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Abstract: Fatigue failure is one of the main failure modes for wind turbine drivetrain 

components made of cast iron. The wind turbine drivetrain consists of a variety of heavily 

loaded components, like the main shaft, the main bearings, the gearbox and the generator. 

The failure of each component will lead to substantial economic losses such as cost of  

lost energy production and cost of repairs. During the design lifetime, the drivetrain 

components are exposed to variable loads from winds and waves and other sources of 

loads that are uncertain and have to be modeled as stochastic variables. The types of loads 

are different for offshore and onshore wind turbines. Moreover, uncertainties about the 

fatigue strength play an important role in modeling and assessment of the reliability of the 

components. In this paper, a generic stochastic model for fatigue failure of cast iron 

components based on fatigue test data and a limit state equation for fatigue failure based on 

the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue 

data is performed using the Maximum Likelihood Method which also gives an estimate of 

the statistical uncertainties. Finally, illustrative examples are presented with reliability 

analyses depending on various stochastic models and partial safety factors. 

Keywords: wind turbine; drivetrain; fatigue; stochastic model; reliability analysis 
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1. Introduction 

Wind energy is a rapid growing industry in the renewable energy sector with large the potential to 

contribute significantly to future energy production. A main focus for wind turbine manufacturers and 

operators is how to increase the reliability of wind turbines and to decrease their cost. Hence, cheaper 

and more efficient wind turbine components have to be developed to have an optimal balance between 

initial costs related to required reliability level on the one hand and the cost of operation and 

maintenance on the other hand. In order to perform this optimization, it is important to be able to 

estimate the reliability of the components. 

Wind turbines, depending on whether placed in offshore or onshore locations, are exposed to wave 

excitations, highly dynamic wind loads and the wakes from other wind turbines. Therefore, most 

components in a wind turbine experience highly dynamic and time-varying loads. These components 

may fail due to wear or fatigue and this can lead to unplanned shutdown repairs that are very costly. 

The design of mechanical components in the wind turbine drivetrain by deterministic methods using 

safety factors is generally unable to account for the many uncertainties. Thus, a reliability assessment 

should be based on probabilistic methods where stochastic modeling of failures is performed. 

The most common drivetrain configuration consists of the main shaft, the main bearings,  

the gearbox and the generator, see [1]. Modeling of the reliability of drivetrain component failures is 

important for predicting the expected time-to-failure which is an important indicator to be used in 

planning of operation and maintenance. In order to estimate the probability of failure of the drivetrain 

components careful modeling of the aleatory (physical) and epistemic (model, statistical and 

measurement) uncertainties has to be performed, see e.g., [2,3]. 

The reliability of wind turbine gearboxes has been studied in a number of research projects, e.g., the 

Gearbox Reliability Collaboration (GRC) project at the U.S. National Renewable Energy Laboratory 

(NREL) [4]. This includes important research areas on fault diagnosis and condition monitoring. 

Several methods have been investigated, such as vibration and acoustic emissions [5] and local mean 

decomposition [6]. Some studies on probabilistic modeling of failures in wind turbine drivetrain 

components have been carried out, e.g., [7,8] but without a detailed stochastic modeling of the 

uncertainties related to the parameters in the limit state equations modeling each failure mode. 

This paper focuses on probabilistic models and the stochastic modeling of fatigue lives in the wind 

turbine drivetrain using structural reliability methods, see [9], allowing a rational modeling of all 

uncertainties. An important aspect in modeling fatigue failure of large cast steel components is to take 

into account scale effects. Two approaches are considered in this paper for stochastic modeling of the 

fatigue life including scale effects. One method is based on the classical Weibull approach and the 

other on application of a log-normal distribution as done, e.g., for the fatigue life of welded steel details. 

The statistical parameters in both models are estimated and applied in reliability assessments. 

2. Wind Turbine Drivetrain 

The drivetrain of a wind turbine converts the low-speed, high-torque rotation of the turbine’s rotor 

(blades and hub assembly) into electrical energy. The most common drivetrain configuration consists 
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of the main shaft, the main bearings, the gearbox and the generator, see [1] and [10]. Typically,  

all individual components of the drivetrain are mounted onto the bedplate (Figure 1). 

The main bearing, the main shaft and the gearbox have the highest downtime in case of failures,  

see e.g., [2,11]. Cyclic and variable loads excite these components during their service life and 

consequently fatigue is one of the main sources of failure of these components. 

 

Figure 1. Modular configuration of wind turbine drivetrain components [10]. 

The current fatigue design is based on the life design approach [8]. In the safe life design, fatigue 

testing is carried out on baseline material to produce SN curves. However, the fatigue strength is highly 

uncertain and statistical uncertainties due to a limited number of tests can be important to include in 

modeling the fatigue strength. Moreover, model uncertainties related to e.g., application of the Miner 

rule for fatigue damage accumulation should be included in the probabilistic model. 

3. Fatigue Strength Modeled by a Log-Normal Distribution 

Fatigue failures typically occur due to the application of fluctuating stresses much lower than the 

stress required to cause failure during a single application of the stress. The fatigue life is the number 

of cycles to failure at a specified stress level, while the fatigue strength is the stress level below which 

failure does not occur for the given number of cycles. As the applied stress level decreases, the number 

of cycles to failure increases. The fatigue strength of metals is often assumed to follow the Basquin 

equation (the equation is based on fully reversed fatigue (R = −1), and the mean value is zero) [12]: 

  mfa N
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2  
 

(1) 

where a is the alternating stress amplitude, f is the fatigue strength coefficient, N is the number of 

load cycle, and 1/m is the fatigue strength exponent. 

The probability of failure increases when the volume of the component increases due to scale 

effects and because the probability of finding a critical micro-crack increases [8]. Thus the geometrical 

size effect affects the resistance of materials against fatigue failure. Hence, a is affected by 

geometrical size effects and can be modeled by the following equation, see e.g., [8]. According to this 

Equation (1) can be written as [13]: 
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where V0 is the reference volume and 0a  is the alternative fatigue strength amplitude corresponding 

to reference volume of V0. The exponent bn determines the effect of the specimen size on the fatigue 

life and V is the volume of component. In a log-log format Equation (2) is linear and can be rewritten 

introducing an uncertainty term , see [13]: 

  )2log(log
1

logloglog 0 V
n

af s
b

mmN
 

(3) 

where  is assumed to be normal distributed with mean value = 0 and standard deviation = .  
 models the scatter in fatigue life and can be considered here to cover both physical and model 

uncertainties related to imperfect knowledge or idealizations of the mathematical models used or 

uncertainty related to the choice of probability distribution types for the stochastic variables. It is noted 

that the test data applied in the example below do not allow a bilinear SN curve to be fitted; but the 

above model can easily be extended to model a bi-linear SN curve and a lower threshold. 

The parameters in (3) can be estimated using available test data. In this paper, test data extracted 

from Shirani [14] are used to exemplify the procedure for the stochastic modeling. Assuming that the 

Shirani data are representative the results of the statistical analysis can also be used to assess the 

reliability level for drivetrain components and to calibrate safety factors, see below. 

In the following, the Maximum Likelihood Method is used for the statistical analysis. The  

log-likelihood function as a function of the statistical parameters f, m, and  to be estimated is 

written as follows accounting both for tests results where failure occurs and test results where failure 

does not occur (run-outs) (note, the uncertainty related to f and m model statistical uncertainties and  

 models model uncertainty): 

 

























2loglog
1

logloglog

2loglog
1

logloglog,,

,0
1

,0
1





V
n

iafi

n

i

V
n

iafi

n

i
sf

s
b

mmnP

s
b

mmnPmL

R

F

 

(4) 

where ni is the number of stress cycles to failure or run-out (no failure) with stress range equal to ia ,0  

in test number i. nF is the number of tests where failure occurs, and nR is the number of tests where 

failure does not occur after ni stress cycles (run-outs). n = nF + nR is the total number of tests. f, m, 

and  are estimated solving the optimization problem: max L(f, m, ). This can be done using a 

standard nonlinear optimizer, e.g., the NLPQL algorithm, see [15]. 

Since the parameters f, m and  are estimated by the maximum-likelihood technique, they become 

asymptotically (number of data should be larger than 25–30) normally distributed stochastic variables 

with expected values equal to maximum-likelihood estimates and covariance matrix equal to, see [16]: 
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where 
 ,,mf

H  is the Hessian matrix with second-order derivatives of the log-likelihood function.  f
, 

m and 


  denote the standard deviation of f, m and  respectively and .,.  indicates correlation 

coefficients. Alternatively to the log-normal model for the SN curve a Weibull model can be used,  

as described in the next section. 

4. Fatigue Strength Modeled by a Weibull Distribution 

As mentioned above, the strength of wind turbine drivetrain components are subject to uncertainties 

and therefore a stochastic modeling of life distribution is needed to study the reliability of the 

components. The influence of scale effects on damage modeling and fatigue life can from a theoretical 

basis be modeled by a Weibull mode, see e.g., [9]. Hence, the fatigue life can be modeled by a Weibull 

distribution for number of cycles to failure, N given stress range 0a  is written as: 
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where nb  is a shape parameter. By substituting Equation (2) in Equation (6), the corresponding density 

function becomes [13]: 
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The statistical parameters f and m in Equation (7) can be estimated by the maximum-likelihood 

method with the likelihood function: 
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where ni, nF, nR and n are introduced in previous section and they are obtained solving the optimization 

problem max L(f, m), see above. 

5. Characteristic Values 

In deterministic approaches, code-based design safety is introduced though application of 

deterministic values in terms of characteristic values and safety factors to obtain design values of both 

loads and strengths. In the following a probabilistic basis is used to estimate the characteristic values 

by modeling of physical, measurement, statistical and model uncertainties. 
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If statistical uncertainty is not taken into account then corresponding to a stress range, ca ,0   

a characteristic value of the fatigue life, nc defined as the 5% quantile can be estimated directly from 

the distribution function of the fatigue life. 

If statistical uncertainty is to be taken into account and the physical/model uncertainties for the 

fatigue life are modeled by a log-normal distribution then the characteristic value for the fatigue life,  
nc corresponding to the stress range, ca ,0  defined as a 5% quantile can obtained from by: 

05.02loglog
1

logloglog ,0 
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with a corresponding limit state equation written as: 
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Here, , m,  and f are modeled as stochastic variables as described above. For given ca ,0  

Equation (10) can be solved with respect to the characteristic fatigue life, nc using e.g., First Order 

Reliability Methods (FORM, see [9]). 

Similarly, if the fatigue life is modeled by a Weibull distribution and statistical uncertainty is 

accounted for, and then the characteristic value can be estimated using the following limit state equation: 

        nb
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,0 95.0lnloglogloglog
1

2loglog,,, (11) 

In equation (11), , , m and f model the physical/model and statistical uncertainties, respectively. 

As mentioned before, these parameters can be obtained from test results. 

6. Reliability Analysis 

Reliability of a component can be defined as the probability that the component under consideration 

has a proper performance throughout its lifetime. Structural reliability methods can be used to estimate 

the probability of failure/reliability which next can be used for decision-making, e.g., with respect to 

design or planning of inspections, maintenance and repair. 

The reliability estimated as a measure of the safety of a structure can be used in a decision process 

(for example Markov decision process [17]). A lower level of the acceptable reliability can be used as 

a constraint in a reliability-based optimal design problem. The lower level of the reliability can be 

obtained by analyzing similar structures designed after current design practice or it can be determined 

as the reliability level giving the largest utility (benefits-costs) when solving a decision problem where 

all possible costs and benefits in the expected lifetime of the structure are taken into account. Further, 

the reliability and failure rate of components can be used for decision making for maintenance  

plans [18]. 

Drivetrain components are typically exposed to complex loading conditions, [12]. Often the fatigue 

load is due to a range of fluctuating loads, different mean stress levels and variable frequencies. 

Cumulative damage theories consider the fatigue process to be one of damage accumulation until the 

life of the component is exhausted. Cumulative damage during fatigue is often modeled by using the 
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Palmgren-Miner rule, which assumes that the total life of a part can be estimated by adding up the 

percentage of life consumed by each stress level [12] and can be written as follows if used in a 

deterministic code-based verification: 

1
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where ni,S represent the number of cycles per year at a specific stress level a0,i and LT  is the design 

lifetime. It is assumed that for a wind turbine component the total number of stress ranges for a given 

fatigue critical detail can be grouped in n groups/intervals such that the number of stress ranges in 

group i is ni,S per year. (a0,i, ni,S) can be obtained by rain-flow counting and can be represented by  

so-called ‘Markov matrices’. Further, 
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05.0;0  is the 5% quantile of the number of cycles to 

failure given fatigue load equal to 
a0,i

z  and given the design fatigue strength mf  . N0;0.05 can be 

obtained both without and with statistical uncertainty included. z is a design / scaling parameter, e.g., 
related to a cross-sectional parameter; m  is a partial safety factor for fatigue. 

In this paper, the Level II method is used to measure the reliability of the components [9]. The 
design parameter z is obtained from (12) assuming that a fatigue partial safety factor m  is given. 

Thereby the reliability analyses become normalized in the way that the reliability is linked to the 

partial safety factors and it is assumed that the structure is designed to the limit though the design 

parameter z in the design equation. The corresponding limit state equation to be used in the reliability 

analysis is written: 
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where t is time (in years),  models model uncertainty related to Miner’s rule for linear damage 

accumulation. The distribution function for number of cycles to failure, N0;0.05 for given stress a,i can 

be obtained by equations (10) and (11) for log-normal and Weibull distributed fatigue lives.  

If statistical uncertainty is included then the statistical parameters are modeled by stochastic variables. 

XW is a stochastic variable modeling model uncertainty related to determination of fatigue loads and 

XSCF is a stochastic variable modeling model uncertainty related to determination of stresses given 

fatigue loads. For wind turbines the fatigue loads are typically estimated for mean wind speeds from  

4 m/s to 25 m/s and are normally represented by time series of load effects or equivalently by Markov 

matrices obtained by rain-flow counting. In the example below these loads are extracted from 

simulated loads for the main shaft of a 5 MW wind turbine for each mean wind speed Vj. The hub 

diameter is 3 meter and the rotor has a diameter of 126 meter. The hub height is 90 meter. The cut-in 

and cut-out wind speeds are 3 m/s and 25 m/s, respectively. Further information can be found in 

reference [19]. 
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Based on the geometry of the component (main shaft) and the load matrices, the stress amplitudes 

have been calculated. The calculated values are not fully reversed stress amplitude. Hence, the 

Goodman equation is used to find the effective fully reversed stress amplitudes for each mean speed. 

Equation (12) is thus rewritten: 
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where, Vj is the mean wind speed and P(Vj) is probability of occurrence of this mean wind speed, 

modelled by a Weibull distribution according to IEC 61400-1 [20]. In the example below, the  

scale and shape parameters of Weibull distribution have been chosen to 11.48 [m/s] and 1.75, 

respectively [21]. By substituting Equation (14) in Equation (13), the limit state equation can  

be written: 
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In Equation (15), , XW and XSCF are assumed to be log-normal distributed with mean values equal 1 

and coefficients of variation COV, COVW and COVSCF, respectively, following the recommendations 

in [22]. The coefficient of variations are estimated based partly subjectively, but following generally 

the recommendations used as basis for the material partial safety factors in IEC 61400-1, and also 

considering information from e.g., DNV-RP-C203 [23] although this is not directly related to the 

fatigue problem considered in this paper. The importance of the choices of the coefficient of variations 

is investigated by sensitivity analyses. It is noted that the reliability level obtained is in accordance 

with the target reliability corresponding to an annual probability of failure of the order 5 × 10−4 (annual 

reliability index: 3.3) [20]. 

Table 1 shows the representative stochastic model. Expected values and coefficient of variations for 

m and f are extracted from tests results as described above. Based on Equation (15), the probability of 

failure in the time interval [0,t] can be estimated by FORM/SORM techniques or simulation, see  

e.g., [9]. The reliability index, (t) corresponding to the accumulated probability of failure PF(t) is 

defined by: 

    tPt F
1  (16) 

where ( ) is the standardized normal distribution function. The annual probability of failure 

conditioned on survival up to time t is obtained from: 

         tPttPttPtP FFFF  1//  (17) 

where t is a time increment, typically 1 year. The reliability index,  corresponding to the 

probability PF is denoted the annual reliability index when t = 1 year. 
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Table 1. Stochastic model. 

Variable Definition Distribution 
Expected 
Value 

Coefficient 
of variation 

 Model uncertainty related to Miner’s rule LN * 1 0.2 
XSCF Model uncertainty related to determination 

of stresses given fatigue load 
LN 1 0.05 

XW Model uncertainty related to determination 
of fatigue loads 

LN 1 0.1 

m Statistical uncertainty N ** Extracted from test results 
f [MPa] Statistical uncertainty N Extracted from test results 

* LN: Log-normal distribution; ** N: Normal distribution. 

7. Results 

As mentioned above the test data by Shirani [14] will be used to illustrate the above statistical 

analysis and reliability assessment for wind turbine drivetrain components. The test data follows the 

specifications listed in Table 2. Two series of specimens were machined from T95 block (the cast 

block dimensions were 750 mm  200 mm  95 mm), and T150 block (the cast block dimensions were 

150 mm  300 mm  150 mm), specimens with 21 mm diameter. Specimens were tested at load ratios 

R = −1 (with R defined by 
am

amR










max

min ) [14]. 

Table 2. The test plan [14]. 

Material Load Ratio Specimen [mm] Number of specimens Test frequency [Hz]

T95 −1 Ø21 12 10 
T150 −1 Ø21 18 10 

The statistical analysis is performed following the methodology described in section 3 and 4 for 

estimation of the parameters in the log-normal and Weibull models. The results using the log-normal 

distribution model (Equations (6) and (7)) are shown in Table 3. 

Table 3. Estimated statistical parameters from tests with log-normal model for fatigue life. 

Test 
f [MPa] m  

Mean Std dev mean Std dev mean Std dev 

D21 T95 R = −1 941 50.5 9.4 0.33 0.25 0.01 
D21 T150 R = −1 697 67.9 10.7 0.83 0.23 0.04 

As mentioned in Table 2, the tests “D21 T95 R = −1” and “D21 T150 R = −1” are done with the 

same frequency and the same load ratio. Hence, these two tests can be used to study the changes of 

volume/size effects on the fatigue strength. Moreover, the correlation matrixes of the statistical 

parameters for these two tests are shown below for illustration. 
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It is seen that f and m are highly negative correlated (as expected). Next, the statistical 

uncertainties of fitted parameters using the Weibull distribution to model the fatigue life are extracted 

using the Maximum Likelihood Method. The results are shown in Table 4. 

Table 4. Estimated statistical parameters from tests with Weibull model for fatigue life. 

Test 
f [MPa] m 

mean Std dev mean Std dev 

D21 T95 R = −1 979 8.18 9.2 0.05 
D21 T150 R = −1 686 5.76 10.9 0.07 

Figures 2 and 3 show the mean and characteristic SN curves with log-normal and Weibull 

distributions for the fatigue life for tests “D21 T95 R = −1” and “D21 T150 R = −1” and with 

statistical uncertainties included. The figures show that the difference between the Weibull and  

log-normal models is small. 

  

Figure 2. SN data for test D21 T95 R = −1 with fitted mean and characteristic SN curves. 
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Figure 3. SN data for test D21 T150 R = −1 with fitted mean and characteristic SN curves. 

Next, using these estimated statistical parameters, the annual reliability index is estimated. First,  
the reliability index is determined with the partial safety factor, m  varying between 1.5 and 2,  

see Figures 4 and 5. It is seen that the Weibull distribution model has the lowest sensitivity with 

respect to changes of the partial safety factor when compared to log-normal distribution model.  

The target reliability level for wind turbines is typically in the interval from 3.1 to 3.8 for the annual 

reliability index corresponding to annual probabilities of failure between 10−4 and 10−3. From Figure 4, 

it is seen as expected that when the partial safety factor increases, the reliability index increases. 

 
Figure 4. Annual reliability index for partial safety factor m  = 1.5, 1.75 and 2.0 using the 

Weibull and log-normal models. Test D21 T95 R = −1. 
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Figure 5. Annual reliability index for partial safety factor m  = 1.5, 1.75 and 2.0 using the 

Weibull and log-normal models. Test D21 T150 R = −1. 

Next, the sensitivity of the reliability with respect to the uncertainty level of XW and XSCF is 
investigated. The partial safety factor,  equal to 1.75 is used in all the following cases. The results 

for XW are shown in Figures 6 and 7. It is seen that when the uncertainty related to the fatigue loads 

increases, then the reliability index based on the log-normal distribution model decrease more than the 

reliability index based on the Weibull distribution model. It is also seen that the reliability index is 

quite sensitive to the coefficient of variation of XW. 

 

Figure 6. Annual reliability index for different uncertainty models for XW. Test D21 T95 R = −1. 
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Figure 7. Annual reliability index for different uncertainty models for XW. Test D21 T150 R = −1. 

Next, the influence of the uncertainty of XSCF is investigated. Figures 8 and 9 show the results for 

the coefficient of variation of XSCF equal to 0.05, 0.15 and 0.25. The results are similar to those 

obtained for XW. Furthermore, the geometrical size effect affects the resistance of the material against 

fatigue failure. As mentioned above, the results of “D21 T95 R = −1” and “D21 T150 R = −1” are used 

as basis for investigating the geometrical size effects.  

 

Figure 8. Annual reliability index for different uncertainty models for XSCF. Test D21 T95 R = −1. 
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Figure 9. Annual reliability index for different uncertainty models for XSCF. Test D21 T150 R = −1. 

By comparing Figures 2 and 3, the fatigue life of specimen “D21 T95 R = −1” is higher than the 

fatigue life of “D21 T150 R= −1” and it is seen that when the volume of a component increase, the 

fatigue life of the component decrease. This effect is important to include in reliability assessments. 

Moreover, by comparing the Figures 6,7 and Figures 8,9 for various assumptions of the uncertainties 

of XW and XSCF, it is seen that the annual reliability index of T150 is (as expected) lower than T95 in all 

cases. Consequently, higher safety factor must be applied in the design process for larger components 

and the geometrical size effect may affect the design significantly. 

8. Conclusions 

In this paper, different stochastic models for fatigue failure of casted steel components in wind 

turbine drivetrain components are considered. Firstly, the fatigue life is modeled and various 

uncertainties that affect the stochastic models of failure are described including size effects. These 

uncertainties include model and statistical uncertainties. The basic uncertainty of the fatigue life is 

modeled by two distribution models, namely log-normal and Weibull distribution. It is described how 

the statistical parameters can be derived including the statistical uncertainties. Next, characteristic  

SN-curves are derived using structural reliability techniques. 

A set of test data is used to illustrate the procedure to rationally model the uncertainties and next to 

estimate the reliability for generic cases. The results indicate that the characteristic SN-curves are 

almost the same using the Weibull and log-normal models, but the reliability obtained by the  

log-normal distribution model is generally higher than reliability index obtained using the Weibull 

distribution model. Further, the uncertainty of the load model is seen to influence the reliability level 

significantly. The same is the case for the size effect. This implies that safety factors used in 

deterministic design should reflect these uncertainties. This effect is not studied in this paper but will 

be done in future work. 
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