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Abstract: Gallium nitride (GaN) power devices have many benefits, including high power density,
small footprint, high operating voltage, and excellent power gain capability. However, in contrast to
silicon carbide (SiC), its performance and reliability can be negatively impacted by its low thermal
conductivity, which can cause overheating. Hence, it is necessary to provide a reliable and workable
thermal management model. In this paper, a model of a flip-chip packing (FCP) GaN chip was
established, and it was assigned to the Ag sinter paste structure. The different solder bumps and
under bump metallurgy (UBM) were considered. The results indicated that the FCP GaN chip with
underfill was a promising method because it not only reduced the size of the package model but also
reduced thermal stress. When the chip was in operation, the thermal stress was about 79 MPa, only
38.77% of the Ag sinter paste structure, lower than any of the GaN chip packaging methods currently
in use. Moreover, the thermal condition of the module often has little to do with the material of the
UBM. Additionally, nano-silver was found to be the most suitable bump material for FCP GaN chip.
Temperature shock experiments were also conducted with different UBM materials when nano-silver
was used as bump. It was found that Al as UBM is a more reliable option.

Keywords: flip-chip; solder bump; GaN power device; thermal reliability; thermal stress

1. Introduction

Power semiconductors play a crucial role in the effective distribution, utilization, and
generation of energy in electric drive systems. In recent years, the emergence of the Wide
Band Gap (WBG) semiconductor GaN has led to its gradual replacement of traditional
semiconductor material silicon in numerous electronic devices and components. This
new-generation semiconductor material is proving to be highly effective in improving
the overall performance and energy efficiency of electric drive systems. In theory, wide
bandgap technology enables power electronics to operate at temperatures exceeding 250 ◦C,
as well as higher power densities and switching frequencies [1]. This technology has gained
widespread use in various applications, including electric vehicles, radar, lighting, lasers,
and power amplifiers [2–6].

Since WBG materials and their processing are expensive, minimizing the chip and
package size of related devices is economically important for the commercialization of
these devices. However, smaller sizes are often accompanied by increased self-heating,
which affects the reliability of the chip. In addition, the assembled parts suffer from
thermal stress due to switching frequently because of the different coefficients of thermal
expansion (CTE). Presently, GaN chips are mainly packaged with direct bonded copper
(DBC) or direct bonded aluminum (DBA) as the main structure that applied Ag sinter
paste to improve their electrical, thermal, and mechanical properties and fatigue life [7,8].
Kim et al., improved the thermal stability by adding wolfram inside the Ag sinter paste, but
this also increased the whole chip package size [9]. FCP is a new generation of packaging
methods, often boasting the advantages of small size and high stability, suitable for GaN
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chip packaging. Daniel et al. used FC integration for thermal management for GaN and
Ultra-Wide Bandgap (UWBG) power amplifiers and achieved a beneficial effect [10].

Nowadays, the power density of commercial GaN power chips is 4~8 W/mm3, so
as to avoid damage to the chip due to the self-heating effect. However, this is only 20%
of its theoretical limit. There have been experiments to reduce the self-heating effect
of GaN power chips by placing them on SiC substrates, which have very high thermal
conductivity [11]. In addition to that, the method of double-sided cooling is being used [10].
However, the thermal management of WBG power devices still has the following problems
to be solved [12].

(I) High current density and electric field generates very high local heat flux resulting in
irregular temperature distributions and local thermal runaway.

(II) High thermal resistance due to unreasonable device structure.

In this work, an FCP GaN module was compared with conventional packaging. The
structure used SiC as the substrate and added underfill to enhance the stability of the
structure. The relationship between temperature and stress was considered and different
solder bumps were tried to investigate the effect of materials on the response to thermal
stress in FCP. Through our simulation experiments, FCP was proved to be a feasible option
that can be used for thermal management of WBG and UWBG power devices.

2. Models and Simulation
2.1. Modeling

To contrast the reliability of FCP GaN and conventional packaging, two modules were
established. The DBC package structure is shown in Figure 1, using Ag sinter paste to
solder the GaN chip onto the DBC layer with a middle insulation layer of Si3N4. On the
other hand, the FCP structure, shown in Figure 2, used a 5 × 5 array of solder bumps that
had been simplified to place the chip upside down on the substrate. Both modules had
chips and substrate of the same size.
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The dimensions of each part of the module are shown in Table 1. Comparing
Figures 1 and 2, it can be seen that the FCP effectively reduces the whole module size. In
addition, since the chip is inverted on the solder bumps, thermally conductive silicone
grease can be painted on the back of the chip to enhance the heat dissipation capability.
Furthermore, removing wire bonding is possible to achieve a higher density layout by
redistributing layer (RDL) on the substrate without taking up space on the chip surface [13].
Hence, the distance between the chip and the substrate is shortened, the time delay of
signal transmission is reduced, and the chip performance is improved [14].

Table 1. Module size parameters.

Model Size (µm) Thickness (µm) Diameter (µm)

Substrate 30,000 × 30,000 1000
Die 5000 × 5000 400

DBC
7000 × 7000 300
7000 × 7000 400
7000 × 7000 300

Ag sinter 5000 × 5000 100
Cu pad 200 × 200 20
Bump 95 120
UBM 5 55

The volume of the GaN/DBC module was 961.5 mm3 and the volume of the FCP GaN
module was 910.04 mm3. Volume was reduced by 5.35%. Without counting the substrate,
the volume of FCP GaN module was only 16.3% of that of the former.

2.2. Finite Element Method

Finite element method (FEM) analysis was used to verify the module. In the FEM
module, when the switch is turned on and the chip is in operation, the heat generated
by the chip transfers heat to other components and the environment via heat conduction,
convection, radiation, etc. In the three-dimensional (3D) spatial coordinate system (x, y, z),
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the 3D transient heat transfer equation for heat conduction versus time is established by
the first law of thermodynamics and Fourier’s heat conduction equation as Equation (1):

k
ρc

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 ) =

∂T
∂t

(1)

where k is the thermal conductivity (W/m·K), ρ is the density (kg/m3), c is the specific heat
capacity (J/kg·K), T is the temperature (K), and t is the time (s). When the temperature of
the whole module changes, thermal deformation occurs in the 3D spaces, which is mainly
influenced by the support conditions, temperature difference, material properties, etc. The
amount of thermal deformation ∆ in the 3D direction can be expressed as Equation (2):

∆x = αx
∫ Lx

0 [T(x)− T0]dx

∆y = αy
∫ Ly

0 [T(y)− T0]dy

∆z = αz
∫ Lz

0 [T(z)− T0]dz

(2)

where α is the CTE of the material (1/K) and T (x, y, z) is the temperature of the calculation
point (K). The total deformation is shown in Equation (3).

∆sum =
√

∆x2 + ∆y2 + ∆z2 (3)

Due to the different coefficients of the thermal expansion of materials, when there is a
temperature difference, stresses are generated by squeezing each other inside the module,
which is thermal stress. The equation of thermal stress can be calculated by the coefficient
of thermal expansion, the temperature difference, and the mechanical properties of the
component material. The formula for thermal stress is shown in Equation (4):

σ = α · E · ∆T (4)

where σ means the thermal stress of the chip (GPa); E is the elastic modulus of the chip
material (GPa); and ∆T means the temperature difference between different parts inside
the module (K). The above formulae show that the thermal stress of the model is related to
the coefficient of thermal expansion, the temperature difference, and the elastic modulus
of the material. When the temperature difference inside the module is large, the thermal
stress will increase, which may lead to chip failure or damage. Before conducting the FEM
analysis, the material of each component of the module is defined, and Table 2 shows the
material properties of each component [15].

Table 2. Material properties.

Material Density (kg/m3) CTE (/K) Thermal Conductivity
(W/m·K)

Young’s Modulus
(GPa) Poisson’s Ratio Specific Heat

(J/kg·K)

GaN 6100 5.6 × 10−6 110 211 0.17 412
Ag 6294 3.25 × 10−6 430 12.9 0.1 240
Cu 8950 1.64 × 10−5 393 110 0.34 385

Si3N4 3200 2.6 × 10−6 100 300 0.28 700
UBM 8900 1.34 × 10−5 91 200 0.31 443.8

Substrate 3210 5.1 × 10−6 150 400 0.142 710

2.3. Simulation

FEM analysis was conducted using ANSYS WorkBench platform at room temperature
(295.15 K) and the findings are presented in Figure 3. The simulation indicated that,
despite its smaller size, the FCP encountered a serious heat dissipation issue at the same
power density, reaching a maximum temperature of 470.01 K, which was considerably
higher than that of the DBC package structure. This was primarily due to the inadequate
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heat conduction between the chip and the substrate, which was solely facilitated by the
5 × 5 Bump array. To address this problem, underfill was added between the chip and the
substrate [16]. By adding underfill, it not only optimized the heat conduction of the FCP
and better protected the bumps, but also freed the bumps from electrostatic interference
and increased the stability of the bumps [17,18].
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Figure 4 shows the temperature and thermal stress after adding underfill. The maxi-
mum temperature was reduced to 399.16 K. Clearly, the underfill plays a significant role in
heat dissipating and supporting [18–21]. In contrast to Figure 3, we known that the reliabil-
ity of the FCP was worse compared to the Ag sintered package. The maximum temperature
of the FCP GaN chip was 67.68 K higher than that of DBC, while the temperature of the
substrate was lower. In Figure 5, the temperature distribution between the top and bottom
of the solder bumps reached 72.85 K. This is probably because the k of the traditional solder
bump material is poor, which caused the large temperature difference.
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Due to the reduced size, the heat dissipation of the module is relatively affected, and
the UBM layer is subjected to the maximum stress, which seriously affects the reliability of
the FCP. Optimization of FCP GaN chip is required.

Pairing Equations (1) and (4), it can be inferred that the reliability problem of FCP is
related to the properties of materials [10,12,22–26]. For finding the most suitable material,
Taguchi’s experimental method was used [27]. Different combinations of bump and UBM
materials are employed to enhance the thermal reliability of the FCP GaN chip. Table 3
shows the properties of the different materials, and there are 12 groups of experiments to
find the most suitable bump and UBM material. The experimental results are shown in
Table 4.

From Table 4, it is clear that when bump is determined, the material of UBM has little
effect on the whole module heat conduction. This is logical since the size of UBM is much
smaller than bump and underfill. Its impact on the module’s heat conduction was negligible.
Figure 6 shows the temperature distribution of the solder bumps with the best optimization
results. The maximum/minimum temperature difference is 36.23 K. Matching with Figure 5,
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its thermal resistance is reduced by 50%. As a result, nano-silver is the optimal material
as a bump for FCP GaN chip, with less thermal stress when the UBM is chosen as Al and
better thermal conduction when the UBM is chosen as Cu. Both nano-silver’s thermal
conductivity and mechanical properties are superior to other materials [28–31]. Since UBM
tends to be subjected to the maximum thermal stress, temperature shock experiments were
conducted on FCP GaN chip of UBM(Al) and UBM(Cu) to evaluate the reliability of the
modules [32].
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Table 3. Properties of bump and UBM.

Part Material CTE (/K) Thermal Conductivity
(W/m·K)

Young’s Modulus
(GPa) Poisson’s Ratio

Bump

SnPb 2.4 × 10−5 50 19.7 0.4
SAC305 2.3 × 10−5 57.26 26.2 0.35

Nano-silver 1.96 × 10−5 238 80 0.37
Au 1.44 × 10−5 318 79 0.44

UBM
Ni 1.34 × 10−5 91 200 0.31
Al 2.3 × 10−5 240 69 0.33
Cu As shown in Figure 2
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Table 4. Results of Taguchi’s experimental method.

Combination Maximum Temperature (K) Maximum Von-Mises Stress (MPa)

SnPb + Ni 399.16 277.15
SnPb + Al 399.12 197.61
SnPb + Cu 399.09 232.49

SAC305 + Ni 408.06 374.82
SAC305 + Al 408.07 266.3
SAC305 + Cu 408.08 320.84

Nano-silver + Ni 368.79 97.837
Nano-silver + Al 368.67 79.148
Nano-silver + Cu 368.59 89.112

Au + Ni 377.31 575.21
Au + Al 376.79 529.35
Au + Cu 377.05 391.26
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3. Temperature Shock Experiments

Considering the relationship between the temperature and stress–strain of the bumps,
the Anand model of nano-silver was applied [33]. It can produce a more accurate analysis
of the resistance to deformation under temperature shock. Table 5 shows the parameters of
the Anand model of nano-silver.

Table 5. Anand’s model parameters of nano-silver.

A (s−1) Q/R (1/K) m n ξ s’ (MPa) h0 (MPa) s0 (MPa) α

9.81 5709 0.6572 0.00326 11 67.389 15,800 2.768 1

The range of temperature shock is −40–150 ◦C (233 K–423 K), the high and low
temperatures lasting for 600 s with 60 s as the period of transition. Temperature shock
damage increases with the number of cycles, but generally tends to stabilize the fatigue
damage change after four cycles. Figure 7 shows the temperature shock conditions. High
and low temperatures lasted four cycles for a total of 6000 s.
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Figure 8 shows the results of the temperature shock experiments, (a) for UBM(Al)
and (b) for UBM(Cu). The maximum Von-mises stress was 408.21 MPa for UBM(Al) and
450.43 MPa for UBM(Cu). Both were obtained at 4680 s. It is evident from Figure 8 that,
after the third temperature shock, the maximum Von-mises stress hardly changed again.

In summary, the FCP GaN chip is workable at the same power density. It supports a
smaller size although heat conduction needs to be continually improved. Considering that
a heat sink can be placed directly on the back of the chip, it is more suitable in high power
and high temperature conditions [34,35]. It also offers higher resistance to electrostatic
interference and deformation due to the protection of the underfill.
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4. Conclusions

By comparing the thermal reliability of conventional DBC package structure and FCP
structure of GaN chips at the same power density, the advantages and disadvantages of
FCP GaN chips were displayed. FCP can reduce the size of the whole module, and without
wire bonding it avoids the chip failure problem caused by bonding wire failure. Moreover,
underfill was added to avoid signal distortion caused by electrostatic crosstalk. The thermal
stress of FCP was greatly reduced. Through comparison of simulations, it is easy to see
that the preferred solder bump material for FCP GaN chip is nano-sliver, which has a very
strong heat dissipation capacity. Furthermore, its coefficient of thermal expansion matches
GaN well. Maximum equivalent stress was also lower than the DBC package structure,
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only 79.184 MPa; UBM is often subjected to the maximum stress. Through temperature
shock experiments, Al as UBM material was found to be a good choice.

However, the FCP GaN chip still faces many challenges. Currently, the power density
of GaN power chip is far less than the theoretical power density value of 42 W/mm3. Within
the study of power density, FCP GaN chip heat conduction capacity is still inferior to the
DBC double-sided cooling package structure. Optimizations are still needed to improve
the thermal reliability of the FCP structure. The currently viable options are as follows:

(I) Using mixed materials with higher k instead of epoxy resin as underfill, allowing heat
to pass between the chip and the substrate more quickly.

(II) Reducing the temperature of high-power devices with dual-small-outline (DSO)
packages (from Infineon). DSO allows for junction-side cooling, which is suitable for
semiconductor materials with low k and can solve the problem of irregular thermal
distribution in lateral GaN power devices.

(III) Adopting a PCB embedding method. This method has achieved good heat conduction
results in both individual GaN devices and GaN integrated circuits.
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