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Reliability Analysis For

Complex, Repairable Systems

Larry H. Crow*

Abstract. The reliability of a complex system that is repaired

(but not replaced) upon failure will often depend on the system

chronological age. If only minimal repair is made so that the

intensity (instantaneous rate) of system failure is not disturbed,

then a nonhomogeneous Poisson process may be used to model this age-

dependent reliability. This paper considers the theoretical and

practical implications of the nonhomogeneous Poisson process model for

reliability, and gives estimation, hypotheses testing, comparison and

goodness of fit procedures when the process has a Weibull intensity

function. Applications of the Weibull model in the field of reli-

ability and in other areas are discussed.

1. Introduction. Many systems can be categorized into two basic

types; one-time or nonrepairable systems, and reusable or repairable

systems. The term "system" is used in a broad sense in this paper and

may, for example, simply mean a component. If continuous operation of 4

the system is desired, then in the former case the system would be

replaced by a new system upon failure. An example would be the

replacement of a failed light bulb by a new bulb. The component or

*U.S. Army Materiel Systems Analysis Activity, Reliability, Availability

and Maintainability Division, Aberdeen Proving Ground, Maryland 21005.
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system may, of course, be part of a larger system. For example, the

water pump of a vehicle may be considered a one-time or nonrepairable I
system. If failure data are available for a nonrepairable system,

then, since the failure times are independent and identically distrib-

uted, the analyses may involve the estimation of the corresponding

life distribution. In the latter case, under continuous operation, the

system is repaired, but not replaced, after each failure. For example,

if the system is a vehicle and the water pump fails, then the water

pump is replaced and, hence, the vehicle is repaired.

For a repairable system, one is rarely interested primarily

in time to first failure. Rather, interest generally centers around

the probability of system failure as a function of system age. Exact ~

reliability analyses for complex, repairable systems are often diffi--

cult because of the complicated failure process that may result from

the replacement or repair policy. A common procedure in practice is

to approximate the complicated stochastic process by a simpler

stochastic process, which although not exact, still yild useful4

practical results. One such mathematical idealization assumes that the

failure times of the complex repairable system follow a (non) homo-

geneous Poisson pvocess.

In the next section, this paper discusses the homogeneous and

nonhomogeneous Poisson processes with respect to the theoretical and

practical implications of these models for the reliability theory of

complex, repairable systems. In Section 3 we give estimation,

6



hypothesis testing, comparison and goodness of fit procedures for a

nonhomogeneous Poisson process with mean value funct.on given by a

Weibull intensity function. In Section 4 application of these proce-

dures in reliability and other areas is discussed.

2. The Poisson Processes. In this section, we discuss the

theoretical and practical implications of the Poisson processes in

terms of the reliability of a complex, repairable system. We begin

with the homogeneous Poisson process and later generalize to the process

of particular concern in this paper, the nonhomogeneous Poisson process.

Let X denote the intensity of a homogeneous Poisson process.

If At is infinitesimally smL11I, then UAt is -nproximately the probabil-

ity of an event occurring in any intcrval of length At, regardless of I
the time t at the beginning o i the interial. In terms of a repairable

system, this implies that tne system is not improving nor wearing out

with age, but rather is mnaintaining a constant intensity of failure.

For various repairable systems, particularly of the complex

electronic type, a constant intensity of failure has been observed to

be closely representative, after perhaps an initial burn-in period, The

period in which a system exhibits a constant intensity of failure is

often called the system "useful life." If a complex system consists

of a largo number of components, each acting independently, if the

failure of a component results in a failure of the system, and if each

component is replaced upon failure, then under fairly general condi-

tions, the occurrence of failures of the system will approach a constant

7
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intensity as component number and operating time become large. (See

Barlow and Proschan [1965], pp. 18-21.) To benefit from this result in

F: practice may require an extensive amount of system operating time.

Also, many complex repairable systems, for example vehicles, generally

experience a wear-out pbase which eventually makes them economically

impractical or too unreliable to continue in service without perhaps

undergoing overhaul. Therefore, these systems generally will never

achieve the equilibrium state of a homogeneous Poisson process.

The homogeneous Poisson process cannot describe the occurrence

of failures for many systems over their entire life cycle but may often

be suitable as a model over some portion of their life. For studies

involving the consideration of mission reliability, reliability growth,

maintenance policies, overhaul and trade-in times, etc., it is important

that realistic models be applied.

A generalization of the homogeneous Poisson process which

allows for changes or trend in the intensity of system failures is the

nonhomogeneous Poisson process with intensity function u(t). Analogous

to XAt in the homogeneous Poisson process, u(t)At is approximately the

probability that an event will occur in the interval (t, t + At). Note

that in the special case when the intensity function u(t) is constant

for all t, the nonhomogeneous Poisson process reduces to the homogeneous

Poisson process. Therefore, any results or considerations related to

the nonhc;-ogeiPcous Poisson process are also valid for the homogeneous

Poisson process.

8



Unlike the homogeneous Poisson process failure probability,

the intensity, u(t)ft, may depend on the age t of the system. During

debugging, u(t) would be decreasing, u(t) would be constant over the

system useful life, and would be increasi.ng during the wear-out phasa

of the system.

If the failures of a repairable system follow a nonhomogeneous

Poisson process, then the number of failures and the types of repair

actions taken during a period [O,t] do not affect the probability of

failure during (t, t + At). In particular, suppose that the system

fails at time t and is subsequently ,'epaired and put back into service.

(Repair time is assumed to be negligible.) According to the model, the

probability of a system failure during (t, t + At) is u(t)At, and would

equal this value even if the system had not failed at timert. In

practice, however, if repair is competent, then one would expect a

decrease in failure probability after repair from its value at the time

of failure. If the system is complex, consisting of inany components,

then the replacement of a single component may not decrease this

probability significantly. For example, the replacement of a failed

water pump in a vehicle would generally not improve vehicle reliability

greatly imnediately after replacement from what it was immediately

before failure. The nonhomogeneous Poisson process assumes idealis-

tically that the reliability does not change at all.

A basic property of the nonhomogeneous Poisson process 1

be given next.

9
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Theorem 2.1. Lot (N(t), t > 0) be a nonhomogeneous Poisson

process, let X0 * 0 and X c X < X ... be successive times If01 2 3

occurrence of events. Let Yi . X " Xi-1 1 i - 1,2,..., be the times

between successive events. Then the cumulative distribution function

(c.d.f.) F1 of Yi, given that the (i-l)st evont occurred at time Xii," ii

i-I Y) "IXi-i
1 - F(X13C)• i -U x)C

x

y > 0, i 1,2,..., where F(x) I 1 - e"U(x) and U(x) fuCz)dz.
0

Hence, in general, the times between successive events are

not independent and identically distributed. However, when u(t) E X

(the homogeneous Poisson process), then these times are independent and

identically distributed according to the exponential distribut3.on with

mean I0, since Fi(y) a 1 - e- y, y > 0, i = 1,2 ..... Furthermore,

observe that in the nonhomlogeneous case the c.d.f. F of the time to
1

first event is id-ntical'y equal to F(y) • 1 -U(y). The failure rate

of F is defined by r(y) = f(y)/[l-F(y)] for F(y) < 1, and r(y) for

F(y) a 1, where f denotes the density of F. Hence, the failure rate for

F is r(y) E u(y), y > 0. That is, the intensity function u(.) of the

nonhomogeneous Poisson process is equivalent to the failure rate of F.

The physical interpretation of the failure rate is that for an infin-

itesimally small Ay, .ky)Ay is approximately the probability that the

10
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first event occurs in (y,y+/Ay), given no event to time y.

For the homogeneous Poisson procuss, F is the exponential

distribution with constant failure rate. A popular alternative to the

exponential distribution is the Weibull distribution H(y) - I - e-Y

y > 0, X > 0, 8 > 0, with failure rate r(y) - X•y•-. When 6 1, the

Weibull reduces to the exponential. This suggests that a possibly

useful extension of the homogeneous Poisson process with exponential

times between failures is the nonhomogeneous Poisson process with

Weibull time to first failure. The intensity function for this non-L homogeneous Poisson process is u(t) = aBt•', t > 0. If the failures

of a repairable system follow this process, then for S , 1 (1 < 1), u(t)

is increasing (decreasing) and, hence, the system is wearing out

(improving) with age. When S = 1, the process reduces to the homo-

geneous case with intensity X.

The nonhomogeneous Poisson process with Weibull intensity

function will be considered further in the remainder of this paper.

3. The Weibull Intensity Functicn. In practice one may not know

various parameters of a particular model that is to be applied. Con-

sequently, the application of the model may depend on which statistical

procedures regarding these unknown parameters are available.

In this section it is assumed that events are occurring

according to a nonhomogeneous Poisson process with Weibull intensity

function

(3.1) u(t) = t

11



)X > 0, B > 0, t > 0. Estimation, hypotheses testing, comparison and

goodness of fit procedures are given when data consist of the times

of the successive events occurring during the period of study. First,

we need the following preliminaries.

In reliability terminology, suppose that the number of

systems under study is K and the q-th system is observed continuously

from time S to time Tq, q = l,...,K. During the period [S , T ], let
q q q q

N be the number of failures experienced by the q-th system aW- let
q

X. be the age of this system at the i-th occurrence of fa4  re,iq

i = 1,...,Nq, q = 1,...,K. The times Sq, Tq, q = 1,. .. ,, may possibly

be observed failure times for the q-th system. If XN = rq, then the

data on the q-th system are said to be failure truncated, and T is aq

random variable with N fixed. If XN < Tq, then the data on the

q-th system are said to be time truncated with N a random variable.
q

Note that when Sq is not a failure time and data are time truncated,

then N is a Poisson random variable with mean U(Tq) - U(Sq) =
q q q

T

qIfqu(t)dt.

S
q

3.1. Maximum Likelihood Estimates of A and B. Suppose the

q-th system is observed continuously from time S to time Tq,
q

q = 1,...,K. Then the maximuw likelihood (ML) estimates of X and 8 are

values X and a satisfying the equations

12



ifN

qqK
I (T -S)

q-1 q q

KIN

(3.3) 8 g=1 qK.^ K N
S(T log T -Slog S log X.

q=l q q q=l i-l o q

where Olog 0 is taken to be 0. In general, these equations cannot be

solved explicitly for X and 8, but must be solved by iterative pro-

cedures. Obtaining )X and 6, one may then estimate the intensity

function u(t) by

(3.4) u(t) = A~t8-.

t>O0. A

When S= 0, and data are time truncated at T T,q . q

q =1,...,K, then the ML estimates ) and 8 are in closed form.

Specifically,K
K
IN

Aq

(3.5)

KT8

K
IN

(3.6) =K N
q T

Slog( T)

q=l i=1 iq

13,.
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X NI T then A and 13 are also in closed form. The estimates are

N

TB

N
(3.8) B -

1T
Slog(V~i

Example. Suppose K =3 systems are observed during [0, T],

T = 200. That is, the data are time truncated with T =200),~
q

q = 1,2,3. This experiment was simulated on a computer with X 0.6

and 6 = .5. These results are given in Table 1. Since the T Is are
q

equal, the ML estimates of A and B are calculated from the closed form

expressions (3.5) and (3.6). From the simulated data, the ML estimate

of X is X = 0.461, and the NIL estimate of B is B = 0.615.

If it is assumed a priori that systems 1, 2, and 3 are

the data are failure truncated. Thus, the ML estimates of X and B are

calculated from expressions (3.2) and (3.3) using iterative procedures.

From the simulated data T =197.2, T =190.8, T 19S.8, and the ML

estimates of A and B are A=0.443, B=0.626.

14



TABLE 1
Simulated Data for K=3 Systems Operated for Time

T:200 when =0.6 and ,=0.5

System 1 System 2 System 3

XiI Xi2 Xi3

4.3 0.1 8.4

4.4 5.6 32.5

10.2 18.6 44.7

23.5 19.5 48.4 I
23.8 24.2 50.6

26.4 26.7 73.6'

74.0 45.1 98.7

77.1 45.8 112.2
92.1 75.7 129.8

197.2 79.7 136.0
98.6 195.8

120.1 ..
161.8
180.6

190.8

N1 =10 N 2 = 15 N 3:11 2

10 151

i =1i 1 " i -i

=19.661 =26.434 '12.398

N=Nl+N 2 +.-N3 36

A,=N O0.o15 =N-I A

3 NNq

q=1 i01

A N
= 0.0.461598KT

vI

A• N15461

- A.................



3.2. Conditional Maximum Likelihood Estimates of 8.

Estimates of 0 which are always in closed form w' enever Sq 0,
q

q = 1,...,K, may be obtained by considering the conditional ML

estimates. If the intensity function for the q-th system is

(3.9) Ut) M Xt ,
q q

x > 0, 8 > 0, t > 0, these conditional ML estimates are the same
q

whether the X 's are specified to be equal or different.
q

Suppose that data on the q-th system are failure truncated

(i.e., X = T ) and S = 0, q = 1,...,K. Then, conditioned on the'N,q q q .•
q

failure times TI,...,TK, the ML estimate of 8 is

K I
. (N -1)

g=1 q-
(3.10) - K N-q TZ q T :

q=l i=l iq

If the data on the q-th system are time truncated and 2

S 0, q I,,...,K, then N is the random number of failures experi-
q q

enced by this system during [0, Tq], q = 1,...,K. Conditioned on

NI,.,.,N the ML estimate of 8 is

K

q~i
(3.11) = K N

q T
log(.-)

'.q=l i=l iq

4L iiq:
16
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In general, let

N if data on the q-th system
q are time truncated

(3.12) M

q
(3.12) q Nq-l if data on the q-th system

are failure truncated,

q =1,...,K. Then, conditioned on N (time truncated) or XNq,q (fail-
q N q

ure truncated), q 1,...,K, the ML estimate of B is

KZM

(3.13) q=l

K M
q T

q=l i=l x .
iq

Further, if
K

(3.14) M =Mq
q

then -

M -1(3.15) M

is an unbiased estimate of 5.

In the special case when the data are time truncated at T q
A

T and S q 0, q = 1,...,K, observe that the ML estimate 8 given by

(3.6) and the conditional ML estimate a given by (3.13) are equal.

Example. Consider the simulated data in Table 1. Since the

data for each of the 3 systems are time truncated at T = 200, then

8 = 8 0.615. The unbiased estimate of 8 is • = (35/36)8 = 0.598.

Suppose that it is assumed a priori that systems 1, 2 and 3

17



are observed only to the 10th, 15th and l1th failure, respectively.

In this case the data are failure truncated respectively at 197.2,

190.8 and 195.8 for systems 1, 2 and 3. The conditional ML estimate

of 8 is therefore

M =[ 0.575,
S3 M- Mq T

~log(vaS-)q=l i=l Xiq

where M = M + M + M , M M 9, M [ 14, M = 10, T = 197.2, T =
1 2 3 2 3 1 2

190.8, and T = L;3.8. The unbiased estimate of 8 is 8 = (32/33)[

0.557.

3.3. Hypotheses Tests and Confidence Bounds on 8. We may

use the conditional ML estimate of 8, 8 given by (3.13) to test hypoth-

eses and construct conditional conlidence bounds on the true value of

8. To do this we use the result that

(3.16) 2 2M8

is distributed as a Chi-Square random variable with 2M degrees of free-

dom. This statistic may therefore be used to test hypotheses on 8.

When M is moderate, the statistic

(3.17) W = 1( -1)

is distributed approximately normal with mean 0 and variance 1.

Consequently, one may also use this statistic to test hypotheses on 8

for moderate M.

18
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41

To construct exact, conditional confidence bounds on B we use

the x2 statistic given by (3.16). The exact (1-a)-100 percent lower

and upper confidence bounds are

X2 (2 , 2M)

(3.18) 81b = • 2M

~X2 (l - 2-2M)

(3.19) Sub = 2M

respectively, where x2(2,2M) [X2 (l - a,2M)] is the - -th [(1 - 2)-th]
2 2b 2

percentile for the Chi-Square distribution with 2M degrees of freedom.

When M is moderate however, the statistic w, which is approx-

r imately normal, may be used to construct approximate confidence bounds.

This approximation yields (1-a)'100 percent lower and upper confidence

bounds

-P

(3.20) 81b = -

(3.21) b 5[l +

respectively, where P is the 7-th percentile for the normal distribution

with mean 0 and variance 1, 7 = 1 - a/2

Example. Consider again the simulated results presented in

Table 1. The conditional ML estimate of 6 was computed to be 8 = 0.615,

with M = 36. Using the normal approximation, 90 percent conditional

confidence bounds on 8 are

919



$[b 1.645 0.446,

•1.645 0
ub 6+

3.4. Hypotheses Tests and Confidence Bounds on X J8 known).

Suppose that observations begin at time 0 on each of the K systems

under study. That is, S = 0, q = l,...,K. Under time truncated test-

ing on these K systems, the random total number of failures N =
K

N + + N has the Poisson distribution with mean 0 = • K 8Tq, where
1 KI :

q=l 1

T is the truncation time for the q-th system q - 1,...,K. Also, under
q 

Kfailure truncated testing on the K systems, the statistic V = 2;k=Z Isq' X

q~.N )q
q=-

has the Chi-Square distribution with 2(NI + + NK) degrees of free-

dom, where X is the age of the q-th system at the N -th failure,
N q q

q = 1, .. ,K.:i
qi

The statistics N and V may be used in the usual manner to

test hypotheses and construct confidence bounds on X when 0 is known.

For time truncated testing, the (l-y).100 percent lower and upper con-

fidence bounds on X are

X2 (1, 2N) *i

(3.22) lb (8) = K ,N

2 1
q=l q

X2 (i - 1-2N+2)
(3.23) Xub( 8 ) K

2 :

20
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" 7-M

respectively. For failure truncated testing, the (1-y),l00 percent

lower and upper confidence bounds on X are

x2 (1, 2N)
(3.24) Xlb(8) = K

2 1x
q=l Nq~q

X2 (l - 2N)

(3.25) u K 2'

2 XN
q=l q

respectively.

Example. Consider again the simulated data in Table 1.

These data on K 3 systems are time truncated at T = T = T 200.1 2 3

For N = 36, y = 0.05, we obtain X 02N) = 50.2, x( - ,2N+2) = 99.6.

Consequently, from (3.22) and (3.23), q5 percent lower and upper con-

fidence bounds on X ar.

A = l2bT ( 0.592,

Aib(~) 2KT~
-•. 99.6

•ub(• = 6 = 1.17,
:'~2 KT

where a = 0.5.

3.5. Simultaneous Confidence Bounds on X and 0. Recall from

(3.18) and (3.19) that alb and $ub denote respectively the (1-a).100

percent lower and upper conditional confidence bounds on ý. Also,

recall from (3.22) and (3.23) [(3.24) and (3.25)] that Xlb(f) and

21 I
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AubCS) denote respectively the (1-y)-l00 percent lower and upper

confidence bounds on X when data are time truncated (failure truncated]

on the K systems and 8 is known.

Suppose that data on the K iystems are time truncated. Then

(1-a)(1--y).100 percent conservative* simultaneous confidence bounds on

X and 8 may be constructed in the following way. Given (l-a)lO0

percent conditional confidence bounds, 01b' Oub' on 8, let

X2 (I. 2N)
(3.26) Xlb (ub) = K 2 ub P

2q . 4

X 2(l - •,2N+2)
(3.:7) ub( lb) K 0 i

2 £ Tq
q=l-

using (3.22) and (3.23). Then (l-)(1-y)'lO0 percent conservative

simultaneous confidence bounds on X and 0 are {Xl(u) •bBb

83b, when data on the K systems are time truncated. J

When data on the K systems are failure truncated, then i

similar bounds are constructed using (3.24) and (3.25) to compute

•i(b(ub) and 'ub( 8 1b)

*That is, our assurance is at least, instead of e equal to, a

specified value that the parameters will lie within the stated bounds.

22
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Example. From the data in Table I and (3.18) (3.19), we

calculate that exact 90 percent conditional confidence bounds on 0 are

8 1b * 0.459 and 8ub a 0.793. These data on the K - 3 systems are time

truncated at T I T T 200, with N a 36 failures. For y a 0.10,1 2 y31

we have X2C1,2N) 53.S. XI(I - 1,2N+2) a 95.1. Also, (200) alb 11.4,

2ub

(2G0) - 66.8. Therefore, from (3.26) and (3.27),

53.S
Alb(0ub) = 2-3-(66.8) - 0.133,

95.1Xub('1b) = 2.3.C11.4) - 1.39.

Hence, (.90)(.90).100 (= 81) percent conservative simultaneous con-

fidence bounds on X and 8 are [0.133, 1.39; 0.459, 0.793).

3.6. Comparisons for 0 . Suppose that K > 2 systems are
q

under study and the intensity function for the q-th system is
8 -1 *j

(3.28) u (t) = X qqt q 1
X > 0, 8 > 0, t > 0, q = 1,...,K. Regarding the A Is as nuisance
q q q

parameters, one may wish to compare the intensity functions u H),
q *

q = 1,...,K, by comparing the qIs. Procedures for testing the

hypothesis

(3.29) H 0 • K=

will be considered next.

Let 8 denote the conditional ML estimate of 8 given by
qi q
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(3.13) calculated from data on the q-th system, q - ,...,K. Then

from (3.16),
2M

(3.30) X 2

q

(q - 1,...,K) are conditionally distributed as independent Chi-Square

random variable: with respective degrees of freedom 2Mq, where Mq is

defined by (3.12).

When K * 2, we may test H0 using the statistic

X2 /2M
(3.31) F =

X2/2M
2 2

If H is true, then F equals 0 /B and has, conditionally, the F distri-
0 2 21

bution with (2M , 2M ) degrees of freedom. Consequently, one may
1 2

calculate this statistic and refer to tables for the F distribution to

determine the appropriate critical points to test H when K = 2.

For K > 2, to test the hypothesis a = ' = K the likeli-I;I
hood ratio procedure (see Lindgren [1962], p. 253) yields the statistic

K

(3.32) L M H log(8 ) - Mlog(s*),
q=l q

K Kwhere M M and (8*)-l M a ̂ -/M. Let
ql q ql q

q=ll

a + 1 K
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Then, if H is true, the statistic

L 2L
(3.33) D a -

a

is approximately distributed as a Chi-Square random variable with

(K - 1) degrees of freedom, using (3.30) and the results of Bartlett

(1937). One may therefore calculate the statistic D to test H° when

K > 2, and refer to the Chi-Square tables with (K - 1) degrees of

freedom to determine the appropriate critical points.

Example. For the simulated data in Table 1 suppose that the

intensity function for the q-th system is u q(t) = q q t q , q a 1,2,3,

and we wish ta test the hypothesis that e = 8 . From the data on
1 2

these systems~ we calculate that 0 1 a .0 nda 057 Teeoe

F 2( /1 ) = 1.11. The 95-th percentile for the F distribution with

(20, 30) degrees of freedom is 1.93. Since 1.11 -c 1.93, we accept the :

hypothesis that B B at the 5 percent significance level.

Suppose instead that we had wished to test the hypothesis

that a8 . The appropriate statistic is D given by (3.33).

From the data we find that D = 1.84. From the Chi-Square tables with

K - 1 = 2 degrees of freedom, we find that the 2.S and 97.5 per-

centiles are respectively 0.0506 and 7,38. Since 0.0506 < D < 7.38,

we accept the hypothesis 5 = 8 = 8 at the 5 perce~t significance
1 2 3

level.

3.7. Goodness of Fit Test. In practice we may not be willing

to assume that the failure times of the repairable systems under study
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follow a nonhomogeneous Poisson process with Weibull intensity

function, but want to test this hypothesis by statistical means. One

possible method (see Pa,'zen [1962], p. 143) is to use the CrameT-Von

Mises goodness of fit statistic.

To illustrate the application of this statistic, suppose that

K like systems are under study and we wish to test the hypdthesis H

that their failure times follow a nonhomogeneous Poisson process with

intensity function

(3.34) u(t) = t

t > 0, X > 0, and

(3.35) a = 0o,

a > 0, a fixed value. Assume also that the q-th systei is observed0

during the period [0, T q], q = 1,...,K. From (3.12) we have that if

XN = T (failure trttncation), then M = N - 1 and if XN < Tqq q q q 'qq q

(time truncation), then Mq = Nq, q = ,... K. Also, from (3.1), recall

q=l q

To compute the Crarier-Von Mises statistic W, we need only

consider the M transformed failure times

X.
(3.36) X = iq

iq T qq

i= ,...,Mq q !,...,K. Treat all the M Xt 's as one group and
q iq

order them from smallest to largest. Call these ordered values
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Zl,Z. That is, Z, is the smallest X!iq Z2 is the next

smallest X*q,.'.,ZM is the largest.X*q, i 1,...,Mq, q -l,...,K.

The Cramer-Von Mises statistic W2 is given by

(3.37) W2 1 0 2j-1
M •I W j 2M

The asymptotic significance points of W2 when the hypothesis
N

H is true may be found in Anderson and Darling (1952) and used when M
I

is only moderately large.

Observe, in particular, that to test the hypothesis that the

failure times of the K systems follow a homogeneous Poisson process is

equivalent to testing HI for = 1.
Generally, we will not have a fixed value of B in mind fir

the hypothesis H . That is, we will usually only want to test the
1

hypothesis H that the failure times follow a nonhomogeneous Poisson
2

process with intensity function (3.34), 8 unspecified. If this hypoth- 1
esis is accepted, then X and a may be estimated from the data.

A reasonable approach to test H is to use the W2 statistic
2 M

in (3.37), but to replace Wo by an estimate of 0 derived from the data.

In general (see Darling [1955]), this modified W2 statistic will not .
M

have the same distribution, even asymptotically, as the W2 statistic.
N

However, Darling (1955) showed that when the pioper estimate of 0 is

used, then the modified W2 statistic C2 is parameter-free (independent

of the true value of •) for any sample size M. Moreover, the

27



distribution of C2 converges asymptotically to a distribution with mean
n

0.09259 and variance 0.00435 as M + w when the hypothesis H is true.2

The proper estimate of 8 to use in calculating C2 is •, the

unbiased estimate given by (3.15). That is,

( 3 . 3 8 ) 
1 M 2-. +) 

2

M• jl (j" 2M}

where
•= ~M-1

-K M
q TSZlog,__RT-

q=l izl iq iqi
Critical values of the C• statistic for M = 2 thru 60 have

been determined at the U. S. Army Materiel Systems Analysis Activity from

Monte Carlo simulation, using 15,000 samples for each value of M.

Various critical values of 2 are given in Table 2, rounded to the

nearest integer. All values in the tables are, of course, subject to

sampling error.

If the statistic C2 is greater than the selected critical

value, then the hypothesis H that the failure times for the K systems2

follow a nonhomogeneous Poisson process with Weibull intensity function,

is rejected at the designated significance level. If C2 is less than
M

this value, then the hypothesis H is accepted.
2

Example. Consider again the data in Table 1 for K = 3 systems

tested for time T = T = T 200. The unbiased estimate of 8 is
1 2 3

28 28
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Table 2. Critical Values of

SAMPLE Level of Significance
SIZEM .20 .15 .10 .05 .01

2 .139 .150 .161 .175 .186
3 .1 21 .1 35 .154 8• 3 .231!
4 .1 2 .1 36 .15 6 .I 95 .2 78

5 .123 .1 38 .160 .202 .305
6 .1 23 .1 39 .163 .206 .3 15
7 .124 .1 41 .166 .207 .305
S .1 24 .141 .165 .209 .3 12
9 .124 .141 .167 .212 .324
10 .124 .142 .169 .213 .321
11 .124 .142 .166 .216 .324
12 .125 .143 .170 .213 .323
13 .126 .143 .16S .218 .337
14 .126 .142 .169 .213 .331
15 ,125 .144 .169 .215 .335
16 .125 .143 .169 .214 .329
17 .126 .143 .169 .216 .334
18 .126 .143 .170 .216 .339
19 .126 .143 .169 .214 .336
20 .127 .145 .169 .217 .342
21 .126 .145 .170 .216 .332
22 .126 .144 .171 .216 .337
23 .127 .144 .169 .217 .343
24 .126 .143 .169 .216 .339
25 .127 .145 .170 .216 .342
26 .1 27 .1 45 .171 .215 .333
27 .127 .144 .170 .215 .335
27 .127 .145 .170 .218 .334
29 .127 .146 .171 .217 .334
30 .127 .145 .172 .218 .328
31 .127 .145 .170 .215 .328
32 .127 .145 .169 .214 .330
33 .127 .144 .169 .215 .337
34 .126 .143 .171 .213 .334
35 .127 .144 .170 .215 .326
36 '.126 .144 .169 .213 .331
37 .127 .145 .170 .215 .339
38 .127 .145 .170 .217 ,331
3 .127 .145 .173 .217 .334
40 .128 .146 .172 .220 .335
41 .128 .146 .173 .2 17 .335
42 .128 .146 .172 .217 .333
43 .127 .146 .172 .217 .334
44 .128 .147 .173 .218 .341
45 .128 .146 .172 .217 .342
46 .129 .146 .172 .216 .346
47 .128 .147 .173 .216 .343 4

48 .128 .145 .172 .219 .343
49 ,127 .145 .171 .218 .335
50 .127 .145 .172 .219 .345
51 .128 .146 173 .210 .344
52 .12 7 .146 .172 .216 3465
53 .127 .146 .172 ,218 3482
54 .127 .146 .172 .219 .351
56 .127 .145 .173 .219 .356

56.127 .145 .172 .221 .355
57 .127 .145 .171 .218 .352 •
so .127 .145 .171 .n2l .353•

59 .128 .146 .171 .222 .350
60 .127 .1 46 .172 .219 352
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computed to be B = 0.598. We next order the M transformed failure

times (X. /200), i = 1,...,Mq, q = 1,2,3, where M - 10, M = 15,
iq 1 2

M 11, M = 36. This gives Z = 0.1/200, Z = 4.3/200, Z = 4.4/200,
3 1 2 3

Z 5.6/200,...,Z = 195.8/200, Z = 197.2/200. Using these order-
4 35 36

transformed failure times and 8, we calculate from (3.38), C2  = 0. 9.
36

For a hypothesis test at the 0.05 significance level, we find

in Table 2 that the corresponding critical value for M = 36 is 0.213.

Since 0.069 is less than 0.213, we accept the hypothesis H 2 at this

significance level.

4. Applications. In this section we will discuss some possible

applications of the Weibull model to reliability, the study of indus-

trial accidents and medicine. Observe that the Weibull intensity

function u(t) = X8ta_1 is strictly monotonic for 8 1 1, and, of course,

constant for 8 = 1. Therefore, any applications of the Weibull

intensity function should be made only over regions of t where, it is

felt, the intensity function of the nonhomogeneous Poisson process is

monotone.

4.1. Reliability Growth. In 1962 J. T. Duane of General

Electric Company's Motor and Generator Department (see Duane [1964])

published a report in which he presents his observations on failure

data for five divergent types of systems during their development pro-

grams at G.E. These systems included complex hydromechanical devices,

complex types of aircraft generators and an aircraft jet engine. The

"study of the failure data was conducted in an effort to determine if

30 1
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any systematic changes in reliability occurred during the development

programs for these systems. His analysis revealed that for these

systems, the observed cumulative failure rate versus cumulative oper-

ating hours fell close to a straight line when plotted on log-log

paper. Similar plots have been noted ir, industry for other types of

systems, and by the U. S. Army for various military weapon systems

during development.

Suppose that the development program (or test phase) for a

system is conducted in a "find and fix" manner. That is, the system

is tested until a failure occurs. Design and/or engineering modifi-

cations are then made as attempts to eliminate the failure mode(s) and

the system is tested again. This process is continued for a fixed time
F,

period or until the desired reliability is attained. If the cumulative

failure rate (expected number of failures at time t divided by t) versus

test time is linear on log-log scale, then the system failure times

follow a nonhomogeneous Poisson process with Weibull intensity function

u(t) = X)8t8-. If the system reliability is improving, then u(t) is 9

decreasing; i.e., 0 < 8 < 1.

At time to the W~ibull intensity function is u(t) =Xt
0 ~00

If no further system improvements are made after time to, then it is

reasonable to assume that the intensity function would remain constant

at the value u(to) if testing were continued. In particular, if the

system were put into production with the configuration fixed as it

was at time to, then the life distribution of the systems produced
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would be exponential with mean
Stol-t

(4.1) P(t [U(toA- 0
0 0 -[F"

From (4.1) the mean p(t) inc'reases as the development test-

ing time t increases (since B < 1), and is proportional to t

Hence, 8 is a growth parameter reflecting the rate at which reli-

ability, or p(t), increases with development testing time.

4.2. Mission Reliability. The probability R(t) that a

system of age t will successfully complete a mission of fixed duration

d > 0 is called "mission reliability." If the system is repairable and

mission aborting failures follow a nonhomogeneous Poisson process with

Weibull intensity function, then

R(t) = Prob[system of age t will not fail in (t,t+d)]

[X(t+d) -X(t)

Note that if 8 > 1 (wear-out), then R(t) is decreasing with age. If

8 < 1 (improvement), then R(t) is increasing with age. When 8 1
-Xd

(constant intensity of failures), then R(t) = e , a constant.

4.3. Maintenance Policies. Barlow and Hunter (1960) consid-

ered optimum replacement or overhaul policies for a system whose fail-

ure times follow a nonhomogeneous Poisson process. The optimum re- *

placement or overhaul times for the system were derived so as to maxi-

* mize the expected fractional amount of system uptime over an infinite

period of time. Furthermore, one can also use the same approach to

determine optimum replacement or overhaul times which will minimize the
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expected maintenance cost over an infinite time span. When the system

has a Weibull intensity function, with 0 > 1, the time which minimizes

expected maintenance cost is given in Barlow and Proschan (1965),

page 98.

4.4. Industrial Accidents. The control of industrial

accidents generally requires, from time to time, new safety equipment,

safety regulations, improved machinery, etc. Hence, one may expect

that the occurrence of accidents would tend to decrease with time.

Because of serious injuries or, perhaps, deaths that may occur as a

result of an industrial accident, it is usually important to know

whether or not the safety actions are resulting in a significantI

decrease of accidents. The nonhomogeneous Poisson process with Weibull

as demonstrated by the following example.

The data in Table 1 of Maguire, Pearson and Wynn (1952)

t represents days between explosions in mines in Great Britain involving

more than 10 men killed. The data covers the period from December 6,

.1875 to May 29, 1951. As noted by Barnard (1953) and also by Maguire,

Pearson and Wynn (1953), there is convincing statistical evidence that

the data in this table are not consistent with the hypothesis of a

homogeneous Poisson process. That is, the occurrence of these mine

accidents departs statistically from a constant intensity. Barnard

suggested that the mine accidents may follow a nonhomogeneous Poisson

process with decreasing intensity function. The following analysis was
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conducted on these accident data using the Weibull intensity model.

Regarding December 6, 1875 as time 0, the occurrence times

of the 109 successive mine accidents were measured from this date in

days, with the last accident occurring on May 29, 1951, or at T =

26,263 days. The data, therefore, were failure truncated. Secondly,

the ML estimates of A and 0 were computed, giving X = 0.7626, 0 =

0.7139. Since the data were failure truncated, with N = 109, we have

M = N - 1 = 108. From (3.8) and (3.10) ' = 0 = 0.7074, and the

unbiased estimate of 0 is, from (3.15), = 0 [- 0.7008.

Using 9, the goodness of fit statistic C2 was calculated,
M

giving C2  = 0.1817. If we assume that the 5 percent critical value108

for M = 108 is reasonably close to the S piercent critical value 0.219

for M = 60, then C2  is not significant at this level. That is, we108 i

accept at the 5 percent level that the mine accidents follow a non-

homogeneous Poisson process with Weibull intensity function.

- 1.64
A 95 percent upper confidence bound on 0 is +ub = 0(1 + .64)

[ 0.8190 and the ML estimate of the intensity of mine accidents is

u(t) Xt , t > 0. 1
4.5. Medical. Various illnesses in humans are of a recurring

nature. For example, in underdeveloped countries certain gastrointes-

tinal ailments are generally prevalent in infants from shortly after

birth to about age one year. Empirical studies indicate that many

environmental type ailments in infants usually have an increasing rate

341

Li



I1

of occurrence over a certain period of time after birth. The rate then

begins to decrease as the infant develops immunities to combat the

environmental conditions.

The Johns Hopkins University's Department of International

Health, assisted by the U. S. Army Materiel Systems Analysis Activity, is

currently conducting studies on medical data to determine the adequacy

of the nonhomogeneous Poisson process for representing the occurrence

of various gastrointestinal ailments in humans. The ailments selected

are those of relatively short duration since the nonhomogeneous Poisson

process assumes an instantaneous time of occurrence. If the Weibull

model is found to provide an adequate fit for an ailment, then the

effects of different treatni-nts would include comparisons of the

respective Weibull intensity functions.
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