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Chapter 1

Introduction

In the last decades, due to the progress in computer power and the growing

consciousness that both man-made structures and human interactions can

be viewed as networks, the interest in this field has been enhanced to a

wider scientific audience [15]. The increased complexity of real networked

systems requires new analytic approaches to afford their new scale and pre-

dict their behavior.

A peculiar feature of the modern organization of the human life is the in-

creasing level of the interconnectivity. Social, economical and technological

structures tend to increase in dimension and to aggregate in complex in-

terconnected systems. Connected systems can be abstracted in the form of

network where the vertices are the entities of the system and the edges the

physical or relational links among them. One relevant property of networks,

that make them a preferential structure both in natural and technological

systems, is that the connection between any two nodes of the networks can

be usually achieved through a number of redundant paths, thus making the

connection intrinsically reliable. For this reason, the reliability of networks

9



10 CHAPTER 1. INTRODUCTION

has always been a major concern since the earliest times of reliability engi-

neering [72, 5].

Since the early 60s the exponential growth of the size and number of net-

works of all types has led many researchers to study the various character-

istics, the topology, and the reliability of the networks.

Today the analysis of the network reliability is a major concern for the

creation, validation and maintenance of many real systems such as commu-

nication, computer or electrical networks. The reliability of these complex

systems is of increasing importance since the failure of some components

may lead to disastrous results.

The IEEE 90 standard [3] defines the reliability as ”the ability of a system

or component to perform its required functions under stated conditions for

a specified period of time”.

The reliability of complex systems is an important element because a sim-

ple accident can create more catastrophic consequences. System accidents

may have serious financial, environmental or human effects.

For this reason it is important to provide methods to help people to de-

termine the probability of occurrence of such accidents. For example, the

failure of the power network in North American August 14, 2003 plunged

into darkness more than 50 million people in the United States and Canada.

The failure of certain components of the power transmission in the state of

Ohio create a cascading collapse of 22 nuclear and 80 thermal plants in less

than 10 seconds. In telecommunication networks the maximum acceptable

of unavailability is approximately five minutes of out of service in a year.

The reliability of the systems that we analyse depends on the reliability

of the components and on the system topology. We take into account

the possible failure of components (links and nodes) knowing that system

components are subject to failure. In the worst case the failure of certain
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sets of components may cause the failure of the network itself.

A network can be represented by means of a graph whose elements

(both vertices and edges) are considered as binary objects characterized by

a working (up) or a failed (down) condition. If a probability measure is

assigned to the up or down state of each element, a probability measure

associated to the connectedness of the whole graph can be computed. The

network reliability is defined as the probability that all nodes, or a subset of

the nodes, of the graph communicate through at least one path of working

edges. The computational techniques proposed in the literature to solve

the network reliability problem always assume that the network elements

are statistically independent and can be classified in two main categories;

i) - approaches in which the desired network reliability measure is directly

calculated (series-parallel reduction [20], pivotal decomposition using key-

stone components [66, 46]) and ii) - approaches in which all possibilities

through which two specified nodes can communicate (or not communicate)

with each other are first enumerated (path/cut set search [12, 58]) and then

the reliability expression is evaluated, resorting to different techniques [5],

like inclusion-exclusion method or sum of disjoint products [4, 80, 69, 49].

An algorithm based on the construction and saving of the pathsets in dis-

joint binary form is presented in [43].

In many cases the analysis of the performance of the system requires a richer

representation by associating to each arc a weight representing a specific

attribute of the arc (e.g.capacity, resistance, cost, length). For example,

the amount of traffic characterizing the connections in communication or

transport systems or the distance between nodes in a highway network are

fundamental for a full description of these networks. The thesis explores

the problem of the quantitative evaluation of reward functions in stochas-

tic weighted networks, where the weights assigned to the arcs may have
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different physical interpretations. In this thesis we discuss two types of

interpretation of weights: weights as distances and weights as capacities.

Correspondingly, two different algorithms based on a data structure called

Algebraic Decision Diagram (ADD), are discussed and presented. The first

evaluates the probability that the terminal node can be reached from the

source within a determinate distance or cost. The second computes the

probability that a flow greater than a threshold can be transmitted between

the source and the sink. The algorithms have been tested with several ex-

amples and with some benchmark networks taken from the literature.

In many real-life situations components and/or systems can be in one of

more than two states (up and down). Systems that are characterized by

different levels of performance are known as multi-state systems (MSS).

Examples of MSS are power systems and computer systems, where the per-

formance of the elements is characterized by generating capacity and data

processing speed respectively. Most of reliability analysis and optimization

models assume that system consists of binary-state components, where the

states are functioning and failure. Binary-state reliability models don’t

allow to adequately describe some aspects of the MSS as MSS operation

processes, remaining resources, system state evolution, reasons of system

failures and mechanisms of their prevention.

The computational techniques to compute the MSS reliability assessment,

which are presented in literature, are based on four different approaches:

the extension of the Boolean models to the multi-valued case, the stochas-

tic processes (mainly Markov and semi-Markov) approach, the universal

generating function approach, and the Monte-Carlo simulation technique.

The main difficulty in the MSS reliability analysis is the ”dimension damna-

tion” since each system element can have many different states (not only

two states as the binary-state system).
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This makes the known approaches overworked and time consuming, be-

cause the number of system states increases dramatically with the increase

in the number of system elements.

In this thesis we illustrate an analysis technique based on Multi-valued De-

cision Diagrams [53].

In the last decades, Decision Diagrams (BDD, ADD, MDD ) [30] [11] [53]

have provided an extraordinarily efficient method to represent and manip-

ulate Boolean functions [31], and have been also exploited to model the

connectivity of a Boolean networks. The present thesis discusses various

approaches that can be followed to compute the reliability of a network

starting from a Decision Diagrams representation and presents a prelimi-

nary tool for the network analysis.

The thesis is organized as follows: Chapter 2 describes the state of the

art of some existing methods of network reliability present in literature.

In Chapter 3 we introduce the data structure of Binary Decision Diagrams.

Chapter 4 presents some methods of analysis of Probabilistic Unweighted

Networks using the Binary Decision Diagrams. Two real world studies are

analysed and results are reported.

In Chapter 5 the Probabilistic Weighted Network analysis is proposed. By

means of new operations defined over the Algebraic Decision Diagram it is

possible to study the network reliability by considering the weight assigned

to the edges.

In Chapter 6 complex networks are described and studied. The peculiar

properties of Regular Networks, Random Networks and Scale Free Networks

are illustrated. An exact and a simulative algorithm is shown in order to

compute the network reliabilty of these networks.

The results of the analysis of a case study are presented in Chapter 7. In

Chapter 8 a new algorithm is designed in order to analyse the Probabilis-
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tic Weighted Multi-State Network by means of the Multi-valued Decision

Diagrams.

The two tools implemented to validate and experiment the theoretical re-

sults developed in this thesis, are described in Chapter 9.

Finally in Chapter 10 the conclusions are outlined.



Chapter 2

State of the Art

2.1 Introduction

The study of reliability of complex systems, that means systems containing

a rather large number of interacting elements, is interesting for people of

different disciplines: from the technological to economical and biological

areas.

Network reliability encompasses a range of issues related to the design and

analysis of networks which are subject to the random failure of their com-

ponents.

Relatively simple, and yet quite general, network models can represent a

variety of applied problem environments. Network classes include data

communications networks, voice communications networks, transportation

networks, computer architectures, electrical power networks command and

control systems and new emerging ad hoc wireless networks .

The advent of the digital computer led to significant reliability modeling

efforts. Early computer memories were made up of large numbers of in-

15
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dividual components such as relays or vacuum tubes. Computer systems

which failed whenever a single component failed were extremely unreliable,

since the probability of at least one component out of thousands failing

is quite high, even if the component failure probability is low. Much ini-

tial work in highly reliable systems concentrated on systems whose failure

could cause massive damage or loss of human life. Examples include air-

craft and spacecraft systems, nuclear reactor control systems and defense

command and control systems. More recently, it has been recognized that

very high reliability systems make economic sense in a wide range of indus-

tries. Examples include telecommunications networks, banking systems,

credit verification systems and order entry systems. The ultimate objec-

tive of research in the area of network reliability is to give design engineers

procedures to enhance their ability to design networks for which reliability

is an important consideration.

2.2 Systems

We consider systems of elements that satisfy the following hypotheses:

• The system may be decomposed into n elements 1, . . . , n

• In a given instant the state of each element may be only one of the

following: up (working) or down (faulty)

• In a given instant the state of the system may be only functioning or

faulty and depends only on the state of its components.

A ”structure function” allows to describe behavior of system reliability

depending on the efficiency of its components.
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2.3 Structure Function

We can consider a system S composed of n components ei, i = 1, 2, . . . , n.

We associate with each element ei a state variable xi such that:

xi =







1 if the component ei is in a good state

0 if the component ei is faulty

The set of component can be identified as e = {e1, . . . , en} and the state of

set of components, denoted by (x), as the n-tuple (x1, x2. . . . xn).

(x) = (x1, x2, . . . , xn) (2.1)

There are 2n possible n-tuple of (x) due to the 2n different states of the set

of elements.

Let y be the state variables of the system such that:

y =







1 if the system is up

0 if the system is down

The variable y depends on (x) and exists a function (x) Ã y depending on

n variable called ”structure function”.

We denote the structure function by

y = ϕ(x) or y = ϕ(x1, x2, . . . xn) (2.2)

2.3.1 Graphical Representation of Networks

In very general terms a network is any system that admits an abstract

mathematical representation as a graph whose nodes (vertices) identify the
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elements of the system and in which the set of connecting links (edges)

represent the presence of a relation or interaction among those elements.

Clearly such a high level of abstraction generally applies to a wide array

of systems. In this sense, networks provide a theoretical framework that

allows a convenient conceptual representation of relations in the systems

where the system level characterization implies the mapping of interactions

among components.

2.3.2 Graph

A network can be represented in the form of a graph G = (V, E), where

V is the set of vertices (or nodes) and E the set of edges (or arcs). We

denote by NV the number of vertices and by NE the number of edges. A

network is undirected when the edges can be traversed in both directions,

while the network is directed if the edge can be traversed only in one di-

rection indicated by an arrow. For undirected networks without self loop

the presence of at least one edge per node guarantees that all the nodes are

connected. Usually real networks are much more connected than this mini-

mal threshold thus allowing multiple paths among any pair of vertices. For

directed graphs the connectivity property is more cumbersome since ver-

tices can pertain to three categories: strongly connected vertices (subset of

vertices that can be reached from any other vertex in the subset following

the direction of the edges); transient nodes that have only outgoing arcs

and cannot be reached from any other vertex; absorbing vertices that have

only ingoing arcs and once reached cannot be left.
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1 2 3 4

1 0 1 1 0

2 0 0 1 1

3 0 0 0 1

4 0 0 0 0

Table 2.1: Matrix representation of graph in Figure 2.1

2.3.3 Graph Representation

A graph can be graphicaly represented as a set of circle (the vertices) con-

nected by a set of lines (the edges) as depicted in Figure 2.1.

1

2

3

4

Figure 2.1: Graphical representation

Adjacency Matrix

In order to describe the graph a boolean matrix can be used, a square

matrix of order NV × NV , where NV is the number of vertices, whose

elements ai,j are 0 or 1 according as if exist an edge between the pair of

nodes i and j. For directed networks the element ai,j is equal to 1 if there

is an edge coming from the vertex i to the vertex j. The adjacency matrix
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Node List

1 2 3

2 3 4

3 4

4

Table 2.2: Adjacent List representation of graph in Figure 2.1

of an undirected network is symmetrical: ai,j = aj,i. The diagonal elements

are equal to zero (ai,i = 0)

Table 2.1 represents the adjacency matrix of graph in Figure 2.1.

Adjacency List

A graph may also be described by an adjacent list where for each node vi

of the graph the list of its neighbours (nodes connected by an edge with vi)

is given.

Table 2.2 represents the adjacency list of graph in Figure 2.1.

An absolute best way in order to represent a graph does not exists :

if graph has a large number of edges, then the adjacency matrix doesn’t

waste much space, it represents the best solution also because it indicates

whether an edge (i, j) exists with one access (rather than following a list).

However, if graph is sparse (not many of its vertex pairs have edges between

them), then an adjacency list becomes preferable.

2.3.4 Cuts and Paths

Consider a systems with components:

e = {e1, e2, . . . , en} (2.3)



2.3. STRUCTURE FUNCTION 21

and defined by the following structure function:

y = ϕ(x1, x2, . . . xn) (2.4)

Let

p = {ei, i ∈ I} ⊂ e (2.5)

be a subset of components defined by the subset of indices I ⊂ {1, 2, . . . , n}

One say that p is a path if

xi = 1, i ∈ I

xi = 0, i /∈ I

}

⇒ y = 1 (2.6)

A path is thus a subset of components such that the system is working if all

the elements of the subset are up and the other component are not working.

Considering the same system, let

c = {ej , j ∈ J} ⊂ e (2.7)

be a subset of components defined by the subset of indices J ⊂ {1, 2, . . . , n}

One say that c is a cut if

xj = 0, j ∈ J

xj = 1, j /∈ J

}

⇒ y = 0 (2.8)

A cut is thus a subset of components such that the system is down if all

the elements of the subset are down and the other component are working.
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Minimal path A path p

p = {ep1, ep2, . . . , epI} (2.9)

is a minimal path (or minpath) if does not exist a subset of p that is also

a path.

Minimal cut A cut c

c = {ec1, ec2, . . . , ecJ} (2.10)

is a minimal cut or mincut if does not exist a subset of c that is also a cut.

2.4 Network Reliability

Traditional reliability analysis techniques in the area of networked systems

used to look at networks of tens or hundreds of vertices [54, 4, 66, 12].

These techniques were based on exhaustive search algorithms intended to

provide qualitative and quantitative information on the network connec-

tivity, dependability, and vulnerability. A literature survey indicates that

the approaches, which have been used to compute two-terminal reliability

could broadly be classified into two paradigms: i) - the paradigm in which

desired network reliability is directly calculated (series-parallel reduction

[20], pivotal decomposition using keystone components [66, 46]) and ii)

- the paradigm in which all possibilities through which the two specified

nodes can communicate (or not communicate) with each other are first
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enumerated (path/cut set search [12, 58]) and then reliability (unreliabil-

ity) expression is evaluated.

2.4.1 Analysis of Network Reliability

In topological network design, a main concern is to design networks that

operate effectively in the presence of component failures. The first ingre-

dient of effective operation is connectivity. In real environments, problems

with performance are more prevalent and hence more widely addressed.

However, while problems with connectivity are less frequent, they are more

catastrophic. Network reliability is primarily concerned at the present time

with issues of connectivity [6]. In addressing network reliability, three main

questions must be answered:

1. What is the structure of the network?

2. What causes components to fail?

3. When is the network considered operational?

Any measure of ”reliability” should be a (useful) quantitative indicator

of the ability of the network to remain operational in its environment, de-

spite the component failures. Naturally, any more precise definition requires

precise answers to the three questions above. It comes as no surprise that

hundreds of seemingly natural definitions arise by examining the plethora

of different types of networks, causes and types of failures, and levels and

types of operation.

One should not expect to find a single definition for reliability that accom-

modates the many real situations of importance. Here, we elect to focus on

one of the most basic and widely studied classes of reliability measures.
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For our purposes we adopt a simple network model known as the proba-

bilistic graph: a network is a a graph G with vertex set V and edge set E as

described in [35]; we let NV = |V | and NE = |E| . Vertices of G represent

network nodes, and edges represent bidirectional or direct connections. In

our model, edges are subject to random failure, while vertices never fail.

Each edge e ∈ E has a known probability pe of being operational; otherwise

it is failed. Operations of different edges are statistically independent.

We address one basic network operation. Let K ∈ V be a set of target

vertices; we imagine that these vertices are to be able to communicate with

each other. The network G is k-terminal operational for K when the sub-

graph of operating edges of G has all vertices of K in the same connected

component. When K = V , this is an all-terminal operation; when |K| = 2,

it is a two-terminal operation. At any instant of time, only some edges of

G are operational. A state of G is a subgraph (V, E′) withE′ ⊆ E, where

E′ is the set of operational edges. For any fixed set K of targets, each state

is classified as operational or failed, according to whether it is k-terminal

operational for K.

2.4.2 Computational Complexity

An algorithm is a polynomial time algorithm if for a problem of size n, its

running time is bounded by a polynomial in n. Any algorithm that is not

a polynomial time algorithm is generally referred to as an exponential time

algorithm. In combinatorics, the so-called ”satisfiability” problem is in the

class NP-complete, i.e., given an arbitrary Boolean expression in product of

sums form, determine whether or not there exists an assignment of values

TRUE or FALSE to the variables that makes the entire expression TRUE (a

Boolean expression can be obtained for every network in terms of Boolean
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indicators for the edges and nodes).

A problem P is said to belong to the class NP-complete if :

1. given a proposed solution its validity can be checked in polynomial

time,

2. the existence of an algorithm to solve P in polynomial time implies

the existence of algorithms to solve the satisfiability problem in poly-

nomial time.

It is generally believed that no polynomial time algorithm exists for any

of the NP-complete problems. Any problem that is not NP-complete, but

that can be proved to be at least as hard as NP- complete problem is known

as an NP-hard problem.

Most network reliability problems are, in the worst case, NP-hard ([13],

[14]). Network reliability problems are, in a sense, more difficult than many

standard combinatorial optimization problems. That is, given a tentative

solution to a combinatorial problem, often its correctness can be determined

in polynomial time. However, given a purported solution to a reliability

problem, it cannot even be checked without computing the reliability of

the network from the beginning.

Although the above remarks sound very discouraging, there are in fact

linear and polynomial time algorithms for network reliability problems of

special structure.

2.5 Survey of Existing Methods to Compute Net-

work Reliability

In this section we present a survey of existing methods used in order to

compute the reliability of networks. More details of the major methods are
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described in next sections.

We can classify methods for network reliability computation in the following

categories:

• enumeration methods,

• transformation methods (reduction and decomposition),

• direct methods,

• approximation methods.

It is important to note that these categories are not mutually exclusive and

are often combined with each other.

Firstly, we discuss methods for the representation of the structure function.

Complete state enumeration is the simplest, but also the most inefficient

method (the number of possible states usually grows exponentially with

the network size). More sophisticated is a minpath or mincut enumeration,

which results in a corresponding DNF (Disjunctive Normal Form) repre-

sentation (see Section 3.2) of the structure function. This is more efficient

than the enumeration of all states, but still may be infeasible in prac-

tice. Whether a minpath- or mincut-based representation of the structure

function is more suitable depends on the actual network structure. More

recently different approaches based on Binary Decision Diagrams (BDDs)

are introduced, where a structure function representation is obtained by

means of Shannon’s decomposition principle, a common factoring method

[30]. Closely related are the approaches based on Edge Expansion Diagrams

(EEDs) (see [56]).

Most enumeration techniques require in a second step some disjoint form of

the resulting terms in order to calculate the exact reliability. The classical
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way to accomplish this is by the application of some sum of disjoint prod-

ucts (SOP) method, see [4], [49], [48], and [10]. Another classical method

is the standard inclusion-exclusion expansion, which is very inefficient on

its own right, but some sophisticated variations exist in the context of the

domination graph theory [74]. More recently we observe the construction of

a particular type of BDDs, so-called Ordered BDDs (OBDDs), from min-

path, mincut, or EED representations, see [56] for the latter. Of course, it

is also possible to generate an OBDD directly from the graph representa-

tion of the network, see [23], [21], [19], [46] and [83]. An interesting special

case among network relilability problems is obtained when equal edge re-

liabilities are assumed. This case is treated sperarately with the so-called

theory of reliability polynomials. So when all probabilities are equal to p,

a pathset containing i edges occurs with probability pi · (1 − p)m−i, where

m = Ne. The reliability can be now written as R(p) =
∑m

i=0 Nip
i(1−p)m−i,

where Ni is the number of i-edge pathsets. This is a polynomial in p of

degree m. The computation of network reliability is thus reduced to the

problem of computing the coefficients Ni. For more details on reliability

polynomials see [35], [34], [32] and [44]. In addition to all of the above men-

tioned evaluation methods, various decomposition and reduction methods

exist. These methods can be used independently of the above described

methods. The general idea behind decomposition methods is to divide the

graph into subgraphs, and then to evaluate the subgraphs independently of

each other. The overall reliability is then calculated based on the reliabili-

ties of the corresponding subgraphs. Reductions are special transformation

techniques which allow to simplify the topological structure of a given net-

work. The goal of such techniques is to reduce the network size in order

to improve the performance of further reliability calculations. Reductions

are reliability preserving and thus particularly qualified for combined use
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with exact methods. For certain classes of graphs, the reliability can be

computed very efficiently by the sole application of reductions. The most

important types of reductions are series-parallel and polygon-to-chain, see

[57]. Beside the exact reliability methods, corresponding approximation

techniques exist. This is due to the fact that essentially all reliability prob-

lems of interest are NP-hard [79]. Many sophisticated methods have been

developed, both for the estimation of network reliability by Monte Carlo

sampling techniques [38] as well as for the computation of reliability bounds.

2.6 Series Systems

A series system is a configuration such that, if any one of the system com-

ponents fails, the entire system fails.

A series system is weaker than its weakest link. Figure 2.2 shows a graph-

ical description of a series system.

v1 v2 vn

Figure 2.2: Graphical representation

The structure function of a series system is:

y = ϕ(x1, x2, . . . xn) = x1 · x2 · · · · · xn =
n

∏

i=1

xi (2.11)



2.7. PARALLEL SYSTEMS 29

This system functions only under the condition that all components of the

system are working:

(∀i, xi = 1) =⇒ (y = 1) (2.12)

(∃i, xi = 0) =⇒ (y = 0) (2.13)

In series networks each component is a cut. The only path is composed of

all the components.

Assuming for each component i a different probability pi to be working,

the reliability of the entire system can be computed as:

Rs = p1 × p2 × . . . × pn =
n

∏

i=1

pi (2.14)

If all components have the same probability pi we have:

Rs = (pi)
n (2.15)

We have system success only is we have success of every individual

component

2.7 Parallel Systems

A parallel systems is a configuration such that, as long as not all of the

system components fail, the entire system works.

The total system reliability is higher then the reliability of any single system

component. A graphical description of a parallel system is shown in Figure

2.3.
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v1

v2

vn

Figure 2.3: Graphical representation

The structure function of a parallel system is:

y = ϕ(x1, x2, . . . xn) = 1− (1− x1) · (1− x2) · · · · · (1− xn) = 1−

n
∏

i=1

(1− xi)

(2.16)

This system functions only under the condition that at least one of the

components of the system is working:

(∃i, xi = 1) =⇒ (y = 1) (2.17)

(∀i, xi = 0) =⇒ (y = 0) (2.18)

In parallel networks each component is a path. The only cut is composed

of all the components.

Assuming for each component i a different probability pi to be working,
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the reliability of the entire system can be computed as:

Rs = 1 − (1 − p1) × (1 − p2) × . . . (1 − pn) = 1 −
n

∏

i=1

(1 − pi) (2.19)

If all components have the same probability pi we have:

Rs = 1 − (1 − pi)
n (2.20)

The classes for which efficient exact algorithms are known are quite

sparse, and do not appear to be those in which we expect to find most

practical problems. Nevertheless, the presence of such exact algorithms

even for sparse classes can be used to accelerate exact algorithms for larger

classes that simplify the network in some way.

2.8 Series-Parallel and Parallel-Series Systems

By a series-parallel system we mean a system composed of n subsystems in

series, where subsystem i consists of mi elements in parallel, i = 1, 2, . . . , n.

The system functions successfully if and only if all subsystems function

successfully. Further, each subsystem functions successfully if at least one

of its elements functions successfully.

Assuming for each componet j of the subsystem i a different probability

pij the reliability of the series-parallel system can be computed as:

Rs =

n
∏

i=1

(1 − (

mi
∏

j=1

(1 − pij))). (2.21)
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If in the same subsystem all components have the same probability pi we

have:

Rs =
n

∏

i=1

(1 − (1 − pi)
mi). (2.22)

If, in addition, all components of the system have the same probability p

and all n subsystems have the same number of components (m) then we

have:

Rs = (1 − (1 − p)m)n (2.23)

By a parallel-series system we mean a system composed of m subsystems

in parallel, where each subsystem consists of nj elements in series, j =

1, 2, . . . , m.

The system functions successfully if at least one of the subsystems function

successfully. Further, each subsystem functions successfully if and only if

all its elements functions successfully.

Assuming for each component a different probability pij the reliability of

the parallel-series system can be computed as:

Rs = (1 −
m
∏

i=1

(1 −

ni
∏

j=1

pij)). (2.24)

If in the same subsystem all components have the same probability pi we

have:

Rs = 1 −
m
∏

i=1

(1 − (pi)
ni). (2.25)

If, in addition, all components of the system have the same probability p

and all m subsystems have the same number of components (n) then we

have:

Rs = 1 − (1 − pn)m (2.26)
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2.9 Non Series-Parallel Systems

When reliability-preserving transformations fail to reduce the network into

a restricted class for which an efficient exact method is known, we are forced

to resort to potentially exponential time methods. The first main class of

these exact methods examines the possible states of the network.

s

node 3

e1 e2

e3

e4 e5
node 4node 1

node 2

t

Figure 2.4: Bridge graph

2.9.1 Complete State Enumeration

Complete state enumeration (or Boolean truth table method) is a solution

method based on the idea to determine all operational states or all non-

operational states of the system, and to sum the probability of each state.

If we consider the operational states we obtain the reliabilty of the system,

otherwise if non-operational states are used, then the result is the unrelia-

bility of the system. A state of a network G = (V, E) is a subset S ⊆ E of

operational edges. The conceptually simplest exact algorithm is complete

state enumeration. Let be PS the set of all operational states (pathsets).



34 CHAPTER 2. STATE OF THE ART

Then

R(G) =
∑

S∈PS

∏

e∈S

pe

∏

e/∈S

(1 − pe) (2.27)

By generating all states, and determining which is operational, we can

easily (but not efficiently) compute the reliability.

Table 2.3: Operational states of graph

< e1, e2, e3, e4, e5 > Probability

< 1, 1, 0, 0, 0 > p1p2q3q4q5

< 0, 0, 0, 1, 1 > q1q2q3p4p5

< 1, 1, 1, 0, 0 > p1p2p3q4q5

< 1, 1, 0, 1, 0 > p1p2q3p4q5

< 1, 1, 0, 0, 1 > p1p2q3q4p5

< 1, 0, 1, 0, 1 > p1q2p3q4p5

< 1, 0, 0, 1, 1 > p1q2q3p4p5

< 0, 1, 1, 1, 0 > q1p2p3p4q5

< 0, 1, 0, 1, 1 > q1p2q3p4p5

< 0, 0, 1, 1, 1 > q1q2p3p4p5

< 1, 1, 1, 1, 0 > p1p2p3p4q5

< 1, 1, 1, 0, 1 > p1p2p3q4p5

< 1, 1, 0, 1, 1 > p1p2q3p4p5

< 1, 0, 1, 1, 1 > p1q2p3p4p5

< 0, 1, 1, 1, 1 > q1p2p3p4p5

< 1, 1, 1, 1, 1 > p1p2p3p4p5

Let boolean variable xi = 1 denotes the event that component i is op-

erational and xi = 0 the event that component i has failed, than the state

of system can be representd by < x1, x2, . . . , xn >.



2.9. NON SERIES-PARALLEL SYSTEMS 35

The probability of each state is
∏n

i=1 ki, where ki is the probability pi that

the component i is working if xi = 1 else ki is the probability qi = 1 − pi

that the component i has failed if xi = 0.

Let pi = Pr{xi = 1} and qi = Pr{xi = 0}; the complete state enumeration

of operational states of network of Figure 2.4 is shown in Table 2.3. The

system reliability is computed as the sum of the entries in the right hand

column of the table.

The drawnback of this method is that its computation complexity is expo-

nential in the number of components: complete state enumeration requires

the generation of all 2n states of system, where n is the number of compo-

nents.

2.9.2 Factoring Method

The factoring method generates the states in a more clever way: factoring

method concentrates on the state of an individual link . A basic ingredient

in this is the Factoring Theorem:

R(G) = peR(G · e) + (1 − pe)R(G \ e) (2.28)

or

R(G) = peR(G|e is working) + (1 − pe)R(G|e is not operational) (2.29)

where pe is the probability that edge e in graph G is working. This is

applied for any edge e of G. Factoring, also called pivotal decomposition,

was explicitly introduced in [59].

The idea is to choose an arc and break the graph down into two cases:

• assume the edge is working
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• assume the edge has failed

For each case a new graph is built by taking into account the behavior of

the chosen arc.

Factoring is carried out until all arcs of the network are analysed. However,

some simple observations result in improvements. When G\ e is failed, any

sequence of contractions and deletions results in a failed network, and hence

there is no need to factor G \ e. Moreover, although we may be unable to

simplify G with a reliability-preserving transformation, we may well be able

to simplify G · e or G \ e.

Different factoring algorithms have been developed.

This method can be employed using directly graph G without knowing the

minimal path set or the minimal cutset.

For example, for the network in Figure 2.4 if we choose the edge e3 to

s

node 3

e1 e2

e4 e5
node 4node 1

node 2

t

Figure 2.5: e3 down

factor on we obtain the two graphs shown on Figure 2.5 and in Figure 2.6.

Both the resulting graphs are series-parallel, so the efficient formulae for

series-parallel reliability can be applied for their analysis.

Let pi = Pr{ei = 1} and qi = Pr{ei = 0},
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s

node 3

e1 e2

e4 e5
node 4node 1 node 2 +

t

Figure 2.6: e3 up

• e3 up: Re3up = (1 − q1q4)(1 − q2q5)

• e3 down:Re3down = 1 − (1 − p1p2)(1 − p4p5)

then the reliability of the system,R, is:

R = p3Re3up + q3Re3down (2.30)

2.9.3 Minpaths and Mincuts

Different approaches require that all possible path/ cut sets are first enu-

merated and then the reliability expression is evaluated [16].

A path is defined as a set of elements such that if these elements are all

working, the systems is working. A path is minimal (minpath) if it has not

proper subpaths. Let Ti, 1 ≤ i ≤ np, be a minpath of a system with np

minpaths, then

Reliability of System = Pr(

np
⋃

i=1

Ti = 1) (2.31)

The minpaths of the graph of Figure 2.4 are {e1, e2}, {e4, e5}, {e1, e3, e5}, {e4, e3, e2}.

A cut is defined as a set of elements such that if these elements are all down,

the system is down. A cut is minimal (mincut) if it has not proper subcuts.
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Let Ci, 1 ≤ i ≤ nc, be a mincut of a system with nc mincuts , then

Unreliability of System = Pr(
r

⋃

i=1

Ci = 1) (2.32)

The mincuts of the graph of Figure 2.4 are {e1, e4}, {e2, e5}, {e1, e3, e5}, {e4, e3, e2}.

2.9.4 The Inclusion-Exclusion Method

Let Ai denote the event that all elements in the ith minimal path are func-

tional, so we can say that Ai represents the event that minimal path i

works. Āi denote the complement of this event. The probability that the

minimal path i works can be expressed as

P (Ai) =
∏

k ∈ element of k

pi (2.33)

Let np be the number of minimal path sets. A system with np minimal

paths works if and only if at least one of the minimal paths works. System

success corresponds to the event
⋃np

i=1 Ai. The reliability of the system is

equal to the probability of the union of the np minpaths, namely

Rs(G) = P (

np
⋃

i=1

Ai) (2.34)

Let

Sk =
∑

1≤i1<...<ik≤np

P (Ai1

⋂

Ai2

⋂

. . .
⋂

Aik) (2.35)

Then, Sk represents the sum of the probablilities that any k minimal paths

are simultaneously working. By the Inclusion-Exclusion principle (see [40]),
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the reliability of the system, which is equal to the probability of the union

of the np minpaths, can be expressed as:

Rs =

np
∑

k=1

(−1)(k−1)Sk (2.36)

If there are np pathsets, then this calculation involves 2np−1 terms. In some

cases, two different intersections of Ai’s will correspond to the same event

so that these different intersections of Ai’s will have the same probability. If

one intersection consists of an odd number of Ai’s and another intersection

consists of an even number of Ai’s, they will cancel. Satyanarayana [73]

and Satyanarayana and Prabhaka in [74] give algorithms that generate only

the non cancelling terms.

For the graph of Figure 2.4, let pi = Pr{ei = 1} and qi = Pr{ei = 0}, using

minpaths MP1 = {e1, e2}, MP2 = {e4, e5}, MP3 = {e1, e3, e5}, MP4 =
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{e2, e3, e4}, then the system reliability R is:

S1 = P (MP1) + P (MP2) + P (MP3) + P (MP4)

S2 = P (MP1MP2) + P (MP1MP3) + P (MP1MP4)

+P (MP2MP3) + P (MP2MP4) + P (MP3MP4)

S3 = P (MP1 MP2 MP3) + P (MP1 MP2 MP4)

+P (MP1 MP3 MP4) + P (MP2 MP3 MP4)

S4 = P (MP1 MP2 MP3 MP4)

Rs = S1 − S2 + S3 − S4

Rs = P (e1e2) + P (e4e5) + P (e1e3e5) + P (e2e3e4) − P (e1e2e4e5)

−P (e1e2e3e4) − P (e1e2e3e4) − P (e1e3e4e5) − P (e2e3e4e5)

−P (e1e2e3e4e5) + P (e1e2e3e4e5) + P (e1e2e3e4e5) + P (e1e2e3e4e5)

+P (e1e2e3e4e5) − P (e1e2e3e4e5)

= p1p2 + p4p5 + p1p3p5 + p2p3p4 − p1p2p4p5 − p1p2p3p5

−p1p2p3p4 − p1p3p4p5 − p2p3p4p5 + 2p1p2p3p4p5 (2.37)

2.9.5 Sum of Disjoint Products Method

Let Ei be the event that all the edges in minpath MPi are working. We

can compute the reliability expression R(G) as:

R(G) = P (E1) + P (Ē1E2) + . . . + P (Ē1Ē2 . . . Ēp−1Ep) (2.38)

where p is the total number of minpaths, Ēi denotes the complement of

event Ei, and P () is the probability function.

SDP methods involve adding probabilities; however, the calculation of each

constituent probability is, in general, quite involved. It is also important to
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emphasize that the effectiveness of these methods can be highly dependent

on the specific ordering given to the events Ei.

In order to apply SDP technique the problem is to compute P (σ) where

σi = Ē1Ē2 . . . Ēi−1Ei. If we define the events in terms of minpaths, σi repre-

sents the events that all components in minpath MPi are working and each

minpath MP1, MP2, . . . , MPi−1contains at least one failed component. If

Ej and Ei are independent for 1 ≤ j ≤ i, then

P (σi) =
∏

k∈MPi

pk

i−1
∏

j=1

[1 −
∏

s∈MPJ

ps] (2.39)

where pk is the reliability of edge k. This equation defines how each minpath

MP contributes in the final reliability, considering a parallel structure or

disjoint path (without common elements).

If the minpaths share some common edges the solution of P (σi) appears

quite involved.

In this case we compute P (σi) as

P (σi) = P (Ei)P (Ē1|Ei)P (Ē2|EiE1) . . . P (Ēi−1|EiE1E2 . . . Ei−2) (2.40)

Let Dj be a conditional event such that minpath MPj is down given that

minpaths MPi, MP1, . . .MPj−1 are working. We have

P (σi) = P (Ej)
i−1
∏

j=1

P (Dj) (2.41)

P (Ei) represents the probability of event Ei and can be simply computed

since failures are assumed to be statistically independent. Opposite, eval-

uating P (Dj) is a complex problem in the system reliability field. For the
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graph of Figure 2.4, let pi = Pr{ei = 1} and qi = Pr{ei = 0}, using

minpath, then the system reliability R is:

R = P (e1e2) + P (e1e2 e4e5) + P (e1e2 e4e5 e1e3e5)

+P (e1e2 e4e5 e1e3e5 e2e3e4)

= p1p2 + q1p4p5 + q2p4p5 + q2q4p1p3p5 + q1q5p2p3p4 (2.42)

If we replace qi with 1 − pi we have the same result obtain with Inclusion-

Exclusion method in equation 2.37.



Chapter 3

Binary Decision Diagrams

3.1 Boolean Expression

Boolean expressions consist of a set of Boolean variables x, y, . . ., the con-

stant true 1 and the constant false 0 and the operator of conjunction ∧,

disjunction ∨, negation ¬, implication ⇒ and bi-implication ⇔ [9].

Formally, the following grammar generates Boolean expression:

t ::= x | 0 | 1 | ¬t | t ∨ t | t ∧ t | t ⇒ t

where x is a Boolean variable. This is the abstract syntax of Boolean

expression, but usually in order to solve ambiguites a concrete syntax is used

that includes parentheses. Moreover, it is assumed that operators follow

the common convention priority. Starting from the highest the priorities

are:

¬, ∧, ∨, ⇔, ⇒

43
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x ¬x

0 1

1 0

x1 x2 x1 ∨ x2

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 x1 ∧ x2

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 x1 ⇒ x2

0 0 1

0 1 1

1 0 0

1 1 1

Figure 3.1: Truth Tables

Hence, for example

x1 ∧ ¬x2 ∨ x3 ⇔ x4 = ((x1 ∧ (¬x2)) ∨ x3) ⇔ x4

A Boolean expression with variables x1, . . . , xn denotes for each assignment

of truth values to the variables itself a truth value according to the standard

truth tables, see Figure 3.1. Truth assignments are written as sequences

of assignments of values to variables, e.g., [0/x1; 1/x2; 0/x3; 1/x4] which

assigns 0 to x1 and x3, 1 to x2 and x4.

3.2 Normal Forms

3.2.1 Disjunctive Normal Form (DNF)

A statement is in Disjunctive Normal Form (DNF) if it is expressed as a

series of disjunctions (sequence of ORs) when each disjunct is either a simple

proposition (or negation of) or a conjunction (ANDs) of simple propositions
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and negations of simple propositions.

(t11 ∧ t12 ∧ . . . ∧ t1n1
) ∨ . . . ∨ (ti1 ∧ ti2 ∧ . . . ∧ tni

)

where each tkj is either a variable xk
j or a negation of a variable ¬xk

j .

A more compact representation is the following:

i
∨

k=1

(

nk
∧

j=1

tkj )

3.2.2 Conjunctive Normal Form (CNF)

A statement is in Conjunctive Normal Form (CNF) if it is is expressed

as a series of conjunctions (sequence of ANDs) when each conjunct is ei-

ther a simple proposition (or negation of) or a disjunction (ORs) of simple

propositions and negations of simple propositions.

(t11 ∨ t12 ∨ . . . ∨ t1n1
) ∧ . . . ∧ (ti1 ∨ ti2 ∨ . . . ∨ tni

)

where each tkj is either a variable xk
j or a negation of a variable ¬xk

j .

A more compact representation is the following:

i
∧

k=1

(

nk
∨

j=1

tkj )

3.3 Binary Decision Diagrams

The Binary Decision Diagram [71] representing a function F with a set of

n boolean variables x1, x2, x3, ....xn, is an acyclic direct binary graph. We

have two types of vertices:
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• terminal nodes: node 0 and node 1 representing the constant false

and the constant true.

• non terminal nodes : a set of variable nodes xi of out-degree two.

The two outgoing arcs are given by two functions F (xi = 0) (right

edge or 0-edge) and F (xi = 1)(left edge or 1-edge).

In picture the left edge is indicated by solid lines and right edges by dashed

lines. The Shannon decomposition is defined in terms of the ternary If

Then Else (ITE) connective

F = xi · Fxi=1 + x̄ · Fxi=0 (3.1)

where xi is one of the decision variables. The functions Fxi=1 and Fxi=0

are Boolean functions evaluated at xi = 1 and xi = 0 respectively. Fxi=1

and Fxi=0 contain one variable less than F .

We apply recursively the decomposition on F until all the variables x1, x2.....xn

have been considered.

3.3.1 BDD

The sequence of decompositions can be represented in graphical form using

a binary tree. Each non-sink node is labeled with a Boolean variable v and

has two out-edges labeled 1 (if then) and 0 (or else). Each non-sink node

represents the Boolean function corresponding to its 1-edge if v = 1, or

the Boolean function corresponding to its 0-edge if v = 0. An un-simplified

BDD is basically a Binary Decision Tree which contains 2n−1 non-terminal

nodes. For example the function f(x1, x2, x3) depicted by the truth table

3.1 can be represented by the Binary Decision Tree in Figure 3.2.

Starting from root node and traversing the tree if we follow the branch
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x1 x2 x3 f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 3.1: True table

X1

X2 X2

X3 X3 X3 X3

1 0 001 0 10

Figure 3.2: Binary Decision tree
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representing variable value we reach the terminal node 0 or the terminal

node 1 according with the function value for the assignment.

3.3.2 Ordered BDD (OBDD)

An Ordered BDD (OBDD) is a BDD in which each variable is encountered

no more than once in any path. The order of variables is the same along

each path. The tree in Figure 3.2 considers the variables in the order

x1 ≺ x2 ≺ x3 where xi ≺ xj means that inside the tree the variable xi is

closer to the root node than xj

3.3.3 Reduced OBDD (ROBDD)

A Reduced OBDD (ROBDD) is an OBDD that is reduced by three re-

duction rules: deletion rule and terminal and non-terminal merging rules.

These reduction rules remove redundancies from the OBDD

• Merge equivalent leaves. Remove duplicate terminals: eliminate

all but one terminal vertex with a given label and redirect all arcs to

the eliminated vertices to the remaining one. An example depicted

in Figure 3.3 is obtained from the binary decision tree of Figure 3.2.

In this case only one terminal node with label 1 and one with label 0

remain all the other are deleted.

• Merge Rule: If two or more non-terminal nodes of the same label

have the same 0 and 1 successors i.e. their left and right sons are

equivalent then they can be merged in a single node as shown in

Figure 3.4. Remove duplicate nonterminals: if nonterminals u and

v have var(u) = var(v), low(u) = low(v) and high(u) = high(v),
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X1

X2 X2

X3 X3 X3 X3

1 0

Figure 3.3: Merge equivalent leaves

eliminate one of the two vertices and redirect all incoming arcs to the

other vertex.

Starting from the BDD in Figure 3.3, applying this reduction, we

obtain the BDD in Figure 3.4. For example three of the four sub-

trees rooted in the node x3 are equal so two of them can be deleted.

The outgoing edges of x2 are modified in order to point at the only

remained subtree.

• Deletion Rule: If one or more non-terminal nodes are such that

both their branches corresponding to 0 and 1 lead to a non-terminal

successor node or to a terminal node then this node can be deleted.

We remove redundant tests: if nonterminal vertex v has low(v) =

high(v), eliminate v and redirect all incoming arcs to low(v)

If we apply this rule to the BDD in Figure 3.4 we obtain the BDD in

Figure 3.5. We remove the outgoing edges of the node x2 if x1 is true

so that the node x1 points to x3.

Besides if we consider x1 and x2 false the outgoing edges of node x3
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X1

X2 X2

X3 X3

1 0

Figure 3.4: Merge Rules

can be deleted: now node x2 is redirected to terminal node 0. We

remove also non connected nodes x2 and x3 .
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X1

X2

X3

1 0

Figure 3.5: Merging Rules

Canonicity of ROBDDs

Two Boolean functions are equivalent iff their reduced OBDDs (ROBDD)

are identical with respect to any variable ordering [30].

Theorem 1 For any Boolean function f , there is a unique (up to iso-

morphism) ROBDD representing f and any other OBDD representing f

contains more nodes.

In other words, if G0 and G1 are two ROBDD representations of a Boolean

function f , then G0 and G1 are isomorphic.

Two ROBDDs G0 and G1 are isomorphic if there is a one-to-one mapping

σ from the vertexes of G0 onto the vertexes of G1.

Suppose that v0 is a vertex of G0 and v1 = σ(v0) is the corresponding vertex

in G1. One of the following must hold:

• both v0 and v1 are terminal vertexes with

value(v0) = value(v1)
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• both v0 and v1 are non-terminal vertexes with:

– index(v0) = index(v1),

– σ(low(v0)) = low(v1)

– σ(high(v0)) = high(v1)

A canonical form is obtained by applying the transformation rules until no

further application is possible.

Due to the canonicity of ROBDD different boolean operations can be effi-

cient implementated. Possible applications can be i.e.:

• checking equivalence: verify isomorphism between ROBDDs,

• non satisfiability: verify if ROBDD has only one terminal node, la-

beled by 0 and

• tautology: verify if ROBDD has only one terminal node, labeled by

1

3.3.4 Construction of Binary Decision Diagrams

BDDs are constructed by first creating individual BDDs for each variable

of the function and then using the APPLY operation to build the BDD

from these individual variable BDDs. The APPLY operation requires two

BDDs and a Boolean operation to be applied to these BDDs as inputs and

produces a resulting BDD as output. One efficient way to implement AP-

PLY as described by K. S. Brace, R. L. Rudell, and R. E. Bryant in [29]

is to use the If-Then-Else (ITE) operator. The ITE operator is a recursive

form of the Shannon expansion theorem

In a BDD, a function is represented recursively with triples (xi; f |xi=1; f |xi=0),
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which are a consequence of Shannon’s decomposition theorem :

f = xi · f |xi=1 + x̄i · f |xi=0 (3.2)

The If-Then-Else or ITE is a three-variable Boolean operator, defined

as:

ITE(f ; g; h) = f · g + f̄ · h (3.3)

With ITE, all two-variable Boolean operations can be implemented (see

Table 3.2). Shannon’s decomposition theorem can be shortly written as

f = ITE(xi; f |xi=1; f |xi=0), and therefore it forms a basic operation in

BDD.

F = ite(x1, Fx1=1, Fx1=0) (3.4)

ite(F, G, H) = (F ∧ G) ∨ (F̄ ∧ H) (3.5)

All of the possible binary Boolean operators can be implemented as ITE

expressions as illustrated in Table 3.2.
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Table Name Expression ITE

0000 0 0 0
0001 AND(F,G) F · G ite(F,G,0)
0010 F > G F · Ḡ ite(F,Ḡ,0)
0011 F F F
0100 F < G F̄ · G ite(F,0,G)
0101 G G G
0110 XOR(F,G) F ⊕ G ite(F,Ḡ,G)
0111 OR(F,G) F + G ite(F,1,G)

1000 NOR(F,G) F + G ite(F,0,Ḡ)

1001 XNOR(F,G) F ⊕ G ite(F,G,Ḡ)
1010 NOT(G) Ḡ ite(G,0,1)
1011 F ≥ G F+ Ḡ ite(F,1,Ḡ)
1101 F≤ G F̄ +G ite(F,G,1)

1110 NAND(F,G) F · G ite(F,Ḡ,1)
1111 1 1 1

Table 3.2: Two variable functions realized with ITE
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3.3.5 How to Represent a Graph by Means of BDD

The BDD is assembled using the logic operation ricursively in a bottom-

up fashion. Each element in the network has associated single-node BDD

(see Figure 3.6). For example, the BDD for element a and element b are

shown in Figure 3.7. A BDD is constructed for each element, and then

combined according to the structure of the network. The BDD for ”a or b”

is costructed by applying the OR Boolean function to the BDD for element

a and the BDD for element b. Since a is first in the relation, it is considered

as the ”root” node. The union of b BDD is with each ”child” node of a.

First consider the terminal node 0 of element a in Figure 3.7. Accordingly,

since 0 + X = X and 1 + X = 1, the left child reduces to b and the right

child reduces to 1 as shown in Figure 3.8.

Now consider the intersection operation applied to elements a and b as

shown in Figure 3.9. Note that 0 · X = 0 and that 1 · X = X. Thus, the

reduced BDD for ”a and b” is shown in Figure 3.9.

1 0

x

Figure 3.6: Single component BDD
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1 0

a

1 0

b

Figure 3.7: a and b node BDD

1 0

a

b

Figure 3.8: a OR b
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1 0

a

b

Figure 3.9: a AND b

3.4 Complexity

While BDDs are compact representations for many functions, they can

reach exponential size with regard to the number of inputs for some func-

tions. There are several reasons why this occurs. One of the reasons is

that a bad ordering was chosen for the variables when the BDD was con-

structed. The size attained by a BDD is influenced greatly by the variable

ordering chosen, however finding the best variable ordering during BDD

construction is NP-complete.

Given a function with n inputs, one input ordering may require expo-

nential number of vertices in ROBDD, while other may be linear in size.

It has also been shown that ROBDDs can be extremely sensitive to the

variable ordering. Bryant [30] showed that the logic function of 2n variables

a1 · b1 + a2 · b2 + a3 · b3 (3.6)

with order

a1 ≺ b1 ≺ a2 ≺ b2 ≺ a3 ≺ b3
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a1

a2

a3

b1

b2

b3

1 0

Figure 3.10: First ordering

produces a graph with 2n + 2 nodes as showed in Figure 3.10, while with

order

a1 ≺ a2 ≺ a3 ≺ b1 ≺ b2 ≺ b3

produces a graph with 2n+1 nodes as showed in Figure 3.11.

The poor ordering can significantly affect the size of the BDD, thus the

reliability analysis time for large systems. Currently there is no rule-based

means of determining the best way of ordering basic events for a given

structure, but fortunately heuristics can usually be used to find a reason-

able variable ordering.
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a1

a2 a2

a3 a3

a3 a3

b1 b1 b1 b1

b2 b2

b3

1 0

Figure 3.11: Second ordering
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Chapter 4

Network Analysis

A peculiar feature of the modern organization of the human life is the in-

creasing level of the interconnectivity. Social, economical and technological

structures tend to increase in dimension and to aggregate in complex in-

terconnected systems. Connected systems can be abstracted in the form of

networks where the vertices are the entities of the system and the edges the

physical or relational links among them. One relevant property of networks,

that make them a preferential structure both in natural and technological

systems, is that the connection between any two nodes of the networks can

be usually achieved through a number of redundant paths, thus making

the connection intrinsically reliable. For this reason, the reliability of net-

works has always been a major concern since the earliest times of reliability

engineering [72, 5].

A network can be represented by means of a graph whose elements

(both vertices and edges) are considered as binary objects characterized by

a working (up) or a failed (down) condition. If a probability measure is

assigned to the up or down state of each element, a probability measure

61
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associated to the connectedness of the whole graph can be computed. The

network reliability is defined as the probability that all nodes, or a subset of

the nodes, of the graph communicate through at least one path of working

edges [19]. The computational techniques proposed in the literature to solve

the network reliability problem always assume that the network elements

are statistically independent and can be classified in two main categories;

i) - approaches in which the desired network reliability measure is directly

calculated (series-parallel reduction [20], pivotal decomposition using key-

stone components [66, 46]) and ii) - approaches in which all possibilities

through which two specified nodes can communicate (or not communicate)

with each other are first enumerated (path/cut set search [12, 58]) and then

the reliability expression is evaluated, resorting to different techniques [5],

like inclusion-exclusion method or sum of disjoint products [4, 80, 69, 49].

In the last decades, Binary Decision Diagrams (BDD) [30] have provided

an extraordinarily efficient method to represent and manipulate Boolean

functions [31], and have been also exploited to model the connectivity of

a Boolean networks. This chapter discusses various approaches that can

be followed to compute the reliability of a network starting from a BDD

representation and presents a preliminary tool for the analysis.

4.1 Network Analysis Algorithms

Various algorithms have been proposed in the literature to evaluate the

network reliability. In this section, we first discuss the representation of

Boolean functions based on BDD, and then we illustrate three different

algorithms that exploit the BDD representation.
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4.1.1 Calculating Reliability Using BDD

Each path through the BDD from the root to a leaf node represents a dis-

joint combination of component failures and non-failures. A path with a leaf

node labeled with a 1 leads to system operation. Probabilities associated

with arcs on each path are either (1 − p) (component failure probability)

for the right branch or (p) for the left branch. The system unreliability is

given by the sum of the probabilities for all paths from the root to a leaf

node labeled 1.

Each path is disjoint by construction, so no subtraction is needed.

Consider a BDD branch

G = ite(x, G1, G2)

• If G = 0 then P (G) = 0 else

• If G = 1 then P (G) = 1

• Otherwise,

P (G) = pxP (G1) + (1 − px)P (G2)

When x is the root node of the BDD, P (G) gives the reliability of the

system.

Furthermore, if we assign to every variable xi a probability pi of being

true (1− pi false), we can compute the probability P{F} of the function F

by applying recursively Equation 4.1.

P{F} = p1P{Fx1=1} + (1 − p1)P{Fx1=0}

= P{Fx1=0} + p1(P{Fx1=1} − P{Fx1=0}) (4.1)



64 CHAPTER 4. NETWORK ANALYSIS

In network reliability analysis different approaches based on the use of

BDD have already appeared in the literature [19] and can be categorized

in three classes:

i) - algorithms based on the direct application of factoring algorithms

[75, 46];

ii) - algorithms based on the search for minpaths (or mincuts);

iii) - algorithms based on the direct generation of the BDD through visiting

algorithms on the graph [83].

4.1.2 K-terminal Reliability by Pivotal Decomposition

Factoring algorithms using a recursive pivotal decomposition have been

exploited since a long time [5]. The direct derivation of the BDD structure

from the network factorization has been presented in [75] and revisited

in [46]. The term f |xi=1 in Equation (3.2) in Section 3.3.4 is the graph

obtained by putting the edge x1 to true, i.e. by considering that edge x1

is perfectly reliable. This operation is usually called contraction [75] since

it corresponds to remove the edge by joining the source and destination

vertices. Similarly, the term f |xi=0 in Equation (3.2) is the graph obtained

by putting the edge x1 to false, i.e. by considering that edge x1 as failed or

open. This operation is usually called deletion [75] since it corresponds to

removing the edge by keeping separated the source and destination vertices.

In term of graph factorization, the Shannon’s decomposition (3.2) can

be rewritten in the following way:

G = ei T ∨ ei F (4.2)
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where T is the graph obtained from G by contracting edge ei and F is the

graph obtained from G by deleting edge ei. In the graphical representation

of (4.2) as a binary tree we follow the usual convention of drawing the

contraction as the left branch in solid line and the deletion as the right

branch in dotted line.

Given a subset of K (≤ NV ) vertices, the K-terminal connectedness

(or K-connectedness) is a Boolean function that evaluates to true if the

K vertices are connected (following the direction of the arcs in a directed

network) and can be represented by a BDD resorting to a recursive applica-

tion of the graph reduction step (Equation 4.2), following an (arbitrarily)

ordered sequence of edges. At each step of the decomposition, we check

the K-connectedness on the T and on the F reduced graphs obtained by

applying one reduction step in Equation 4.2. If the K-connectedness on

the T subgraph evaluates identically to true (for any combination of the

remaining variables) the terminal 1 leaf of the BDD is reached, if the K-

connectedness on the F subgraph evaluates identically to false the terminal

0 leaf of the BDD is reached, otherwise we proceed with a further decom-

position step in Equation (4.2) by pivoting with respect to the subsequent

edge in the ordered list. In directed networks the connectedness must be

verified by following the direction of the arcs. We illustrate the construction

of the BDD using the factorization algorithm on a simple example.

Example: Bridge Network 1 - A bridge network with directed arcs

has the configuration presented in Figure 4.1 and we want to compute the

(s,t) reliability. By assigning the ordering: (e2 ≺ e5 ≺ e3 ≺ e1 ≺ e4),

the recursive application of the pivotal decomposition can be pictorially

represented in Figure 4.2 (where contracted edges are drawn in bold line to

keep track of the direction of the arcs).

The graph of Figure 4.2 can be represented as a binary tree in Figure 4.3
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s

node 3

e1 e4

e3

e2 e5
node 4node 1

node 2

t

Figure 4.1: A directed bridge network

1

1 0 0 1 0

0

1 0

0

1 0

0

1 0 01

0

1

e2

e1

e5

e4
e3

0

Figure 4.2: Factorization of the graph of Figure 4.1

where the labels into the circles evidence the pivoting logical variables at

each step. By applying the reduction rules for BDD’s and folding identical

subtrees, the binary tree of Figure 4.3 reduces to the ROBDD of Figure

4.4.



4.1. NETWORK ANALYSIS ALGORITHMS 67

e2

e5

e3e3

e5

e3

e1

e4 e4 e4

e1 e1 e1 e1 e1

e4 e4 e4 e4

1 0 

Figure 4.3: BDD-like representation of Figure 4.2

The computation of the probability of the BDD of Figure 4.4, can pro-

ceed recursively by resorting to Equation (4.1). Recursive application of

Equation (4.1) is pictorially shown in Figure 4.5. Computation of the prob-

ability values at the intermediate nodes (pr1, pr3, pr5) provides the value

of the network reliability R(s,t) = pr2 given in Formula (4.3).

R(s,t) = p1p4 + p2p3p4 + p2p5 − p1p2p3p4 − p2p3p4p5

−p1p2p4p5 + p1p2p3p4p5 (4.3)

The K-terminal Reliability Algorithm

Given a graph G and the specification of the K-terminal reliability problem,

we need to define a function k t connectivity(G), that returns true or
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e2

1 

0 

0 1 

1 

1 

1 

0 

0 

e5

e3 

e4

e1

1 

0 

0 

Figure 4.4: BDD representation of the bridge network of (4.1)

false whether G is K-terminal connected or not (taking also into account the

possible direction of the arcs). Given the K-terminal connectivity function,

the BDD construction algorithm proceeds according to the pseudocode of

Algorithm 4.1. In the algorithm, G′ is a graph initially empty, which is

progressively filled with the contracted edges so that when the function

k t connectivity(G’) evaluates to true, the terminal 1 leaf is reached.

The symbol G/e indicates the deletion of the arc e from G.

4.1.3 2-terminal Reliability via Minpath Analysis

Given a network G = (V, E) and two nodes (s,t), following the minpath

definition [54] we can compute the network reliability by means of minpath

list.
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p4

pr1 = 0+p1 p4

pr3 = pr1+p3 (p4 - pr1)

pr2 = pr1+p2 (pr5 - pr1)

pr5 = pr3+p5 (1 - pr3)

e2

1 

0 

0 1 

1 

1 

1 

0 

0 

e5

e3 

e4

e1

1 

0 

0 

Figure 4.5: Probability computation from the BDD of Figure 4.4

Minpath Search Algorithm

Enumeration of all minimal paths between a terminal pair of a given graph

is a fundamental step while computing terminal reliability. Algorithm 4.2

shows the algorithm used in order to search the minpaths.

Let H1, H2, . . . , Hh be the h minpaths between s and t. All the elements

of a minpath must be working, therefore the elements of the minpath are

logically connected in AND. However the network connectivity S(s,t) can

be represented as the logical OR of its minpaths, since it is sufficient that

any one of the minpaths is operational to make the network working.

S(s,t) = H1 ∨ H2 ∨ . . . Hh (4.4)
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Algorithm 4.1 Generation of the BDD via a recursive factoring algorithm

Require: G = original graph, G′ = empty
Ensure: constr bdd(G, G’)
1: Let e be an edge in G and not in G’
2: if k t connectivity(G’) then
3: return 1
4: else
5: if (! k t connectivity(G)) then
6: return 0
7: else
8: T= constr bdd(G,G’∨ e);
9: E= constr bdd(G/e,G’);

10: return BDD(e,T,E);
11: end if
12: end if

The two terminal reliability can be calculated as:

R(s,t) = P{S(s,t)} = P{H1 ∨ H2 ∨ . . .Hh} (4.5)

Formula 4.5 shows that the network reliability can be evaluated as the

probability of the union of non-disjoint events. It is known [5, 77] that

Expression (4.5) can computed by different techniques:

• The inclusion-exclusion expansion algorithm [77];

• Sum of disjoint products [4, 58, 49];

• Binary Decision Diagram (BDD) [30, 19].

We only discuss the last alternative on the network of Figure 4.1.

Example: Bridge Network 2 - The minpath search Algorithm 4.2

applied to the network of Figure 4.1, produces the following list of minpaths
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Algorithm 4.2 Minpath search algorithm

1: search path (from, to)
2: this path.insert(from);
3: if from==to then
4: set path.push back(this path);
5: el path.push back(path);
6: num path++;
7: this path.erase(from);
8: path.pop back();
9: end if

10: node = first element of adjacency list of node from
11: while node != NULL do
12: if node not in this path then
13: path.push back(edge connecting node and node to );
14: search path(node to,to)
15: end if
16: node=next element of the list
17: end while
18: if !path.empty() then
19: path.pop back();
20: this path.erase(from);
21: end if
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(that can be also verified by visual inspection):

H1 = {e1e4} H2 = {e2e3e4} H3 = {e2e5} (4.6)

Replacing Eq. (4.6) into Eq. (4.4), the network connectivity can be

expressed as:

S(s,t) = {e1e4} ∨ {e2e3e4} ∨ {e2e5} (4.7)

e2e3e4 V e2e5 V e1e4

e2

1 

0 

0 1 

1 
1 

0 

0 

e3e4 V e5 V e1e4

e5

e3e4 V e1e4

e3 

e1e4

e1

0 e4 

e4

0 

1 

1 

0 1 

e1e4

e1

0 e4 

e4

0 

1 

1 

Figure 4.6: BDD Representation of Equation (4.9)

By using the same ordering as the preceding section, the Shannon’s
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decomposition of the Boolean connectivity expression (4.7) is built step

by step in Figure 4.6. If the leaves 1 and 0 are merged and the identical

subtrees (like those generated at node e1e4) are folded the same ROBDD

of Figure 4.4 (and hence the same reliability expression) is obtained.

Example: Symmetric Network 1 - The minpath search algorithm

applied to the network of Figure 4.7, assuming s=v1 and t=v5, shows that

the graph possesses 5 minpaths (listed in order of their rank):

H1 = {6, 8}; H2 = {6, 3, 4}; H3 = {1, 7, 4}; H4 = {1, 2, 8}; H5 = {1, 2, 3, 4}

(4.8)

Replacing (4.8) into (4.4), the network (s,t)-connectivity can be expressed

v1 =s

v5 =tv2

v3 v4

1

2

3

4

56

7 8

9

10

Figure 4.7: A symmetric directed network
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as:

S(s,t) = (6∧ 8)∨ (6∧ 3∧ 4)∨ (1∧ 7∧ 4)∨ (1∧ 2∧ 8)∨ (1∧ 2∧ 3∧ 4) (4.9)

The connectivity expression (4.9) is a Boolean function for which the

Shannon’s decomposition can be applied and the related BDD constructed.

The default construction takes the variable sequencing in the same order

in which the minpaths are generated. From the BDD, the (s,t)-reliability

can be finally computed from Equation 4.1.

A very similar approach to the one described in this section, could be

followed by generating the mincuts instead of the minpaths, where a mincut

is a subset of edges whose failure disconnects the s and t nodes.

4.1.4 2-terminal Reliability by Graph Visiting Algorithms

The BDD representation of the 2-terminal connectivity of a graph, can be

directly derived without passing from a preliminary search for the minpaths

or mincuts. In [83] an algorithm is proposed that generates the BDD di-

rectly, via a recursive visit on the graph, without explicitly deriving the

Boolean expression. The algorithm is sketched in Algorithm 4.3, in pseu-

docode form.

The Implemented Algorithm

Given a graph G = (V, E) and two nodes (s,t), the algorithm starts

from s and visits the graph (according to a given but arbitrary visiting

strategy) until t is reached. The BDD construction starts recursively once

the sink node t is reached. The BDD’s of the nodes along a path from s to

t are combined in AND, while if a node possesses more than one outgoing
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Algorithm 4.3 Generation of the BDD via a recursive visit of the graph.

Require: start node
Ensure: bdd gen(start node)
1: T bdd = 0
2: set start node in this path
3: for edge i in the set of edges starting from start node do
4: next node = the other end of edge i
5: if next node == sink node then
6: subpath bdd = edge i bdd
7: else if next node is already in this path then
8: continue;
9: else

10: subpath bdd = bdd gen(next node) and edge i bdd
11: T bdd = T bdd or subpath bdd
12: end if
13: end for
14: clear start node in this path
15: return T bdd
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Figure 4.8: a) BDD arc e4; b) BDD arc e3; c) BDD e4 ∧ e3
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Figure 4.9: a) BDD arc e5; b) BDD ((e4 ∧ e3) ∨ e5)

edge the BDDs of the paths starting from each edge are combined in OR.

Example: Bridge Network 3 - The BDD construction algorithm of

Algorithm 4.3 is illustrated step by step on the same directed bridge network

of Figure 4.1. The graph is visited according to the progressive number

assigned to the nodes. Starting from the source node s (node 1) the visit

proceeds toward node 2 along edge e2, toward node 3 along edge e3 and

toward the sink node t (node 4) along edge e4. Once the sink is reached, the

BDD construction starts with the BDD representing arc e4 (Figure 4.8a).

Since node 3 has only e4 as outgoing edge the visit returns to node 2. A

new BDD for arc e3 is created (Figure 4.8b) and the AND operator between

the two created BDDs is applied (e4 ∧ e3) (Figure 4.8c) .
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Figure 4.10: a) BDD (((e4 ∧ e3) ∨ e5)) ∧ e2); b) BDD e4 ∧ e1

Coming back to node 2 the algorithm visits arc e5 reaching the sink

and building the corresponding BDD (Figure 4.9a) that is combined in OR

with the BDD created until now ((e4 ∧ e3) ∨ e5) (Figure 4.9b).

Since there are no more arcs from node 2, the visit returns to node 1

and the new BDD representing arc e2 is combined in AND with the already

constructed BDD (((e4 ∧ e3) ∨ e5)) ∧ e2) (Figure 4.10a).

The same procedure is used to create the BDD representing the path

(e1, e4) between node 1 and node 4 (Figure 4.10b). The BDD for arc e4

already exists, and it is not created again. Finally, the BDD’s of the two

paths outgoing from node 1 (Figure 4.10b and Figure 4.10a) are combined

in OR to obtain the final BDD reported in Figure 4.11 that represents the

(s,t) connectivity function

(e1 ∧ e4) ∨ (((e4 ∧ e3) ∨ e5) ∧ e2)

Even if any variable order could be preassigned in the BDD construc-

tion, the order in which the variables appear in the BDD of Figure 4.11 is
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pt2 = pt1+p2 (1 - pt1)

pt1 = p1

Figure 4.11: The final BDD

different from the one in Figure 4.4; hence, the two BDD’s have a different

aspect even if they represents the same Boolean function. The network

reliability can be calculated by recursively applying equation (4.1), as illus-

trated in Figure 4.11.

Example: Symmetric Network 2 - The construction of the BDD by

means of the algorithm sketched in Algorithm 4.3 is illustrated step by

step on the same symmetric directed network of Figure 4.7. The graph

is visited according to the progressive (but arbitrary) number assigned to

the nodes. Starting from the source node s = v1 the visit proceeds along

nodes v2, v3, v4, until the sink node t = v5 is reached. Once the sink is

reached, the construction starts with the BDD representing the last visited

arc 4. Then, the algorithm makes one step back to node v3 where it finds
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a bifurcation and builds the BDD ((4 ∧ 3) ∨ 8). Going one step back

with the recursion, the algorithm revisits node v2 and builds the BDD

(((4 ∧ 3) ∨ 8) ∧ 2) ∨ (4 ∧ 7). Finally, in the last step, the algorithm visits

the source node v1 and builds the BDD for the complete (s,t)-connectivity

function.

S(s,t) = (((((4 ∧ 3) ∨ 8) ∧ 2) ∨ (4 ∧ 7)) ∧ 1) ∨ (((4 ∧ 3) ∨ 8) ∧ 6) (4.10)

It is easy to see that formula (4.10) contains replicated terms that are

simplified and folded automatically during the construction of the ROBDD,

that is reported in Figure 4.12. In the example the sequence in which the

variables are ordered in the ROBDD is the same in which the arcs are

encountered during the graph visit. However, any other ordered sequence

could be followed.

Even if the algorithms depicted in Algorithm 4.1 and 4.3 derive directly

the BDD’s of the Boolean connectivity function, nevertheless it is sometime

useful, or even required, to determine the list of the minpaths and/or of the

mincuts of the network. The minpaths provide a qualitative information

about the most favorable connections (in term of number of hops) between

source and sink, whereas the mincuts give a useful information about the

most critical catastrophic events that may isolate two nodes and disrupt

the network into two non-communicating parts.

Any path in a BDD linking the root with the terminal leaf 1, where only

the list of events corresponding to the left (or 1) traversed branches are in-

cluded, is a path of the network (but not necessarily a minpath). Similarly,

any path in a BDD linking the root with the terminal leaf 0, where only

the list of events corresponding to the right (or 0) traversed branches are
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Figure 4.12: The final ROBDD of the network of Figure 6.2

included, is a cut of the network (but not necessarily a mincut). To derive

the minpaths (mincuts) the list of paths (cuts) obtained from the BDD

must be minimized. An alternative approach, proposed in [70], consists in

transforming the original BDD into a new graph embedding all and only

the minpaths (mincuts). Detail of the transformation algorithm are in [70].

In Figure 4.13 is shown the minimized BDD obtained from BDD of Figure

4.11. It is used in order compute the minpaths of bridge network of Figure

4.1.

In Figure 4.14 it is shown the minimized BDD obtained from the same

BDD of the minpath case (Figure4.11). It is used in order to compute the
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Figure 4.13: Minimized BDD for minpath computation

mincuts of bridge network of Figure4.1.
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Figure 4.14: Minimized BDD for mincut computation
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4.2 The Italian GARR Network

The GARR Network (whose acronym means ”Gestione Ampliamento Rete

Ricerca” - ”Research Network Widening Management”) is composed by all

subjects representing the Italian Academic and Scientific Research Commu-

nity, and manages their internet services. The layout of the GARR network

and its main bandwidth characteristics are available from: http://www.garr.it/.

The Italian Academic and Research Network GARR (http://www.garr.it/index.php)

is based on scientific and academic collaboration projects between Italian

Universities and public Research Organisations. The GARR network ser-

vice is mainly provided for the GARR community.

Figure 4.15 shows the layout of the major connections of the GARR

network. The network in the picture is composed of 42 nodes and 52 links.

The following measures can be computed on the network using the tool

NRA (see Chapter 9):

1. (s-t) Network reliability - Given a source node s and a sink node t

the (s-t) Network reliability is the probability that the source and the

sink are connected by at least one path of working edges.

2. List of minpaths - Given a network and a source node s and a sink

node t, a path H between s and t is a subset of edges that guarantees

the source s and sink t to be connected if all the edges of the subset

are functioning. A path H is a minpath if a subset of elements in H

does not exist that is also a path. The NRA tool provides the list

of all the minpaths ordered according to their size (number of edges

forming the path).

3. List of mincuts - Given a network and a source node s and a sink

node t, a cut K between s and t is a subset of edges whose failure
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disconnects the source s and sink t. A cut K is a mincut if a subset

of elements in K does not exist that is also a cut. The NRA tool

provides the list of all the mincuts ordered according to their size

(number of edges forming the cut).

The analysis technique used by the tool NRA (see chapter 9) to ob-

tain the above measures is based on the representation of the connectivity

function of the network by means of Binary Decision Diagram (BDD) as

illustrated in paragraph 4.1.4 and in [21, 23].

4.2.1 Reliability Analysis of the GARR Network

We study the properties of the GARR network in two cases assuming two

different couples of source and sink nodes:

• in the first case we assume the node TO as a source and the node CT

as sink;

• in the second case we assume the node TS1 as a source and the node

NA as sink (see Figure 4.15).

In the lack of available data about the reliability of the single elements of

the GARR network, and with the goal of performing quantitative computa-

tions, we have assumed, arbitrarily, a uniform value p for the arcs of being

up (1 − p down). Usually we take p = 0.9, 0.95, 0.99. A summary of the

results is presented in Table 4.1.
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Figure 4.15: GARR network

Table 4.1: Reliability computations on the graph of Figure 4.15

Source Terminal No. BDD Reliability
Node Node Minpath Mincut Nodes Single Edge

0.9 0.95 0.99

TO CT 196 481 1003 0.977428 0.994713 0.999797

TS1 NA 168 385 604 0.975771 0.994486 0.999795
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The first two columns of Table 4.1 indicate the chosen source and sink

nodes: the first row reports the first examined case, the second row the sec-

ond case. The subsequent columns report the results obtained by running

the NRA tool. In detail: the number of minpaths, the number of mincuts

and the number of BDD nodes generated by using the generation algorithm

based on a depth-first search on the graph [21, 23]. The final three columns

report the (s-t) reliability value assuming that only the arcs can fail, all

with identical probability p (p = 0.9, 0.95, 0.99, respectively).

Figure 4.16: Histogram of the minpath length for the case s=TO t=CT

The connectivity properties depend not only on the number of minpaths

(mincuts) but also on their order, that is the number of edges that form the

minpath (mincut). To show the order, we have derived the histograms of

the distribution of the length of the minpaths and mincuts for the different
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s-t cases reported in Table 4.1. For the case s=TO t=CT, Figure 4.16

reports the histogram of the length of the minpaths and Figure 4.17 the

histogram of the order of the mincuts. It is evident that the minpaths of

lower order are the most favorable to connect source and sink, while the

mincuts of lower order are the most critical for interrupting the connection

between source and sink. In any case, the tool NRA provides the complete

list of edges that form each minpath and its probability of being up, and

the complete list of edges that form each mincut and its probability of

being down. Similar results are reported in the next two figures for the

Figure 4.17: Histogram of the mincut order for the case s=TO t=CT

case s=TS1 t=NA. Figure 4.18 reports the histogram of the length of the

minpaths , while Figure 4.19 reports the histogram of the order of the

mincuts.
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Figure 4.18: Histogram of the minpath length for the case s=TS1 t=NA

Figure 4.19: Histogram of the mincut order for the case s=TS1 t=NA
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4.3 IEEE 118 Bus Test Case

The IEEE 118 Bus Test Case represents a portion of the American Electric

Power System and was made available to the electric utility industry as a

standard test case. Reference to the IEEE 118 Bus Test Case can be found

in: http://www.ee.washington.edu/research/pstca/. We consider a portion

of the IEEE 118 Bus Test Case represented in Figure 4.20.

Figure 4.20: Portion of the Electrical Grid of the IEEE 118 Bus Test Case

The layout of the grid network of Figure 4.20 has been derived by su-
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Figure 4.21: Graph layout of the Electrical Grid of Figure 4.20

perimposing a schematized graph structure on the real grid in Figure 4.21.

Extracting only the graph structure, we obtain the network of Figure 4.22.

4.3.1 Network Reliability of IEEE 118 Bus Test Case

Using the program tool NRA, we have evaluated the reliability of the net-

work of Figure 4.22 assuming as source node s and sink node t three different
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Figure 4.22: Graph layout of the Electrical Grid of Figure 4.20

couples of distant nodes[24] [26].

The results of the analysis obtained from the NRA tool are displayed

in Table 4.2. The first two columns display the source node s and the

terminal node t used in the computation. The subsequent columns report,

respectively: the number of minpaths, the number of mincuts and the num-

ber of BDD nodes generated by using the generation algorithm based on a
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Table 4.2: Reliability computations on the graph of Figure 4.22

Source Terminal No. BDD Reliability
Node Node Minpath Mincut Nodes Single Edge

0.9 0.95 0.99

1 35 393 3407 3933 0.9531 0.9892 0.9995

10 22 151 4162 2551 0.5810 0.7713 0.9508

5 42 496 2692 1638 0.9552 0.9895 0.9995

depth-first search on the graph [21, 23].

To have a closer look to the results we have derived the histograms of

the distribution of the length of the minpaths and mincuts for the different

s-t cases reported in Table 4.2. Figure 4.23 reports the histogram of the

length of the minpaths for the case s=10 t=22, while Figure 4.24 reports

for the same s-t case the histogram of the order of the mincuts.

Similar results are reported in the next two figures for the case s=1

t=35. Figure 4.25 reports the histogram of the length of the minpaths,

while Figure 4.26 reports the histogram of the order of the mincuts.

The mincuts of lower order are the one most critical, since a lower

number of simultaneous failure events are needed to disconnect the source

s from the termination t. For instance, in the case of Figure 4.24 one can

see that there are 4 mincuts of order two and seven mincuts of order 3.
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Figure 4.23: Histogram of the minpath length for the case s=10 t=22
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Figure 4.24: Histogram of the mincut length for the case s=10 t=22
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Figure 4.25: Histogram of the minpath length for the case s=1 t=35
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Figure 4.26: Histogram of the mincut length for the case s=1 t=35



Chapter 5

Probabilistic Weighted

Networks

5.1 Introduction

This chapter starts form the unweighted networks and moves forward in the

direction of enriching the system description and the measures that can be

obtained, by including in the definition and characterization of the system

some parameters or weights related to the services that the network can

provide, and by computing the availability of the service or the Quality of

Service (QoS) associated to the network.

To this end, the specification of the network must be augmented with

an index or a weight that indicates a service feature of the network. We

show that the weights can have many different physical meanings, and

correspondingly require a different treatment. In particular, the weights can

indicate a characteristics related to a cost or a distance or a resistance (i.e. a

property that is additive along the paths) or a capacity (i.e. a property that

97
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is additive along the cuts). For this step, we define formally the concept of a

”Probabilistic Weighted Network” and we discuss the related QoS measures

and how to compute them. To deal with the analysis of weighted networks

we extend the data structure of the BDD’s into a new and more powerful

data structure called Algebraic Decision Diagrams ADD [22].

The analysis is specifically directed toward the evaluation of critical

systems in the form of networks and in the interrelation among networks.

To show the potentialities of the developed methodology and of the im-

plemented tool we carry our analyses and computations on two publicly

available cases study. In particular, we concentrate our attention on the

Italian GARR Network and to the IEEE 118 Bus Test Case.

5.2 Weighted Networks

Traditional studies on network reliability, as those exemplified in Sections

4.2.1 and 4.3.1 , assume that nodes and links are binary entities (either up

or down) and that the node-to-node reliability is computed as the proba-

bility that there exists at least one path of working links connecting the

two nodes. In many cases a richer representation is useful or even needed,

when some property associated to the edges (capacity, cost, length) influ-

ences the performance of the system. For example, the amount of traffic

characterizing the connections in communication or transport systems, or

the distance between nodes in a highway network, or the resistance of the

branches in an electrical grid, are fundamental parameters for a full de-

scription of these systems. Motivated by these observations, we consider

weighted probabilistic networks whose edges have been assigned a weight

(indicated as a label associated to the edge). We distinguish between two

types of interpretation of weights which can be used for characterizing the
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properties of a network.

i) Weights are interpreted as costs, or lengths or resistances associated to

the edges so that the aim of the analysis is to evaluate the probability

that the connection can be established below a given cost (or distance

or resistance).

ii) Weights are interpreted as capacities or bandwidths, representing the

maximum flow that the edge can support when up. The aim of the

analysis is addressed to the ability of the network to transport a given

amount of flow.

Many analysis techniques have been explored in the literature for com-

puting the reliability in binary probabilistic networks. In the case of de-

pendable weighted networks, a more informative measure is the Quality of

Service (QoS) defined, in the two cases above, as:

i) the probability that the source node and the sink node can be reached

with a cost (or a distance) not greater than a given threshold;

ii) the probability that the network is able to transport a flow from the

source to the sink not less than a given demand.

As in binary probabilistic networks the most efficient representation of the

network connectivity function seem to be based by means of Binary De-

cision Diagrams (BDD) [47, 21, 27], the analysis of weighted probabilistic

networks can be based on a data structure, derived from BDD, and called

Algebraic Decision Diagram (ADD)[11]. An ADD is a binary tree whose

terminal leaves can assume any positive value between 0 and the maximum

flow (or distance) in the network.

A path connecting the root of the ADD with a terminal leaf with label, say
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α, indicates that a flow (or distance) equal to α is transported along this

path. The associated probability can be easily computed from the ADD.

5.3 Probabilistic Weighted Networks

A weighted stochastic network is a tuple N = (G, P, W ) where G = (V, E)

is a graph (with NV vertices and NE edges), P is the probability function

that assigns to each edge e(u, v) (u, v ∈ V ) a probability p(u, v) of being up

(and 1− p(u, v) of being down) and W is a weight function that assigns to

each edge e(u, v) a finite real weight w(u, v). w(u, v) has the meaning of a

reward assigned to the arc that qualifies and quantifies the service carried

by the arc, or its cost, or some other attribute of the arc. Given a source

node s and a termination node t, we can evaluate the Quality of Service

(QoS) between (s-t) as a reward measure that is a function of the structure

of the graph, of the probability function P and of the weight function W .

Let us denote this QoS measure as Ψs,t. We consider two cases.

5.3.1 The Weight is a Cost

By cost we identify, generically, a parameter that is additive along the arcs

of the network. From this point of view, a cost can be: a real monetary

cost, the length of the arc, the resistance of the arc. The weight w(u, v)

of the arc e(u, v) is a cost function related to the input and output node

(u, v) of the arc. A simple physical idea is the length of the arc, i.e. the

distance between nodes u and v. The reward function Ψs,t is the minimum

cost between s and t computed as the sum of the costs of the arcs of a path

connecting s and t. In a stochastic network the problem can be reformulated

as a QoS problem in the following terms.
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Problem 1 - Given a stochastic weighted network N=(G,P,W), com-

pute the probability that the cost Ψs,t between s and t is below a thresh-

old ψmax.

To solve Problem 1 we need some definitions.

Definition 1 - Given a stochastic network N = (G, P, W ) and a source

node s and a sink node t, the cost of a path H(s, t) is the sum of the costs

w(u, v) of the edges forming the path.

Corollary 1 min-distance - If a network N = (G, P, W ) has n minpaths

H1, H2, . . . , Hn the minimum cost between s and t is equal to the minimum

cost of all its minpaths.

The min-cost corollary says that the minimum cost between any two

nodes cannot be less than the minimum cost of all its paths.

5.3.2 Flow Networks

The weight w(u, v) of the arc e(u, v) is the nominal capacity or the band-

width that the arc is able to carry. Networks with this attribute are usually

called flow networks [52, 76] and the function Ψs,t is the maximum flow that

can be transmitted from s to t. The maximum flow problem has received

a great attention even in the recent literature [28], [60], [42], [45], [33]. In

stochastic networks the problem can be reformulated as a QoS problem in

the following terms.

Problem 2 - Given a stochastic flow network N=(G,P,W), compute

the probability that the flow Ψs,t guaranteed between s and t exceeds a

minimum threshold ψmin.

Definition 2 - Given stochastic flow network N = (G, P, W ), and a

source node s and a sink node t, the capacity of a cut K(s, t) is the sum of

the capacities c(u, v) of all the edges forming the cut.
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Corollary 2 Max-flow Min-cut- If a network N = (G, P, W ) has m min-

cuts K1, K2, . . . , Km the maximum flow between s and t is equal to the

minimum capacity of all its mincuts.

The max-flow min-cut theorem says that the value of the maximum

flow is equal to the minimal capacity carried by a mincut. In other words

the theorem says that mincut that constitutes the bottleneck of a network

determines its maximum flow. The quantity of flow between any two nodes

cannot be greater than the weakest set of links somewhere between the two

nodes.

5.3.3 Algebraic Decision Diagrams - ADD

ADD Algebraic Decision Diagrams (ADD) (also called Multi Terminal BDD

- MTBDD) are an extension of BDDs [11] which allow to represent a real

function of n Boolean variables as a binary tree. While BDDs have only

two terminal leaves 0 and 1, ADD can have more than two terminal leaves

that identify all the possible values taken by the Boolean function along

the paths from the root to the terminal leaves. Like BDD, ADD provide a

compact representation of a Boolean expression by means of the Shannon’s

decomposition principle. Each node of the ADD represents a Boolean vari-

able and has two successors: the left branch (in solid line) represents the

value of the variable 1 and the right branch (in dotted line) represents the

value of the variable 0. In the present case, we assume as the n Boolean

variables the arcs of the graph and the Ψs,t function is defined according

to Corollary 1 or Corollary 2 depending on the definition of the weights.

• If the weights are cost functions the terminal leaves of the ADD pro-

vide all the possible values of the costs lower than the maximum
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threshold Ψmax computed along the minpaths that connect s to t

(Corollary 1).

• If the weights are capacity functions the terminal leaves of the ADD

provide all the possible values of the flows greater than the minimum

threshold Ψmin that can be transmitted from s to t when s and t are

connected. The flow values are computed from the mincuts following

Corollary 2.

• The single terminal leaf labeled 0 is reached by the combination of

variables for which the graph is disconnected or the function Ψs,t does

not respect the constraints.

Similarly to BDDs, the ADD is constructed by imposing an ordering on

the variables and the size of the tree is extremely sensitive to the chosen

ordering. An ordered ADD can be reduced by successive applications of

two rules. The deletion rule eliminates a node with both of its outgoing

edges leading to the same successor. The merging rule eliminates one of

two nodes with the same label as well as the same pair of successors. In a

probabilistic network N = (G, P, W ), each arc ei is a Boolean variable with

probability pi of being up (1 − pi down). At any node V of the ADD we

can compute the probability of the node P (V ) by the following expression:

P{V } = p1P{Vsucc−ℓ} + (1 − p1)P{Vsucc−r}

= P{Vsucc−r} + p1(P{Vsucc−ℓ} − P{Vsucc−r}) (5.1)

where Vsucc−ℓ is the left successor node of node V in the ADD obtained

by setting ei = 1 and Vsucc−r is the right successor of node V obtained by

setting ei = 0. Starting from a terminal leaf of the ADD where the reward

function Ψs,t has a value ψ we apply recursively Equation 5.1 backward up
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to the root node and we sum up at each node the corresponding probability

value along the path.

5.3.4 Basic operations for ADD manipulation

In order to compute the Boolean reward function Ψs,t, as defined in Corol-

laries 1 and 2, we need to define appropriate operators for manipulating

and constructing the ADDs in addition to the standard Boolean operators

NOT, AND and OR. The reward cost function is additive with respect to

the minpaths while the reward flow function is additive with respect to the

mincuts. We introduce the basic ADD operations with respect to the basic

Boolean operators exemplified in Figure 5.1. Node s and t are the source

Figure 5.1: Network with two arcs: a) in series; b) in parallel

and the destination, the arc identifiers are 1 and 2 and the labels a and b

in square brackets are the respective weights.
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Weight as Cost

The network of Figure 5.1a) has a single minpath H1 = 1 ∧ 2, the connec-

tivity function is Cs,t = H1 and when the network is connected (Cs,t = 1)

the cost function is Ψs,t = a + b otherwise Ψs,t = 0 . In the computation

of the cost function the Boolean ∧ operator corresponds to a sum in the

costs. We call this operation AndSum .

The network of Figure 5.1b) has two minpaths H1 = 1 and H2 = 2 , the

connectivity function is Cs,t = H1 ∨ H2 . When the network is connected

(Cs,t = 1) through arc 1 the cost is Ψs,t = a , when it is connected through

arc 2 the cost is Ψs,t = b , when both arcs are up the cost is Ψs,t = min(a, b).

We call OrMin the ADD operation corresponding to the Boolean ∨.

Hence the generation of the cost reward function defined in Corollary 1

requires the implementation of the AndSum and OrMin operators. We

summarize the definition of these operations in the truth table of Table 5.1

and the corresponding ADD construction in Figure 5.2 .

Arc 1 Arc 2 Cs,t1 ∧ 2 AndSum Cs,t1 ∨ 2 OrMin

0 0 0 0 0 0

0 1 0 0 1 b

1 0 0 0 1 a

1 1 1 a + b 1 min(a, b)

Table 5.1: Truth table of AndSum and OrMin

Weight as flow

The network of Figure 5.1a) has two mincuts K1 = 1 and K2 = 2 , the

connectivity function is Cs,t = K1 ∧ K2 . When the network is connected

(Cs,t = 1) the flow function is Ψs,t = min(a, b) otherwise Ψs,t = 0 . In the
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Figure 5.2: Basic ADD operations: a) ADD for arc 1 ; b) ADD for arc 2;
c) 1 AndSum 2 ; d) 1 OrMin 2

computation of the flow function the Boolean ∧ operator corresponds to a

min in the flows. We call this operation AndMin .

The network of Figure 5.1b) has a single mincut K1 = 1 ∨ 2 and the

connectivity function is Cs,t = K1 . When the network is connected (Cs,t =

1) through arc 1 the flow is Ψs,t = a , when it is connected through arc 2

the flow is Ψs,t = b , when both arcs are up the flow is corresponding to

the Boolean ∨ and we call this operation OrSum.

Hence the generation of the flow reward function defined in Corollary 2

requires the implementation of the AndMin and OrSum operators. We

summarize the definition of these operations in the truth table of Table 5.2

and the corresponding ADD construction in Figure 5.3.
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Figure 5.3: Basic ADD operations: a) ADD for arc 1 ; b) ADD for arc 2;
c) 1 AndMin 2 ; d) 1 OrSum 2

Arc 1 Arc 2 Cs,t1 ∧ 2 AndMin Cs,t1 ∨ 2 OrSum

0 0 0 0 0 0

0 1 0 0 1 b

1 0 0 0 1 a

1 1 1 min(a, b) 1 a + b

Table 5.2: Truth table of AndMin and OrSum

5.4 Distance Algorithm

The graph must be augmented with the length of each arc. The length may

be inferred from the Euclidean distance of any couple of connected nodes if

the graph is expressed by means of geographic coordinates; otherwise, the

distance may appear as a label on each arc. The ADD representing the

function s − t distance may be constructed by a direct visit on the graph.
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Algorithm 5.1 shows the pseudo-code form of the algorithm.

Algorithm 5.1 Generation of the ADD distance

Require: node, val
Ensure: costr add(node, val)
1: if val> ψmax then
2: return add constant(0)
3: else if node == sink node then
4: return add constant(val)
5: else
6: for each edge i outgoing from node do
7: next node = the other end of i
8: add tmp = costr add(next node , val + capa[node][next node])
9: add tmp =add tmp and add i

10: addt = addt or min add tmp
11: return addt
12: end for
13: end if

We visit the graph starting from the source node s until the sink node

t is reached.

For each edge we have the recursive call and we pass the other node

of the edge and the value of the path until this step (variable val) plus

the weight of the edge(capa[i]). If this value is not less than the threshold

ψmax we return ADD zero. When we reach the sink node the variable val

contains the value of the whole s − t path and the terminal node is set to

this value. For each edge a new ADD is built and is put in AND with the

ADD produced so far.

A node can have more than one outgoing edge so from this node pass

different paths. In this case, the ADD representing each path is put in OR,

but the value of the terminal node is not the sum of the terminal nodes



5.4. DISTANCE ALGORITHM 109

rather the minimum value between them. ormin is the new function which

implements this.

When the weights are interpreted as cost functions, the ADD can be

built also in agreement with the expression of the network connectivity

function starting from the list of the minpaths (see 5.2). We analyze one

minpath at the time and we build the ADD for each single minpath by

means of the AndSum operator over all the arcs of the minpath. If the dis-

tance value becomes greater than the threshold ψmax the ADD is discarded

and a new minpath is considered else it is combined with the OrMin opera-

tor with the ADD already generated. Algorithm 5.2 shows the pseudo-code

of the algorithm.

Algorithm 5.2 Generation of the ADD for the distance function

Require: MPS, ψmax

Ensure: costr add dist(MPS,ψmax)
1: ADD ris
2: for each mpsi in MPS do
3: ADD add tmp= -1, double dist=0;
4: for each e in mpsi and dist < ψmax do
5: dist=dist+w[e]
6: add tmp=And sum(add tmp, add e)
7: end for
8: if dist < ψmax then
9: ris= Or min(ris, add tmp)

10: end if
11: end for
12: return ris

Example 1: Weighted Bridge Network with Cost - A bridge network

with weighted directed arcs is shown in Figure 5.4. In this first example,

we assume that the labels on the edges represent the length of the arcs.
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Furthermore, a failure probability equal to p = 0.9 is uniformly assigned to

all the arcs. Referring to Problem 1, we want to compute the probability

to reach node t = 4 from s = 1 with a distance below a given threshold.

Figure 5.4: A directed bridge network

It is clear from a simple visual inspection of the network of Figure 5.4,

that there are three minpaths of length, respectively:

H1 = e1 e4 H2 = e2 e5 H3 = e2 e3 e4

l(H1) = 8 l(H2) = 5 l(H3) = 11
(5.2)

Assuming a maximum threshold greater that the maximum length, as

for instance ψmax = 15, all the minpaths satisfy the constraint and the

corresponding ADD is shown in Figure 5.5. The probability values of the

different ADD terminal values are computed according to Equation (5.1)

and are reported in Table 5.3. The terminal value 0 gives the probability

that the constraint is not satisfied (in this case, s − t are not connected).

If we change the maximum accepted distance and we fix ψmax = 10,
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Figure 5.5: ADD bridge network, with weights interpreted as lengths

Table 5.3: Probability of the ADD terminal values (distance) for a threshold
ψmax = 15

(s-t) Distance Probability

5 0.81

8 0.1539

11 0.00729

0 0.02881

we obtain the results shown in Table 5.4. The probability for the terminal

value 0 in Table 5.4 is the sum of the probabilities that s − t are not

connected, or they are connected with a distance greater that ψmax = 10.
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This probability is the sum of the last two rows of Table 5.3.

Table 5.4: Probability of the ADD terminal values (distance) for a threshold
ψmax = 10

(s-t) Distance Probability

5 0.81

8 0.1539

0 0.0361

5.5 Flow Algorithm

When the weights are interpreted as flow functions, the ADD can be built

also in agreement with the expression of the network connectivity function

starting from the list of the mincuts (see Section 5.3). We analyze one

mincut at the time and we build the ADD for each single mincut by means

of the operator over all the arcs of the mincut. We discard the terminal

leaves that are lower than the threshold and the obtained ADD is combined

with the operator with the ADD already generated.

Example 2: Weighted Bridge Network with Capacity - We consider

the same network of Figure 5.4 with the same labels. But in this example

the arc labels are interpreted as the capacities of the link, and we apply

Problem 2. With a minimum threshold ψmin = 1, we obtain the ADD

displayed in Figure 5.6.

The values on the terminal leaves of the ADD represent the maximum

flow that the network can carry along a path starting from the root node.

For example:
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Algorithm 5.3 Generation of the ADD for the flow function

Require: MCS, ψmin

Ensure: costr add flow(MCS,ψmin)
1: ADD ris
2: int ck=0
3: for each mcsi in MCS and ck==0 do
4: ADD add tmp= 0
5: for each e in mcsi do
6: add tmp=Or sum(add tmp, add e)
7: add tmp=check psi(add tmp, ψmin)
8: end for
9: if add tmp==add zero() then

10: ck=1
11: ris= And min(ris, add tmp)
12: end if
13: end for
14: return ris

- The terminal leaf 6 is reached along the path 1, 2, 3, 4, 5 representing

that all the arcs are up. In this case the maximum flow is carried by

the weakest cut 4, 5.

- The terminal leaf 3 is reached along the paths (1, 2, 3, 4, 5) or (1, 2, 3, 4)

or (1, 2, 3, 4) where the weakest cut is given by the arc 1 only, that

carries a flow of 3. But another possible path is (1, 2, 3, 4, 5) where

the weakest cut is (3, 5) that carries also a maximum flow equal to

the sum of the capacities of arcs 3 and 5: i.e. 2 + 1 = 3.

- The terminal leaf 1 can be reached along many paths, as for instance

(1, 2, 3, 4, 5), that are all characterized by the fact that the weakest

link is arc 5 that carries a capacity of 1.
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Figure 5.6: ADD bridge network, with weights interpreted as capacities

As in the previous example a failure probability equal to p = 0.9 is

uniformly assigned to all the arcs. The values of the probability for the

different terminal values of the ADD of Figure 5.6, are reported in Table
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5.5.

Table 5.5: Probability of the ADD terminal values (max flow) for a thresh-
old ψmin = 1

(s-t) Max Flow Probability

6 0.59049

1 0.08829

5 0.06561

4 0.06561

3 0.1539

2 0.00729

0 0.02881

By assuming a minimum threshold ψmin = 4 the probability values are

reported in Table 5.6.

Table 5.6: Probability of the ADD terminal values (max flow) for a thresh-
old ψmin = 4

(s-t) Max Flow Probability

6 0.59049

5 0.06561

4 0.06561

0 0.27829

We compare the result of our algorithm with that reported in [76] .

Our method generates exactly the same reliability result for network in

Figure 5.7 without passing from a cutset manipulation and without utilizing

external tools.
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Table 5.7 shows for each possible flow the probability to obtain the value and

the cumulative probability of being able to transfer a determinate amount

of flow. The first column in Table 5.7 reports all the possible values of

flows that can be transmitted between s and t. Each value gives origin

to a different terminal leaf in the ADD construction. The second column

reports the corresponding probability and the third column the cumulative

probability of transmitting up the the corresponding flow value.

Figure 5.7: Network of paper [76]
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(s-t) Max flow Prob Prob Cum

0 0.0023361

10 0.0198815 0.9976639

15 0.0096750 0.9777824

20 0.0793581 0.9681074

25 0.0030942 0.8887493

30 0.0125073 0.8856552

35 0.0106024 0.8731479

40 0.0186152 0.8625455

45 0.1065640 0.8439303

50 0.0359151 0.7373663

55 0.0719313 0.7014512

60 0.0481033 0.6295199

65 0.1803750 0.5814166

70 0.1028710 0.4010416

75 0.1147200 0.2981706

80 0.0166772 0.1834506

85 0.1667720 0.1667734

Table 5.7: Probability Example RWmin = 1

5.6 Reliability Computation

After the creation of the ADD representing the weighted network it is pos-

sible to compute the probability of reach each ADD leaf.

As said in previous section each path in the ADD from the root node to a

specific leaf represent the assignment of the variables that allow to obtain

a specific flow or distance.

In particular we have implemented three different algorithms:

The first algorithm (algorithm 5.4) visits of the ADD through a depth
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Algorithm 5.4 Compute reliability by DFS

1: prob dfs(add F, double prob)
2: if F is Terminal Node then
3: leaf array[F] += prob;
4: else
5: prob dfs(F → 1 , (prob * prob x) )
6: prob dfs(F → 0 , prob * (1 - prob x) )
7: end if

first search (DFS) and computes the probability for each terminal node.

The algorithm is similar to the algorithm used for reliability computation

in case of unweighted networks using BDD. In this case it is not possible to

record intermediate results because the probability value of each internal

node is different for each terminal node. In this case the computation

complexity depends on the number of paths inside the ADD and not on

the number of nodes of the ADD.

Algorithm 5.5 Compute reliability by split

1: prob split dfs(add F)
2: set visited
3: set term
4: find terminals(visited, terminals, F)
5: for each terminal build BDD representing the terminal do
6: termNode is a terminal
7: double result = prob bdd(termNode, F);
8: term prob[termNode] = result;
9: end for

The key idea of the second algorithm (algorithm 5.5) is to split the ADD

in different BDDs in order to compute the reliability over a smaller data
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structure. The probability is computed considering only a terminal value

at the time: for each value all the paths connecing the root node with the

terminal leaf are considered. In this case some intermediate results can be

reused as in the case of the unweighted networks.

Algorithm 5.6 Compute reliability by BFS

1: visited → set of visited add node
2: no term prob → map of internal node probability value
3: visited.insert( F)
4: no term prob[F] = 1.0
5: while !visited.empty() do
6: node= visited.pop
7: F1 = F → 1
8: if F1 is Terminal Node then
9: leaf array[F1] += prob x * no term prob[node];

10: else
11: no term prob[F1] += prob x * no term prob[node];
12: visited.insert(F1)
13: end if
14: F0 = F → 0
15: if F0 is Terminal Node then
16: leaf array[F1] +=(1 - prob x) * no term prob[node];
17: else
18: no term prob[F1] += (1 - prob x) * no term prob[node];
19: visited.insert(F0)
20: end if
21: end while

The third algorithm uses a breadth first search (BFS) in order to visit

the ADD and to compute the probability.

The probability can be computed starting from the root node, the prob-
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DFS SPLIT BFS

2x2 0.006 0.033 0.021
3x3 0.031 0.141 0.086
4x4 2.740 0.541 0.321
5x5 3486.548 3.464 1.951

Table 5.8: Comparison of reliability algorithm results

ability value of the parent node is multiplied with the probability of the

node itself and assigned to each child node. We traverse each node only one

time so the complexity of the algorithm depends on the number of nodes.

In Table 5.8 the results for the different algorithms are shown in order

to compare the different performance.

As benchmark we use different grids of n × n nodes. The first column of

Table 5.8 reports the network size, the second column reports the running

time, in seconds, for the DFS algorithm, the third regards the SPLIT

algorithm and the fourth the BFS algorithm.

As we can note for small networks (2 × 2 and 3 × 3 networks) the fastest

algorithm is DFS, but if the network grows the fastest becomes BFS (in

5 × 5 network the running time is 1.951 seconds with BFS and 3486.548

with DFS). This is due to the fact that in the BFS algorithm we visit

each node only one time (the complexity depends on the number of nodes),

while in the DFS algorithm some node can be traversed several times (the

complexity depends on the number of paths). In SPLIT algorithm we need

to build a BDD for each terminal so it is less efficient than BFS algorithm.
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5.7 Service Availability of the GARR Network

With reference to Figure 4.15, we have assigned possible weights to the arcs

of the network in two different ways:

• Weights are the bandwidths as derived from the legend of Figure 4.15.

• Weights are the geographical distances between any two nodes. The

distances are measured in kilometers from a corresponding geograph-

ical map. In this case, we make the assumption that the cost of the

connection between any two nodes is proportional to the length of the

connection itself.

As in the previous case we consider two couples of source and sink nodes:

TO − CT and TS1 − NA. Furthermore, we assume that all the links have

a probability p = 0.9 of being up and a probability 1 − p = 0.1 of being

down. The network is considered as non directed so that the various links

can be traversed in both directions.

5.7.1 Weighted GARR Network: Bandwidth Availability

Resorting to the GARR Web site the bandwidth of the major network con-

nections can be obtained. In this way, we can compute the probability of

assuring a given capacity level between any two nodes. If we don’t fix a

minimum bandwidth, the analysis tool provides all the capacities that can

be established between the source and the sink node. For the connection

TO − CT we have assumed a minimum threshold ψmin = 2500 Mbps, so

that only the connections that carry a capacity greater than the minimum

value ψmin are reported in Table 5.10. The table is ordered from the maxi-

mum achievable bandwidth (5000Mbps) to the minimal capacity exceeding
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ψmin = 2500. The row with zero entry corresponds to the probability that

the two nodes are not connected or are connected with a capacity lower

than the fixed minimum.

Flow (Mbps) Probability

5000 0.5795
2830 0.0014
2820 0.0006
2810 0.0002
2685 0.0069
2675 0.0055
2665 0.0036
2655 0.0096
2530 0.0027
2520 0.0020
2510 0.0201
2500 0.3292

0 0.0382

Table 5.9: Maximum flow and corresponding probability between s = TO
and t = CT

From Table 5.9, the probability that a capacity greater than ψmin =

2500 Mbps is carried between TO and CT is obtained by summing all the

rows satisfying the constraint and is equal to 96% (also equal to 1 minus

the probability of the row with zero value).

For the connection TS1 − NA we have assumed a minimum threshold

ψmin = 1, so that all the connecting paths are included in the analysis.

The results for the connection between TS1 and NA are reported in Table

5.10. The row corresponding to the zero value represents the probability

that there is no connection between source and sink.
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If we set in Table 5.10 a minimum threshold ψmin = 2500 Mbps we

get that the probability that a capacity greater than ψmin = 2500 Mbps is

carried between TS1 and NA is equal to 87%.

Flow (Mbps) Probability

2655 0.6366
2520 0.0002
2510 0.0188
2500 0.2176
340 0.0004
330 0.0038
320 0.0017
310 0.0007
185 0.0016
175 0.0028
165 0.0015
155 0.0808
30 0.0003
20 0.0005
10 0.0060
0 0.0263

Table 5.10: Maximum flow and corresponding probability between s = TS1
and t = NA

5.7.2 Weighted GARR Network: Distance Availability

In this second experiment, we suppose that the cost of the connection is

proportional to its distance. To any edge we assign a weight corresponding

to the distance (in km) between the pair of nodes and we calculate the

probability to reach the sink node with a distance less than a preassigned
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threshold.

Assuming as source node TO and as sink node CT the obtained results

are reported in Table 5.11. Since the minimal distance of a connection

TO−CT is 1522 Km, in generating Table 5.11 we have assumed a threshold

ψmax = 1700 km so that in Table 5.11 only the connections with a distance

lower than ψmax are quoted. The row with value zero reports the probability

that the connection is not established or it is established with a total length

greater than ψmax.

Distance (Km) Probability

0 4.43418e-02
1522 6.56100e-01
1525 1.24659e-01
1536 5.90490e-02
1539 1.12193e-02
1561 6.91464e-02
1564 1.60023e-02
1567 9.34540e-03
1575 6.22317e-03
1578 1.44021e-03
1581 8.41086e-04
1635 1.09153e-03
1649 9.82374e-05

1658.9 3.13806e-04
1672.9 2.82426e-05
1677 9.22750e-05
1691 8.30475e-06

Table 5.11: Connection distance between TO and CT lower than ψmax =
1700 km

To give a more detailed picture of the distance values through which the
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source node TO can reach the sink node CT , we have reported in Figure

5.8 the histogram and the corresponding empirical cumulative distribution

function of the distances of all the possible paths connecting TO to CT .

Figure 5.8: Histogram of the distance values for s = TO, t = CT

We have repeated the distance computations between TS1 and NA.

In this case, we have assumed as a maximum acceptable distance ψmax =

1300 km. Table 5.12 reports the obtained valued ordered vs increasing dis-

tance. The row with value zero reports the probability that the connection

is not established or it is established with a total length greater that ψmax.

Similarly to the previous case, we have reported in Figure 5.9 the his-

togram and the corresponding empirical cumulative distribution function

of the distances of all the possible paths connecting TS1 to NA.
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Distance (Km) Probability

0 6.4723e-02
923 5.9049e-01
1145 4.3046e-02
1187 3.8742e-03
1211 1.9076e-01
1229 6.3688e-02
1231 5.0046e-03
1237 4.5041e-04
1250 3.0404e-02
1253 4.5582e-03
1256 1.6864e-03
1264 1.1979e-03
1273 1.0173e-04
1279 9.1563e-06

Table 5.12: Connection distance between TS1 and NA lower than ψmax =
1300 km

Figure 5.9: Histogram of the distance values for s = TS1, t = NA
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5.8 IEEE 118 Bus Test Case

We have applied the concepts and tools of weighted networks to the IEEE

118 Bus Test Case. The weights have been obtained by resorting to the

data available on the web site www.ee.washington.edu/research/pstca. In

particular, we have derived for each arc the resistance and the capacity. The

actual value of the electrical resistance is obtained from the available data,

that are given as resistance per unit, by resorting to the base voltage. For

the capacity we have assumed the apparent power. The value of resistance

and capacity for each link are reported in Table 5.13. The link are identified

(see Figure 4.22) by means of the two terminal nodes.

Table 5.13: Data for IEEE118 bus network

From To Capacity Resistance

2 1 12.35 5.7703320

3 1 38.65 2.4566760

5 4 103.23 0.3351744

5 3 68.11 4.5896040

5 6 88.47 2.2662360

6 7 35.54 0.8741196

9 8 440.64 2.9042100

8 5 338.47 0.0000000

10 9 445.25 3.0708450

4 11 64.23 3.9801960

5 11 77.22 3.8659320

11 12 34.29 1.1331180

12 2 32.45 3.5612280

12 3 9.79 9.2172960
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Table 5.13: Data for IEEE118 bus network

From To Capacity Resistance

7 12 16.48 1.6415928

11 13 35.09 4.2372900

12 14 18.31 4.0944600

13 15 0.77 14.1687360

14 15 4.24 11.3311800

12 16 7.51 4.0373280

17 15 103.86 2.5138080

17 16 17.51 8.6459760

17 18 80.27 2.3424120

18 19 19.39 2.1310236

20 19 10.62 4.7990880

15 19 11.53 2.2852800

21 20 28.67 3.4850520

22 21 42.84 3.9801960

28 29 15.66 4.5134280

30 17 231.19 0.0000000

8 30 74.16 5.1299775

17 31 14.77 9.0268560

31 29 8.42 2.0567520

32 31 29.86 5.6751120

15 33 7.31 7.2367200

34 19 3.59 14.3210880

35 36 0.84 0.4265856

37 35 33.84 2.0948400

37 33 15.72 7.9032600
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Table 5.13: Data for IEEE118 bus network

From To Capacity Resistance

34 36 30.25 1.6587324

37 34 94.31 0.4875264

38 37 243.37 0.0000000

37 39 54.91 6.1131240

37 27 44.02 11.2930920

30 38 62.35 5.5227600

39 27 26.92 3.5040960

27 26 15.45 2.7613800

25 27 11.84 10.5694200

25 26 21.59 7.8080400

17 24 2.06 1.7387172

32 24 4.12 11.7120600

12 23 20.15 6.2654760

Assuming the couple of source and sink node s = 10 and t = 22 and

s = 1 and t = 35, as in Table 4.2, we have applied the ADD computations

of Section 5.3. In the absence of available significant data about the prob-

ability of each arc of being up or down, we have assumed, for the sake of

illustration, a common value p = 0.9.

5.8.1 Weights as Resistances

We have assigned as a weight to each arc its electrical resistance derived

from Table 5.13. Assuming a maximum threshold ψ = 50 we have derived

the ADD and calculated the probability of having a connection with a

resistance less than the threshold. For the couple of nodes s = 10, t =
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22, the results are displayed in Table 5.14. The first column provides the

resistance of the connection and the second one the probability of that

connection. The first row with value 0 provides the probability that the

s − t connection cannot be established with a resistance lower than ψmax.

Figure 5.10: Histogram of the resistance values for s = 10, t = 22

By assuming a maximum threshold ψmax large enough to include all

the possible values of the resistance, we have reported in Figure 5.10 the

histogram (and the related empirical cumulative distribution function) of

the number of occurrences of a path of a given resistance.

For the case s = 1, t = 35, and with ψmax = 35, the results are displayed

in Table 5.15. By assuming a maximum threshold ψmax large enough to

include all the possible values of the resistance, we have reported in Fig-

ure 5.11 the histogram (and the related empirical cumulative distribution

function) of the number of occurrences of a path of a given resistance.
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Table 5.14: Probability resistance for s=10 t=22 and ψmax = 50

Resistance Probability

0 0.4214117
27.84 0.3874200
28.17 0.0736099
40.18 0.0482955
40.4 0.0145423
40.5 0.0091761
40.72 0.0027630
40.73 0.0153681
40.84 0.0013088
40.95 0.0046275
41.17 0.0002487
41.4 0.0004165
42.8 0.0054480
43.25 0.0004903
43.7 0.0118619
44.85 0.0000295
45.43 0.0005692
45.65 0.0001714
46.1 0.0000154
46.32 0.0008333
47.39 0.0006438
47.5 0.0002217
47.95 0.0000200
49.2 0.0003521
49.53 0.0000650
49.55 0.0000018
49.76 0.0000884
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Figure 5.11: Histogram of the resistance values for s = 1, t = 35

5.8.2 Weights as Capacities

As a second example we have assigned to each arc the capacity value dis-

played in Table 5.13, which corresponds to the apparent power carried by

the branch. The power values listed in the table have been arbitrarily as-

sumed to correspond to the maximum capacity that the branch is able to

transmit.

For the couple of nodes s = 10, t = 22, and with a minimum capacity

threshold of ψmin = 9, the results are displayed in Table 5.16. The first

column provides the capacity of the connection and the second one the

probability of that connection. The first row with value 0 provides the

probability that the s− t connection cannot be established with a capacity

greater than ψmin.

By assuming a minimum threshold ψmin small enough not to exclude

any possible value of the capacity, we have reported in Figure 5.12 the

histogram (and the related empirical cumulative distribution function) of

the number of occurrences of a path of a given capacitance.
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Figure 5.12: Histogram of the flow values for s = 10, t = 22

For the couple of nodes s = 1, t = 35, and with ψmin = 20, the results

are displayed in Table 5.17. The histogram of the number of occurrences

of paths with a given capacity is reported in Figure 5.13.

Figure 5.13: Histogram of the flow values for s = 1, t = 35
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Table 5.15: Probability resistance for s=1 t=35 and ψmax = 35

Resistance Probability

0 0.1469162
19.71 0.4782970
20.17 0.0387420
26.83 0.0662489
27.05 0.0199483
27.29 0.0053662
27.50 0.0017954
27.51 0.0016158
27.96 0.0001454
29.16 0.0066249
29.38 0.0019948
29.61 0.0838911
29.62 0.0005366
29.83 0.0001795
29.84 0.0001616
30.07 0.0067952
30.29 0.0000145
31.83 0.0736099
31.94 0.0157501
32.03 0.0011329
32.25 0.0003411
32.29 0.0059624
32.40 0.0012758
32.49 0.0000918
32.70 0.0000307
32.71 0.0000276
32.96 0.0212607
33.16 0.0000025
33.28 0.0030302
33.46 0.0034112
33.78 0.0004544
34.87 0.0143454
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Table 5.16: Probability flow for s=10 t=22 and with ψmin = 9
Flow Probability

0 0,4555787
9,12 0.0000572
9.79 0.0000901
10.56 0.0001900
10.62 0.5440840

Table 5.17: Probability flow s=1 t=35 ψmin = 20

Flow Probability

0 0.4843242
20.07 0.0000161
20.72 0.0004476
20.84 0.0000270
21.49 0.0000592
21.56 0.0000001
22.14 0.0368286
33.84 0.0954271
34.61 0.0000361
34.68 0.3828340
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Chapter 6

Complex Networks

6.1 Introduction

In the last decades, due to the progress in computer power and the growing

consciousness that both man-made structures and human interactions can

be viewed as networks, the interest in this field has been enhanced to a wider

scientific audience [15]. The increased complexity of real networked systems

requires new analytic approaches to afford their new scale and predict their

behavior. There is a wide literature concerning complex networked sys-

tem analysis [7, 37, 62, 25] that looks at the structural properties of the

graph and the rules governing the aggregation of its nodes, with the aim to

predict networked system behavior. Among the main structural properties

of a graph is its classification as belonging to a specific topological class.

Two topological classes are relevant for representing real network: Random

Graph (RG) networks and Scale Free (SF) networks [7, 62].

However, the complexity of real world present networks (the internet,

the www, the public telecommunication networks), can reach millions or

137
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even billions of vertices. This change of scale forces a corresponding change

in the analytic approach. Many of the approaches that have been applied

in small scale networks, and many of the questions that have been an-

swered are simply not feasible in much larger networks. Recent years have

witnessed a substantial new movement in network research [7, 15, 37, 62],

with the focus shifting away from the analysis of small graphs to consid-

eration of large-scale statistical properties of graphs and with the aim of

predicting what the behavior of complex networked systems will be on the

basis of measured structural properties and the local rules governing indi-

vidual vertices.

6.2 Structure and Characterization of Complex

Networks

Many systems that we encounter daily (internet, communication, transport,

social etc..) have millions or even billions of nodes and are very difficult to

describe and to analyse and are even quite impossible to be represented or

plotted. Hence, to characterize some properties of these networks various

measures have been defined (see for instance [36]) that can be computed

with reasonable memory occupancy and running time even for graphs with

millions of nodes. We introduce four of such measures that are probably the

most significant ones and we discuss how some features of the graphs emerge

through their values. The proposed measures are defined locally (node by

node) but take into account progressively more extensive properties of the

network.

Degree Distribution - is influenced only by the number of arcs connected

to each single node;
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Clustering coefficient - looks at the first neighbors of a node and how

they are connected to each other;

Length of the shortest path - searches for the minimal length of a path

connecting any pairs of nodes of the network;

Betweenness Centrality - Counts the percentage of shortest paths travers-

ing a given node.

6.2.1 Degree Distribution

Given a network the total number of connections of a vertex is called its

degree k.

In a directed network, at any node n we need to distinguish between the

input degree kin (counting the number of arcs entering into the node), and

the output degree kout (counting the number of arcs exiting from the node).

So k = kin + kout as shown in figure 6.1. In an undirected network, the

degree k of a node n is equal to the number of arcs emerging from the node,

or equivalently the number of nodes directly reachable from the node i with

a single hop, some times called the first neighbouring nodes.

If in a graph each vertex has the same degree, this graph is said to be regular.

The Degree is the most used parameter since its distribution discrim-

inates easily the structure of a network. In particular, a frequently uti-

lized measure is the degree distribution as a function of the number of

nodes. Generally the degree of nodes in random networks is statistically

distribuited. For each node we can compute the degree distribution px(k),

the probability that the node x has k connections.

The total degree distribution can be simply computed starting from the
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k_in k_out

Figure 6.1: Degree of a node in a directed network

degree distribution of each node.

P (k) =
1

N

N
∑

x=1

px(k) (6.1)

P (k) represents the percentage of nodes with degree k.

Even if the degree is a local property of the node, nevertheless the distri-

bution P (k) provides fundamental information about the overall structure

of the network as we see in the next sections.

6.2.2 Clustering

The clustering coefficient Ci is a measure associated to a single node i.

It is still a local measure but that looks at the connectivity of the first

neighbors of the node i with each other. Given a node i we define with Gi

the subgraph obtained from G by taking the first neighbors of i, removing

node i together with all the arcs emerging from i. If node i has degree ki,

the subgraph Gi has ki nodes and at most ki(ki −1)/2 arcs. The clustering
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coefficient Ci measures the number of arcs really existing in subgraph Gi

with respect to all the possible arcs, hence it is defined as a positive number

between 0 and 1. A value of Ci close to 1 means that all the neighbors of i

are connected each other.

The clustering coefficient C is the mean value of the Ci averaged over

all the nodes.

6.2.3 Length of the Shortest Path

Given two nodes i and j, we define dij the shortest path (or the minimal

distance) between the two nodes; i.e. the minimal number of arcs that must

be traversed to reach j from i. It is possible to introduce the distribution

of the shortest-path lengths between pairs of vertices of a network and the

average shortest-path length L of a network. The average here is over all

pairs of vertices between which a path exists. L is often called the diameter

or the characteristic length of a network. It determines the effective linear

size of a network, the average separation of pairs of vertices.

If in a network all the N nodes are connected to all the N −1 remaining

nodes, we have of course L = 1, the total number of arcs is N(N − 1)/2

and the degree is constant and equal to k = (N − 1)/2. If k is the average

node degree, from any node we can reach on the average k nodes in one

step, k2 nodes in two steps and so on, so that in L steps all the nodes are

reached. Hence approximately N ≃ kL or L ≃ lnN/ ln k. Usually L is a

small number that increases slightly with the increasing number of nodes.

This fact implies that the distance between two nodes is usually a small

number, and this property is known as small world property [81].

One can also introduce the maximal shortest-path length over all the

pairs of vertices between which a path exists. This characteristic determines
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the maximal extent of a network.

6.2.4 Betweenness Centrality

In large complex networks, not all nodes are equivalent, for what concerns

the effect of their removal on the connectivity property of a network. The

question of the importance of nodes in a network is thus of primary interest

since it concerns crucial subjects such as networks resilience to attacks [8,

36] and also immunization against epidemics [67]. Different measures have

been proposed in order to quantify the concept of importance or centrality

of a node. One may have the idea that the connectivity degree is a good

candidate as a centrality measure. But this is not true since a node may

have a very low degree but may be traversed by all the paths that connect

two subgraphs. The reason is that connectivity is a local quantity which

does not inform about the importance of the node in the network [17].

A good measure of the centrality of a node has thus to incorporate a

more global information such as its role played in the existence of paths

between any two given nodes in the network. This measure is called be-

tweenness centrality and is defined as the fraction of shortest paths going

through a given node [17]. More formally:

B(i) =
∑

s 6=i6=t

σst(i)

σst
(6.2)

where i is a generic node, σst is the number of the shortest paths from node

s to node t, and σst(i) is the number of the shortest paths from node s to

node t passing through node i. High values of the centrality indicate that

a node can reach the others on shortest paths or that this vertex lies on

many shortest paths. If one removes a node with large centrality it will
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lengthen the paths between many pairs of nodes, or it will disconnect the

network in new components.

Betweenness centrality is a measure of the influence a node has over the

spread of information through the network. By considering only shortest

paths, however, we implicitly assume that information spreads only along

those shortest paths. In [61] Newman proposes a betweenness measure that

relaxes this assumption, including contributions from essentially all paths

between nodes, not just the shortest, although it still gives more weight to

short paths.

Also our analysis, described in next sections, follow the idea that all the

paths contribute to the network connectivity.

6.3 Regular Networks

The most relevant topological classes of networks are Regular, Random and

Scale Free networks.

Regular networks are represented by graphs that can be described by

means of defined geometrical properties and can be very well suited for

scalable benchmarks. We have investigated two types of regular networks:

1. Symmetric networks: all the nodes have the same characteristics. The

nodes are usually represented on a circle and are connected to the

same number of adjacent nodes. Hence, a network of this type can be

described by two parameters: the number of nodes N and the degree

k. Figure 6.2 shows the symmetric network with N = 5 and k = 2

(note that, in the figure, the arcs are oriented counterclockwise).
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2. Lattice networks: vertices are located on a regular square grid of

N × N nodes [75, 46]. An example is shown in Figure 6.3

v1 =s

v5 =tv2

v3 v4

1

2

3

4

56

7 8

9

10

Figure 6.2: A regular network with N = 5 and k = 2
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Figure 6.3: Lattice network

6.4 Random Network

Paul Erdős and Alfréd Rényi are the first that in their studies [39] define a

Random Graph (RG) as N labeled nodes connected by n edges which are

chosen randomly from the N(N−1)
2 possible edges.

In total there are

(

n
N(N−1)

2

)

different graphs with N nodes and n arcs

possible.

An alternative way in order to obain a RG is to start with N nodes and

connect each pair of the nodes with probability p. The total number of

edges is a random variable with the expectation value E(n) = p
N(N − 1)

2
.

In RG networks, the degree distribution P (k) follows a Poisson distri-
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bution;

P (k) ≈ e−pN (pN)k

k!
= e−<k> < k >k

k!
(6.3)

with a peak in P (< k >). The network degree is characterized by an

average value < k > with a given standard deviation.

6.5 Scale Free Network

In SF networks, the degree distribution P (k) follows a power-law [63]:

P (k) ∼ k−γ (6.4)

where γ is a real positive constant. SF networks manifest when nodes

are highly non-equivalent. Such networks have been named Scale Free be-

cause a power-law has the property of having the same functional form

at all scales. In fact, power-laws are the only functional forms that re-

main unchanged, apart from multiplicative factors, under a rescaling of the

independent variable k. SF networks result in the simultaneous presence

of a small number of very highly connected nodes (the hubs) linked to a

large number of poorly connected nodes (the leaves). RG networks can be

thought as resulting from un-supervised growth processes and, as such, are

believed to be produced by a growth mechanism where new nodes stuck

randomly to existing nodes (random growth mechanism). On the other

hand, SF networks grow under the action of some selective pressure that

determines that a new node sticks more likely to an already highly con-

nected node. This growth model, known as preferential attachment [7], is

realized by assuming that the probability Pi(n + 1) of the (n + 1)-th gen-

erated node sticks to node i, increases linearly with the degree of i. Higher
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degrees favor higher attachment probability. Pi(n + 1) obeys the rule:

Pi(n + 1) ∼
ki

∑n
j=1 kj

(6.5)

For what concerns reliability studies on networks, the most relevant

issue is that the structure of the network influences its reliability. SF net-

works are more robust to random arc or node removal than RG networks

but are more prone to malicious attacks, where the nodes with highest

degrees are first removed. A survey on these results is in [8, 36].

6.6 Complex Network Analysis

The dependability of systems in the form of networks is a very important

issue in network analysis, since one of the main feature of networks is to

have usually many redundant paths between any pair of connected nodes.

In order to study the dependability of networks, the probability that the

elements of the networks are correctly functioning (or non functioning)

should be known as an input parameter. We assume that the arcs can be

modelled as binary entities and failure means a complete disruption of the

link and of the interruption of the carried service.

In a probabilistic network given two nodes, a source node s and a termi-

nation node t, we define the s− t reliability as the probability that the two

nodes are connected by at least one functioning path. For small networks

an exhaustive analysis is possible that searches for all the possible paths

between s and t and computes exactly and analytically the probability that

at least one path is up. The limits of the exhaustive approach have been

checked in [23] and compared with similar results in the literature [47]. For

general networks exhaustive reliability analysis is limited to graphs with
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few tenths of node.

6.7 Exact algorithms

In this section we analyse some networks using exact algorithms.

6.7.1 Network generating algorithm

In order to launch a benchmark to examine measures of different topology

of networks we need to have a preliminary algorithm to generate networks

of the desired dimension and topology. To this end, we have implemented

two algorithms to respectively grow a RG and a SF network. The growth

mechanism of RG requires three input parameters: the number of connec-

tions (or degree k) that a newly generated node may establish with the

already generated nodes; the probability of attachment p; and the final di-

mension of the network N . Calling n the number of current nodes during

the generation process, the network growth starts with n = k nodes and a

new node at the time is generated until n+1 ≤ N . Two random generators

are used to establish the attachment of the n + 1 node. A first generator

sorts a node i among the n nodes of the network (i ≤ n) at which the n+1

node could be attached. Node i will be considered for the attachment if it

has not been already sorted. To generate a RG, a second generator sorts

a random number p1. If p1 ≤ p, the n + 1 node will be attached to node

i, otherwise the first random generator sorts a new node j 6= i and the

attachment process is repeated k times.

To generate a SF network , what changes is the attachment process (see

Barabasi Scale free model [7]). A first generator sorts a node i among the

n nodes of the network (i ≤ n) at which the n + 1 node could be attached.
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Node i will be considered for the attachment if it has not been already

sorted; in that case we compute Pi(n+1) according to Equation 6.5. Then

a second generator sorts a random number p1. If p1 ≤ Pi(n + 1) then the

new n + 1 node is attached to node i, otherwise the first random generator

sorts a new node j 6= i.

The growth algorithm is incremental, in the sense that once we have

generated a graph with N nodes of any topology, we can add to the same

structure an arbitrary number of new nodes.

6.8 Scalable Benchmark

A scalable benchmark has been carried out to evaluate and to compare

property against the increasing complexity of different network topologies:

namely Symmetric, Lattice, RG and SF networks. In all the experiments,

a failure probability equal to p = 0.9 is uniformly assigned to all the arcs,

only. The experiments have been run on a SUN machine with a dual AMD

Opteron 2.3 GHz processor, and with 4 GB of memory.

6.8.1 Regular Networks

Symmetric networks depend on two parameters, the number of node N and

the degree k. In Figure 6.2 is depicted a regular network with N = 5 and

k = 2. In all the experiments s and t are two adjacent nodes. The results

for increasing values of N and k are reported in Table 6.1.

The results obtained from the two algorithms differ only in the number

of generated BDD nodes, since they use a different ordering for the vari-

ables. In Table 6.1, the column (# BDD nodes VA) reports the number of

BDD nodes generated in the visit algorithm (see Section 4.1.4), while the
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Table 6.1: Benchmark Results on symmetric networks
N k # arcs # minpath # BDD nodes # BDD nodes (s,t)

VA MPA reliability

10 2 20 55 33 274 0.97137

10 4 40 755 2156 755 0.99980

10 7 70 19900 355650 62764 1

20 2 40 6765 73 43041 0.96096

20 3 60 83929 594 n.a. 0.99793

30 2 60 832040 113 n.a. 0.95065

35 2 70 n.a. 133 n.a. 0.94554

(# BDD nodes MPA) reports the number of BDD nodes generated in the

minpath algorithm (see Section 4.1.3) and the value of the reliability.

The results for scalable (directed) lattice graphs [75, 46], network in

Figure 6.3 with different values of N , are reported in Table 6.2. The table

displays the dimension of the lattice, the number of nodes and arcs of the

graph, the number of minpaths, the number of nodes of the BDD resulting

from the application of the VA and MPA algorithms, respectively, and the

value of the reliability. The large variability in the number of BDD nodes

obtained from the application of the two algorithms reflects the well known

assertion that the complexity of the BDD strongly depends on the variable

ordering. The actual experiments support the conjecture that with low

average degree < k > the VA ordering is more efficient than the MPA

ordering.

The number of minpaths versus the lattice dimension is plotted in Fig-

ure 6.4. An exponentially rising curve is evident from the plot, as theoret-

ically argued in [75].
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Table 6.2: Benchmark Results on Directed Lattice Graph
Dimension #nodes # arcs # minpath # BDD # BDD (s,t)

nodes VA nodes MPA reliability

2 × 2 4 4 2 6 6 0.96390

4 × 4 16 24 20 94 117 0.97308

6 × 6 36 60 252 1034 2012 0.97485

8 × 8 64 112 3432 8348 24219 0.97511

10 × 10 100 180 48620 56338 n.a. 0.97514

12 × 12 144 264 705432 342038 n.a. 0.97515

Figure 6.4: BDD complexity of the connectivity function of a lattice graph
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Table 6.3: Benchmark Results on Random Graphs
#nodes #arcs clustering # minpath # BDD # BDD (s,t)

coefficient nodes VA nodes MPA reliability

20 72 0.1632 2046 316360 10032 0.98885

25 92 0.1267 21040 3333930 32653 0.98886

30 112 0.1502 119033 n.a. 708801 0.98906

40 152 0.1379 6757683 n.a. n.a. n.a.

50 192 0.0660 n.a. n.a. n.a. n.a.

6.8.2 Random Graphs and Scale Free Networks

Tables 6.3 and 6.4 display the results obtained on RG and SF networks, re-

spectively. Networks are grown according to the algorithm of Section 6.7.1,

with an increasing number of final nodes N , while keeping constant the

number of connections (k = 2), and, for RG networks only, the probability

of attachment (p = 1). The first generated node is assumed as the source

s and the last generated node as the sink t.

The first three columns of each table Table 6.3 - 6.5 report the final

number of nodes, the final number of edges and the clustering coefficient.

Columns 4, 5, 6 report the number of minpaths, the number of the nodes

of the BDD with VA algorithm, the number of the nodes of the BDD with

MPA algorithm and the reliability value respectively.

All the results in Tables 6.3 and 6.4 have been obtained on incremen-

tal networks, in the sense that the network with M > N nodes has been

obtained by starting from the network with N nodes and adding the re-

maining M − N nodes. This means that the network in any line of Tables

6.3 and 6.4 contains all the nodes and arcs of the networks of the preceding

lines. Also in this case the results show a large variability and the minpath

search seems to be more efficient than the direct BDD construction.
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Table 6.4: Benchmark Results on Scale Free networks
#nodes #arcs clustering # minpath # BDD # BDD (s,t)

coefficient nodes VA nodes MPA reliability

20 74 0.5869 263 10409 266 0.98010

25 94 0.4388 2651 186350 5019 0.97815

30 114 0.3927 4707 n.a. 239788 0.98001

40 154 0.3888 73680 n.a. n.a. n.a.

50 194 0.3499 n.a. n.a. n.a. n.a.

Table 6.5: Comparative repeated experiments on different RG and SF net-
works
Network #nodes #arcs clustering coeff # minpath # minpath # minpath

Type (mean value) Min Max mean value

RG 25 92 0.1477 3566 36661 17568

SF 25 94 0.2819 750 12135 6117

The results in Tables 6.3 and 6.4 reflect the stochasticity of the gen-

erated networks and the choice of s and t. To mitigate these effects, we

have repeated different tests to confirm the results and their general trends.

In the first set of experiments we have generated 10 different RG and SF

networks (starting with different seeds in the random generators) with the

same number of nodes and arcs. In the second set of experiments we have

run the algorithms on the same network but changing randomly the source

s and the sink t. The results of the first set of experiments are reported in

Table 6.5

The results of the second set of experiments are reported in Table 6.6.

By comparing the whole set of results for RG and SF it appears clear that

RG’s display a lower clustering coefficient (as known from the literature

since a pure random connection does not favor a local coalescence) and a
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Table 6.6: Comparative repeated experiments modifying s and t

Network #nodes #arcs # minpath # minpath # minpath
Type Min Max mean value

RG 25 92 7920 23392 16850

SF 25 94 794 2764 1882

higher number of minpaths than SF. The presence of the hubs reduces the

total number of possible connections among any two nodes.

6.9 Simulative Analysis of Complex Network Re-

liability

If the dimensions of the network exceed the capability of exact algorithms

the possible solution is to resort to simulation. Simulation is still the prin-

cipal and most diffused investigation tool for complex networks [8, 36].

In this section, we discuss a simulative approach to the computation of

the point to point reliability in a complex network.

We first describe the implemented simulative approach and then the results.

6.9.1 Simulation

The Monte Carlo method of reliability prediction is useful when system

complexity makes the formulation of exact models essentially impossible.

The characteristics of the Monte Carlo method makes it ideal for estimating

the reliability of systems. Instead, system components need only be tested

for failure during operation, which ensures that components which are used

more often contribute proportionally more to the overall reliability estimate
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6.9.2 Reliability Simulation

Because the reliability of each component is based on probability distribu-

tions, the reliability of each component in a system can be modelled by a

set of random numbers. By generating random numbers, it is possible to

simulate the state of each component. These component states can then be

combined using the structure function to determine the state of the system.

Since each execution of a simulation tells only whether a particular set of

conditions did or did not exist, the Monte Carlo method is an experimental

problem-solving technique such that many simulation runs have to be made

to understand the relationships involved in the system. Each repetition of

the simulation results in another independent estimate of the reliability of

the system. As the number of simulations increases, the sample mean of

these independent estimates approaches the actual characteristics of the

system.

In order to obtain an estimation of the point to point reliability of the dif-

ferent networks we apply a simple simulation algorithm.

The algorithm for the computation of the point to point reliability via sim-

ulation can be decomposed in the following steps.

1. Read the data of a probabilistic network G = (V, E, P ) and fix a

source node s and a termination node t.

2. Define a global counter of the number of executions νg and a counter

for the executions that provide a favorable result νf .

3. For each execution and for each arc i of the graph, extract a random

number r between 0 and 1 and compare this number with the proba-

bility pi. If r ≤ pi arc i is assumed up, while if r > pi arc i is assumed

down.
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4. Once this assignment is completed we verify if s and t are connected

by the remaining up links: if they are connected we increase by one

the counter νf .

5. We increase by one the counter νg.

(a) The reliability as a function of the number of execution νg is

evaluated by means of the estimator Rνg = νf/νg

(b) the estimation error is computed as a function of the current

value of νg and Rνg .

6. We start a new execution iterating from step 3. As termination cri-

teria, we can adopt a criterium based on the total number of experi-

ments (by fixing a large value) or on the approximation error.

6.9.3 System Reliability Estimation

Now we use Monte Carlo methods to simulate the behavior of the system

and thus to estimate its reliability.

Two special nodes are identified, the source node s and the sink node t;

we want to compute the probability that node s is connected with node t

knowing the failure probability of each edge.

The simulation algorithm extracts a random value r between 0 and 1 for

each arc: if the extracted value exceeds the probability value, the arc is not

included into the new network (see step 3 of the algorithm) . After that all

edges are examined, we analyse the new network in order to know whether

the source node and the sink node are connected (step 4).

We execute different runs with different instances of the network obtained

from the original network using different random values r (step 6).

If we compare the number of networks in which the source and the sink
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node are connected over the total number of generated networks, we can

obtain an estimation of the s− t reliability and an estimation of the error.

Assessing the accuracy of the estimates is of extreme importance. Suppose

that the (unknown) exact value of the reliability is R and that the simula-

tion yields an estimate Rνg(step 5a) for it. Since the procedure involves the

use of random numbers, Rνg itself is a random variable. It is not important

to obtain a particular value for Rνg if we have not idea how close that value

is to R.

A probabilistic measure of the distance between Rνg and R should be de-

rived, of the following type:

P (| R − Rνg |< σ) ≥ α, 0 ≥ α ≥ 1. (6.6)

The interval (Rνg − σ, Rνg + σ) is called a confidence interval for R; the

probability α is the level of confidence [51].

Assuming that each simulation run provides an indipendent estimate Rνg ,

the distribution of n samples is a binomial distribution of parameter p =

Rνg , whose mean value and variance value are given by:

p = Rνg =
νf

νg
; σRνg

=

√

p(1 − p)

νg
=

√

Rνg(1 − Rνg)

νg
(6.7)

Hence, assuming a normal approximation for n large, eq. 6.6 becomes:

R = Rνg ± zα/2

√

Rνg(1 − Rνg)

νg
(6.8)

The pseudocode of the implemented algorithm is explained in algorithm

6.1. We analyse two specific networks with different topological features:
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Algorithm 6.1 Monte Carlo Simulation
1: νf ⇐ 0
2: νg ⇐ 1
3: while νg 6 maxrun do
4: for all link i of N do
5: generate random number r ∈ P (0, 1)
6: if r 6 pi then
7: add new edge to G
8: end if
9: end for

10: if G is connected then
11: νf ⇐ νf + 1
12: end if
13: νg ⇐ νg + 1
14: end while
15: Rνg ⇐

νf

νg

16: Confidence interval=±zα/2

√

Rνg(1 − Rνg)

νg
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both networks have 1000 nodes and 2000 arcs (average degree < ki >= 2)

but the first Nr is a Random network whereas the other network, Nsf , is

generated using Barabasi Scale free model [7] (see section 6.5).

We generate several source node - sink node pairs and we compute the s− t

reliability of the networks as the average of the value of reliability of the

different pairs.

We compute the reliability for increasing value of pi as shown in table 6.7.
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Figure 6.5: Graph networks with < ki >= 2

In order to help to interpret the results we plot the graph of the relia-

bility (Figure 6.5). The reliability is plotted as a function of pi.

We can observe that Scale Free Network Nsf is more reliable than Ran-

dom Network Nr for value of pi < 0.4. For value around pi = 0.4 one

line crosses the other and for pi > 0.4 we have an inversion: the Random
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p Rel Bara Rel Rand

0.1 0.000417000 0.000116000
0.15 0.003587000 0.000624000
0.2 0.0318760000 0.0016220000
0.25 0.0854360000 0.0074880000
0.3 0.1807980000 0.0418990000
0.4 0.4403580000 0.4160740000
0.45 0.5139360000 0.6193020000
0.5 0.6409520000 0.7156280000
0.6 0.792743000 0.871165000
0.7 0.877918000 0.961339000
0.8 0.959214000 0.983309000
0.9 0.99097700 0.99714000
0.99 0.99993111111 0.99998000

Table 6.7: Relialility of networks with < ki >= 2

Network appear more reliable than Scale Free Network.

Now we increase the degree of networks: in the previous example the

average degree < ki > is 2, now we analyse networks with < ki >= 5

namely with 1000 nodes and 5000 arcs. Results are plotted in Figure 6.6.

We can observe that the switch value is moved around p = 0.15, but the

general behaviour is the same of the previous networks.

A similar behaviour is described in [65] where Hiroyuki Ohsaki et al.

have investigated the effect of scale-free structure of a network on its end-

to-end performance. They have found that when the average degree of a

network is small (i.e., there are not many links in a network), a scale free

network shows higher end-to-end performance than a random network, and

conversely, when the average degree of a network is large (i.e., many links in
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Figure 6.6: Graph networks with < ki >= 5

a network), a random network shows higher end-to-end performance than

a scale-free network.

These results validate our observation: in case of small value of pi network

owns a small number of links working so scale free networks appears more

robust, on the contrary with hight values of pi random networks are more

reliable.

This can be explained also thinking to number and length of paths: it can

be proved that scale free have less and shorter minimal paths in opposite

to random networks that have more and longer minimal path.

In scale free networks minpaths are less and shortest because a lot of min-

paths pass through the hubs, this is due to the small world phenomena:

most nodes can be reached from every other by a small number of hops or

steps (see results in section 6.8.2 Table 6.5).
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Albert et al. in [8] and Crucitti et al. in [36] have studied the robustness of

complex systems. The robustness of a complex system can be defined by its

behavior under stress. In particular, they have analysed two general cat-

egories of such stress: errors-failures of randomly chosen components, and

attacks-failures of components that play a vital role in the system. They

compare random networks vs scale free networks: these graphs may differ

greatly in their response to failures. For instance, scale free systems exhibit

remarkable robustness to errors but, at the same time, they are very vul-

nerable to attacks such as the removal of the most highly connected nodes.

These studies of network tolerance show that scale free networks are more

robust to the occurrence of random failures with respect to random net-

works. This conclusion is based on a simulative experiment in which one

arc at the time is randomly removed from the graph until the connectivity

of the network breaks down.

We consider a network in which each time a certain fraction of the arcs has

been removed. Such damage may break an initially connected graph into

various disconnected parts. The simplest quantitative measure of damage

is therefore given by the relative size of the largest connected component

of the remaining network. The network will indeed keep its ability to per-

form its tasks as long as a ”giant cluster” of size comparable to the original

network exists.

When the fraction of deleted arcs exceeds a threshold f , the network has

been broken into many small disconnected parts and is no longer functional.

The study of the evolution of the size of the largest connected component

as a function of the fraction of removed arcs therefore characterizes the

network response to damage. Random graphs exhibit a definite level of

damage over which size of the connected component abruptly drops to

zero, signaling the total fragmentation of the network. Scale free networks,
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on the contrary, appear to lack a definite threshold f and display higher

tolerance to large random damage.

If we compare our results (see Figure 6.6) with the studies in [8] and [36]

we can note the same behaviour of the networks: when the value of pi is

below a given value, scale free networks appear more reliable than random

networks, this because in scale free networks a threshold f doesn’t exist

but it exists in random networks.

So random networks are more robust if we remove a small number of arcs,

while the scale free networks appear more fault tollerant in case of big

deletion.

6.10 Wireless Sensor Networks

In this section we analyse Wireless Sensor Networks (WSN) by means of

simulation techniques. WSNs are characterized by a high number of sensors

that collect information.

We suppose to scatter 1000 sensors in a 100 × 100 area (l = 100), these

sensors take position in random coordinates. Each sensor can transmit

within a limited radius rad, so only the sensors inside rad are able to

receive the message.

For sake of semplicity in Figure 6.7 only 10 sensors in a 10×10 area (l = 10)

are shown. Each sensor is able to transmit with radius rad = 2.

We suppose than the link is created only if the distance between sensors

is less than rad (in this case rad = 10) so we obtain a network with 1000

nodes and 2000 edges. Now we want to compute the probability that a

single sensor is able to communicate with the sink node, a special node

placed in the centre of the 100 × 100 area.

Each link between two sensors is established with a fixed probability pi if
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we vary the value of pi we obtain the graph plotted in Figure 6.8.
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Figure 6.7: Example of sensor network
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6.11 Change Probability value

In the previous section we consider the probability of failure of the link

as a fixed value, now we assume that the probability value is dependent

on the distance d between two sensors: greater is the distance between

them, smaller is the probability that the message can reach the destination

because the signal is attenuated.

We suppose two different types of decay: the first based on the following

expression:

p1 = pi ∗ e
−

d2

2l2 (6.9)
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Figure 6.9: Graph of sensor network with different probability values

The second based on the following expression:

p2 = pi ∗ e
−

2d2

l2 (6.10)

We assign a link failure probability pi and we compute the value of p1

and p2 following formula 6.9 and formula 6.10.

In Figure 6.9 the results are plotted: we compare the different curves and

we note that the values computed using as link probability only the origi-

nal probability value pi appear higher than values involving the distances.

Curves computed using equation 6.10 appear right shifted than values com-

puted using equation 6.9. The distance adversely affects the reliability

value.



Chapter 7

A Case Study

In this chapter we present a possible application of the theoretical results

presented in previous chapters of this thesis ([26], [24],[27], [18]).

The automation of Power Grids by means of Supervisory Control and Data

Acquisition (SCADA) systems has led to an improvement of Power Grid

operations and functionalities but also to pervasive cyber interdependencies

between Power Grids and Telecommunication Networks. Such cyber inter-

dependencies mainly emerge from the presence of a Communication Infras-

tructure which connects the Supervisory Control Room of the SCADA to

both its Remote Terminal Units (RTU) and to the ”external cyber world”.

Many power grid services are increasingly depending upon the adequate

functionality of SCADA system which in turn strictly depends on the ade-

quate functionality of its Communication infrastructure.

In order to show possible applications we describe a case study on an actual

SCADA system for an electrical power distribution grid.

167
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7.1 Description of the scenario

SCADA systems constitute the nervous systems of Electrical infrastruc-

tures. They relies on SCADA communication infrastructures, which in

turn are more and more depending upon Telco networks. For such a reason

SCADA systems also represent one of the major means of mutual propaga-

tion of disturbances and adverse events between Electrical infrastructures

and Telco networks. Many Power Grid services (i.e. availability of supply of

critical users/large urban areas, grid reconfiguration after failures, teleme-

try) are increasingly depending upon the adequate functionality of SCADA

system which in turn strictly depend on the adequate functionality of Telco

network. On the other hand both SCADA system and Telco network need

to be adequately fed by Power Grid. As evidenced by the occurrence of

several catastrophic events, the link between SCADA systems and the re-

liability of the Electrical infrastructures is well established. Nowadays,

SCADA communication infrastructure is typically composed by a propri-

etary network and a public telecommunication network. Such a solution

grants no limits for transmission performances, but introduces a number of

potential failure points that did not exist previously. Questions arise about

security, making SCADA systems also vulnerable to cyber-warfare and cy-

ber terrorism attacks. Public IP networks are, in fact, sensible to random

failures, but also are highly sensible to security holes, because information

is transferred on wired public trunks and even on wireless trunks that are

more ”open” channels than cables. As a consequence, networks may be

subjected to various kinds of malfunctions, like logical misconfigurations,

compromised redundancy, possible security breaches, loss of application

data, and degraded services. Real-time and bandwidth requirements of

SCADA communication infrastructure need to be considered. For exam-
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ple, status and command data of field points are typically of a real time

nature; regional control signals are typically of a near real-time nature, and

historical status data is of a loose real-time to non-realtime characteristic.

Care must be taken when utilizing the same communication channel for

real-time communication and transfers of non-real-time data because large

transfers of data could disrupt the transmission of the critical real-time

data.

7.1.1 SCADA System

Figure 7.1: Schema of a portion of the power distribution grid
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Figure 7.1 shows the Power Grid under consideration. It includes a por-

tion of the HV (High Voltage) grid at 150 kV and the backbone of the MV

(Medium Voltage) grid at 20 kV. Each node represents a primary substation

(Pi, large rectangle), in case of HV network, or a secondary substation (Mi,

small rectangle), in case of MV network. Nodes, named Ei, represent the

substations of the national power transmission grid. They feed the power

distribution grid. The physical link between any two nodes is an electrical

trunk. Figure 7.2 reports the mapping of the SCADA system on the whole

power distribution grid which include the Power Grid of Figure 7.1.

Differently from Figure 7.1, the links among substations do not represent

the electrical trunks, but the SCADA communication link. A Main SCADA

Control Centre (MSC) directly controls and supervises the portion of the

power grid of Figure 7.1. A Disaster Recovery SCADA centre (DRS), di-

rectly controls and supervises a complementary portion of the power distri-

bution grid. There are two types of Remote Terminal Units (RTUs), which

interface the SCADA with power distribution grid: HV RTUs, located at

HV substations, and MV RTUs, located at MV substations. MSC (directly

and through the DRS) controls and supervises the power grid, while DRS

assumes the control and the supervision of all the grid, in case of MSC fail-

ure. MSC and DRS are connected, via firewalls, by two redundant, public,

high speed Telco links. Information and data concerning the status of the

power grid (i.e. power flows, voltages, frequencies, loads, breakers posi-

tions, power transformers status) are transmitted from the RTUs to the

control centres, while commands (i.e. the remote control of switchgears for

energizing/de energizing power transformers and distribution feeders under

normal/disturbance/fault conditions) are transmitted from control centres

to RTUs by means of communication channels. SCADA system can be

decomposed in three interacting subnets, highlighted in Figure 7.2 by dif-
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ferent icons and lines. The three networks transport digital information

measured in Mega-bit per second (Mbps) units. The Default Proprietary

Network (DPN) serially connects the SCADA Control centres to HV RTUs.

The DPN nodes (HV RTUs) are depicted as grey rectangles and are labeled

on the graph Pi (i= 1, 44). DPN nodes can also communicate each other

through the public PSTN (Public Switched Telephone Network) subnet-

work since any DPN node is connected with a single link to one PSTN

node. The PSTN network represents the back up public Telco network

which connects SCADA control centres and HV RTUs to MSC and to

DRS. The PSTN nodes are numbered on the graph from 55 to 61 and from

62 to 66. They are connected together (dotted lines) and cannot commu-

nicate each other through the DPN nodes. Two Virtual Private Networks

(VPN) are established between the two SCADA Control Centres, via two

HDSL (High data rate Digital Subscriber Line) connections, throughout

two routers located in two PoP (Point of Presence), named PoP1(node

65) and PoP2 (node 66). MV RTUs, differently from HV RTUs, are con-

nected to SCADA centres just by means of public Global System Mobile

(GSM) connections (point/dashed lines). Particularly, MV RTU are con-

nected to their SCADA Control Centre throughout a Base Trans-receiver

sub-System (BTS-node 62) and a Transit Exchange (Tex). MV RTU nodes,

labeled from M1 to M10, are terminal nodes that can be reached through

the PSTN subnetwork only.
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Figure 7.2: Schema of SCADA system

7.2 The Case Study

In this section we analyse more in detail the power distribution grid case

study whose layout is displayed in Figure 7.3. The network of Figure 7.3 is

composed by N = 66 nodes and NE = 118 undirected arcs.

In a first instance, the network can be as a single flat graph where all

the nodes and arcs have the same meaning and the same property. The

connection between any pair of nodes is indifferently established by any

path linking the two nodes.

However, in some cases, a network may be composed by structurally and
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functionally different subnetworks: e.g. transport and control networks;

primary and back-up network; electrical grid and information network. In

these cases, the network can be decomposed in interacting parts that can

be analysed separately.

In the case study of Figure 7.3, we have considered three interacting

subnetworks, highlighted in the figure by different colors (or levels of grey

in a w/b printout): a red part (in dark grey), a blue part (in medium

gray) and a green part (in light grey). The three networks transport digital

information measured in Mega-bit per second (Mbs) units. The connection

between nodes and the flow of information among nodes of different colors

is governed by the following rules.

- Red subnetwork (in dark grey). The red nodes (numbered on the

graph from 1 to 44) are serially connected together in four distinct

subgroups through the red arcs. But the red nodes can also commu-

nicate each other through the blue subnetwork since any red node

in connected with a single link to one blue node. For the red sub-

network special blue nodes are nodes 63 and 64 where the four red

groups converge.

- Blue subnetwork (in medium grey). The blue nodes are numbered

on the graph from 55 to 61 and from 62 to 66. They are connected

through blue arcs and cannot communicate each other through the

red links.

- Green subnetwork (in light grey). The green nodes are numbered

from 45 to 54 and 62; unless 62, they are terminal nodes that can be

reached through the blue subnetwork only.
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Figure 7.3: The layout of the benchmark network

7.3 Structure and Characterization of Complex

Networks

7.3.1 Distribution of the Connectivity Degree

The most used parameter in order to discriminate the structure of a net-

work is the Connectivity Degree (or simply the Degree): frequently is com-

puted the degree distribution as a function of the number of nodes. In

an undirected network, the degree of a node N is equal to the number of

arcs emerging form the node, or equivalently the number of nodes directly

reachable form the node i with a single hop, some times called the first



7.3. STRUCTURE AND CHARACTERIZATION OF COMPLEX NETWORKS175

5 10

degree (k)
0

0,2

0,4

0,6

0,8

1

D
is

tr
ib

ut
io

n 
P(

k)

Figure 7.4: Connectivity distribution of the benchmark network: in linear
scale

neighboring nodes. In an oriented network, at any node N we need to

distinguish between the input degree (counting the number of arcs entering

into the node), and the output degree (counting the number of arcs exiting

from the node).

Considering the case study of the undirected network of Figure 7.3, we

denote with ki the degree of node i (i = 1, 2, . . . , N); the degree distri-

bution of the network is P (k), where P (k) is the percentage of nodes with

degree k. The distribution P (k) provides fundamental information about

the overall structure of the network even if the degree is a local property of

the node.

The degree distribution of the case study is given in in Figure 7.4 in

linear scale and in Figure 7.5 in log-log scale. The average connectivity

degree for the case study is k = 3.56.
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Discussion and interpretation of these results are deferred to Section

7.3.5.

7.3.2 Clustering Coefficient

The clustering coefficient is one of the most important properties in classical

networks. The clustering coefficient of a vertex in a graph quantifies how

close the vertex and its neighbors are to being a clique (complete graph).

For a node i, the clustering coefficient C(i) is the fraction between the

number of observed triangles to all possible triangles in one network.

The clustering coefficient for a vertex is then given by the proportion of links

between the vertices within its neighbourhood divided by the number of
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links that could possibly exist between them. It can be used to characterize

the small-world properties [81], understand the synchronization in scale-free

networks [68] and analyze networks of social relationships [64]
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Figure 7.6: Clustering coefficient: the Clustering coefficient Ci as a function
of the node number i

In the case study of Figure 7.3, the value of the clustering coefficient

Ci as a function of the node number is reported in Figure 7.6. Note that a

value Ci = 0 means that none of the first neighbors of node i are connected

together, while a value Ci = 1 means that all the first neighbors of node

i are connected together. An example of the first case (Ci = 0) is node

i = 10, an example of the second case (Ci = 1) is node i = 15.

Figure 7.7) reports, in the form of an histogram, the distribution of the

values of the clustering coefficient Ci. The average clustering coefficient is

C = 0.3180.
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7.3.3 Length of the Shortest Path

The shortest path (or the minimal distance) between the two nodes is de-

fined as the minimal number of arcs that must be traversed to reach a node

from the other.

Usually it is studied the distribution of the shortest-path lengths between

pairs of vertices of a network and the average shortest-path length. Average

Shortest Path is the average of the shortest distance between every pairs

of nodes between which a path exists.

Diameter is defined as the longest shortest path between any pair of nodes

of a distributed network.

In our case study, the distribution of the length of the shortest path is
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Figure 7.8: Histogram of the length of the shortest path

reported in the histogram of Figure 7.8. Note that in our case the number

of values on which the histogram is built is equal to the pairs of nodes that

are N ∗ (N − 1) = 4290. The average distance among reachable pairs is

L = 3.380. The most distant vertices separated by a maximum distance

of Lmax = 5 (as, for instance, the pair 1 − 54). This result means that

on the network of Figure 7.3 every couple of nodes can be reached on the

average in L hops but in any case the maximal separation among nodes is

Lmax = 5.

7.3.4 Betweenness Centrality

Betweenness centrality is a parameter that measuers the importance of ele-

ments in a network based on their position in the shortes paths connecting

a pair of non-adjacent nodes.

In our case study the histogram of the betweenness centrality is reported

in Figure 7.9.
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Figure 7.9: Histogram of the betweennes centrality

The average betweenness centrality is 0.37927. There are several nodes

with betweenness centrality equal to 0 (there non shortest pthas passing

through that node), and the node with the highest betweenness centrality

is node 57.

7.3.5 Typical Network Structure

The most typical network structures are the random networks (RN) and

the Scale Free Networks (SF). They have been extensively considered in

many survey papers [7, 15, 37, 62, 25].

In this paragraph we recall some of the main features and properties

related to the network structure that are relevant in the analysis of the case

study of Figure 7.3.

The main characteristics that has been considered to discriminate be-
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tween RN and SF is the degree distribution. In RN, as the number of nodes

N tends to infinity the degree distribution assumes the form of a Poisson

distribution, which is bell shaped around a mean values with two expo-

nentially decaying tails. Furthermore, in a RN the clustering coefficient

is small (the nodes are connected randomly and there are not clustering

effects) and tends to a value C = k/N where k is the average degree. Ap-

plying the above relation to the case study, we get C = 3.56/66 = 0.0539.

The average clustering coefficient calculated in Section 7.3.2 has a value

much higher than the theoretical one for RG, thus evidencing the non con-

formity of the case study to RG.

In SF networks the tail of the degree distribution decays as as the poly-

nomial P (k) ∼ k−γ , so that in a log-log scale the tail appears as a straight

line with angular coefficient −γ. The network of Figure 7.3 is too small di-

mension to approach a limiting behaviour and to show a definite behavioral

structure. Nevertheless, the parameters of the network are more oriented

toward a scale free structure. Furthermore the SF networks have higher

clustering properties than RG.

7.4 Probabilistic Networks

The dependability of systems in the form of network is a very important

issue in network analysis, since one of the main feature of networks is to

have usually many redundant paths between any pair of connected nodes.

In order to study the dependability of network, the probability that the

elements of the networks are correctly functioning (or non functioning)

should be known as an input parameter. We assume that the arcs can be

modelled as binary entities and failure means a complete disruption of the

link and of the interruption of the carried service.
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In a probabilistic network given two nodes, a source node s and a termi-

nation node t, we define the s− t reliability as the probability that the two

nodes are connected by at least one functioning path. For small networks

an exhaustive analysis is possible that searches for all the possible paths

between s and t and computes exactly and analytically the probability that

at least one path is up. The limits of the exhaustive approach have been

checked in [23] and compared with similar results in the literature [47]. For

general networks exhaustive reliability analysis is limited to graphs with

few tenths of node.

If the dimensions of the network exceed the capability of exact algo-

rithms the possible solution is to resort to simulation. Simulation is still

the principal and most diffused investigation tool for complex networks.

Simulation studies for probabilistic networks have been already appeared

in the literature [8, 36], but their assumptions are not very convincing for

the estimation of the point to point reliability. In this section we present

first a simulation study, and then possible ways of attaching the problem

via the exact tool WNRA taking into account the functional properties of

the case study network and the partition in subnetworks.

7.4.1 Simulative Analysis of Complex Network Reliability

In Section 6.9, we discussed a simulative approach to the computation of

the point to point reliability in a complex network. We have analyzed the

graph of Figure 7.3 using the simulation algorithm. In this experiment

we have considered the graph as a flat graph, i.e. a graph in which all the

nodes and arcs have the same properties. We have thus neglected the colors

and we have assumed that any node can communicate with any other node

through paths joining arcs of any color.
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In the described experiments we have assumed arbitrarily pi = 0.9 for

all i (all the arcs have the same probability of being up). We have assume

as a source node s = 63 and termination node t = 64 and as termination

criterium a total number of executions equal to νg = 1 · 107.
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Figure 7.10: Network reliability between nodes 63 and 64 computed using
a simulative approach

The results are reported in Figure 7.10. The horizontal axis reports

the number of execution while the vertical axis reports the reliability value

and the simulation error. As the figure shows, the value of the reliability

stabilizes rather quickly remaining well inside the estimated error. The

final value after νg = 1 · 107 executions is:

R = 0.9997803 ± 1.83719 · 10−05

The described simulation procedure has been implemented in a com-
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puter program written in C, and runs on a standard laptop. The simulation

can be replicated for any pair of nodes and for any distribution function of

the probability over the arcs.

7.4.2 Exhaustive Analysis of Weighted Networks

To characterize the benchmark example of Figure 7.3 as a probabilistic

weighted network, we have quantified the probability function P and the

weight function W in the following way:

• In the lack of sound experimental data about the reliability of any

single link, we have assumed pi = 0.9 for any i (all the arcs have the

same probability of being up). However, we remind the the analysis

tool WNRA is able to accept any value for the probability of each

node.

• The weights are interpreted as capacities, and the following data have

been assigned:

– links 1-44 : 0.5 Mbps (solid red links)

– links form 1-44 to 55-61 and from 62 to 57: 0.5 Mbps (dashed

blue links)

– links from 45-54 to 62 : 0.35 Mbps (green links)

– links from 55-61 to 65 or 66 : 1.0 Mbps (solid blue links)

– links from 63-64 to 65-66: 2.0 Mbps (solid blue links)

The exhaustive analysis through the tool WNRA cannot be performed

on the whole flat network as explained in the previous Section 6.9. In this

case we can exploit the fact that the whole network is composed by different



7.4. PROBABILISTIC NETWORKS 185

Total
Capacity Probability

4 0.6561
2 0.323996
1 4.32135e-06
0 0.0199001

Table 7.1: Capacities that can be transmitted from s to t and their proba-
bilities

(colored) interacting sub-networks and that the node of some colors ar

inhibited to communicate with other nodes via links of different colors.

In the following we present the results of the analysis of parts or in-

teracting parts of the complete weighted probabilistic network of Figure

7.3.

The Blue Net

Since the blue nodes communicates to other blue nodes only via blue arcs,

we can isolate the blue subnet and analyze it in isolation. Extracting from

the complete network of Figure 7.3 only the blue part, we obtain the sub-

network of Figure7.11.

We have assumed as source node s = 63 and as terminal node t = 64.

The following results have been obtained by running the tool WNRA. Table

7.1 reports the capacities that can be transmitted from s to t and the

probabilities of these values.

The data reported in Table 7.1 have the following meaning. The first

column reports all the possible capacity values that can be transmitted from
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Figure 7.11: The layout of the blue sub-network

s to t, given the maximum capacity associated to each link, as reported in

Section 7.2. The value 0 in the last row means that s and t are disconnected.

The second column reports the probability that the network carries the

corresponding capacity. The values in the second column sum to 1.

For what concerns the structural analysis, the s−t connection of Figure

7.11 has 16 minpaths: 2 are of length 2, and 14 are of length 4. The s − t

connection has 258 mincuts: 2 are of order 2, and 256 are of order 9.

Finally the reliability is : R = 0.9800998. The BDD generated from the

tool WNRA to compute the above figures has a size of 519 nodes.
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Interaction of the Blue and Green Nets

The green part of the net is only connected to the blue part: hence we

can join the subnets together and examine how the green nodes are con-

nected to the blue ones. The layout of the union of the green and blue

sub-networks is reported in Figure 7.12.

1

2

3
4

5 6
7

8

9 10

11

56

55

14

12

15

16

19

22

59

63

60

17 18

13

45
46
47
48
49
50
51
52
53
54

62

20 21
24

252723

57

26

65 66

64 44

41 42 43

39

37

6140

38
36

35

3332

29

58

28

3130

34

Figure 7.12: The layout of the union of the green and blue sub-networks

In the analysis we have assumed as source node s = 54 and as sink node

t = 63. The following results have been obtained. The capacity analysis is

reported in Table 7.2, but it is not very informative, since the connection

s − t can carry only a capacity 0.35, due to the bottleneck link from any
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Total
Capacity Probability

0.35 0.793881
0 0.206119

Table 7.2: Capacities that can be transmitted from s to t and their proba-
bilities in the network of Figure 7.12

green node to node 57. Hence, the first row of Table 7.2 coincides with

the s − t reliability (s and t are connected), and the last row of Table 7.2

coincides with the unreliabilty (s and t are not connected).

The number of minpaths is 16 as in the previous case, while the number

of mincuts is 260. The reliability is R = 0.7938808 and the size of the

BDD is of 555 nodes. Of course, the reliability value reported above and

computed independently by the tool WNRA is equal to the value reported

in the first row of Table 7.2.

The Red Net

If we isolate the red part of the net we obtain the graph of Figure 7.13. The

red net is constituted by four non-interacting sets of nodes that are serially

connected and terminates in the blue nodes 63 and 64 (that are maintained

on the graph of Figure 7.13).

To exemplify possible analysis and the obtained results, we have as-

sumed as source node s = 22 and as terminal node t = 63. The tool

WNRA has provided the following results.

The capacity analysis (Table 7.3) is again not very informative, since the

connection s− t can carry only a capacity 0.5, due to the serial connection
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Figure 7.13: The layout of the red sub-network

of the red arcs. The serial connection involves also that there is a single

minpath of length 5 and 5 mincuts of order 1. The reliability is R =

0.5904899 and coincides again with the first row of Table 7.3.

Interaction of the Red Subgraph r3 and the Blue Net

In the following two subsections we examine the interactions between the

red and the blue subnetworks of Figure 7.3. The red nodes are connected

together in groups through the red arcs as displayed in Figure 7.13, however

they can also communicate through the blue arcs. Hence, if we consider the

red and the blue connections together we can evaluate the structural and

quantitative parameters of the joined networks. In Figure 7.14 we have

joined the r3 subnet of Figure 7.13 with the blue subnet of Figure 7.11.
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Total
Capacity Probability

0.5 0.59049
0 0.40951

Table 7.3: Capacities that can be transmitted from s = 22 to t = 63 and
their probabilities in the red network of Figure 7.13

The resulting network has 18 nodes and 64 arcs.

In particular, we have assumed as source node s = 40 and as a sink node

t = 63, and we have submitted the resulting network to the tool WNRA.

The first result refers to the capacities that can be transmitted between

s and t and the corresponding probabilities. These values are reported in

Table 7.4. While the red network can carry a capacity of 0.5 only (see

also Table 7.3), the communication through the blue network can carry a

capacity of 1.

Total
Capacity Probability

1 0.788982
0.5 0.189326
0 0.0216924

Table 7.4: Capacities that can be transmitted from s = 40 to t = 63 and
their probabilities in the r3-blue network of Figure 7.14

The total number of the minpaths is 494 and the distribution of their

length is reported in the histogram of Figure 7.15). There are 2 shortest

minpaths of length 3 characterized by the following sequence of nodes:
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Figure 7.14: Interaction of the red3 and the blue sub-networks

40 → 51 → 65 → 63

40 → 51 → 66 → 63

The longest minpaths have length 12 and in the number of 20.

The total number of the mincuts is 4541 and the distribution of their

order is reported in the histogram of Figure 7.16). There are 2 shortest
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Figure 7.15: Results for the network of Figure 7.14: Histogram of the length
of the minpaths;

mincuts of order 2 (40 → 38 ∧ 40 → 61) and (61 → 65 ∧ 61 → 66), and

1024 mincuts with maximum order 16. The size of the BDD on which the

above figures (distribution of minpaths and mincuts) have been obtained

is of 735 nodes, and the reliability is R = 0.9789903.

Interaction of the Red Subgraph r1 and the Blue Net

In this last example we consider the interaction between the red subnet r1

and the blue net as depicted in Figure 7.17. The resulting network has 24

nodes and 88 edges. We assume the same source node s = 22 and the same

sink node t = 63 considered in Section 7.4.2, where the red network only

was examined.
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Figure 7.16: Results for the network of Figure 7.14: Histogram of the order
of the mincuts.

As usual, the first result refers to the capacities that can be transmitted

between s and t and the corresponding probabilities. These values are

reported in Table 7.5.

The total number of the minpaths is 3305 and the distribution of their

length is reported in the histogram of Figure 7.18). There are 3 shortest

minpaths of length 3 represented by the following sequences of nodes:

22 → 59 → 65 → 63

22 → 59 → 66 → 63

22 → 59 → 12 → 63

There are 60 minpaths of maximal length 16.
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Figure 7.17: Interaction of the red1 and the blue sub-networks

The total number of the mincuts is 57174 and the distribution of their

order is reported in the histogram of Figure 7.19). The shortest mincuts

are: one single mincut of order 2 (22 → 19 ∧ 22 → 59) and two mincuts of

order 3 (12 → 63 ∧ 59 → 65 ∧ 59 → 66) ; (12 → 63 ∧ 63 → 65 ∧ 63 → 66).

The size of the BDD on which the above figures (distribution of min-

paths and mincuts) have been obtained is of 54095 nodes, and the reliabil-

ity is R = 0.9879523. This last result should be compared with the value

R = 0.5904899 obtained in Section 7.4.2, by considering the red links only.

The difference between the two values shows the contribution in reliability
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Total
Capacity Probability

1 0.791882
0.5 0.19604
0 0.012077

Table 7.5: Capacities that can be transmitted from s = 22 to t = 63 and
their probabilities in the r1-blue network of Figure 7.14

increase that can be get by linking the red nodes through the blue network

also.
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Figure 7.18: Results for the network of Figure 7.17: Histogram of the length
of the minpaths;
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Figure 7.19: Results for the network of Figure 7.17: Histogram of the order
of the mincuts.



Chapter 8

Probabilistic Weighted

Multi-State Networks

Most works in reliability theory are based on the traditional binary concept

of reliability models allowing only two possible states for a system and

its components, perfect functionality or complete failure. However, many

real-world systems are composed of multi-state components, with different

performance levels and several failure modes with various effects on the

system’s entire performance. Such systems are called multi-state systems

(MSS). For MSS the outage effect will be essentially different for units with

different performance rates. Therefore, the reliability analysis of MSS is

much more complex when compared with binary-state systems [55] [82].

The classical system reliability theory assumes that the system and its

components are allowed to be in one of two possible states: either work-

ing or failed. The states of the system and its components each can be

represented by a binary variable. In the previous chapters we have anal-

ysed binary networks: we have described different algorithms for system

197
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reliability evaluation, but more specific analysis is needed.

The multi-state system reliability theory allows the system and its com-

ponents to experience more than two possible states. The state of a com-

ponent or the system may be represented by a non-negative integer taking

values between 0 and M (discrete models) or by a continuous variable taking

values in the interval [0, 1] (continuous models). In many real-life situa-

tions, multi-state system models provide more realistic descriptions of the

actual systems. The term ”reliability” is no longer suitable for describing

the performance of the system or a component. Instead, the corresponding

state distribution is used. Under the multi-state assumption, the relation-

ship between component states and system state is much more complicated.

A distinct characteristic of a MSS is that the system and/or its com-

ponents may exhibit multiple performance levels (or states) varying from

perfect operation to complete failure. A MSS can model dependencies such

as shared loads, performance degradation, imperfect fault coverage, standby

redundancy, limited repair resources, and common-cause failures [50] [82].

The non-binary state property of a MSS and its components makes the

analysis of such a system difficult.

We study the probabilistic weighted multi state networks by means of Multi-

valued decision diagrams data structure. We propose a novel way in order to

represent network structure considering also the possible component states

and some propriety as cost or capacity. We compute the reliability of these

networks considering the various peculiarity.
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8.1 Multivalued Decision Diagrams

Multi-valued decision diagrams (MDDs) [53], [41] are directed, acyclic graphs

used to represent K-variable integer functions of the form

f : {0, . . . , NK−1} × . . . × {0, . . . , N1 − 1} → {0, . . . , M − 1}

.

Nodes in the MDD are either terminal or non-terminal. The terminal nodes

correspond to the return values of the function and are labeled with an

integer 0, ..., M −1. Nonterminal nodes are labeled with a variable xk , and

contain Nk pointers to other nodes.

These pointers correspond to the cofactors of f , where a cofactor is defined

as

fxk=c ≡ f(xK , . . . , xk+1, c, xk−1, . . . , x1)

for variable xk and constant c. A non-terminal node representing function

f is then written as the (Nk+1)-tuple (xk, fxk=0, ..., fxk=Nk−1). Since a ter-

minal node labeled with m represents the integer constant m, every MDD

node represents some integer function.

As for BDD the paths in an ordered MDD (OMDD) visit non-terminal

nodes according to some total ordering on the variables xK , ..., x1 . That

is, if a path through the OMDD visits non-terminal nodes labeled with xi

and xj , then xi is visited before xj if and only if i > j.

We say a non-terminal OMDD node labeled with xk is a level-k node, and

a terminal node is a level-0 node. Note that the ordering property implies

that all downward pointers from level-k nodes are to level-j nodes, where

j < k.
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A reduced OMDD (ROMDD) has the following additional properties.

• There are no duplicate terminal nodes. That is, at most one terminal

node is labeled with integer m.

• There are no duplicate non-terminal nodes. That is, given two non-

terminal nodes (xi, fxi=0, . . . , fxi=Ni−1) and (xj , gxj=0, . . . , gxj=Nj−1),

we must have either xi 6= xj or fxi=n 6= gxi=n for some n ∈ 0, . . . , Ni − 1.

• All non-terminal nodes depend on the value of their variable. That is,

given a non- terminal node (xk, fxk=0, . . . , fxk=Nk−1), we must have

fxk=i 6= fxk=j for some i, j ∈ 0, . . . , Nk − 1.

It has been shown that ROMDDs are a canonical structure: given any

integer function and a variable ordering, there is exactly one ROMDD rep-

resentation for that function.

BDDs are a special case of MDDs applied to K-variable logic functions,

which have the form f : 0, 1K → 0, 1. The size of ROMDD depends heav-

ily, as in the BDD case, on the input variable ordering used to build the

ROMDD.

8.2 Reliability of Multi State Systems

Given a weighted network N = (G, P, W ) where G = (N, E), a set of M

state S = {S1, S2, . . . , SM} of the components of the system and a pair of

nodes s− t, it is possible to evaluate the Quality of Services between s and

t.

As for weighted networks consider two cases:
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• Weight is a cost: we compute the probability that the connection can

be established below a given cost. The single component cost value

increases following the decreasing of functionality. In this case the

state representing the component perfectly working takes the lowest

value.

• Weight is a flow: we compute the probability that the flow is greater

than a minimun threshold. In this case the state representing the

component perfectly working takes the highest value.

8.3 Weight as Flow

We can suppose that the flow between two nodes is not a fixed value, but

it changes as a function of the degradation of the link. If the line is perfect

the maximal value of flow carried is the whole flow value, in the case of

decay the value decrases.

Network can work with different distinguished levels of efficiency, but we

consider a finite number of states.

For example we can suppose to analyse the bridge network of the previous

chapters. In Figure 8.1 we depict the network with the assigned flow values.

We can suppose that, in a determinate instant of time, each element can

be in one of the following three states:

• perfectly working : the flow is the 100% of nominal value

• degradated: the flow is the 50% of the nominal value

• failed: the flow is 0, the link doesn’t work.

Each element i is in one state z with a probability pi,z. In this case we

suppose that all elements have the same probability if they are in the same
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Figure 8.1: Bridge network

state. We have the probability values in Table 8.1.

Table 8.1: State probability of elements

State Probability
Link capacity

e1 e2 e3 e4 e5

perfectly working (state 2) 0.65 3 4 2 5 1

degradated (state 1) 0.25 1.5 2 1 2.5 0.5

failed (state 0) 0.1 0 0 0 0 0

We have developed an algorithm, using the Iowa State University MED-

DLY library [78], that builds an MDD starting from the list of mincuts.

This algorithm is similar to the algorithm developed for weighted binary

networks, but in this case the nodes of the data structure are multivalue

and not only binary.

Also in this case the operation Or sum (see Section 5.3.4) is used in or-

der to combine the elements of each single mincut. The different MDDs

representing each mincut are combined with the And min operation (see
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Section 5.3.4).

In Figure 8.2 the MDD for the network in Figure 8.1 is depicted.

Starting from the MDD representing the network it is possible to com-

pute the reliability value of each MDD terminal node, that is the probability

to obtain a deteminate flow considering that each network element can be

in one of the three different states with a specific probability. In Table 8.1

the different probability value are shown.

Now we apply the probability algorithm shown in Algorithm 8.1 and we

obtain results in Table 8.2

Algorithm 8.1 Compute reliability by BFS

1: visited → set of visited add node
2: no term prob → map of internal node probability value
3: visited.insert(F)
4: no term prob[F] = 1.0
5: while !visited.empty() do
6: node= visited.pop
7: for each state i do
8: Fi = F → i
9: if Fi is Terminal Node then

10: leaf array[Fi] += prob xi * no term prob[node];
11: else
12: no term prob[Fi] += prob xi * no term prob[node];
13: visited.insert(Fi)
14: end if
15: end for
16: end while
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Table 8.2: Probability of the MDD terminal values (max flow)

(s-t) Max Flow Probability

0.5 0.024525

1 0.06579

1.5 0.0295875

2 0.0366525

2.5 0.0622625

3 0.129128

3.5 0.194513

4 0.0513866

4.5 0.0683922

5 0.148298

5.5 0.0446266

6 0.116029

0 0.02881

8.4 Weight as Cost

We consider the same bridge network as Section 8.3, but in this case we

consider weights as costs. The network is depicted in Figure 8.3.

Also in this case the weight value of the link is due to the level of link

degradation: if the edge works well then the cost of the link is the original

value, but if the link is troubled the value cost is higher.

We can immage that, in a determinate instant of time, each element can

be in one of the following three states:

• perfectly working : the cost is the pure cost

• degradated: the cost is double of the original cost
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s

e1 e4

e3

e2 e5

t

ok: 3
deg: 6

ok: 4
deg: 8

ok: 2
deg: 4

ok: 5
deg: 10

ok: 1
deg: 2

Figure 8.3: Bridge network

• failed: the link doesn’t work.

In Table 8.3 the probability for the different states is presented.

Table 8.3: State probability of elements

State Probability
Link cost

e1 e2 e3 e4 e5

perfectly working (state 1) 0.65 3 4 2 5 1

degradated (state 2) 0.25 6 8 4 10 2

failed (state 0) 0.1 0 0 0 0 0

In Figure 8.4 the MDD representing network in Figure 8.3 is depicted.

The MDD is obtained by means of an algorithm using the list of minpaths.

We use the operation And sum (see Section 5.3.4) in order to combine the

elements of each single minpath. The different MDDs representing each

minpath are combined with the Or min operation (see Section 5.3.4).
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The values of the probability for the different terminal nodes of the

MDD of Figure 8.4 are reported in Table 8.4. The reliability values are

obtained applying algorithm 8.1.

Table 8.4: Probability of the MDD terminal values (cost)

(s-t) Distance Probability

5 0.4225

6 0.1625

8 0.175338

9 0.0938438

10 0.0360938

11 0.0336213

13 0.0319313

15 0.00105625

16 0.0129313

17 0.00040625

18 0.00040625

20 0.00040625

22 0.00015625

0 0.02881
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Chapter 9

NRA and WNRA Tools

In this chapter we will describe in details two tools that we have im-

plemented [2]: one for unweighted networks (section 9.1), the other for

weighted networks (section 9.2).

9.1 Tool NRA: Network Reliability Analyzer

In this section we are going to present the framework developed in order to

analyse the unweighed network. This framework combines together several

theoretic concepts explained in previous chapters. The Network Reliabil-

ity Analyser (NRA) is based on Binary Decision Diagrams (BDD) which

provides an efficient method to represent and manipulate Boolean func-

tions and have been also exploited to model the connectivity of Boolean

networks.

NRA computes the qualitative and quantitative proprieties of a network

according to two approaches:

• qualititative: the list of the minpaths and of the mincuts and its

209
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length distribution is determined and

• quantitative: the reliability is computed by BDD. It is computed

directly by network visit or passing through a preliminary search of

the minpath/mincuts.

A software tool for network reliability analysis has been implemented ac-

cording to the algorithms illustrated in the preceding chapters.

NRA accepts in input a unweighted network given in various standard rep-

resentation formats. Beside the graph structure, the only necessary infor-

mation associated to the edges is the failure probability.

The tool accepts in input a graph with a variety of possible formats:

- incidence matrix;

- adjacency list;

- formats provided by some of the most diffused tools for network gen-

eration and analysis;

- Networks generated by generating algorithm inside the tool.

The user may optionally choose which elements are failure prone; only

the arcs, only the nodes or both, and consequently, assign the corresponding

failure probabilities. Finally, the s and t node must be assigned so that the

program can provide the two-terminal reliability and the list of minpaths

and/or mincuts.

The tool embodies the two approaches:

• A preliminary search of the minpaths is executed. The algorithm

relies on a recursive call of a function based on the classical Dijkstra’s
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algorithm (with all the edges having a unitary weight). Once the

minimal paths between nodes s and t are explored (and ordered by

rank), the BDD is constructed.

• In the second approach the BDD for the chosen connectivity function

is directly constructed resorting to the algorithm of Figure 4.3.

The construction and manipulation of the BDD’s is managed through

the BDD library developed at the Carnegie Mellon University [1]. The

list of the minpaths and of the mincuts may be optionally determined by

applying the transformation algorithm proposed in [70].

9.1.1 Tool Input

Two versions of the tool are available:

• Command line version

– all the input parameters must be passed by command line

• Interactive version

– the input parameters can be specified in interactive way

In order to execute the programm in both the versions should be insert:

• graph file

• probability file (or N if no reliability value is required)

• search type (1 edge, 2 node, 3 node and edge)

– 1 edge: we consider that only edges can fail.
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– 2 node: we consider that only nodes can fail.

– 1 edge: we consider both edges and nodes can fail.

• file type (1 list, 2 brite, 3 pajek, 4 matrix)

– 1 list: the graph is represented as adjacency list

– 2 brite: the graph is created with package brite

– 3 pajek: the graph is created with package pajek

– 4 matix: the graph is represented as adjacency matrix

• algorithm type (1 direct bdd, 2 minpath bdd)

– 1

∗ The BDD is directly derived without passing from a pre-

liminary search for the minpaths. Minpaths/mincuts are

obtained by applying a trasformation of the BDD.

– 2

∗ The list of minpaths is obtained directly from the graph,

and the BDD for the reliability computation is built from

minpaths list.

• source node

• sink node

• information type (1 minpath, 2 mincut, 3 minpath and mincut)

– This parameter is used only if algorithm type = 1
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In interactive version it is possible to choose the variable order for build the

BDD or it is possible to use the standard fixed order obtained by means

of an heuristic algorithm, while in command line version the fixed order is

used.

9.1.2 Tool Output

As output the tool returns the results screen diplayed and stored in a file.

The output file is named graphname output.txt and include graph infor-

mation as name, structure, degree of nodes and node degree distribution.

If the algorithm type is 1 is present also bdd size and, if computed, the

reliability of the network.

If required are printed the number of minpaths/mincuts, the ordered list

and the distribution length of minpaths/mincuts.

If the algorithm type is 2 the file includes the ordered list of minpaths,

matrix of element occurrence in the minpath, the distribution length and

the average minpath length.

9.2 Tool WNRA: Weighted Network Reliability

Analyzer

The extended version of the NRA tool is called WNRA and is aimed at

analysing probabilistic weighted networks. In this case, an additional in-

formation is needed related to the weights to be assigned to the arcs.

Two types of analysis are possible:

• weights as costs

• weights as flows
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In the first case starting from the minpath list and arc cost list it is possible

to obtain the probability of working network with all possible combination

of cost considering each components up with a determinated probability.

In the second case we consider weights as flows it is possible compute the

probability that the network provides each possible flow. In this case we

start from the mincut list

9.2.1 Tool Input

• GRAPH FILE NAME is the name of the graph file

• PROB FILE NAME is the name of the probability file (or N if no

reliability value is required)

• WEIGHT FILE NAME is the name of a file containing the weights

(or N if no weight value is required)

• RIC TYPE search type (1 edge, 2 node, 3 node and edge)

– 1 edge: we consider that only edges can fail.

– 2 node: we consider that only nodes can fail.

– 3 edge: we consider both edges and nodes can fail.

• FILE TYPE file type (1 list, 2 brite, 3 pajek, 4 matrix)

– 1 list: the graph is represented as adjacency list

– 2 brite: the graph is created with package brite

– 3 pajek: the graph is created with package pajek

– 4 matix:the graph is represented as adjacency matrix
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• REL TYPE algorithm type (1 direct bdd, 2 minpath bdd)

– 1

∗ The BDD is directly derived without passing from a pre-

liminary search for the minpaths. Minpaths/mincuts are

obtained by applying a trasformation of the BDD.

– 2

∗ The list of minpaths is obtained directly from the graph,

and the BDD for the reliability computation is built from

minpaths list.

• SOURCE NODE source node

• SINK NODE sink node

• PATH CUT information type (1 minpath, 2 mincut, 3 minpath and

mincut)

– This parameter is used only if algorithm type = 1

The weighted network analysis is based on the previous knowledge of

the complete set of mincuts / minpaths; hence, the capacity computation

can start only if and after the mincuts / minpaths list is obtained.

To this end, the parameter

PATH_CUT

must be assigned a value 2 (for the computation of the mincuts only) / 1

(for the computation of the minpaths only) or 3 (for the computation of

the mincuts and minpaths).
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9.2.2 Tool Output

As output the tool returns the same output of NRA, but the reliability is

computed for each possible flow (or cost).

For example the output:

Flow Prob

6 0.59049

1 0.08829

5 0.06561

4 0.06561

3 0.1539

2 0.00729

0 0.02881

means that with probability of 0.59049 the network can carry a flow of 6.



Chapter 10

Conclusion

In this thesis some original contributions have been presented, concerning

the analysis of probabilistic networks. In this section we summarize our

main results.

Many social, economical and technological structures can be abstracted

in the form of networks where the vertices are the entities of the system

and the edges the physical or relational links among them. One relevant

property of networks that make them a preferential structure both in natu-

ral and technological systems is that the connection between any two nodes

of the networks can be achieved through many redundant paths, thus mak-

ing the connection intrinsically reliable. Network reliability is studied in

this thesis by resorting to different approaches making use of the Decison

Diagrams representation of Boolean functions. The related algorithms are

presented and their merits and limits are briefly discussed.

In particular starting from a binary unweighted network (the edges can be

only up or down) we have extended the analysis to the weighted netwoks,

by associating a weight to the edges.

217
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We have considered this weight as a cost and as a capacity and we have im-

plemented some new boolean operations in order to represent the network

structure by means of ADD. Visiting the ADD it is possible to obtain the

different reliabilty values.

Some different topologies of complex network have been analysed and com-

pared. We have computed the reliability of networks with the same num-

ber of nodes and links, but we have varied the topology. Probabilistic

weighted multi-sate networks can be used in order to represent systems

where a weight is assigned to the components and each element can be in

more than two states. We have supposed that the different states are due

to a degradation of the weight (if we consider weight as cost the value is

increased, while if we consider weight as capacity the value is decreased).

New algorithms have been developed in order to compute the network re-

liability considering both weights and multi state.

A possible future work in this area will be to used the Probabilistic weighted

Multi-Sate networks in order to represent network with delay.

Finally we are working to update the network reliability tools in order to

create a single framework including all the analysis techniques described in

this thesis.
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