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Abstract: Gravity retaining walls are a vital structure in the area of geotechnical engineering, and
academicians in earlier studies have conveyed substantial uncertainties involved in calculating
the factor of safety against overturning, using a deterministic approach. Hence, to enhance the
accuracy and eliminate the uncertainties involved, artificial intelligence (AI) was used in the present
research. The main aim of this study is to propose a high-performance machine learning (ML)
model to determine the factor of safety (FOS) of gravity retaining walls against overturning. The
projected methodology included a novel hybrid machine learning model that merged with an
adaptive neuro-fuzzy inference system (ANFIS) and meta-heuristic optimization techniques (particle
swarm optimization (PSO), genetic algorithm (GA), firefly algorithm (FFA) and grey wolf optimization
(GWO)). In this research, four hybrid models, namely ANFIS-PSO, ANFIS-FFA, ANFIS-GA and
ANFIS-GWO, were created to estimate the factor of safety against overturning. The proposed hybrid
models were evaluated on two distinct datasets (training 70% and testing 30%) with three input
combinations, namely cohesion (c), unit weight of soil (Υ) and angle of shearing resistance (ϕ).
To access the prediction power of different hybrid models, various statistical parameters such as
R2, AdjR2, VAF, WI, LMI, a-20 index, PI, KGE, RMSE, SI, MAE, NMBE and MBE were computed
for training (TR) and testing (TS) datasets. The overall performance of the models indicated that
ANFIS-PSO provided better results among all four models. The reliability index was computed using
the first-order second-moment (FOSM) method for all models, and the probability of failure was also
computed. A Williams plot was drawn to check the applicability domain of the hybrid model and to
check the influence of different input parameters on the prediction of the factor of safety, and the Gini
index was also computed.

Keywords: gravity retaining wall; hybrid ANFIS; rank analysis; error matrix; Williams plot; Gini index

1. Introduction

Retaining structures are designed to restrain backfill to irregular slopes. They are
used to bind backfills between two different elevations. A retaining wall is a structure
designed and constructed to resist the lateral earth pressure of soil when there is a variation
in ground altitude that surpasses the angle of repose of the soil. The magnitude of the
lateral earth pressure depends upon numeral factors, such as the unit weight of the soil (Υ),
cohesion (c) and angle of shearing resistance (ϕ). Gravity retaining walls are most common
among different kinds of retaining walls. Gravity retaining walls generally fail due to
rigid body mechanisms such as sliding, overturning or gross instability. That is why an
external stability check is an important task in the design of gravity retaining walls. In this
research, the reliability of gravity retaining walls was evaluated based on the overturning
failure measure. Overturning failure occurs when the resisting moment (Mr) is less than the
overturning moment (Mo) acting on the wall. Numerous soil specifications are involved
while designing the gravity retaining wall, such as the unit weight of the soil, cohesion
and angle of shearing resistance. The retaining wall design is based on a deterministic
approach that does not consider the inconsistency of geotechnical parameters. Due to the
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natural uncertainty of soil properties, reliability analysis design receives more attention
in the field of geotechnical engineering in order to diminish construction uncertainties.
Three soil parameters, as stated above, were taken as statistical input parameters for this
study, and four algorithms of machine learning, namely particle swarm optimization (PSO),
genetic algorithm (GA), firefly algorithm (FFA) and grey wolf optimization (GWO), were
used to model the gravity retaining wall. In this research, hybrid ANFIS models such as
ANFIS-PSO, ANFIS-GA, ANFIS-FFA and ANFIS-GWO were used. Reliability analysis in
the area of geotechnical engineering has been established over the years, following the
probabilistic approach, and several studies are discussed as follows. Low [1] analyzed
retaining walls regarding the factor of safety against sliding. Chan and Low [2] used the
second-order reliability method for foundation engineering. Cushing et al. [3] performed
a reliability analysis of anchored and cantilevered flexible retaining structures. Low and
Tang [4] analyzed the efficient system reliability exemplified in a retaining wall and a soil
slope. GuhaRay et al. [5] performed a reliability analysis on a retaining wall subjected to
blast loading using the finite element approach. Alghaffar et al. [6] performed a reliability
analysis on retaining walls designed in accordance with British and European standards.
Kumar and Roy [7] used the reliability method to examine retaining walls using imprecise
probability. They used a copula-based approach to probe the influence of copulas for mod-
eling trivariate distributions on system reliability under imperfect probability information.
Chouksey and Fale [8] performed a reliability analysis on a counterfort retaining wall. They
used the first-order reliability method (FORM), second-order reliability method (SORM)
and a Monte Carlo simulation (MCS) to compute the reliability index (β) or probability of
failure related to numerous modes of failure. Cherubini [9] used a probabilistic approach
to examine the design of anchored sheet pile walls. Yang and Ching [10] used a novel
simplified geotechnical reliability analysis technique. In this research, they used the first-
and second-order reliability methods (FORM and SORM) and simulation-based techniques
such as MCS to find the reliability index. Menon et al. [11] used the FORM, SORM and
MCS reliability methods to evaluate the probability of failure linked to the sliding failure
of a cantilever retaining wall. Wang et al. [12] used the central point method to analyze
the reliability analysis of a gravity retaining wall under a mount torrent load, and the
performance functions of the anti-slip stability and overturning stability were obtained.
Xiao et al. [13] used FOSM to set up a fuzzy random reliability analysis. Dao-bing et al. [14]
performed a reliability analysis of retaining walls with multiple failure modes. In this
research, they used the upper-boundary theory of limit analysis to analyze two dissimilar
types of retaining wall failures, namely anti-slipping and anti-overturning. Babu and
Basha [15] used target reliability practice to scrutinize sheet pile walls. To examine the
anchored cantilever sheet pile wall, the inverse first-order reliability technique was used.
Low [16] studied the reliability-based design applied to retaining walls. In this research,
the author explains practical reliability-based design measures for retaining walls based
on the Hasofer–Lind index and first-order reliability method (FORM). Sun and Yuefei [17]
used the particle discrete element method (PDEM) to model the simultaneous effects of
particle size and porosity in simulating geo-materials. The main idea behind this research
was to enable the development of more realistic discrete elements and to help simulate the
more complex rock and soil materials. Sun [18] analyzed the hard particle static force in a
soft rock fracture. He analyzed the mechanics of particles in rock fissures, especially under
the compression of rock from both sides.

However, few studies have dedicated a computational approach in the field of geotech-
nical engineering. The combination of geotechnical engineering and artificial intelligence
(AI) has led to an interdisciplinary approach where different complicated design problems
are modeled. Numerous civil engineering areas have practiced combining artificial intel-
ligence algorithms such as genetic algorithm (GA), particle swarm optimization (PSO),
firefly algorithm (FFA) and grey wolf optimization (GWO), the most applied technique
for tough calculation and modeling, to solve problems accurately and assure certainty as
a result. With the emergence of soft computing in geotechnical engineering, simulation
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models and the involved constitutive models become progressively more comprehensive.
However, stochastic analyses require a large number of model evaluations, which may
make the probabilistic analysis computationally unaffordable for practitioners. Novel hy-
brid machine learning models such as ANFIS-PSO, ANFIS-FFA, ANFIS-GA, ANFIS-GWO,
etc., can be used in different aspects such as design, monitoring and safety analysis to
substitute the large computational models with less computational efforts. Zhang and
Wang [19] used a machine learning algorithm (genetic algorithm) to improve the prediction
of earthquake-induced soil liquefaction. Harandizadeh et al. [20] analyzed the application
of improved ANFIS approaches to compute the bearing capacity of piles. Zhang and
Goh [21] analyzed a geotechnical engineering system by using multivariate adaptive regres-
sion splines (MARS). Mishra et al. [22] designed a retaining wall using a machine learning
approach. In their study, they used numerous machine learning models such as emotional
neural network (EmNN), multivariate adaptive regression spline (MARS) and symbiotic
organisms search-least square support vector machine (SOS-LSSVM) to predict the factor
of safety against sliding. Zhang et al. [23] analyzed the inverse analysis of soil and wall
properties in braced excavation by using the machine learning algorithm MARS. Xiang
et al. [24] used AI algorithm MARS model for the estimation of maximum wall deflections
induced by braced excavation in clays. Zhang et al. [25] estimated lateral wall deflection
profiles caused by braced excavations in clays using the MARS approach. Mishra and
Samui [26] performed a reliability analysis of retaining walls by using an artificial neural
network (ANN) and adaptive neuro fuzzy inference system (ANFIS). Ghani et al. [27]
analyzed liquefaction analysis on fine-grained soil by using principal component analysis
(PCA)-based hybrid soft computing models. Zhang and Goh [28] used multivariate adap-
tive regression splines (MARS) and neural network (NN) models for the prediction of pile
drivability. Wang et al. [29] used the MARS model for the stability analysis of earth dam
slope under transient seepage. Zhang et al. [30] used a soft computing approach for the
prediction of surface settlement induced by earth pressure balance shield tunneling. Wang
et al. [31] used the extreme gradient boosting method for the efficient reliability analysis of
earth dam slope stability. Wu et al. [32] predicted wall deflection by braced excavation in
spatially variable soil using a convolutional neural network. Yong et al. [33] used the finite
element method (FEM) and artificial neural network (ANN) optimized by the metaheuristic
algorithm for the analysis and prediction of diaphragm wall deflection induced by deep
braced excavations.

2. The Proposed AI-Based Hybridized Method

As stated in the earlier section, many scholars have studied the reliability analysis of
retaining walls by using various statistical parameters. The main goal of the present study is
to provide the best hybrid ANFIS models for designers and engineers to compute the factor
of safety of a gravity retaining wall against overturning. The subsequent sections deliver
a brief background of the ANFIS technique followed by a meta-heuristic optimization
technique such as PSO, GA, FFA and GWO.

2.1. Adaptive Neuro Fuzzy Inference System (ANFIS)

The adaptive neuro fuzzy inference system (ANFIS) is a class of adaptive networks
that are functionally based on Takagi-Sugeno [34] fuzzy inference systems (FIS). It is a
machine learning tactic that permits the evolution of an easy-to-use model for resolving
complexity. The idea behind ANFIS is to make the stated output and input variables using
a set of fuzzy if-then command and appropriate membership functions (MF). The fuzzy
rule established for two input (x and y) and one output (z) FIS can be given as follows:

Rule 1: If x is C1 and y is D1, then,

g1 = r1 x + s1 y + t1 (1)
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Rule 2: If x is C2 and y is D2, then,

g2 = r2 x + s2 y + t2 (2)

where x and y are the two inputs, and C1, C2, D1 and D2 are membership functions (MF)
linked with inputs x and y linked with the node function. The parameters r1, s1, t1 and r2,
s2, t2 are linked with output functions g1 and g2, respectively. A typical ANFIS structure is
shown in Figure 1, which shows that an ANFIS model contains five layers. The purpose of
each of these layers is designated below:
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Layer 1: Input layers are converted into a fuzzy membership function (MF) in this
layer. Layer 1 parameters are designated as premise parameters. The output of the node
can be reckoned as:

O1
i = µCi(x) for i = 1, 2,O1

i = µDi−2(y) for i = 3, 4. (3)

Here, x, y are the inputs to node i, and Ci and Di are fuzzy sets in the parametric form
linked with node i.

Layer 2: In this layer, nodes are fixed and act as a multiplier and are named as a neural
network layer.

O2
i = wi = µCi (x). µDi (y) for i = 1, 2. (4)

Layer 3: In this layer, all nodes are fixed and categorized by N. The firing strengths of
fuzzy inference systems rules are normalized. Each node accessible in this layer computes
the weight, which is normalized. Outputs are mentioned as normalized firing strengths.

O3
i = wi =

wi

w1 + w2
for i = 1, 2. (5)

Layer 4: In this layer, features of the nodes are adaptable. This is a fuzzy logic node
with a parameter set {ri, si, ti} and the output of preceding layer wi .The output of the node
is signified below:

O4
i = wigi = wi(rix + siy + ti) for i = 1, 2. (6)

Layer 5: In this layer, only one node is fixed, and its output is calculated as a total of
each incoming signal. The output function of this node is computed as:

O5
i = ∑ wigi=

∑i wigi
∑i wi

O4
i = wigi = wi(rix + siy + ti) for i = 1, 2. (7)
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2.2. Metaheuristic Optimization Algorithm
2.2.1. Particle Swarm Optimization (PSO)

PSO is one of the bio-inspired algorithms and is a simple one to search for an ideal
solution in the space. PSO was proposed by the authors Kennedy and Eberhart in the
year 1995 [35]. It practices a numeral of particles (agents) that constitute a swarm moving
around in the search space, looking for the best solution. This algorithm executes the hunt
of the best solution through agents, referred to as particles, whose routes are attuned by a
stochastic and a deterministic component. Each particle is inclined by its ‘best’ achieved
position (personnel best or pbest) and the group ‘best’ position (global best or gbest) but
have a habit of moving randomly. This practice is repeated till the completion standard
is reached.

2.2.2. Genetic Algorithm (GA)

GA is a kind of meta-heuristic optimization that is inspired by Charles Darwin’s theory
of natural evolution [36]. GA reflects the procedure of natural selection where the suitable
individuals are nominated for reproduction in order to yield offspring of the next generation.
It mostly works when the idea is to transfer a population of chromosomes. GA works
on three types of processes, viz. selection, crossover and mutation. The selection process
chooses the entities called parents that pay to the population of the next generation. In the
course of producing offspring, crossover or mutation is used. Over frequent generations,
the process determines the best group of chromosomes, which should replicate the best
or near-best solution to the problem. This optimization is unique as it governs the best
solution to any problem.

2.2.3. Firefly Algorithm (FFA)

This is another meta-heuristic optimization proposed by the author Xin-She Yang [37].
FFA is based on flashing patterns and the behavior of fireflies. This algorithm is used to
find the global bests of objective functions based on swarm intelligence, inspecting the
searching performance of fireflies. Light variation and appealing formulas are the two
important key components of FFA. To ascertain mates for mating, to trace prey and to raise
awareness or fear among the swarm, fireflies use these lights.

2.2.4. Grey Wolf Optimization (GWO)

GWO is another meta-heuristic optimization inspired by grey wolves. Mirjalili et al. [38]
proposed the grey wolf optimization inspired by the social life of a grey wolf pack. The main
aim of GWO is to replicate the activity of grey wolves in nature to hunt in a cooperative
way. Alpha wolf, beta wolf, delta wolf and omega wolf are the four different kinds of grey
wolves that simulate the headship hierarchy. In addition, the three core phases of hunting,
probing for prey, enclosing prey and attacking prey, are executed.

2.3. Hybrid ANFIS Models

The above-mentioned sections have emphasized the importance of the machine learn-
ing approach which advocates the necessity and presentation of these practices for judging
the factor of safety against the overturning of the wall. However, the effectiveness of
these methods can be debated due to the numerous restrictions and shortcomings related
to them. So, scholars have established certain approaches that can be suitably accepted
for improving their performance. The aforesaid method is the hybridization of these
machine learning approaches along with metaheuristic optimization techniques. These
meta-heuristic optimization techniques are supreme tools for solving difficult technical
problems such as signaling, manufacturing, designing, data processing and many more.
When these self-efficient meta-heuristic optimization techniques are pooled with a machine
learning technique, the computational intelligence of these meta-heuristic optimization
techniques is enriched up to a substantial level, assisting them in attaining perfect predictive
validity. Because of the substantial relevancy of this idea and seeing the difficulties in-
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volved for the deciding factor of safety against overturning, the authors have implemented
the same for the present study. In the present study, the association of the ANFIS model
with the meta-heuristic optimization techniques selected (PSO, GA, FFA and GWO) can
form the resulting hybrid models; ANFIS-PSO, ANFIS-GA, ANFIS-FFA and ANFIS-GWO,
respectively. The various advantages using PSO with ANFIS are that it can be easily paral-
lelized for concurrent processing, there are less algorithm parameters and it has an efficient
global search algorithm. However, it also has some drawbacks, for example, its optimum
local search ability is poor. The major advantages of using FFA are that it can efficiently
deal with non-linear, multi-modal optimization and the convergence speed is very high
while finding a global optimized response. High computational time complication is the
drawback of PSO. The advantage of GA is that it supports multi-objective function, and it
uses a probabilistic transition rule instead of deterministic rules, but it is computationally
expensive and needs less information about the problem. As we know that PSO and GWO
are swarm intelligence-based algorithms, the major advantage of GWO is also like PSO in
that it has less algorithm parameters and magnificent potential in solving the problems but
it has poor local searching capability and a slow convergence rate.

3. Practical Applications to the Gravity Retaining Wall

A gravity retaining wall mainly depends on their bulky weight to hold the material at
the back of it and attain stability against numerous modes of failures. A gravity retaining
wall is employed to inspect probabilistic analysis. The overturning failure mode is inspected
by various hybrid ANFIS models. Figure 2 illustrates the geometry of a gravity retaining
wall and the various dimensions considered in the article. The factor of safety (FOS) against
overturning can be designated below:

FOSovt =
∑ MR

∑ MO
=

W1. x1 + W2. x2

Fa. z
(8)

where MR and MO indicate the resisting moment and overturning moment, respectively,
W1 and W2 are the element weights of the gravity retaining wall (GRW), x1 and x2 are the
horizontal lever distance from the toe wall, z is the vertical lever distance and Fa is the
total active thrust per meter run of the wall. In this work, a classical earth pressure theory,
namely Rankine’s theory, is used to compute total active force, which is established on
the assumption that the there is no friction between rear of the wall and backfill. For the
backfill properties with c, ϕ and Υ, Fa is given by

Fa =
1
2

kaγH2 −2cH
√

ka+
2c2

γ
(9)

Here, H is the wall height and ka is the active earth pressure coefficient, which is the
function of ϕ and expressed as

ka =
1− sinϕ
1 + sinϕ

= tan2
(π

4
− ϕ

2
) (10)

In Figure 2, component weight W1 and W2 and lever arm distance can be computed as

W1 = Υwall a H; W2 =
1
2

Ywall b H; x1 = b +
a
2

; x2 =
2
3

b; z = H/3 (11)

As shown in Figure 2, cohesion (c), angle of shearing resistance (ϕ) and unit weight
of backfill (Υ) have a significant influence on the computation of factor of safety against
overturning failure.

This research has much to contribute both to the field of artificial intelligence (AI)
and geotechnical engineering. Statistical input parameters are taken as cohesion (c), angle
of shearing resistance (ϕ) and unit weight of soil (Υ), which follows normal distribution
function. Other parameters such as H, a, b and Υwall are supposed to be constant so that
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correlation between c, ϕ and Υ can be efficiently explored without intervention from other
random variables. For this learning of gravity retaining walls, data were generated and the
coefficient of variation (CoV) values were taken from different previous studies [5,39], and
statistical depictions of the dataset are mentioned in Table 1.
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Table 1. Statistical depiction of dataset.

Parameters Cohesion (c) Unit Weight of Soil (Υ) Angle of Shearing Resistance (ϕ)

Mean 11 kN/m2 16 kN/m3 290

Coefficient of variation (%) 20 6 12

Standard deviation 2.2 0.96 3.48

Minimum 5.64 kN/m2 13.49 kN/m3 21.140

Maximum 16.93 kN/m2 17.84 kN/m3 37.520

Median 11.53 15.98 28.72

Range 11.29 4.34 16.39

Standard Error 0.22 0.096 0.35

Sample Variance 5.85 0.96 11.49

Kurtosis −0.138 −0.455 −0.105

Skewness −0.097 −0.019 0.286

A correlation plot is drawn for input variables (c, Υ and ϕ) and the response variable
(FOS) as shown in Figure 3. It is observed from the correlation plot that the input variables
(c, Υ and ϕ) are highly correlated amongst themselves which improves the difficulty of
multicollinearity in the training and testing of computational models. Pearson’s correlation
coefficient (R) indicates that there is a linear correlation between two variables and describes
the strength of the link between the two variables. The collinearity among cohesion of soil
(c) and factor of safety (FOS) was the strongest (c, R = 0.70). Additionally, input parameters
such as unit weight of soil (Υ, R = −0.29) and angle of shearing resistance (ϕ, R = 0.59)
have a substantial extent of correlation to the FOS against overturning. A scatter plot is
also drawn in Figure 4 to envisage the correlation among any two sets of data (c vs. FOS, Υ
vs. FOS and ϕ vs. FOS).
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Before the evolution of the machine learning model, the normalization of datasets is
one of the key stages. Normalization is performed to remove the dimensionality influence
of the variables. Therefore, before generating any model in the present study, the input and
output variables were normalized between 0 and 1 using the formulation, as follows:

ZNormalised = (
Z− Zmin

Zmax − Zmin
) (12)

Here, Zmin and Zmax are the minimum and maximum values of the parameter (Z)
under consideration, respectively.

After the normalization has been performed, the dataset is then divided into training
and testing phases. For this, 70% of the entire dataset is removed to form the training phase,
and the remaining 30% of the dataset is used as the testing phase.

ANFIS-PSO, ANFIS-GA, ANFIS-FFA and ANFIS-GWO hybrid models were used to
forecast the factor of safety against overturning. Numerous assessments were performed
to observe the performance of these models.

4. Statistical Performance Parameters

The prediction accuracy of Hybrid ANFIS models such as ANFIS-PSO, ANFIS-GA,
ANFIS-FFA and ANFIS-GWO were examined using various statistical performance param-
eters and through graphical appraisal (i.e., scatter plot, R-curve, Williams plot and accuracy
matrix). Various statistical performance parameters were used such as coefficient of deter-
mination (R2), root mean square error (RMSE), variance account factor (VAF), Willmott’s
index of agreement (WI), Legate and McCabe’s index (LMI), scatter index (SI), a-20 index,
performance index (PI), Kling Gupta efficiency (KGE), normalized mean bias error (NMBE),
mean absolute error (MAE) and mean bias error (MBE).

R2 =
∑n

i=1 (Fobs,i − Fobs)
2 −∑n

i=1 (Fobs,i − Fpre,i)
2

∑n
i=1 (Fobs,i − Fobs)

2 (13)

RMSE =

√
1
n ∑n

i=1

(
Fobs,i − Fpre,i

)2 (14)

VAF = (1−
var
(
Fobs,i − Fpre,i

)
var(Fobs,i)

)× 100 (15)

WI = 1− [
∑n

i=1 (Fobs,i − Fpre,i)
2

∑n
i=1
(∣∣Fpre,i − Fobs

∣∣+ ∣∣Fobs,i − Fobs
∣∣)2 ] (16)

LMI = 1− [
∑n

i=1
∣∣Fobs,i − Fpre,i

∣∣
∑n

i=1
∣∣Fobs,i − Fobs

∣∣ ] (17)

SI =

√
1
n ∑n

i=1
(
Fobs,i − Fpre,i

)2

Fobs
=

RMSE
Fobs

(18)

a− 20 Index =
m20

n
(19)

PI = AdjR2 + 0.01VAF − RMSE (20)

AdjR2 = 1− (n− 1)
(n−m− 1)

(
1− R2

)
(21)

KGE = 1−

√√√√(R2 − 1
)2

+ (
Fpre

Fobs
− 1)

2

+ (
CoVpre

CoVobs
− 1)

2
(22)
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NMBE =
1
n ∑n

i=1
(
Fpre,i − Fobs,i

)
1
n ∑n

i=1 Fobs,i
× 100 (23)

MAE =
1
n ∑n

i=1

∣∣(Fpre,i − Fobs,i
)∣∣ (24)

MBE =
1
n ∑n

i=1

(
Fpre,i − Fobs,i

)
(25)

Here, Fobs,i and Fpre,i are the actual and predicted ith value, respectively, Fobs and
Fpre are the mean of actual and predicted value, respectively, n is the number of train-
ing or testing samples, m is the model input capacity, m20 is the amount of data with
observed/predicted value ratio between 0.80 and 1.20. By using Equations (13)–(25), the
model has a minimum value of RMSE, NMBE, MBE, MAE and SI and a higher value of
R2, AdjR2, VAF, PI, WI, LMI, KGE, a-20 Index and NS indicates better prediction power
of the model.

5. Methodology Flowchart

The methodology of the existing learning can be systematized in the following stages
(Figure 5).
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Stage 1: In this stage, the main dataset is generated, and after this, the normalization
of the dataset is performed.

Stage 2: In this stage, normalized data (100 dataset) are split into two parts, namely
training (70%) and testing (30%) datasets.

Stage 3: In this stage, data are processed, and learning and validation is performed.
Four AI models, namely ANFIS-PSO, ANFIS-GA, ANFIS-FFA and ANFIS-GWO, were
trained using the training dataset. Statistical performance parameters were used to validate
the model.

Stage 4: In this stage, the output (FOS) is predicted for the training (TR) and testing
(TS) datasets.
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6. Results and Analysis
6.1. Prediction Command

In this section, the factor of safety (FOS) against overturning was predicted using four
machine learning models, namely ANFIS-PSO, ANFIS-GA, ANFIS-FFA and ANFIS-GWO.
The capability of these models was judged by computing the statistical parameters, namely
R2, AdjR2, RMSE, VAF, WI, LMI, SI, a-20 Index, PI, KGE, NMBE, MAE and MBE. The
results of the evaluation statistics for the training (TR) and testing (TS) phases are provided
in Tables 2 and 3. A comparison of four hybrid models was performed based on statistical
indices. Based on the outcome, it has been observed that ANFIS-PSO has achieved better
prediction power with a higher value of R2 = 0.997, VAF = 99.617, WI = 0.999, LMI = 0.939,
PI = 1.981 and KGE = 0.994, and a lower value of RMSE = 0.012, SI = 0.047, NMBE = 0.144,
MAE = 0.009 and MBE = 0.001 in the training phase, while the same is decreased in the
testing phase (R2 = 0.966, VAF = 96.655, WI = 0.991, LMI = 0.842, PI = 1.889, KGE = 0.928,
RMSE = 0.04, SI = 0.169, NMBE = 1.734, MAE = 0.023 and MBE = 0.003). The performance
of the ANFIS-FFA model (R2 = 0.995, VAF = 99.51, WI = 0.998, LMI = 0.933, PI = 1.976,
KGE = 0.922, RMSE = 0.014, SI = 0.054, NMBE = 0.590, MAE = 0.011 and MBE = 0.002) in
the training phase is found to be marginally lower than the ANFIS-PSO model, while a
higher predicting power (R2 = 0.989, VAF = 99.005, WI = 0.997, LMI = 0.900, PI = 1.955,
KGE = 0.930, RMSE = 0.023, SI = 0.095, NMBE = 2.401, MAE = 0.014 and MBE = 0.006) is
perceived in the testing part as compared to the ANFIS-PSO model. Overall, we can say
that, out of the four hybrid ANFIS models, the ANFIS-PSO model has better predictive
power in the training phase and ANFIS-FFA in the testing phase.

Table 2. Comparison of model prediction power (training dataset).

Parameters Ideal Value ANFIS-GA
(Training)

ANFIS-PSO
(Training)

ANFIS-FFA
(Training)

ANFIS-GWO
(Training)

R2 1 0.984 0.997 0.995 0.897

AdjR2 1 0.983 0.996 0.995 0.893

RMSE 0 0.025 0.012 0.014 0.063

VAF 100 98.594 99.617 99.510 89.836

WI 1 0.996 0.999 0.998 0.968

LMI 1 0.882 0.939 0.933 0.724

SI 0.1 0.096 0.047 0.054 0.244

a-20 Index 1 0.841 0.886 0.913 0.786

PI 2 1.944 1.981 1.976 1.728

KGE 1 0.936 0.994 0.922 0.762

NMBE 0 3.347 0.144 0.590 2.4062

MAE 0 0.0182 0.009 0.011 0.042

MBE 0 0.009 0.001 0.002 0.006

Table 3. Comparison of model prediction power (testing dataset).

Parameters Ideal Value ANFIS-GA
(Testing)

ANFIS-PSO
(Testing)

ANFIS-FFA
(Testing)

ANFIS-GWO
(Testing)

R2 1 0.953 0.966 0.989 0.842

AdjR2 1 0.948 0.963 0.988 0.824

RMSE 0 0.048 0.040 0.023 0.087

VAF 100 95.351 96.655 99.005 84.190
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Table 3. Cont.

Parameters Ideal Value ANFIS-GA
(Testing)

ANFIS-PSO
(Testing)

ANFIS-FFA
(Testing)

ANFIS-GWO
(Testing)

WI 1 0.987 0.991 0.997 0.945

LMI 1 0.784 0.842 0.900 0.656

SI 0.1 0.201 0.169 0.095 0.368

a-20 Index 1 0.767 0.733 0.867 0.767

PI 2 1.853 1.889 1.955 1.579

KGE 1 0.913 0.928 0.930 0.664

NMBE 0 2.265 1.374 2.401 1.279

MAE 0 0.031 0.023 0.014 0.050

MBE 0 0.005 0.003 0.006 0.003

6.2. Rank Analysis

In this section, rank analysis is performed, as shown in Table 4. After calculating all
the statistical indices for the training (TR) and testing (TS) phases, models are ranked con-
sequently. The model value that indicates the best performance is ranked 1, and the model
with the worst performance is ranked 4 (as four models are used in this study). Afterward,
all the ranks are added to get an overall rank, which is also computed in this learning. The
model that has the lowermost rank is treated as the best performing model, and the highest
rank indicated the lowest performing model. From Table 4, it is observed that the total ranks
and overall ranks are as follows: ANFIS-PSO—RankTR = 13, RankTS = 24 and overall rank
= 37; ANFIS-FFA—RankTR = 25, RankTS = 17 and overall rank = 42; ANFIS-GA—RankTR
= 36, RankTS = 34 and overall rank = 70; and ANFIS-GWO—RankTR = 46, RankTS = 40
and overall rank = 86. This provides a complete assessment of the prediction power and
presentation of the model. Therefore, the ANFIS-PSO has a very good performance out of
all four developed models for predicting FOS against overturning.

Table 4. Rank analysis of hybrid ANFIS model (training and testing dataset).

Hybrid Models Phase R2 RMSE VAF WI LMI SI a-20 Index PI KGE NMBE MAE MBE Total Rank Overall Rank

ANFIS-GA
TR 2 3 3 3 3 3 3 3 2 4 3 4 36

70
TS 3 3 3 3 3 3 2 3 3 3 3 2 34

ANFIS-PSO
TR 1 1 1 1 1 1 2 1 1 1 1 1 13

37
TS 2 2 2 2 2 2 3 2 2 2 2 1 24

ANFIS-FFA
TR 3 2 2 2 2 2 1 2 3 2 2 2 25

42
TS 1 1 1 1 1 1 1 1 1 4 1 3 17

ANFIS-GWO
TR 4 4 4 4 4 4 4 4 4 3 4 3 46

86
TS 4 4 4 4 4 4 2 4 4 1 4 1 40

6.3. Reliability Analysis

Safety factor concept cannot be directly considered as a reliable output for risk evalu-
ation as a prominent number of uncertainties may be involved. This error can be linked
with the backfill properties or analytical method used. Reliability analysis has been carried
out to justify uncertainties and to obtain a reliable approach for predicting the factor of
safety against overturning. The first-order second moment (FOSM) approach is applied
to compute the reliability index (β). In the FOSM method, µz and σz are the mean value
and the standard deviations of the performance function X, respectively. Resisting moment



Infrastructures 2022, 7, 121 13 of 24

(MR) and overturning moment (MO) are represented as R and S, respectively, and µR and
µS are the mean values and σR and σS are the standard deviations of R and S, respectively.

β =
µX
σX

=
µR − µS√
σR

2 + σS
2

(26)

Overturning probability relies significantly on mean and variance of obtained factor
of safety; therefore, the reliability index in terms of factor of safety (F) is obtained as:

β =
µF − 1
σF

(27)

where µF and σF are the mean and standard deviation of factor of safety, respectively.
The probability of failure (Pf) is directly related to the reliability index (β) by assuming
that all the normal variables are normally distributed. The probability of failure can be
computed as:

Pf = 1 − ϕ (β) (28)

where ϕ (β) is the standard normal cumulative probability. The reliability index (β) of the
model is computed using first-order second moment method (FOSM) and compared with
the actual value of the reliability index. A higher value of β indicates a greater performance
of the model. Table 5 shows that the performance of ANFIS-PSO is the best out of all four
models due to the higher value of the reliability index and lower value of the probability of
failure (Pf). On the basis of β and Pf, models are ranked accordingly. The better performing
model (higher β and lower value of Pf) is ranked 1, and the worst performing model (lower
β and higher value of Pf) is ranked 4.

Table 5. Comparison of different models on the basis of reliability index (β).

Models Actual β Actual Pf Model’s β Model’s Pf Rank

ANFIS-GA

1.421 0.078

1.273 0.102 3

ANFIS-PSO 1.324 0.092 1

ANFIS-FFA 1.320 0.093 2

ANFIS-GWO 1.256 0.105 4

6.4. Regression Curve

The regression or performance curve is the plot between the actual and predicted value
of FOS. It indicates whether the model tracks the reference models. This curve provides an
R-value calculated and indicated in the table (Tables 2 and 3).

Figures 6 and 7 is the plot between the observed FOS (Normalized) and predicted
FOS (Normalized) against overturning using the training and testing datasets. From the
above plot, it is perceived that the models ANFIS-PSO and ANFIS-FFA overlap each other
and follow almost the same style. Minor deviations can be witnessed in the model ANFIS-
GA, and significant deviance is observed in ANFIS-GWO for the training and testing
datasets. From the other measures, it has been realized that, as compared to the ANFIS-PSO
and ANFIS-FFA models, the ANFIS-GA and ANFIS-GWO models have slightly reduced
prediction ability.
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Figure 6. Plot of actual and predicted FOS of training data (TR) for (a) ANFIS−GA; (b) AN-
FIS−PSO; (c) ANFIS−FFA; and (d) ANFIS−GWO models. 
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Figure 6. Plot of actual and predicted FOS of training data (TR) for (a) ANFIS−GA; (b) ANFIS−PSO;
(c) ANFIS−FFA; and (d) ANFIS−GWO models.
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Figure 7. Plot of actual and predicted FOS of testing data (TS) for (a) ANFIS−GA; (b) ANFIS−PSO;
(c) ANFIS−FFA; and (d) ANFIS−GWO models.

6.5. Williams Plot

The valuation of the applicability domain of four different AI models is considered a
vital stage in deciding whether the model is reliable in making predictions. Applicability
domains were recognized for four different AI models by describing the leverage (h) values
for both training (TR) and testing (TS) datasets. Figure 8 specifies the Williams plot—a
graphical representation of standardized residual on the ordinate and leverages (h) on the
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abscissa for each compound of the training and testing datasets. From these plots, the
applicability domain is enclosed inside a squared zone within ±3 standard deviations and
a leverage threshold h* (h* = 3 p/k, where k is the number of training compounds and p is
the number of model parameters plus one). The trial compound with leverages h < h* are
reflected to be reliably predicted by the model.
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The Williams plot for the training and testing datasets shown in Figure 8a–d finds
the applicability domain of the hybrid ANFIS model within standardized residual (±3 σ)
and a leverage threshold h* = 0.172. From Figure 8a–d, it has been observed that all
the compounds of the training and testing dataset have leverage (h) less than h*, but one
training and one testing compound lies outside the squared zone (±3 σ) for the ANFIS-PSO
model, for ANFIS-FFA model one training and one testing compound have leverage (h) less
than h* but outside the squared zone (±3 σ) and two testing compound have leverage (h)
exceeding the leverage threshold (h*), but inside the squared zone (±3 σ) for the ANFIS-GA
model, all training and testing compounds have leverages less than the leverage threshold,
but one training and three testing compounds lie outside the established zone (±3 σ), and



Infrastructures 2022, 7, 121 17 of 24

for the ANFIS-GWO model, all training and testing compounds have h < h* except two
testing compounds which have h > h* and also outside the squared zone, and four training
compounds have h < h* but are outside the established zone. The above observations
from the Williams plot indicates that they are not to be considered outliers but significant
compounds.

6.6. Accuracy and Error Matrix

An error matrix is a table that allows us to imagine the presentation of a hybrid ANFIS
by relating the predicted value of the target variable with its ideal value. It evaluates and
offers a graphic depiction of the quantity of error of the predictive models and is assessed
contrary to the ideal values of each performance parameter. It also gives the idea of extreme
and least values of error of a predictive model. So, the extent of error (ε%) of a predictive
model can be computed using the two terms given below for error measuring parameters
(RMSE, SI, NMBE, MAE and MBE) and trend measuring parameters (R2, AdjR2, VAF, WI,
a-20 Index, KGE and PI), respectively.

εe = |(Ie − |Pe|)| × 100 (29)

εt =
(Ir − |Pr|)

Ir
× 100 (30)

where εt and εe represent the error for trend measuring parameters and error for error
measuring parameters, respectively; Ie and Ir are the ideal values for error measuring and
trend measuring parameters, respectively; Pe and Pr are the performance indices estimated
for error measuring and trend measuring parameters, respectively. Using Equations (29)
and (30), error is computed based on different measuring parameters (error measuring and
trend measuring parameters), which are indicated in Tables 6–9.

Figure 9 indicates the accuracy matrix of the developed hybrid models for both training
and testing dataset. From the accuracy matrix plot, we can see that ANFIS-PSO has higher
accuracy as compared to other three model for the training dataset but the difference is
minimal in case of ANFIS-PSO and ANFIS-FFA. On the other hand, for testing dataset, it
has been observed that higher accuracy achieved in ANFIS-FFA model as compared to the
other three models but again difference is minimal in the case of ANFIS-FFA and ANFIS-
PSO. In all four models, ANFIS-GWO has the least accuracy for both training and testing
dataset. The highest range of accuracy is shown by green color and lowest range of accuracy
is indicated by red color. Figures 10 and 11 shows the error matrix for error measuring and
trend measuring parameters, respectively. In Figure 10, error is computed for both training
and testing datasets by considering error measuring parameters, namely RMSE, SI, NMBE,
MAE and MBE. ANFIS-FFA has the lowest error based on error measuring parameters out
of all four models. The lowermost range of error is shown by green color and maximum
error by red color. ANFIS-GWO model is again shown to be the worst-performing model
among all four hybrid models because of attainment of maximum error. Figure 11 indicates
error matrix (based on trend measuring parameters) of the established hybrid models
for the training and testing dataset. The lowest error recorded for ANFIS-PSO model as
compared to all three models (ANFIS-FFA, ANFIS-GA and ANFIS-GWO) but ANFIS-PSO
model has also shows better prediction as it has lower value of trend measuring error. As
usual, ANFIS-GWO has the highest amount of error among all four developed models. In
Figure 11, the lowest range of error is depicted in green color, the highest error in red color
and moderate error in yellow color. Overall, we can say ANFIS-PSO has better prediction
for the training dataset (as it has high accuracy and lowermost error) and ANFIS-FFA has
better prediction power for the testing dataset due to it having the highest accuracy and
lowermost error for testing dataset.
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Table 6. Computed error for error measuring parameters (training dataset).

Error Measuring
Parameters Ideal Value ANFIS-GA (TR) Error (εe) ANFIS-PSO (TR) Error (εe) ANFIS-FFA (TR) Error (εe) ANFIS-GWO (TR) Error (εe)

RMSE 0 0.025 2.5% 0.012 1.2% 0.014 1.4% 0.063 6.3%

SI 0.1 0.096 0.4% 0.047 5.3% 0.054 4.6% 0.244 14.4%

NMBE 0 3.347 3.4% 0.144 14.4% 0.590 0.6% 2.4062 2.4%

MAE 0 0.0182 1.8% 0.009 0.9% 0.011 1.1% 0.042 4.2%

MBE 0 0.009 0.9% 0.001 0.1% 0.002 0.2% 0.006 0.6%

Table 7. Computed error for error measuring parameters (testing dataset).

Error Measuring
Parameters Ideal Value ANFIS-GA (TS) Error (εe) ANFIS-PSO (TS) Error (εe) ANFIS-FFA (TS) Error (εe) ANFIS-GWO (TS) Error (εe)

RMSE 0 0.048 4.8% 0.040 4% 0.023 2.3% 0.087 8.7%

SI 0.1 0.201 10.1% 0.169 6.9% 0.095 0.5% 0.368 26.8%

NMBE 0 2.265 2.3% 1.374 1.4% 2.401 2.4% 1.279 1.3%

MAE 0 0.031 3.1% 0.023 2.3% 0.014 1.4% 0.050 5%

MBE 0 0.005 0.5% 0.003 0.3% 0.006 0.6% 0.003 0.3%
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Table 8. Computed error for trend measuring parameters (training dataset).

Trend Measuring
Parameters Ideal Value ANFIS-GA (TR) Error (εt) ANFIS-PSO (TR) Error (εt) ANFIS-FFA (TR) Error (εt) ANFIS-GWO (TR) Error (εt)

R2 1 0.984 1.6% 0.997 0.3% 0.995 0.5% 0.897 10.3%

AdjR2 1 0.983 1.7% 0.996 0.4% 0.995 0.5% 0.893 10.7%

VAF 100 98.594 1.4% 99.617 0.3% 99.510 0.5% 89.836 10.2%

WI 1 0.996 0.4% 0.999 0.1% 0.998 0.2% 0.968 3.2%

LMI 1 0.882 11.8% 0.939 6.1% 0.933 6.7% 0.724 27.6%

a-20 Index 1 0.841 15.9% 0.886 11.4% 0.913 8.7% 0.786 21.4%

KGE 1 0.936 6.4% 0.994 0.6% 0.922 7.8% 0.762 23.8%

PI 2 1.944 2.8% 1.981 0.9% 1.976 1.2% 1.728 13.6%

Table 9. Computed error for trend measuring parameters (testing dataset).

Trend Measuring
Parameters Ideal Value ANFIS-GA (TS) Error (εt) ANFIS-PSO (TS) Error (εt) ANFIS-FFA (TS) Error (εt) ANFIS-GWO (TS) Error (εt)

R2 1 0.953 4.7% 0.966 3.4% 0.989 1.1% 0.842 15.8%

AdjR2 1 0.948 5.2% 0.963 3.7% 0.988 1.2% 0.824 17.6%

VAF 100 95.351 4.7% 96.655 3.3% 99.005 1.0% 84.190 15.8%

WI 1 0.987 1.3% 0.991 0.9% 0.997 0.3% 0.945 5.5%

LMI 1 0.784 21.6% 0.842 15.8% 0.900 10% 0.656 34.4%

a-20 Index 1 0.767 23.3% 0.733 26.7% 0.867 13.3% 0.767 23.3%

KGE 1 0.913 8.7% 0.928 7.2% 0.930 7.0% 0.664 33.6%

PI 2 1.853 7.4% 1.889 5.6% 1.955 2.3% 1.579 21.1%
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6.7. Gini Index (GI)

In this section, the relative significance of input parameters for prediction factor of
safety against overturning is analyzed using the Gini index (GI). The Gini index of each
input variable is computed, and the relative importance has been judged. A higher value of
the Gini index means more significance of that individual input variable for the prediction of
FOS. The Gini index for input parameters c (GIc), ϕ (GIϕ) and Υ (GIΥ) can be computed as:

Gini Index (GIc) = |
n

∑
i=2

Cumci−1CumFi −
n

∑
i=2

CumciCumFi−1 | (31)

Gini Index (GIϕ) = |
n

∑
i=2

Cumϕi−1CumFi −
n

∑
i=2

CumϕiCumFi−1 | (32)

Gini Index (GIΥ) = |
n

∑
i=2

CumYi−1CumFi −
n

∑
i=2

CumYiCumFi−1 | (33)

Here, Cumc, Cumϕ, CumΥ and CumF are the cumulative values of cohesion, angle of
shearing resistance, unit weight of soil and predicted FOS against overturning, respectively.

In Figure 12, the relative significance of each input variable is shown by means of
their Gini index. For all four proposed hybrid models, the Gini index values for all three
input parameters, namely c, Υ and ϕ, are shown in Figure 12. The Gini index value for unit
weight of the backfill (Υ) is higher among all three input parameters, followed by cohesion
(c) and angle of shearing resistance (ϕ) for all four models. On the basis of their GI value, it
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can be clearly seen that Υ is the most significant parameter, followed by c and ϕ for all four
developed models.
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7. Conclusions

In this research, reliability analysis of the gravity retaining wall is performed by taking
c, Υ and ϕ as input variables, and the performance assessment parameters were computed
for four hybrid ANFIS models. All four models were compared with numerous parameters
such as statistical indices, R-curve, Williams plot, rank analysis and error matrix, and
it showed that for the training phase, ANFIS-PSO gives a better result among all four
models (ANFIS-PSO, ANFIS-FFA, ANFIS-GA and ANFIS-GWO), and for the testing phase,
ANFIS-FFA gives better prediction power to compute FOS against overturning among all
four models. In the training stage, the ANFIS-PSO model attained a total rank of 13 and
outperformed the three models by far, while the ANFIS-FFA attained a total rank of 17 in
the testing phase. However, when the comparison is made in terms of overall rank (Rank
in training + Rank in testing stage) obtained by each model, ANFIS-PSO shows the highest
predictive accuracy with an overall rank of 37, which is followed by ANFIS-FFA, ANFIS-GA
and ANFIS-GWO. Reliability index (β) and probability of failure (Pf) is also computed for
all four models and compared with the actual value. The ANFIS-PSO model gives a higher
value of β and lower value of Pf among all the models. Apart from this, the Williams plot
is drawn in order to know the applicability domain of the model. The Gini index value is
also computed to analyze the influence of input parameters on FOS against overturning.
The most influential parameters among the three input variables are unit weight of soil (Υ),
followed by cohesion (c) then angle of shearing resistance (ϕ).
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