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ABSTRACT

Motivation: The discovery of regulatory pathways, signal cascades,

metabolic processes or diseasemodels requires knowledge on individ-

ual relations like e.g. physical or regulatory interactions between

genes and proteins. Most interactions mentioned in the free text of

biomedical publications are not yet contained in structured databases.

Results: We developed RelEx, an approach for relation extraction

from free text. It is based on natural language preprocessing producing

dependency parse trees and applying a small number of simple rules to

these trees. We applied RelEx on a comprehensive set of one million

MEDLINE abstracts dealing with gene and protein relations and

extracted ~150000 relations with an estimated perfomance of both

80% precision and 80% recall.

Availability: The used natural language preprocessing tools are free

for use for academic research. Test sets and relation term lists are avail-

able from our website (http://www.bio.ifi.lmu.de/publications/RelEx/).

Contact: katrin.fundel@bio.ifi.lmu.de

1 INTRODUCTION

Most biological facts are available only in the free text of scientific

articles. For information integration or combination with other types

of data, these facts have to be extracted from the scientific literature.

Information on relations or interactions between genes and pro-

teins is of interest for generating network models of regulatory

or metabolic pathways. Various approaches for relation extraction

have been applied to the biomedical domain. The simplest approach

is the detection of co-occurrences of entities from within sentences

or abstracts (Ding et al., 2002; Jelier et al., 2005; Jenssen et al.,
2001). It relies on the hypothesis that entities which are repeatedly

mentioned together are somehow related. Extracted relations

exhibit high sensitivity but very low specificity. Generally, the

type and direction of the relation cannot be determined. Pattern-

based extraction approaches (Blaschke et al., 1999; Blaschke and

Valencia, 2001; Leroy and Chen, 2002; Ono et al., 2001) were set up
to increase specificity, yet they achieve significantly lower recall.

Other approaches analyze the underlying sentences in more detail

and apply natural language processing (NLP), i.e. analysis of sen-

tence syntax and semantics, typically implemented in complex pro-

prietary software systems. Relation extraction algorithms can also

be classified by the way the extraction rules are obtained, they can

be manually defined (Divoli and Attwood, 2005; Saric et al., 2006;
Thomas et al., 2000; Yakushiji et al., 2001) or learned from large

annotated training corpora (Hakenberg et al., 2005; Huang et al.,
2004).

Besides performance criteria, approaches might also be evaluated

whether they (1) are available or simple enough so that they can be

reproduced, (2) fully disclose the validation procedures and data-

sets, (3) are able to process publication abstracts in the order of

millions in reasonable time, (4) can deal with the human/mammal

domain, characterized by complex gene and protein names

and complex sentences, (5) annotate genes/proteins involved in

interactions with database identifiers so that external information/

data can be mapped and (6) cover a broad spectrum of relation types.

Most of the existing approaches for relation extraction violate one or

more of these criteria.

We developed RelEx, which conforms to all of the above criteria.

It shows very good performance despite its simplicity. It uses a

small set of simple rules, building upon publicly available tools

applied for part-of-speech-tagging, noun-phrase-chunking and

dependency.

As an extension to standard relation extraction pipelines, we

propose the use of dependency parse trees (Klein and Manning,

2002, 2003; Mel’cuk, 1988) as a means for biomedical relation

extraction. Dependency parse trees reveal non-local dependencies

within sentences, i.e. between words that are far apart in a sentence.

Sentences of biomedical texts tend to be long and complicated and

frequently mention a number of possible effectors and effectees.

Dependency parse trees provide a useful structure for the sentences

by annotating edges with dependency types, e.g. subject, auxiliary,

modifier.

Although our approach is not restricted to particular kinds of

interactions, we currently focus on physical, genetic and regulatory

relations between genes and proteins.

2 METHODS

The RelEx work-flow (Figure 1) extracts directed qualified relations starting

from free-text sentences. RelEx requires a synonym dictionary (Fundel and

Zimmer, 2006) containing gene and protein names, and a list of restriction-

terms1 that are used to describe relations of interest.

2.1 Text preprocessing

Sentences are part-of-speech (POS)-tagged by MedPost2 (Smith et al., 2004)

and noun-phrase chunks are identified by fnTBL3 (Ngai and Florian, 2001).

The POS-tagged sentences are submitted to the Stanford Lexicalized Parser4

(Version 1.5) (Klein and Manning, 2002, 2003) which generates a depen-

dency parse tree (Figure 2, upper panel) for each sentence and assigns word

�To whom correspondence should be addressed.

1http://www.bio.ifi.lmu.de/publications/RelEx/
2ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost/medpost.tar.gz
3http://nlp.cs.jhu.edu/~rflorian/fntbl/
4http://nlp.cs.jhu.edu/~rflorian/fntbl/
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positions to each word. Gene and protein names are identified by ProMiner

(Hanisch et al., 2005) based on matching to a synonym dictionary (Fundel

and Zimmer, 2006). If a noun-phrase chunk contains only a part of a multi-

word gene or protein name, the chunk is expanded to contain the complete

name. For each chunk, the corresponding nodes in the dependency tree are

combined into a chunk-node returning a simplified chunk dependency tree

(Figure 2, lower panel).

2.2 Relation extraction

RelEx creates candidate relations by extracting paths connecting pairs of

proteins from dependency parse trees. These paths should contain just

the relevant terms describing the relation between the given pair of proteins.

Currently, we use three rules that reflect the constructs that are most fre-

quently used in English language for describing relations, namely:

(1) effector-relation-effectee (‘A activates B’)

(2) relation-of-effectee-by-effector (‘Activation of A by B’)

(3) relation-between-effector-and-effectee (‘Interaction between A

and B’).

Rule 1 (e.g. in Figure 2) extracts paths in the chunk dependency tree that

lead from a start-point (generally the effector) to an end-point (generally the

effectee). If the chunk dependency tree contains one or more subject-

dependencies (nsubj or nsubjpass), the tree is split so that the parent of

each subject-dependency becomes the root of a partial tree, i.e. each

resulting partial tree has exactly one subject-dependency. The chunks

with an incoming edge labeled as subject-dependency are marked as poten-

tial start-points. Starting from these, RelEx constructs paths towards the

other gene/protein-containing chunks (potential end-points). If the depen-

dency tree does not include any subject-dependencies all pairs of gene names

containing noun-phrase chunks are potential start- and end-points and thus

candidate interaction pairs. For each potential start and end-point, the path

connecting these two noun phrase chunks is extracted from the chunk depen-

dency tree.

Some of the paths generated by rule 1 are not valid or need to be revised,

which is automatically detected and accomplished as follows. A path is

invalid if it contains a term occurring after the noun phrase chunk of the

end point in the sentence, unless the respective term is contained in the least

common ancestor node of the start and end chunk or is part of an enumera-

tion (see below) with the end chunk. This restriction has been found to

reduce the number of false paths, especially for long and complex sentences.

It reflects that verbs andmodifying terms usually occur before the object they

refer to.

A path needs to be revised if it contains two nodes tagged as verbs

between the least common ancestor and the end node, which are directly

linked to each other by a and, but or whereas dependency. In this case the

first verb is removed from the path, as it is frequently not relevant for the

given path but refers to another child node. This applies for instance to

‘Protein A binds B and inhibits C’ where ‘binds’ is not relevant for the

interaction between ‘A’ and ‘C’.

Fig. 1. Thework-flowofRelEx is subdivided into preprocessing, relation extraction and relation filtering leading from the original free-text sentences to directed,

qualified relations. Preprocessing is based on publicly available tools and named entity identification. Candidate relations are extracted according to rules applied

on chunk dependency trees and original sentences, and subjected to filtering steps.
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Rule 1 applied on the sentence ‘This indicates that the yvyD gene product,

being a member of both the sigmaB and sigmaH regulons, might negatively
regulate the activity of the sigmaL regulon.’ extracts the parts marked in

italics as candidate relation.

Rule 2a extracts the longest paths through the tree that contain only noun

phrase chunks as nodes and dependencies of the types of, by, to, on, for, in,
through, with. The paths containing at least one of these dependencies

between two protein containing chunks are retained as candidate relations

(e.g. Figure 3, left panel).

Rule 2b is similar to Rule 2a, but is applied directly on the chunked

sentences. The longest sequences of chunks that are connected by the

terms of, by, to, on, for, in, through, with is extracted. A sequence is retained

as candidate relation if it contains at least two of these terms and at least one

between two chunks each containing at least one protein. Rule 2 extracts

relations described like ‘Dephosphorylation of SpoIIAA-P by SpoIIE’ or

‘sigmaK-dependent transcription of gerE’.

Rule 3 extracts two noun phrase chunks connected by a dependency of the
type between provided that the successor in the tree contains the word and or

has a dependent noun phrase chunk, which is connected via an and depen-

dency (e.g. Figure 3, right panel). In the latter case, the dependent noun

phrase chunk is included in the candidate relation. This rule extracts relations

described like ‘the physical association between EGFR and p185c-neu’.
The set of rules can easily be adapted or expanded to extract other types

of relations. If, e.g. annotations for individual genes and proteins are sought,

the apposition dependency is useful as it frequently points from an entity

to a description of this entity (e.g. Spo0A-P appos
�! a major transcription

factor).

2.3 Relation filtering and post-processing steps

2.3.1 Negation check A relation is said to be negated if a node in the

candidate relation or one of the respective child nodes contains a negation

word (no, not, nor, neither,without, lack, fail(s,ed), unable(s), abrogate(s,d),

absen(ce,t)). Currently, negated relations are excluded from further analysis.

2.3.2 Effector-effectee detection Generally, the named entity appear-

ing first in the extracted relation, i.e. with the smaller sentence position, is

assumed to be the effector of the relation while the second named entity is

assumed to be the effectee. The roles are switched if some form of passive

construct is detected, i.e. if an expression listed in Table 1 matches the

Fig. 2. Upper panel: Dependency parse tree as derived from the Stanford Lexicalized Parser, showing words (ellipses) assigned with word positions (numbers

appended to words), dependencies (edges pointing from the head of a dependency to the dependent word), dependency types (rectangles) and the head of the

sentence (Root). Lower panel: Corresponding chunk dependency tree that groups the words into noun phrase chunks (framed ellipses). Words marked in bold

indicate gene/protein names, thick grey edges indicate paths that are extracted by Rule 1.

Relation extraction using parse trees
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relation and is preceded by a verb, noun or adjective ending on -t, -d, -ion, -

ing. For the word by the roles are only switched if by is not followed by one

of the words time, times, fold or by a verb ending on -ing.

2.3.3 Enumeration resolution Noun phrase chunks connected to

each other by a and, or, nn, det, or dep dependency form an enumeration.

If a noun phrase chunk contains more than one protein name, these are

considered to describe alternative agents/targets. For all candidate relations

all gene/protein name containing chunks are analyzed for alternatives from

enumerations and chunks containing several protein names. Variants of the

candidate relation are generated so that one relation per alternative gene/

protein name at each respective position is generated.

2.3.4 Restricting candidate relations to focus domain The words

contained in candidate relations are checked against a set of relation restric-

tion terms. This list reflects the types of relations that are in the focus of

interest, it contains terms that are typically used to describe a relation, most

importantly interaction verbs and derived nouns and adjectives. Here, we

focus on physical, regulatory and genetic interactions; we compiled a list of

1048 restriction terms with 157 distinct word-stems. A candidate relation is

retained if it contains at least one relation term.

3 DATASETS

3.1 Learning language in logic (LLL) dataset

The task of the LLL challenge 2005 (Nédellec, 2005) was to extract

genic interactions of the types action, regulon, binding and promoter

from a set of sentences concerning Bacillus subtilis transcription.
Participating groups focused on machine learning approaches. The

task required identification of genes/proteins that interact and their

roles, i.e. agent or target, together with their position within a sen-

tence. The provided data consists of a synonym dictionary for genes/

proteins, a training set (55 sentences and 103 interactions) and a test

set (80 sentences and 54 interactions). The organizers provided an

evaluation script for the training set, and a website for evaluation of

the results on the test set.

3.2 Large-scale application

The comprehensive subset of �1 million MEDLINE abstracts deal-

ing with human gene and protein interactions from 1990 or newer

[for details see (Küffner et al., 2005)] and a synonym dictionary

(Fundel and Zimmer, 2006) containing 338 824 synonyms for

27 141 human genes and proteins were used for large-scale relation

extraction.

3.3 Manually annotated subset of large-scale dataset

We randomly selected a subset of 50 abstracts (called hprd50)

referenced by the Human Protein Reference Database (HPRD)

(Peri et al., 2004). Direct physical interactions, regulatory relations,
as well as modifications (e.g. phosphorylation) were manually anno-

tated by two annotators with biochemical background (authors

K. Fundel and R. Küffner). The consensus contains 138 relation

instances (i.e. pairs of genes/proteins with abstract and sentence

identifier), corresponding to 92 distinct relations in abstracts (i.e.

pairs of genes/proteins with abstract identifier). The inter-annotator

agreement was 81% (determined as the intersection of annotated

relations divided by the total number of relations) which corre-

sponds to a F-measure of 89% (considering one of the annotations

as standard of truth and evaluating the other against it).

3.4 Evaluation criteria

For evaluation, a relation instance rel is defined as follows:

relsen: a pair of interacting proteins/genes in a sentence

relabs: a pair of interacting proteins/genes in an abstract

Fig. 3. Dependency parse trees: examples of sentences and chunk dependency parse tree representations for which rules 2 (left panel) or 3 (right panel) extract

paths marked by thick gray edges.

Table 1. Effector-effectee detection: terms indicating switched roles, i.e. the

named entity with the smaller sentence position is assumed to be the effec-

tee and the named entity with the larger sentence position is assumed to be

the effector of the relation

Single words by, after, with, if, once, require, requires, when, through

Multi-word

expressions

due to, in case, provided that, (effect, result, member)

of, in response to, (in,under) control of,

depend(s,ed,ent) on

K.Fundel et al.
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relLLL: a pair of interacting proteins/genes in a sentence, with defined
direction of interaction and sentence position of interactor and

interactee.

Results were evaluated in terms of recall R (proportion of known

positives identified), precision P (proportion of results known to be

true positives), and F-measure F [harmonic mean of precision and

recall; F ¼ 2PR/(P +R)].
The three definitions of a relation instance correspond to three

evaluation criteria. The most generally applied criterion is relsen.
relabs is useful for comparing manually annotated or RelEx relations

against interactions in public databases (e.g. HPRD), which do not

provide sentence information. relabs is less stringent than relsen as an
interaction might be mentioned in several sentences within an

abstract. relLLL is the most stringent criterion as direction and sen-

tence position needs to be defined; this criterion has been used for

the LLL-challenge dataset, which is annotated with the required

details and only contains directed interactions. The co-occurrence

results (coocsen: all pairs of co-occurring genes/proteins identified

by ProMiner (Hanisch et al., 2005) within a sentence are assumed to

interact) indicate the maximum recall that can be achieved by a

relation extraction approach working on individual sentences, given

the method for gene name identification.

4 RESULTS AND DISCUSSION

4.1 Evaluation on LLL challenge data

4.1.1 Evaluation with LLL-challenge criteria (relLLL) Evalua-

tion results obtained on the LLL-challenge dataset (Figure 4,

F 75%, R 83%, P 68% on the training set; F 72%, R 78%,

P 68% for the basic test set) show that RelEx returns relations

with significantly higher recall and precision than the approaches

previously applied for the LLL-challenge [F 51.8%, R 53.8%,

P 50.0% for the basic and F 54.3%, R 53.0%, P 55.6% for the

linguistically enriched test set (Nédellec, 2005)].

4.1.2 Evaluation with standard criteria (relsen) Table 2 shows

the evaluation results with standard criteria (i.e. instances of gene/

protein pairs in sentences). For comparison, this table also contains

precision and recall that would be achieved by co-occurrence

extraction. With RelEx, 78–85% of the relations that are found

as co-occurrence are extracted as relations. These numbers corre-

spond to inter-annotator agreement for the recognition of gene

names and biomedical annotations, which has been shown to be

in the range of 69–91% (Colosimo et al., 2005) and 70–80%

(Wilbur et al., 2006). For both datasets (LLL and hprd50) RelEx

achieves significantly higher precision and thus F-measure than

co-occurrence-search.

4.1.3 Analysis of errors The usage of publicly available prepro-

cessing tools clearly causes RelEx to depend on the quality of the

applied tools. The detailed analysis of the results on the hprd50

dataset indicates the most prominent sources of error: out of 28 false

positive relations, nine relations were generated by the rules not

being specific enough or constructs not being correctly resolved,

eight describe undesired types of relations (e.g. homology, part of

and similarity), six were generated from sentences where a POS-

tagging error occured and four were generated from sentences

where the detected gene/protein name actually does not refer to

a gene/protein but forms part of a cell name or description of an

experimental technique.

Out of 31 false negative relations, eight are described by a word-

ing that is not covered by the applied rules (e.g. ‘a and b are

receptors that interact’, ‘a and b form a complex’), eight relations

are described in sentences which contained POS-tagging errors,

four false negatives were due to anaphora (e.g. ‘which’, ‘these

proteins’), which RelEx currently does not resolve, four relations

were not detected due to erroneous subordinate clause attachment

produced by the dependency parser, in two cases the relevant rela-

tion terms were not contained on the candidate relation paths and in

another two cases relations were not extracted due to noun phrase

chunks erroneously being split up.

MedPost is a part-of-speech-tagger that has been designed spe-

cifically for biomedical texts and generally works very well. The

errors mentioned above were due to verbs being annotated as adjec-

tives (in two sentences), verbs being annotated as nouns (in two

sentences), and a noun being annotated as verb (one sentence). The

dependency parser is sensitive to errors in POS-tagging; tagging

errors lead to significantly altered parse trees. As the respective

sentences contain several relations, tagging errors lead to several

false positive as well as false negative relations.

Fig. 4. Evaluation results on the LLL-challenge datasets evaluated with the

criteria applied in the challenge (relLLL).

Table 2. Evaluation of RelEx [relsen, i.e. instance: pair of genes/proteins with
sentence identifier, cooc: sentence co-occurrences]

LLL hprd50

Sentences 55 88

Co-occurrences (coocsen) 216 294

Relations (relsen) 97 138

cooc RelEx cooc RelEx

Recall (%) 100 85 100 78

Precision (%) 46 79 47 79

F-measure (%) 63 82 64 78

Relation extraction using parse trees
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The detailed analysis of the effector-effectee detection on the

LLL training data showed that in five cases the assigned direction

was wrong due to a construct not contained in our list of expressions

(Table 1), e.g. ‘the bmrUR operon is under sigmaB control’.

4.2 Large-scale application

The large-scale application of RelEx on �1 million MEDLINE

abstracts yielded a total of 731 432 extracted descriptions of rela-

tions between 149 778 distinct pairs of genes or proteins, containing

10 821 distinct genes/proteins.

These relations can be compared against HPRD, which contains

interactions that were manually extracted from MEDLINE full-text

articles. The comparison provides information with respect to dif-

ferences and overlaps of the two approaches (Table 3). A large

fraction of the HPRD interactions cannot be retrieved from the

abstracts. This is demonstrated by the analysis of co-occurrences:

only approximately half of the interactions annotated in HPRD can

be found in abstract sentences. RelEx extracts a significantly larger

number of relations from the abstracts than the number of interac-

tions contained in HPRD.

We analyzed this discrepancy by randomly selecting 50 abstracts

annotated in HPRD and annotated these manually (hprd50 dataset).

4.2.1 Comparing RelEx relations with HPRD interactions The

hprd50 dataset allows us to estimate the performance based on the

abstracts referenced by HPRD (Table 3) and thus to examine

the differences between RelEx relations and HPRD interactions.

The performance on this data set is slightly lower than on the

LLL-challenge dataset. This is in part due to several quite long

and complicated sentences. Second, the focus on human genes/

proteins represents a more difficult challenge as the multi-word

gene and protein names in certain cases impair the construction

or analysis of the parse tree.

As shown in Figure 5, many of the HPRD interactions could not

be retrieved by RelEx because they were not mentioned in the

abstracts at all. We found that a number of additional interactions

not annotated by HPRD are contained in the abstracts that exceeds

the number of HPRD interactions extracted from the full text arti-

cles. Indeed, HPRD and RelEx reported about the same number of

valid interactions per paper/abstract.

HPRD is focused on disease-related genes and thus does not yet

cover the entire gene/protein space. HPRD makes use of full text

articles, yet, abstracts and articles are not necessarily completely

annotated, i.e. only a part of the relations mentioned in an abstract or

article may be covered. Further differences to our annotation can be

explained by the observation that HPRD focuses on direct physical

protein–protein interaction data. Gene regulatory relations as well

as long-range relations are not covered. Indeed, 17 of the 26 HPRD

interactions contained in our manually annotated set were described

using just two verbs, ‘interact(s/ed/ion)’ and ‘binds/bound’. The

remaining relations contain words like ‘cross-link’, ‘coprecipi-

tated’, ‘adapter’. This indicates that HPRD uses quite stringent

annotation guidelines focused on direct physical interactions;

most of them being described with a rather limited set of words

and expressions.

Our results indicate, that HPRD, even though being a very large

and valuable source for protein interaction data, currently covers

only a small part of the human protein-protein relations from

very limited relation categories. RelEx provides complementary

information.

5 CONCLUSIONS

We developed RelEx, a tool for compiling a comprehensive set of

causal and physical protein–gene interactions from free text. RelEx

is based upon a number of publicly available tools and a simple set

of rules. Compared to other approaches it is fairly straight forward

to implement and achieves competitive performance.

RelEx is able to cope with different organism domains, which has

been validated on publicly available datasets for human and

prokaryote interactions. It can be adapted to different kinds of

relations by usage of corresponding relation restriction terms

and/or entity synonyms.

If RelEx is compared on the rather stringent criteria of the LLL

challenge dataset (Nédellec, 2005), performance is significantly

higher than previously reported results. Here, the ability is analyzed

to specifically extract relations from particular sentences. Most of

the published approaches compare themselves regarding the extrac-

tion of relations from abstracts, which is considerably relaxed com-

pared to the former criteria. Here, the RelEx performance is in the

range of existing approaches (Hu et al., 2005; Ono et al., 2001; Saric
et al., 2006). It should be noted, though, that most of the approaches

published so far were evaluated on datasets individually created by

the authors, generally focused on a very restricted set of interaction

types or descriptions (e.g. phosphorylation events). Frequently,

Table 3. Results of large-scale application of RelEx on a comprehensive

set of MEDLINE abstracts (�1 million abstracts) and comparison

against HPRD

Co-occurrences RelEx

Instances (coocsen/relsen) 3.381.602 731.432

Number interacting gene/protein pairs 359.173 149.778

HPRD - Overlap1 (%) 51 40

HPRD - Overlap2 (%) 5 8

Overlaps were determined for pairs of genes/proteins, restricted to the set of genes/

proteins common to HPRD and co-occurrence search (5925 genes/proteins), and

irrespective of the individual abstract. Overlap1: Proportion of HPRD-relations found

by co-occurrence/RelEx; Overlap2: Proportion of co-occurrences/RelEx-relations

available in HPRD.

Fig. 5. Comparison of manually annotated relations, HPRD interactions

and relations extracted by RelEx based on the hprd50 dataset (numbers

correspond to relations relabs, R: Recall).
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neither the used benchmark sets nor the software is made available.

The LLL challenge dataset can also be considered as rather small,

yet, due to its public availability it allows for comparison of meth-

ods, and, most importantly, independent evaluation.

In contrast to many other approaches, RelEx can be applied to

large corpora. We applied RelEx to �1 million abstracts (a com-

prehensive subset of MEDLINE enriched in human protein–protein

interactions) and presented some first results from this large-scale

relation extraction.We found�150 000 interacting protein pairs and

�731 000 text passages describing these interactions with an

expected recall of 78% and precision of 79%. We showed that

the number of valid interactions reported by RelEx per paper is

virtually the same compared to large scale annotation approaches

like HPRD (Peri et al., 2004) even though HPRD manually

annotates full text articles instead of just the abstracts. On the

other hand, RelEx is able to process far more abstracts and thus

yields more interactions. Nevertheless, this requires about a week

on a typical Linux cluster (40 Intel Xeon CPUs); the largest part

of this time being devoted to dependency parsing. Of course the

performance on the whole MEDLINE is difficult to judge as the

estimation is based on small hand curated benchmark sets.

Importantly, RelEx not only returns pairs of elements identified to

interact, but also assigns public database identifiers to the elements

allowing for adding further annotations to texts and objects (Szugat

et al., 2005). Thus, other data sources can be linked, enabling

network-based analysis methods taking experimental data into

account (e.g. Küffner et al., 2005; Sohler et al., 2004). The extracted
paths also provide references into abstracts and contexts for the

extracted relations. A particular path contains just the relevant

subset of terms from a sentence describing a given relation. The

paths have already been used to further classify relations as

activating/inhibitory, physical/indirect, protein–protein/protein–

gene (Küffner et al., 2006). Typed relations will help in analyzing

pathways and provide a first step in inferring regulatory cascades.
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