
RelFinder: Revealing Relationships in RDF
Knowledge Bases

Philipp Heim1, Sebastian Hellmann2, Jens Lehmann2, Steffen Lohmann3, and
Timo Stegemann3

1 University of Stuttgart, Visualization and Interactive Systems,
Universitätsstr. 38, 70569 Stuttgart, Germany

philipp.heim@vis.uni-stuttgart.de
2 University of Leipzig, Agile Knowledge Engineering and Semantic Web,

Johannisgasse 26, 04103 Leipzig, Germany
{hellmann|lehmann}@informatik.uni-leipzig.de

3 University of Duisburg-Essen, Interactive Systems and Interaction Design,
Lotharstr. 65, 47057 Duisburg, Germany

{steffen.lohmann|timo.stegemann}@uni-due.de

Abstract. The Semantic Web has recently seen a rise of large knowl-
edge bases (such as DBpedia) that are freely accessible via SPARQL
endpoints. The structured representation of the contained information
opens up new possibilities in the way it can be accessed and queried.
In this paper, we present an approach that extracts a graph covering
relationships between two objects of interest. We show an interactive
visualization of this graph that supports the systematic analysis of the
found relationships by providing highlighting, previewing, and filtering
features.

Key words: semantic user interfaces, semantic web, relationship dis-
covery, linked data, dbpedia, graph visualization.

1 Introduction

The Semantic Web enables answers to new kinds of user questions. Unlike search-
ing for keywords in Web pages (as e.g. in Google), information can be accessed
according to its semantics. The information is stored in structured form in
knowledge bases using formal languages such as RDF 4 or OWL5 and consisting
of statements about real world objects like ’Washington’ or ’Barack Obama’.
Each object has a unique identifier (URI ) and is usually assigned to ontological
classes, such as ’city’ or ’person’, and an arbitrary number of properties that
define links between the objects (e.g., ’lives in’). Given this semantically anno-
tated and linked data, new ways to reveal relationships within the contained
information are possible.

4 http://www.w3.org/RDF/
5 http://www.w3.org/TR/owl-features/

Steffen
Text Box
To appear in:Semantic Multimedia - 4th International Conference on Semantic and Digital Media Technologies (SAMT 2009),LNCS, Springer, Berlin/Heidelberg, 2009.



A common visualization for linked data are graphs, such as the Paged Graph
Visualization [2]. In order to find relationships in these visualizations, users nor-
mally apply one of the following two strategies: They either choose a starting
point and incrementally explore the graph by following certain edges, or they
start with a visualization of the entire graph and then filter out irrelevant data.
Some more sophisticated solutions are based on the concept of faceted search.
The tool gFacet [4], for instance, groups object data into facets that are repre-
sented by nodes and can be used to filter a user-defined result set. However, all
these approaches require the user to manually explore the visualization in order
to find relationships between two objects of interest. This kind of trial-and-error
search can be very time consuming, especially in large knowledge bases that
contain many data links.

As a solution to this problem, we propose an approach that automatically
reveals relationships between two known objects and displays them as a graph.
The relationships are found by an algorithm that is based on a concept pro-
posed in [5] and that can be applied to large knowledge bases, such as DBpedia
[1] or the whole LOD-Cloud6. Since the graph that visualizes the relationships
can still become large, we added interactive features and filtering options to the
user interface that enable a reduction of displayed nodes and facilitate under-
standing. We present an implementation of this approach – the RelFinder – and
demonstrate its applicability by an example from the knowledge base DBpedia
[1].

2 RelFinder

The RelFinder is implemented in Adobe Flex7 and runs in all Web browsers
with an installed Flash Player8. In the following, we first explain its general
functionality before describing the involved mechanisms in more detail.

The search terms that are entered by the user in the two input fields in the
upper left corner (Fig. 1, A) get mapped to unique objects of the knowledge base.
These constitute the left and right starting nodes in the graph visualization (Fig.
1, B) that get then connected by relations and objects found in between them by
the algorithm. If a certain node is selected all graph elements that connect this
node with the starting nodes are highlighted forming one or more paths through
the graph (Fig. 1, C). In addition, further information about the selected object
is displayed in the sidebar (Fig. 1, D). Filters can be applied to increase or reduce
the number of relationships that are shown in the graph and to focus on certain
aspects of interest (Fig. 1, E).

2.1 Disambiguation

Ideally, the search terms that are entered by the user can be uniquely matched to
objects of the knowledge base without any disambiguation. However, if multiple
6 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
7 http://www.adobe.com/products/flex
8 The current version of the RelFinder is accessible at http://relfinder.dbpedia.org



Fig. 1. Revealing relationships between Kurt Gödel und Albert Einstein.

matches are possible (e.g., in case of homonyms, polysemes, or incomplete user
input) the user is supported by a disambiguation feature. Generally, a list of
objects with labels that enclose the search terms is already shown below the
input box while the user enters the terms (Fig. 1, A). This disambiguation list
results from a query against the SPARQL endpoint of the selected knowledge
base. The following code shows the DBpedia optimized SPARQL query for the
user input ’Einstein’9:

SELECT ?s ?l count(?s) as ?count WHERE {
?someobj ?p ?s .
?s <http://www.w3.org/2000/01/rdf-schema#label> ?l .
?l bif:contains ’"Einstein"’ .
FILTER (!regex(str(?s), ’^http://dbpedia.org/resource/Category:’)).
FILTER (!regex(str(?s), ’^http://dbpedia.org/resource/List’)).
FILTER (!regex(str(?s), ’^http://sw.opencyc.org/’)).
FILTER (lang(?l) = ’en’).
FILTER (!isLiteral(?someobj)).
} ORDER BY DESC(?count) LIMIT 20

9 A configuration file allows to freely define the queried endpoint, the element that
is queried (typically ’rdfs:label’), and properties that should be ignored. It is also
possible to deactivate specific syntax elements, such as ’count’ or ’bif:contains’, in
case a SPARQL endpoint does not support these.



The disambiguation list is sorted by relevance using the ’count’ value (or
alternatively a string comparison if ’count’ is not supported by the endpoint).
’count’ is also used to decide if a user’s search term can be automatically matched
to an object of the knowledge base or if a manual disambiguation is necessary.
An automatic match is performed in one of the following two cases: 1) if the user
input and the label of the most relevant object are completely equal, or 2) if the
user input is contained in the label of the most relevant object and this object has
a much higher count value than the second relevant object of the disambiguation
list (ten times higher by default). Thus, the automatic disambiguation is rather
defensive in order to prevent false matches.

If the user does not select an entry from the disambiguation list and if no
automatic match is possible, the entries from the disambiguation list are shown
again in a pop-up dialog that explicitly asks the user to provide the intended
meaning of the search term by selecting the corresponding object.

2.2 Searching for Relationships

A query building process composed of several SPARQL queries searches for re-
lationships between the given objects of interest. Since the shortest connection
is not known in advance, the process searches iteratively for connections with
increasing length, starting from zero. As a constraint, the direction of the prop-
erty relations within each connection chain is only allowed to change once. We
defined this constraint due to performance reasons and because multiple changes
in the direction of the edges are difficult to be followed and understood by the
user. If our objects of interests are a and b this results in the following search
patterns:

a→ · · · → b
a← · · · ← b

a→ · · · → c← · · · ← b
a← · · · ← c→ · · · → b

Thus, we are looking either for one-way relationships (first two lines) or those
with an object c in between such that there is a one-way relationship each from
a and from b to c or from c to a and b (last two lines). Note that c is not known
in advance but found within the searching process.

The algorithm has several parameters: 1) It can be configured to suppress
circles in extracted relationships. With the help of SPARQL filters, any object
is only allowed to occur once in each connecting relationship. 2) Objects and
properties can be ignored using regular expression patterns on their labels or
URIs, which is useful if someone is not interested in certain objects or properties.
More importantly, also structural relations between objects can be omitted, such
as whether two objects belong to the same class or to the same part of a class
hierarchy (i.e., ignoring rdf:type and rdfs:subClassOf properties). We decided to
remove these by default, since they normally yield a multitude of relationships
of minor interest which can be better explored in more traditional ways such a



hierarchy browsers. 3) A maximum length of the returned relationships can be
defined. 4) The SPARQL endpoint to use can be configured.

An exemplary SPARQL query that searches for relationships of the type Kurt
Gödel ← of1← c→ os1→ Albert Einstein is given here (filter omitted):

SELECT * WHERE {
db:Kurt_Gödel ?pf1 ?of1 .
?of1 ?pf2 ?c .
db:Albert_Einstein ?ps1 ?os1 .
?os1 ?ps2 ?c .
FILTER ...

} LIMIT 20

2.3 Graph Visualization

The found relationships are added one by one to the graph, beginning with the
shortest (i.e., direct relationships and relationships with only one object in be-
tween, if there are any). All objects are visualized as nodes connected by edges
that are labeled and directed according to the property relation they represent
(Fig. 1, B). Since the labels of the edges are crucial for understanding the rela-
tionships they serve as flexible articulations in the force-directed layout [3], what
reduces overlaps but cannot completely avoid them.

Interactive Features To further reduce overlaps in the graph, we implemented
a pinning feature that enables users to manually drag single nodes away from
agglomerations and forces them to stay at the position they got dropped (pinned
nodes are indicated by needle symbols as can be seen in Fig. 1, F). Especially in
situations where many nodes are connected by many edges and thus are likely
to overlap in the automatic layout, manual adjustments in combination with
our pinning feature are helpful to produce an understandable graph layout that
facilitates visual tracking. As already mentioned, visual tracking is additionally
supported by the possibility of highlighting all paths that connect a selected
node with the starting nodes (Fig. 1, C).

If a certain node is selected in the graph, further information about the
corresponding object is displayed in the sidebar (e.g., in case of DBpedia these
are a title, short abstract, and image extracted from Wikipedia, Fig. 1, D).
Moreover, the ontological class an object belongs to is highlighted in the list
that is shown in the sidebar (Fig. 1, E). Vice versa, all corresponding nodes in
the graph are highlighted if an ontological class is selected from the list.

Filtering Options The shown relationships can be filtered in two ways: 1)
According to their length (i.e., the number of objects in between) and 2) accord-
ing to the ontological classes the objects belong to. For instance, relationships
consisting of several objects could be regarded as too far-fetched or objects be-
longing to certain classes might not be of interest for a user’s goals (Fig. 1, E)
and are therefore removed from the graph.



Filtering helps to reduce the number of displayed relationships in the graph
and can hence prevent the graph from getting overly cluttered. For each search
process, the filters are automatically set to initial values that avoid an over-
cluttered graph, if possible.

3 Conclusion and Outlook

We introduced an approach in this paper that uses properties in semantically an-
notated data to automatically find relationships between any pair of user-defined
objects and visualizes them in a force-directed graph layout. The RelFinder can
therefore save a lot of time which would otherwise be lost in searching these
relationships manually. Since the amount of found relationships can be large, we
additionally provide two types of filters that can be used to reduce the displayed
relationships according to their length and the ontological classes they belong
to and thus allow focusing on only a relevant part of the relationships. Together
with a pinning feature that lets users rearrange the graph layout manually, we
therefore provide a semi-automatic approach.

The basic mechanisms of the RelFinder work with every SPARQL endpoint
and can therefore be applied to arbitrary knowledge bases with only little con-
figuration effort. Since the SPARQL queries are composed on the client they
are comparably independent of server routines and resources. We are currently
testing the RelFinder on different knowledge bases in various scenarios.

Future work includes a comprehensive evaluation that further examines the
potentials and benefits of querying structured knowledge bases compared to
common Web search with respect to the discovery and analysis of relationships
between certain objects of interests.

References

1. Sören Auer, Chris Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: a nucleus for a web of open data. In Proceedings of the 6th
International Semantic Web Conference (ISWC), volume 4825 of Lecture Notes in
Computer Science, pages 722–735. Springer, 2008.

2. Leonidas Deligiannidis, Krys Kochut, and Amit Sheth. RDF data exploration and
visualization. In Proceedings of the ACM first workshop on CyberInfrastructure
2007, pages 39–46. ACM Press, 2007.

3. Thomas Fruchterman and Edward Reingold. Graph drawing by force-directed place-
ment. In Softw. Pract. Exper., 21(11), pages 1129–1164, 1991.

4. Philipp Heim, Jürgen Ziegler, and Steffen Lohmann. gFacet: A browser for the web of
data. In Proceedings of the International Workshop on Interacting with Multimedia
Content in the Social Semantic Web (IMC-SSW’08), pages 49–58. CEUR-WS, 2008.

5. Jens Lehmann, Jörg Schüppel, and Sören Auer. Discovering unknown connections
– the DBpedia relationship finder. In Proceedings of the 1st SABRE Conference on
Social Semantic Web (CSSW), 2007.


