time equation, where the function describing the
control is linked explicitly to a hazard rate. Finally, we show
how the defining equation of this model is constrained by
finite-size scaling of size and doubling-time distributions.

The continuous-time approach [5,7,16] supposes an under-
lying “decisional process” for cell division, which is entirely
specified by the dependency of the division rate hd on the
measured dynamic parameters, such as instantaneous and
initial cell size, added size, elapsed time from the previous
cell division, and growth rate. The function hd is analogous to
a hazard rate in survival models. In particular, since division
control is fully specified by p(xf |x0,α) (as discussed in
Ref. [1]), one has the relation

p(x|x0,α) = − d

dx
exp

(∫ x

0
ds hd (s,x0,α)

)
. (6)

This hazard rate hd can be inferred directly from data,
as done in survival analysis in statistics [7]. Alternatively,
a specific functional form can be assumed to test specific
mechanisms [5,7]. Previous work [5] has shown that data are
well reproduced by models where the division hazard rate
depends on added size x − x0, or by more complex “concerted
control” models where the rate is allowed to depend on two
variables, instantaneous size x and initial size x0 or elapsed
time t (the latter two variables are essentially interchangeable
since the distribution of elongation rates is generally quite
peaked) [7]. This approach works very well in reproducing
essentially all available observations. However, it leads to the
problem of finding an interpretation of hd , which is not simple.
In fact, the link between hd and “molecular” variables such
as concentrations or absolute amounts of cell-cycle related
proteins is still an open question. The other problem with the
continuous-time approach is that hd is a function, and, while
it can be inferred directly from data, its parametrization may
be far from obvious.

In order to comply with the empirical scaling properties
of initial, final, and added size, and of interdivision time,
the hazard rate function must collapse when the variables are
rescaled by 〈x0〉α [see Eq. (5)],

hd (x,x0,α) = h̃

(
x

〈x0〉α ,
x0

〈x0〉α

)
.

We now set out to discuss the connection of the hazard rate
with the discrete-time formalism used in Refs. [5,6,10,12],
which gives up the ambition of capturing doubling-time
fluctuations, in order to obtain a clearer view of the dynamics
of cell size. Importantly, this discrete-time approach makes
an assumption for doubling-time fluctuations, defining the
doubling time conditional to a certain initial size x0 as a random
variable with a pre-defined mean τ0 and “noise” ξ , accounting
for intrinsic cell-to-cell variability. Hence, τ = τ0 + ξ , where
the distribution of the zero-mean variable ξ must be specified.
One can verify a posteriori whether these assumptions are
reasonable in the data. This choice leads to discrete-time
Langevin equations for the initial size x0(i) where i is the
cell-cycle index,

x0(i + 1) = f (x0(i),α) + η(x0(i),α), (7)

where the function f (·) specifies cell division control, while
η is a random noise with mean zero and arbitrary distribution,
that, in principle, can depend on the size at generation i. In
other words, x0(i) is implied to be a random variable whose
distribution depends on the value of α. Note that there is
no time discretization involved in obtaining Eq. (7), because
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the generations are by definition discrete. The dependency of
these two terms on the growth rate α reflects the variation
of the transition probability p(x|x0,α) with this parameter. In
particular, f (·) is given by

f (x0,α) = 1

2

∫ ∞

0
dx p(x|x0,α)x. (8)

Different forms of this function correspond to different kinds
of controls on cell division. For instance a perfect sizer
(division triggered by an absolute cell size x∗) corresponds to
f (x0,α) = x∗ while an adder (division triggered by a noisy
constant added size) is defined by f (x0,α) = (x0 + �)/2.

This function can be estimated from empirical data as
f (x0,α) = 〈x0(i + 1)〉x0(i)=x0 , i.e., as the average size at birth
of the daughter conditional on the size at birth of the mother.
Figure 1(b) reports f (x0/〈x0〉α)/〈x0〉α in empirical data for
different growth conditions experiments and strains, showing
the expected collapse.

The scaling relation in Eq. (5) imposes that f (x0,α)/〈x0〉α
is solely a function of the ratio x0/〈x0〉α . In particular, by
combining Eq. (8) with Eq. (6), one can derive a simple relation
between f and the hazard rate function, obtaining

1

〈x0〉α f (x0,α)

= 1

2

{
− x0

〈x0〉 +
∫ ∞

x0
〈x0〉

dy exp

[∫ ∞

y

dz h̃

(
z,

x0

〈x0〉
)]}

. (9)

Considering the discrete framework, we can write an
equivalent process for the initial logarithmic size q, which,
after having imposed the constraints given by the scaling of
the stationary distribution, reads

q0(i + 1) = 〈q0〉α + g(q0(i) − 〈q0〉α) + ξ (q0(i) − 〈q0〉α),

(10)

where 〈q0〉α is the average value of q0 given a growth
rate α and g(·) specifies cell division control in log-space,
analogous to f (·) in Eq. (7) (see Appendix B). By imposing
stationarity, we have that g(0) = 0. The noise term is again
drawn from a zero-mean distribution. The function g(·) can
be estimated from empirical data by evaluating g(�q) =
〈q0(i + 1) − 〈q0〉α〉q0(i)−〈q0〉α=�q(i).

The two functions f (·) and g(·), appearing in Eqs. (7)
and (10) are interchangeable. Both expressions, once defined,
correspond unequivocally to a specific division control mech-
anism. To obtain the hazard rate function, one must specify
the distribution of the noise terms. Since in empirical data the
initial and final size are approximately lognormally distributed
[1], the steady-state distribution of q can be well approximated
by a Gaussian. It is therefore reasonable to assume that the
distribution of the noise is Gaussian itself,

�q0(i + 1) = g[�q0(i)) + σ (�q0(i)]ξ, (11)

where ξ in this expression is a Gaussian random variable of
zero mean and unit variance and σ (·) a proper function of
�q0(i) = q0(i) − 〈q0〉α . Under this assumption, we obtain (see
Appendix B)

hd (x,x0,α) = 1

x
gσ

{
log(x/〈x0〉α) − g[log(x0/〈x0〉α)]√

2σ [log(x0/〈x0〉α)]

}
,

where

gσ (y) = 1√
2πσ

exp(−y2)

1 − Erf(y)
,

where Erf(·) is the error function. However, note that, for
unspecified g(·) and σ (·), the stationary distribution of this
process is not a Gaussian in general. Our direct calculation
of the hazard rate hd from the control function g links the
discrete-time to the continuous-time formalism through a
quantitative map. We will now focus on the parametrization
defined in Eq. (11), showing how it can be reduced to a single
relevant parameter, using a perturbative approach.

B. A perturbative approach identifies the conditions for a
steady-state size distribution (homeostasis)

This section extends the approach of Ref. [6] to nonlinear
terms in cell-size control. A general perturbative expansion
around the mean initial logarithmic cell size allows us to
investigate the conditions for stationarity of cell sizes beyond
linear order. As we will see, it is possible to assign a
simple interpretation to the coefficients of the expansion and
use them to estimate the division control mechanism. This
kind of expansion is justified by empirical observations as
follows. The collapse of the initial-size distributions implies
that the standard deviation σx0 (which depends on the condition
through the mean growth rate α), scales as cvx〈x0〉α , where cvx

is the coefficient of variation, and it is a constant independent
of α. In particular, the measured relative size fluctuations cvx

have an empirical value around 0.15, which is, as expected,
approximately constant in different growth conditions [1,5].
Such value implies that the fluctuations of sizes around their
mean are small, suggesting therefore to expand the control
function over size fluctuations around their mean.

Instead of expanding the feedback control in powers of the
ratio σx0/〈x0〉α , we will focus on logarithmic size, i.e., the
previously introduced variable q. Starting from Eq. (11), one
can expand g(·) and σ (·) around q0(i) = 〈q0〉α . In this case,
taking the first-order term of the expansion, we obtain

�q0(i + 1) = (1 − λ)�q0(i) + σξ, (12)

where λ = 1 − g′(0) and σ = σ (0). The process defined by
Eq. (11) is a discrete-time Langevin equation in a quadratic
potential with stiffness λ, and thus has multiple continuous-
time physical analogs (e.g., Brownian motion of colloids),
as well as being widely used for time series modeling, e.g.,
in econophysics. Its exact solution is a Gaussian distribution
of q0 with mean 〈q0〉α and variance σ 2

q = σ 2/(λ(2 − λ)) (see
Appendix E and Ref. [6]), which corresponds to a lognormal
distribution of x0. This relation can be considered as a discrete-
time version of a fluctuation-dissipation theorem, as it connects
the fluctuations of cell size σq with the strength of the response
λ to deviation of the size from the mean.

Figure 2 shows the scaling of g(·), comparing data and
models. Equation (12) predicts a linear scaling with slope
1 − λ, which is well in agreement with the data. A value of
λ ∼ 1/2 captures the data, even if there are some variations
among different conditions.
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(a)

(b)

FIG. 2. Unified framework of division control and comparison
with data. (a) Division control function g(·), for an adder model
(purple solid line) and linearized models with different values of
the control parameter λ (cyan, gray, and magenta solid lines). This
function defines the control mechanism in the model [Eq. (10)].
The adder mechanism is near linear and closest to the linearization
with λ ∼ 0.5 [6] (see Appendix F). (b) Comparison between data
(symbols) and the linearized discrete-time Langevin framework, for
different values of the single control parameter λ. The function g(·)
can be estimated as the conditional average of the log-size fluctuation
of a cell, given the log-size fluctuation of the mother [see Eq. (10)].
The roughly linear scaling of the symbols suggests that the data are
close to a simple “linear response” scenario, and the collapse across
different strains and conditions confirms the results of Fig. 1. Values
of λ around 1/2 well reproduce the data, but deviations are visible.
Data (from Refs. [1] and [19]) refer to different strains of dividing E.
coli cells grown in different conditions (see Fig. 1).

Equation (12) can be solved exactly. Starting from an arbi-
trary initial condition, we derive the distribution of sizes after
any number of generations (Appendix E). In particular, it is
possible to calculate how fluctuations of size are dampened in
time. Starting at generation 0 with an initial size corresponding
to q0(0), the expected size at birth after n generations is

〈�q0(n)〉 = �q0(0)(1 − λ)n. (13)

It is simple to see from this expression that, as expected, a
steady-state size distribution (corresponding to “size home-
ostasis” in biological terms) is possible only if |1 − λ| < 1 and
that 1 < λ < 2 would lead to oscillatory sizes around the mean
[12]. The role played by λ is therefore to set the correlation
time scale, measured in generations.

Equations (12) and (13) show that size homeostasis is
possible if |1 − λ| = |g′(0)| < 1 [see Fig. 3(a)]. Note that this
condition is necessary but not sufficient, as it only implies
local stability of the deterministic solution (Appendix D).
While values of λ between 1 and 2 guarantee homeostasis,

(a)

(b)

FIG. 3. Conditions for stability of the deterministic part of
cell-size control. (a) Under linear control with negligible noise,
�q(i + 1) = (1 − λ)�q. If (1 − λ) > 1 (green line) the system is
unstable, while if (1 − λ) < 1 (red line) the system is stable. The
black line represents the marginally stable case �q(i + 1) = �q. By
using a similar argument (see Appendix D), it is possible to show that
if |g(�q)| < |�q| for any |�q|, then the system is globally stable.
(b) In the more general case of a locally stable point the basin
of attraction can be obtained as the set of values of �q such that
|g(�q)| < |�q|.

current data suggests that they are not biologically relevant.
In particular, a value larger than one would correspond to
overcorrection of size leading to oscillatory damping of
size fluctuations (specifically, the genealogy of a cell born
with a larger-than-average size would typically at some
point generate progeny with smaller-than-average birth size,
but closer to the mean, etc.) This behavior is not observed
in experiments [5]. Hence, we restrict our analysis to the
case 0 < λ < 1.

Considering the next orders in the expansion, one can obtain
precise criteria on the conditions leading to homeostasis.
When only the deterministic part of Eq. (10) is considered
(i.e., σ = 0), it is possible to show that the equilibrium is
unique and globally stable if |g(�q)| < |�q|. If the noise
is additive (i.e., σ (�q) is independent of �q), then global
stability implies that the process is stable and always reaches
a stationary distribution. On the other hand, what is relevant
for homeostasis is that the basin of attraction determined by
g(·) is large enough compared to the typical fluctuations.
The basin of attraction of the deterministic equation corre-
sponds to the values of �q such that |g(�q)| < |�q| see
Fig 3(b)].

When the noise in Eq. (12) is not additive (i.e., σ (�q) de-
pends on �q), a general condition is unknown. A perturbative
approach gives conditions on the parameters of the expansion
that determine homeostasis. For instance, considering the first
orders in the expansion of σ [�q0(i)] around 0, we obtain that
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the variance of initial logarithmic size distribution is finite only
if σ ′(0) <

√
λ(2 − λ) (see Appendix E).

C. Inequalities defining the relevant parameters given
a set of experimental observations

This section derives general constraints on the estimates of
relevant parameters given the number of observations through
simple quantitative estimates. The calculations of the previous
section indicate that λ is the most important parameter at
play, together with another parameter defining the width of the
noise (the intrinsic cell-to-cell variability). A further question
is whether λ is effectively the only relevant control parameter.
For instance, a sizer correspond to g(�q) = 0. Both a sizer
and a cubic control g(�q) = �q3 would correspond to λ = 1.
Therefore, mechanism can be associated to a value of λ, while
the converse is not true. In order to address this question, one
has to consider higher-order terms in the expansion, and ask
when those terms play a role, and whether they can be identi-
fied from data, given the number of available observations.

The expansion around 〈x0〉 [Eq. (11)] is effective as long
as the fluctuations of size are sufficiently small. In order to
estimate precisely the regime where the approximation is valid,
we include the second order in the expansion,

q0(i + 1) = 〈q0〉α + (1 − λ)(q0(i) − 〈q0〉α)

+ γ
(q0(i) − 〈q0〉α)2

2
+ σξ, (14)

where γ = g′′(0) is the second derivative of the control
function. The parameter γ characterizes in further detail the
mechanism of division control and can be used to distinguish
between different control functions that have the same value
of λ. Importantly, two different functions g(�q) describing
completely different mechanisms of size control could, in fact,
have the same value of g′(0) = 1 − λ, and therefore produce
the same predictions to linear order. We provide one specific
example in the next section. At a given fixed λ, estimating γ

may help in distinguishing different mechanisms.
The quadratic term proportional to γ destabilizes the deter-

ministic dynamics, and, using the condition |g(�q)| < |�q| to
determine the basin of attraction of the deterministic dynamics,
one obtains that fluctuations are dampened if |�q| < 2λ/γ ,
imposing a limit on the possible values of γ based on the extent
of the experimentally observed fluctuations.

We set out to evaluate the difference between this process
and the one defined by Eq. (12). The quadratic term is
measurable from stochastic trajectories if it is sufficiently large
compared to stochastic fluctuations. Thus, we evaluate the
distribution of q0(i + 1) − 〈q0〉α − (1 − λ)(q0(i) − 〈q0〉α) and
ask whether, for given sample size and value of q0(i), its mean
is significantly different from zero or not.

The error on the mean is given by the standard deviation
divided by the square root of the sample size. Hence, the
quadratic term is detectable if

σ√
T (q)

< γ
(q0(i) − 〈q0〉α)2

2
, (15)

where T (q) is the number of cells with initial size q. Since
the distribution of q is approximately Gaussian (in the limit of

γ ≈ 0), the number of cells with initial size in a bin of width
δq around q is estimated by

T (q) = N
exp

(− (q−〈q0〉α )2

2σ 2
q

)√
2πσ 2

q

δq, (16)

where N is the total number of cells. The bin size δq must
be smaller than the standard deviation of the distribution, and
we can parameterize it by defining δq = εσq . The quantity
1/ε represents therefore the number of bins per standard
deviation. Choosing ε too large increases the sampling at the
cost of introducing some error, by grouping together cells
with different sizes. The constraint on the total number of
cells measured in order to recognize higher-order terms then
reads

N >

√
2πσq

εσq

σ 2

γ 2

4

(q − 〈q0〉α)4
exp

(
(q − 〈q0〉α)2

2σ 2
q

)
. (17)

The above expression reveals an important tradeoff [illus-
trated in Fig. 4(a)]. Choosing values of q close to the mean
will correspond to larger sample sizes but also causes the
effect to be measured to be very small, and increasingly close
to the experimental resolution. Conversely, choosing a value
of q very far from the mean corresponds to larger effects,
but their detection would be limited by smaller sample sizes.
The optimal choice of q to evaluate deviations from a division
control based on linear response in the data minimizes the left
side of Eq. (17). We have, therefore,

N >
1

ε

1

σ 2
q γ 2

λ(2 − λ) min
t

4
√

2π

t4
exp

(
t2

2

)
≈ 4.6

ε
λ(2 − λ)

1

γ 2σ 2
q

= 4.6

ε
λ(2 − λ)

1

γ 2 log
(
1 + cv2

x

) ,

(18)

where 4.6 is approximately the minimum value of the function
of t , and cvx is the coefficient of variation of the distribution
of x. We shall assume ε = 0.1; we know that ε must be a
small number—if it were not, one would have to consider
other sources of errors. For instance, in Ref. [5] the initial size
was binned using a bin size equal to about 0.06 μm. Since the
standard deviation varied between 0.4 μm and 1.3 μm across
conditions, the bins used in Ref. [5] correspond to values of ε

between 0.03 and 0.15. Assuming that λ(2 − λ) is a number
of order 1 (which should be the case if λ ≈ 1/2), we obtain
N ≈ 1.5 × 103/γ 2. Note that the factor γ 2, which is set by
the second derivative of g(·) and is therefore mechanism-
dependent, plays a very important role here, as, at fixed λ,
its value sets the scale at which specific mechanisms can be
distinguished.

IV. INTERPRETABILITY OF MECHANISMS
OF DIVISION CONTROL

This section relates the perturbative expansion of division
control to specific examples of mechanisms discussed in
the literature. We treat the case of the concerted control
mechanism, and we also specifically consider the case of the
adder, proposed as a mechanism of division control across
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(a)

(b)

FIG. 4. Estimated threshold for detection of non-linear con-
tributions to cell-division control. (a) The tradeoff between two
competitive terms determines an optimal cell-size fluctuation to
identify cell-size control. On one hand, large deviations of size from
the average correspond to stronger corrections and make differences
between mechanisms more detectable. On the other hand, fewer cells
have large fluctuations, reducing the statistical power and increasing
the sampling noise. The optimal fluctuation value is the one that
minimizes the error on the inferred cell-size control mechanism. Our
calculations [Eq. (17)] show that when fluctuations are rescaled by the
variance of the distribution, the optimal value is independent of the
cell-size control mechanism, as shown in the plots of the contributions
described by Eqs. (15) (discriminatory power, green line) and (17)
(sampling level, blue line). (b) Number of cells measured vs. the
inverse of σq [which is related to the coefficient of variation via
equation (E15)] for the available datasets (points). The two gray lines
represent the threshold of detectability obtained using Eq. (21), with
ε = 0.1 or ε = 0.5. All the available data sets lay below the threshold
of detectability (with one exception in the case of ε = 0.5), suggesting
that a linear model of division control is sufficient to describe these
data.

different conditions, obtaining the parameters of its expansion.
More specifically, we compare the adder model (characterized
by λ = 1/2 and γ = 1/4) with a model with the same linear
control strength, which can be interpreted as a combination of
a timing and a sizing mechanism (characterized by λ = 1/2
and γ = 0).

A. The “concerted control” mechanism

Equation (12) provides a generic description of division
control for small fluctuations. When it is interpreted in terms
of mechanisms of control, it corresponds to the simplest
“concerted control” model, i.e., to a mix of sizer and timer
behavior (as in the framework of Ref. [6]) that has been shown

to be in agreement with data [7]. Specifically, since the time
between divisions is (qf − q0)/α, setting τ = τ0 + ξ , where ξ

are Gaussian, independent, zero-mean random variables, one
obtains

τ0 = (1 − λ)
log 2

α
+ λ

α
log

x∗
α

x0
. (19)

The above equation can be interpreted as implementing the
control on cell division as a mixture of timer and sizer
behavior [6]. Indeed, the doubling time is set by a convex
combination with mixing parameter λ of a fixed time (set
by the inverse mean growth rate 1/α) and a perfect sizer
(set by a limit threshold size x∗ for cell division). A pure
sizer model, recovered for λ = 1, would set this conditional
interdivision time as τ0 = λ

α
log x∗

α

x0
, while a pure timer model

(λ = 0) defines τ0 as log 2/α [6]. It is straightforward to
show that, in the small noise limit, x∗

α = 2〈x0〉 = 〈xf 〉. The
concerted control is a consequence of the combination of
these two decision processes, set by the parameter λ. As
shown in Sec. III B this process leads to stationary distributions
of sizes if 0 < λ < 2. Our previous calculations show that
such an effective cell-cycle model (equivalent to the approach
introduced in Ref. [6]) can be characterized as the auto-
regressive model giving a discrete-time Langevin equation
with harmonic potential. As discussed above, this has a number
of consequences, including a strict relation between the noise
in τ and in log x0, and the fact that the characteristic times
(in generations) for damping of fluctuations and perturbations
(fluctuation-dissipation theorem) is 1/λ.

As shown in Sec. III B and previously suggested in Ref. [6],
the linear dependency of τ0 on log x0 can be seen as a first-order
approximation of a generic function relating the doubling time
to the initial size. Thus, nearly all models where one of the
two terms in Eq. (19) is not strictly null are expected to behave
similarly to this concerted control model as long as the probed
initial cell sizes x0 are close to their mean 〈x0〉α , or equivalently
as long as the noise in ατ is small.

B. The constant added size mechanism

We now consider the constant added size mechanism, with
the goal of comparing it with its linearization (λ = 1/2 and
γ = 0). The control part is defined by the function

g(q − 〈q0〉α)

= q − 〈q0〉α +
∫

dz F (z) log

(
c + ze〈q0〉α−q0

2

)
, (20)

where c is determined by imposing g(0) = 0 and F (·) is the
probability distribution of the relative fluctuations of the added
size around its mean (Appendix F). Expansion of this function
gives λ = 1/2, consistently with previous results [6], which
guarantees stationarity of the process. The second-order term
gives γ = 1/4. Having determined all the parameters, one can
evaluate Eq. (17), obtaining

N >
55

ε

1

log
(
1 + cv2

x

) . (21)

This estimate approximates the full adder model with a
second-order model with λ = 1/2 and γ = 1/4. It sets a
threshold on the number of cells that one needs to measure
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in order to achieve enough statistical power to observe
nonlinearity in the size control function g(�q). Figure 4(b)
compares the current available datasets with the estimated
threshold, for different choices of ε, showing the while some
data set may be close to the requirements, all of them are below.
This suggests that, for most available experimental datasets, a
linearization of g(�q) should be sufficient to describe all the
main observations. The choice of ε is somewhat arbitrary and
is justified as long as it is much smaller than 1. Our results are
robust up to to the (extreme) choice of ε 
 0.5.

To make the result on the estimated threshold for detectabil-
ity more concrete, we consider explicitly the case of the adder
mechanism and its distinguishibility from the linearized model
[Eq. (12)]. By definition, the adder mechanism predicts that
the conditional mean (and distribution) of the added size,
given initial size, is independent on initial size. While the
first-order expansion of the framework defined here with
λ = 1/2 (and analogously for the model in Ref. [6]) does
not follow this functional trend (i.e., the next orders in the
expansion are different), it shows a very small difference with
the adder model in the empirical range of sizes, which might
not be discerned with the sampling of available empirical
data.

In order to further support this point, we employed direct
numerical simulations at different sample sizes (mimicking
experimental sampling levels). As explained above, the most
complete information on the process is the transition proba-
bility p(xf |x0,α). For an adder, this probability depends only
on the difference xf − x0, i.e., p(xf − x0|x0) is independent
of x0, or, in other words, the conditional distribution of added
size given initial size does not depend on the initial size. The
fact that p(xf − x0|x0), obtained for different x0, collapses has
been interpreted in Ref. [5] as evidence in favor of the adder
mechanism of division control. To gain more insight into this
conclusion, we simulated the first-order process [Eq. (14)] with
λ = 1/2. Figure 5 reports the binned histograms of rescaled
added sizes for cells with different initial sizes, and using
similar bin sizes as in Ref. [5], the very good collapse shows
that the difference between the probability distributions is
barely detectable at the available level of sampling.

We quantified the error on the collapse measuring the
average L2 distance between all the pairs of curves plotted
in Fig. 5(a). This error, measured for different values of λ

and different sample sizes, can be compared with the expected
error due to fluctuations in the adder (also estimated as the
average L2 distance between the conditional distributions of
added size given the birth size). As expected, Fig. 5(b) shows
that the error is minimal when λ = 0.5. Interestingly, the
measured error does not depend on the sample size, while the
expected error from the adder model decreases as the number
of measured cells increases. Figure 5(b) shows that the two
error measures become comparable when N is between 10 000
and 20 000, which is around the same order of magnitude of the
number of cells measured in Ref. [5]. The plot shows that with
N = 10 000 cells, the collapse discriminates between different
values of λ, but cannot easily discriminate if higher-order terms
are relevant (and in particular whether the data support the
full adder model or just a linear model). However, the test
presented in Fig. 5(b) may work if existing data are pooled
together.
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FIG. 5. Detectability of adder mechanism from simulated models
and direct test. Plotted data refer to simulations of models with
realistic parameters and sampling of cells. (a) Conditional distribution
of added size given initial size for different initial sizes (different
colors) obtained with the linearized model [Eq. (14)] with λ = 0.5.
The linearized model reproduces visually the collapse expected for the
adder model. The simulations consider conservatively a coefficient
of variation of the added size equal to 0.3 (which is larger than the
observed values [5]) and a total number of cells N = 50000. (b) Error
test on the collapse of the distribution of added size (estimated as the
average L2 distance between all pairs of curves) for different values
of N and λ. The horizontal dashed lines represent the expected error
in collapse in the adder model due to fluctuations. For these parameter
values, the error in the collapse for the model with λ = 0.5 starts to
be relevant when N ∼ 10000. This test may be applied to empirical
data: in order for an adder to be detectable, the solid line should stay
above the dashed line.

V. DISCUSSION

Our approach provides a map between an autoregres-
sive discrete-time formalism of cell division control and a
continuous-time description based on hazard-rate functions,
showing the impact on both formalisms of the observed
scaling behavior of cell sizes and doubling times. This
map connects the approaches used in Refs. [1,7,14] with
those of Refs. [6,8,10], and leads us to propose a unified
framework (with discrete-time Langevin equations) embracing
both formalisms to develop and explore effective models of
cell division. The framework has the additional advantage
of showing how parameter-poor models describing different
kinds of cell division control are possible for multiple
mechanisms.

The use of a discrete-time Langevin formalism for the
logarithmic size leads to a simple physical analogy with a
fluctuating system and guides the interpretation of the model
parameters. The same formalism also enables the applicability
of familiar concepts in the statistical physics of fluctuating sys-
tems, such as correlation, response, and fluctuation-dissipation
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relations. We anticipate that such concepts will become useful
for future studies of dividing cells in fluctuating environments.
An important extension of the present framework should
incorporate growth fluctuations. Recent studies [2,15] show
clear indications that the assumption of constant growth rate
α is an oversimplification, and that size homeostasis needs to
be understood by addressing contributions from both growth
and cell division. Possibly the most relevant result from recent
experimental work is the existence of a mechanism governed
by a single size scale. The “microscopic” origin of this length
scale is a relevant question that is not solved by any of the
mechanisms proposed in the literature.

The most important results of our study are connected to
the perturbative expansion of the model, which shows how the
unified framework defined here can lead to similar equations
to the ones introduced in Ref. [6], with the advantage of
elucidating the direct link with the hazard rate function. The
main difference is found in the dependence of the noise term
on the growth rate α. In the setting defined here, there is
no dependency, while Ref. [6] assumes a dependency (see
Sec. IV). The importance of this difference is that in the
model used here the distributions of division times collapse
as observed experimentally. The possibility to carry out this
expansion makes it possible to analyze which terms are
important to describe the experimental data. In other words,
the framework presented here can be used to compute the
next orders of the expansion, and to study hierarchically the
mechanisms leading to homeostasis. While these higher-order
terms makes the discrete Langevin equation untractable, it
has been recently shown [20], also in the context of cell-
size control [21], that discrete Langevin equations can be
approximated by analytically tractable continuous Langeving
equations.

This perturbative approach also leads to relevant insight on
the ability to distinguish different control mechanisms from
data. Overall, our results indicate that, for most if not all the
currently available experimental data sets, a linearization of
the control function g(�q) should be sufficient to describe
the main observations. Thus, for practical purposes, the linear
response regime appears to be an excellent description.

The evaluation of higher-order “anharmonic” terms is
necessary to pinpoint precise mechanisms, and depends on
an important tradeoff. On the one hand, testing sizes that
deviate a great deal from the average will show increas-
ingly detectable differences between mechanisms. On the
other hand, fewer cells have large fluctuations, reducing the
statistical power and increasing the sampling noise of such
measurements. We define the optimal fluctuation value as the
one that minimizes the error on the inferred cell-size control
mechanism. Importantly, the calculations show that when
fluctuations are rescaled by the variance of the distribution,
this optimal value is independent of the cell-size control
mechanism. Thus, we expect that different division control
functions should be distinguishable without requiring an
ad hoc number of observations. Comparing the detection
threshold with the number of observations made in available
studies, we find that at the current sampling levels, it is not
simple to distinguish the underlying mechanism of division
control from linear response, even with sophisticated tests
such as the collapse of the conditional distribution of added

size. In fact, our results support the view that, given the
current experimental resolution, the adder model should be in
most cases indistinguishable from its linearization. This poses
important caveats on the interpretation of measured trends as
“microscopic” mechanisms of size control.

We propose the method developed in Fig. 5(b) as an effec-
tive way, applicable to empirical data, to test for deviations
from the behavior of the linearized model, which should work
with sampling levels that can be attained experimentally with
existing approaches. We are currently working on extending
this approach using Bayesian statistics and producing reliable
statistical estimators of the relevant parameters (λ and γ ) of
the division control function.
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APPENDIX A: COLLAPSE OF THE INITIAL SIZE AND
DOUBLING TIME DISTRIBUTIONS

This section discusses the implications of the observed
collapse of doubling time and initial size distributions on the
division rate function hd .

The initial size distribution p∗
b(x0|α) in a given condition

characterized by mean growth rate α is given by

p∗
b(x0|α) = 2

∫ +∞

0
dx ′

0 θ (2x0 − x ′
0)p∗

b(x ′
0|α)p(2x0|x ′

0,α),

(A1)
where θ (·) is the Heaviside function.

The collapse of initial sizes implies that p∗
b(y|α) = p∗

b(y) is
independent of α, with y = x0/〈x0〉α . Imposing this condition
in Eq. (A1) implies that

p∗
b(y) = 2

∫ ∞

0
dy ′ θ (2y − y ′)p∗

b(y ′)p(2y|y ′,α). (A2)

This equation immediately shows that a necessary and
sufficient condition for the collapse is that the conditioned
distribution does not depend on α, i.e.,

p(yf |y0,α) = p̃(yf |y0). (A3)

The division rate function hd (x,x0) is related to the above
conditioned distribution by the following equation:

hd (x,x0,α) = − log
∫ x

x0

dz p(z|x0,α)

= − log
∫ x/〈x0〉α

x0/〈x0〉α
dy p̃(y|x0/〈x0〉α). (A4)

The collapse of initial size distributions is therefore equivalent
to collapse of the division hazard rate when rescaled by mean
initial sizes, i.e.,

hd (x,x0,α) = h̃

(
x

〈x0〉α ,
x0

〈x0〉α

)
. (A5)
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We now consider the collapse of doubling-time distribu-
tions. The conditioned distribution for final sizes can be written
as

p(xf |x0,α) = p̃(
xf

〈x0〉α ,
x0

〈x0〉α ) = p̂

(
xf

x0
,

x0

〈x0〉α

)
. (A6)

Since log(xf /x0) = ατ , the above expression, combined with
Eq. (A3), implies the following condition for the collapse of
the distribution of doubling times:

αp∗
t (τ |x0,α) = p̂

(
ατ,

x0

〈x0〉α

)
. (A7)

The joint collapse of the distribution of doubling times and
initial cell sizes impose conditions on size control. In other
words, a control of cell division obeying to the condition
described in Eqs. (A3) and (A7) will generate universal size
and doubling-time distribution.

In particular, a necessary condition for this to hold is that
the product of the mean doubling time and the mean growth
rate α〈τ 〉α does not depend on the mean growth rate in a given
condition α.

APPENDIX B: FULL DERIVATION OF THE MAPPING
BETWEEN DISCRETE-TIME LANGEVIN EQUATION

AND DIVISION HAZARD RATE

This section shows in full generality the mapping between
a discrete-time Langevin formalism and the corresponding
division hazard rate.

The discrete equation for the logarithm of the initial size
is

q(i + 1) = 〈q0〉α + g(q(i) − 〈q0〉α) + η(q(i) − 〈q0〉α), (B1)

where

g(q0 − 〈q0〉α) =
∫

dq ρ(q|q0,α)q − 〈q0〉α − log(2), (B2)

while η is a random variable with distribution ρ(q − 〈q0〉α −
log(2) − g(q0 − 〈q0〉α)|q0,α).

Using Eq. (2) we can write

g(q0 − 〈q0〉α) =
∫ ∞

x∗eq0

dx p(x|x∗eq0 ,α) log
( x

x∗
)

−〈q0〉α − log(2), (B3)

and introducing Eq. (6) we obtain

g(q0 − 〈q0〉α)

=
∫ ∞

x∗eq0

dx

{
− d

dx
exp

[∫ x

x0

ds hd (s,x0,α)

]}
× log

( x

x∗
)

− 〈q0〉α − log(2)

= − exp

[∫ x

x∗eq0

ds hd (s,x0,α) log
( x

x∗
)]∣∣∣∣∞

x=x∗eq0

+
∫ ∞

x∗eq0

dx exp

[∫ x

x0

ds hd (s,x0,α)

]
1

x

−〈q0〉α − log(2), (B4)

and the final expression reads

g(q0 − 〈q0〉α)

= q0 − 〈q0〉α +
∫ ∞

x∗eq0

dx

x

× exp

[∫ x

x∗eq0

ds hd (s,x∗eq0 ,α)

]
− log(2). (B5)

The hazard rate function cannot be derived from Eq. (B1)
without specifying the form of the noise η(q(i) − 〈q0〉α).
Assuming that the distribution of the noise is Gaussian, we
obtain

�q0(i + 1) = g[�q0(i)] + σ [�q0(i)]ξ, (B6)

where ξ in this expression is a Gaussian random variable of
zero mean and unit variance and σ (·) a proper function of
�q0(i) = q0(i) − 〈q0〉α . The division probability at log-size q

given and initial log-size q0 is therefore

ρ(q|q0,α) = 1√
2πσ (q0 − 〈q0〉α)

× exp

[
− (q − 〈q0〉α − g(q0 − 〈q0〉α))2

2σ (q0 − 〈q0〉α)2

]
, (B7)

using the fact that

hd (x,x0,α) = − d

dx
log P0(x,x0,α),

where

P0(x,x0,α) =
∫ x

x0

dz p(z|x0,α),

we obtain that

hd (x,x0,α) = − d

dx
log

∫ x

x0

dy p(y|x0,α) = −dq

dx

d

dq
log

∫ q

q0

dp ρ(p|q0,α)

= − 1

x

d

dq
log

1

2

{
1 − Erf

[
q − 〈q0〉α − g(q0 − 〈q0〉α)√

2σ (q0 − 〈q0〉α)

]}∣∣∣q=log(x/x∗)

q0=log(x0/x∗)
, (B8)

where the error function Erf is defined as

Erf(x) := 2√
π

∫ x

0
dt e−t2

.
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We finally obtain

hd (x,x0,α)

= 1

x

{
gσ

[
q − 〈q0〉α − g(q0 − 〈q0〉α)√

2σ (q0 − 〈q0〉α)

]}∣∣∣∣q0=log(x0/x
∗)

q=log(x/x∗)

,

where

gσ (y) = 1√
2πσ

exp(−y2)

1 − Erf(y)
.

In the next session we show the explicit calculation in the case
of linear g(·) and constant σ (·).

APPENDIX C: DIVISION RATE FOR
LINEARIZED MODEL

As explained in the main text, one can linearize Eq. (B1)
around its equilibrium, obtaining

q0(i + 1) = 〈q0〉α + (1 − λ)[q0(i) − 〈q0〉α] + σξ. (C1)

In this case, the Eq. (B8) in Appendix B reads

hd (x,x0,α) = 1

αx
gσ

(
1√
2σα

log
x

x
(1−λ)
0 x∗λ

)
.

APPENDIX D: CONDITIONS FOR STATIONARITY

This section discusses under which conditions Eq. (10)
admits a well-defined stationary size distribution. The scaling
of stationary distribution is the only assumption that we
used to derive Eq. (10). Any division control must, by
definition, regulate sizes and stabilize size fluctuations. A
necessary condition is therefore that the deterministic equation
corresponding to Eq. (10) has a fixed point and that fixed point
is (at least) locally asymptotically stable.

The fixed point of the deterministic part of Eq. (10) is
a solution of the equation q∗ = 〈q0〉α + g(q∗ − 〈q0〉α). This
fixed point is asymptotically locally stable if and only if∣∣∣∣∣

(
dg

dq

∣∣∣∣
q=q∗

)∣∣∣∣∣ = |1 − λ| < 1. (D1)

This condition is necessary, but not sufficient to guarantee
stationarity of the process.

More generally, the deterministic part of Eq. (10) implies
that the equilibrium is unique and globally stable if and only
if |g(�q)| < |�q| for any �q, where �q0(i) = q0(i) − 〈q0〉α .
In particular, if the the function g(·) is monotonic and has only
one fixed point that is locally stable, then that fixed point is
globally stable. This property sets a minimal condition that
division control has to fulfill to guaranty stationarity of cell-
size distribution. If the fixed point was not globally stable, then
a large enough fluctuation would not be corrected by feedback
control. When the stochasticity is taken into account, since the
noise in Eq. (10) can be multiplicative, global stability does
not guarantee stationarity of the size distribution in general.
On the other hand, the requirement of having a stationary
distribution is not necessarily biologically relevant and is not
needed to have homeostasis. The basin of attraction of the fixed
point �q = 0 is determined by the values of �q such that
|g(�q)| < |�q|. What is relevant for homeostasis is that the

basin of attraction determined by g()̇ is large enough compared
to the typical fluctuations. This would guarantee that most of
the cells are able to control fluctuation of their size, and loss
of control is a rare event.

To characterize the effect of multiplicative noise on the
existence of a stationary size distribution, we study a general
expansion of σ [�q0(i)] in Eq. (11),

�q0(i + 1) = (1 − λ)�q0(i) + (σ + β�q0(i))ξ, (D2)

where β = σ ′(0). If β = 0, then this process guarantees
homeostasis for any |1 − λ| < 1. In the case β �= 0, one can
write recursive equations for the moments of the distribution of
sizes, given an arbitrary initial condition. The equation for the
mean corresponds, obviously, to the deterministic equation.
The recursive equation for the variance reads

〈�q0(i + 1)2〉 = (1 − λ)2〈�q0(i)2〉 + σ 2 + β2〈�q0(i)2〉
+ 2σβ〈�q0(i)〉. (D3)

Starting from a deterministic initial condition �q0(0), using
the result of Eq. (13) and solving the recursive equation one
can obtain the time evolution of the variance. In the case of
�q0(0) = 0 it reads

〈(q0(n) − 〈q0〉α)2〉 = σ
1 − ((1 − λ)2 + β2)n

λ(2 − λ) − β2
. (D4)

It is simple to see that the variance converges to a constant
if and only if (1 − λ)2 + β2 < 1, i.e., β2 < λ(2 − λ). In case
of multiplicative noise, the stationarity of the size distribution
depends, in a nontrivial concerted way, from both the strength
of control and the magnitude of the noise.

APPENDIX E: SOLUTION OF THE LINEARIZED MODEL

In this section we discuss the solution of the linearized
model defined by the discrete Langevin equation

�q0(i + 1) = (1 − λ)�q0(i) + σξ. (E1)

This equation defines the distribution of initial size at genera-
tion i + 1 given the one of generation i as

ρi+1(�q) =
∫ ∞

−∞
d�q ′ ρi(�q ′)�

(
�q − (1 − λ)�q ′

σ

)
,

(E2)

where �(·) is a Gaussian distribution with zero mean and unit
variance. One can iterate this equation, and, exploiting the fact
that the Gaussian is stable under convolution, one obtains

ρi+1(�q) =
∫ ∞

−∞
d�q ′ ρ0(�q ′)�

×
⎛⎝ �q − 〈�q(i)〉�q ′√

〈�q(i)2〉�q ′ − 〈�q(i)〉2
�q ′

⎞⎠, (E3)

where 〈�q0(i)〉�q ′ is the average of �q at generation i given
that the initial log-size displacement at the first generation
i = 0 was �q ′. In order to have an explicit equation, we need
just to calculate the 〈�q0(i)〉�q(0) and 〈�q0(i)2〉�q(0).
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The mean displacement can be calculated by solving

〈�q0(i + 1)〉�q(0) = (1 − λ)〈�q0(i + 1)〉�q(0) + σξ, (E4)

with initial condition �q0(0). The solution reads

〈�q0(n)〉�q(0) = �q(0)(1 − λ)n. (E5)

A similar equation can be written for the second moment,

〈�q0(i + 1)2〉�q(0) = (1 − λ)2〈�q0(i)2〉�q(0) + σ 2, (E6)

whose solution is

〈�q0(n)2〉�q(0) = σ 2 1 − (1 − λ)2n

λ(2 − λ)
+ (1 − λ)2(n−1)�q(0)2.

(E7)

Therefore, we finally obtain

〈�q0(n)2〉�q(0) − 〈�q0(n)〉2
�q(0)

= σ 2 1 − (1 − λ)2n

λ(2 − λ)
+ (1 − λ)2n λ(2 − λ)

(1 − λ)2
�q(0)2. (E8)

By taking the limit n → ∞ of Eq. (E7) we obtain the
stationary variance, which reads

σ 2
q = σ 2

λ(2 − λ)
. (E9)

The stationary distribution is therefore

ρ∗
b (q) = 1√

2πσ 2
q

exp

(
− (q − 〈q0〉α)2

2σ 2
q

)
, (E10)

and therefore the one of the sizes at birth is

p∗
b(x0) = 1√

2πσ 2
q x0

exp

(
− (log(x0/x

∗) − 〈q0〉α)2

2σ 2
q

)
,

(E11)
which has mean

〈x0〉α = x∗e〈q0〉α+σ 2
q /2, (E12)

and variance

σ 2
x0

= (x∗)2e2〈q0〉α(eσ 2
q − 1

)
eσ 2

q . (E13)

The coefficient of variation of the size at birth is defined as

cv2
x = σ 2

x0

〈x0〉2
α

= (
eσ 2

q − 1
)
, (E14)

and therefore we have

σ 2
q = log

[
1 +

(
σx0

〈x0〉α

)2
]
. (E15)

APPENDIX F: PERTURBATIVE EXPANSION
AND IDENTIFICATION OF PARAMETERS

FOR THE ADDER MODEL

An adder mechanism of division control corresponds to a
division probability of the form

p(xf |x0,α) = Fα(xf − x0). (F1)

Using the scaling of the stationary distributions of Eq. (A6),
we obtain

Fα(xf − x0) = p(xf |x0,α) = 1

〈x0〉α F

(
xf − x0

〈x0〉α

)
. (F2)

This equation is consistent with the collapse of the probabilities
of added size as observed in Ref. [5].

The hazard rate h(z) for the adder model can be easily
obtained using

F (z) = h(z) exp

[∫ z

0
h(y)dy

]
. (F3)

By inverting this equation, one obtains that

h(z) = d

dz
log

[∫ z

0
F (y)dy

]
. (F4)

By using Eq. (B2) and introducing q = log(x/x∗), one
obtains the functional form of g(·),

g(q0 − 〈q0〉α) =
∫

dx p(x|x∗eq

0 ,α) log(x/x∗)

−〈q0〉α − log(2), (F5)

and, by introducing the scaling of Eq. (F4), this expression
reads

g(q0 − 〈q0〉α) = 1

〈x0〉α

∫
dx F

(
x − x∗eq0

〈x0〉α

)
log(x/x∗)

−〈q0〉α − log(2)

= ce−〈q0〉α
∫

dxF

(
x

〈x0〉α − ceq0−〈q0〉α
)

× log(x/x∗) − 〈q0〉α − log(2)

=
∫

ds F (s − ceq0−〈q0〉α ) log(s) − log(2)

=
∫

dz F (z) log(z + ceq0−〈q0〉α ) − log(2),

(F6)

leading to the final expression,

g(q0 − 〈q0〉α)

= q0 − 〈q0〉α +
∫

dz F (z) log

(
c + ze〈q0〉α−q0

2

)
, (F7)

where the variable c = 〈q0〉α − log(〈x0) can be estimated by
imposing g(0) = 0. Under this condition, c is defined as the
solution of ∫

dz F (z) log

(
c + z

2

)
= 0. (F8)

In a similar way, the value of the control parameter λ can
be obtained from the following equation:

λ = 1 − g′(0) =
∫

dz F (z)
z

c + z
. (F9)

Since the value of λ appears as first order in an expansion
around the mean initial logarithmic cell size, we can neglect
size fluctuations in calculating its value, since they correspond
to subleading terms. Note, however, that these subleading
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terms have to be considered when other terms than the first
order are included in the expansion. Since in the adder model
〈xf − x0〉 = 〈x0〉, we have (up to subleading terms) from
Eq. (F4)

〈z〉 =
∫

dz F (z)z = 1. (F10)

Therefore, by neglecting fluctuations in Eq. (F8), i.e., by
imposing F (z) = δ(z − 1), we obtain c = 1 and therefore
λ = 1/2. In case we are also considering quadratic term in the
expansion of g()̇, we should include also a correction on this
value, by a factor that depends on the variance of the added size.

In the following we consider an explicit case of the adder
model. We assume that p(xf |x0,α) is a log-normal distribution,
which corresponds to

F (z) = 1√
2πzσa

exp

[
− (log z)2

2σ 2
a

]
. (F11)

We have, therefore, 〈z〉 = exp(σ 2
a /2) and

〈z2〉 − 〈z〉2 = e2σ 2
a − eσ 2

a .

By introducing this expression in Eq. (F7) we obtain

g(q) = q +
∫

dz
1√

2πzσa

exp

(
− (log z)2

2σ 2
a

)
× log

(
c + ze−q

2

)
. (F12)

By expanding this expression up to second order in q, we
obtain

g(q) ≈ q

〈
c

c + z

〉
+ q2

2

〈
cz

(c + z)2

〉
. (F13)

Assuming that the fluctuations are small, it is natural to expand
the terms in z around z = 〈z〉. Equation (F8) then reduces to

0 =
〈
log

c + z

2

〉
≈ log

c + 〈z〉
2

+
〈
(z − 〈z〉)2

〉
2(c + 〈z〉))2

≈ log
c + 1

2
+ σ 2

z

2(1 + c)
, (F14)

and therefore

c ≈ 1 − σ 2
z

4
. (F15)

Expanding Eq. (F13) around 〈z〉, and introducing the explicit
dependence on σz, we obtain

g(q) ≈ q

(
1

2
− σ 2

z

16
+ o

(
σ 4

z

)) + q2

2

(
1

4
+ o

(
σ 2

z

))
, (F16)

which corresponds to λ = 1/2 + σ 2
z /16.

In a similar way, it is possible to estimate the variance of
the noise term in the discrete Langevin formalism

σ (q0 − 〈q0〉α)2 =
∫

dx p(x|x∗eq

0 ,α)[log(x/x∗) − 〈q0〉α

− log(2)]2 − g(q0 − 〈q0〉α)2, (F17)

and, by substituting for F (z) in this expression,

σ (q)2 =
∫

dx F (z)

[
q + log

(
c + ze−q

2

)]2

− g(q0 − 〈q0〉α)2. (F18)

By expanding it up to the first order, on obtains

σ (q)2 ≈
〈[

log

(
c + z

2

)]2
〉

+ q

〈
2c log

(
c+z

2

)
c + z

〉
. (F19)

We can calculate explicitly the two terms in the case of a
log-normal F (z) in the limit of small σz, and we obtain

σ (q)2 ≈ σ 2
z

4
− σ 2

z

4
q, (F20)

and finally

σ (q) ≈ σz

2
− σz

4
q. (F21)

In general, a log-normal distribution does not result from
a discrete-time Langevin process with a normal noise as in
Eq. (11). On the other hand, since we are expanding for small
fluctuations, the errors made approximating it with a normal
noise are subleading. Using the notation

�q(i + 1) = (1 − λ)�q(i) + γ
[�q(i)]2

2
+ [σ + β�q(i)]ξ,

(F22)

we have that, for the adder model,

λ = 1

2
+ σ 2

z

16
+ o

(
σ 3

z

)
,

γ = 1

4
− σ 2

z

16
+ o

(
σ 3

z

)
,

σ = σz

2
+ o

(
σ 2

z

)
,

β = −σz

2
+ o

(
σ 2

z

)
. (F23)
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