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Abstract: Reinforced concrete slab-column structures, despite their advantages such as architectural
flexibility and easy construction, are susceptible to punching shear failure. In addition, punching
shear failure is a typical brittle failure, which introduces difficulties in assessing the functionality and
failure probability of slab-column structures. Therefore, the prediction of punching shear resistance
and corresponding reliability analysis are critical issues in the design of reinforced RC slab-column
structures. In order to enhance the computational efficiency of the reliability analysis of reinforced
concrete (RC) slab-column joints, a database containing 610 experimental data is used for machine
learning (ML) modelling. According to the nonlinear mapping between the selected seven input
variables and the punching shear resistance of slab-column joints, four ML models, such as artificial
neural network (ANN), decision tree (DT), random forest (RF), and extreme gradient boosting
(XGBoost) are established. With the assistance of three performance measures, such as root mean
squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), XGBoost is
selected as the best prediction model; its RMSE, MAE, and R2 are 32.43, 19.51, and 0.99, respectively.
Such advantages are also reflected in the comparison with the five empirical models introduced
in this paper. The prediction process of XGBoost is visualized by SHapley Additive exPlanation
(SHAP); the importance sorting and feature dependency plots of the input variables explain the
prediction process globally. Furthermore, this paper adopts Monte Carlo simulation with a machine
learning-based surrogate model (ML-MCS) to calibrate the reliability of slab-column joints in a real
engineering example. A total of 1,000,000 samples were obtained through random sampling, and
the reliability index β of this practical building was calculated by Monte Carlo simulation. Results
demonstrate that the target reliability index requirements under design provisions can be achieved.
The sensitivity analysis of stochastic variables was then conducted, and the impact of that analysis on
structural reliability was deeply examined.

Keywords: reliability analysis; RC slab-column structure; machine learning; Monte Carlo simulation;
shapley additive explanation

1. Introduction

Reinforced concrete (RC) slab-column structures comprised of slabs and columns are
susceptible to punching shear, because the beams are not arranged for the considerations
of structural layout under slabs [1]. Under excessive punching shear loads, the interior
slab-column joint is usually destroyed first, the rest of the joints are destroyed in succession,
and the progressive collapse of overall structure takes place [2]. Accidents (Figure 1), such
as the collapse of a 16-storey apartment building [3] in Boston, US and Skyline Plaza [4] in
Virginia, US, have caused severe damage, which arouse the researchers’ attention regarding
the reliability analysis of RC slab-column joints.
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Figure 1. Collapse of slab-column structures: (a) a 16-storey apartment building, Boston [3]; (b) Sky-

line Plaza, Virginia [4]. 
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Broms [6,7] proposed a modified model considering the impact of size effect, which ob-

tained the solution of the ultimate angle of the slabs. Tian et al. [8] proposed a prediction 

model considering the impact of reinforcement strength (ρfy). According to the eccentric 

shear stress model proposed by Stasio et al. [9], an improved model with stronger applica-

bility was proposed by Moe [10], which became the theory basis of both GB 50010-2010 

[11] and ACI 318-19 [12]. After analyzing the critical cracks of slab-column joints and con-

sidering the impact of aggregate size, the critical shear crack theory (CSCT) was proposed 
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(b) Skyline Plaza, Virginia [4].

To assess the performance of slab-column structures, especially the slab-column joints,
a number of experimental studies have been conducted on the punching shear resistance.
With the experimental results, some empirical models [5–15] have been proposed based on a
variety of mechanical theories. Kinnunen and Nylander [5] analyzed the experimental data
of circle slab-circle columns, and created the sector model. Based on this, Broms [6,7] proposed
a modified model considering the impact of size effect, which obtained the solution of
the ultimate angle of the slabs. Tian et al. [8] proposed a prediction model considering
the impact of reinforcement strength (ρfy). According to the eccentric shear stress model
proposed by Stasio et al. [9], an improved model with stronger applicability was proposed
by Moe [10], which became the theory basis of both GB 50010-2010 [11] and ACI 318-19 [12].
After analyzing the critical cracks of slab-column joints and considering the impact of
aggregate size, the critical shear crack theory (CSCT) was proposed by Muttoni [13]. Based
on the modified compression field theory (MCFT), Wu et al. [14] developed a prediction
model; its prediction performance was validated by many experimental data. According
to the regression analysis of the experimental data, a prediction model was proposed by
Chetchotisak et al. [15].

However, the aforementioned mechanical or empirical models possess the problem
of prediction precision [16,17]. As a typical data-driven model with advantages such as
superior prediction performance and high computational efficiency, machine learning (ML)
is applied to many engineering fields successfully [18–25]. In the resistance prediction
of slab-column joints, Nguyen et al. [16] established a prediction model using extreme
gradient boosting (XGBoost), the performance of which was validated by empirical models
and other two ML models. Mangalathu et al. [17] also constructed XGBoost models, and
used SHapley Additive exPlanation (SHAP) to illustrate the prediction process of XGBoost.
Shen et al. [23] established an ML model to predict the punching shear resistance of fiber-
reinforced polymer (FRP) -reinforced concrete slabs, the performance of which was better
than that of the compared empirical models. Truong et al. [24] studied the punching shear
strength of FRP-RC slab column connections with the assistance of ML models.

The objective of reliability analysis is to evaluate the safety of structures by considering
how their performances are affected by the uncertainties, which are introduced by random
material properties or stochastic loads [26]. There are two types of methods for reliability
analysis, namely the gradient-based method and the simulation-based method [27]. The
first method contains the first-order reliability method (FORM), and the second-order
reliability method (SORM) aims to find the most likely failure point through the limit state
function estimation. Such a method has a high computational efficiency, but it introduces
approximations that are sometimes unacceptable from a precision point of view [28]. As the
main simulation-based method, the Monte Carlo sampling method is conventional, clear,
and easy to use, but such a method requires numerous samples [29,30]. Nassim et al. [31]
studied the reliability of two cases by using the response surface method (RSM) as well as
Monte Carlo simulation (MCS). Olmati et al. [32] proposed a simplified analysis framework
and used MCS to analyze the reliability of an office building. Chetchotisak et al. [15]
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studied the structural reliability within two kinds of concrete (normal-strength concrete
and high-strength concrete) by using MCS. Ricker et al. [33] utilized three reliability analysis
techniques, such as the mean-value first-order second moment method (MVFOSM), the
first-order second moment method (FOSM), and MCS, to assess the safety levels of the
punching shear resistance of flat slabs without shear reinforcement. However, the relatively
low prediction accuracy of the aforementioned mechanical or empirical models led to
unsatisfying results of the reliability analysis. To obtain more accurate reliability analysis
results, the finite element method (FEM) is popularly applied as the surrogate model of
structural response under stochastic material properties or loading conditions [34]. The
complexity and nonlinearity existing in structures, as well as the randomness produced by
influential factors of a structure itself, prove that FEM becomes a fine choice. However, the
mechanical property-based analysis restricts the computational efficiency of FEM, which is
inapplicable to practical projects [35]. Furthermore, as the most commonly used parallel
analysis method in a stochastic context, MCS has a problem of inadequate computational
efficiency, because the number of samples needed for analysis is considerably large [36].
The ML model is a prospective solution for the contradiction between computational
efficiency and accuracy, and has been applied in the reliability analyses of RC structures in
the latest studies [37].

To the best knowledge of the authors, there is no available example combining relia-
bility analysis of RC slab-column joints and ML; thus, this paper establishes an ML-MCS
model for reliability analysis to meet the requirements of practical projects. The candidate
ML models selected in this paper are artificial neural network (ANN), decision tree (DT),
random forest (RF), and XGBoost. The final prediction model is screened from these four
ML models, and the performance comparison between them is implemented through three
performance measures: root mean squared error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2). To display the advantages of the ML models, two design
provisions (GB 50010-2010 [11] and ACI 318-19 [12]), as well as three prediction models
proposed by Tian et al. [8], Wu et al. [14], and Chetchotisak et al. [15], are used for prediction
performance comparison with ML models. Furthermore, SHAP is introduced for model
explanation and analysis of influential factors; the prediction process can be visualized
to facilitate the understanding [22]. Based on the established ML model, a slab-column
structure in an actual engineering application is used for reliability analysis through MCS.
Moreover, the safety assessment of the structure is discussed through sensitivity analysis.

2. Punching Shear Resistance Database of RC Slab-Column Joints

The high-fidelity data is the basis of the construction of ML models, so that the
compilation of the experimental database is required. The punching shear resistance
database containing 610 experimental data is shown in Appendix A, and the statistic
information of input variables is listed in Table 1. Some relevant studies [8,14,38] report that
there are seven main influential factors affecting slab-column joints: cross-section shape of
column (s), cross-section area of column (A), slab’s effective depth (d), compressive strength
of concrete (f’c), yield strength of reinforcement (fy), reinforcement ratio (ρ), and span-
depth ratio (λ). Their distributions are described in four measures: minimum, maximum,
standard deviation, and average. The cross-section of each column has three shapes: square
(s = 1), circle (s = 2), and rectangle (s = 3). The prediction target of the ML models is the
punching shear resistance (V) of slab-column joints.
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Table 1. Statistic information of input variables.

Parameter Minimum Maximum Standard
Deviation Average Type

s 1.00 3.00 0.58 1.40 Input
A (cm2) 20.43 6375.87 596.68 489.31 Input
d (mm) 29.97 668.50 58.52 113.74 Input

f’c (Mpa) 9.40 130.10 18.56 35.39 Input
fy (Mpa) 234.70 749.00 115.83 456.60 Input

ρ (%) 0.25 7.31 0.70 1.26 Input
λ 0.61 32.51 4.83 6.59 Input

V (kN) 24.00 4915.00 406.56 403.25 Output

The histograms displayed in Figure 2 show the relative frequency distributions of the
input variables and the output, and the red lines represent the cumulative distribution
functions (CDF) of the parameters. To further understand the correlations between the
input variables, they are quantified as a Pearson correlation coefficient matrixand shown
in Figure 3, where coefficients represent the degree of linear correlation between input
variables [39]. The coefficients close to −1 or 1 represent the obvious negative or positive
linear correlation, and the degree of linear correlation between A and d is highest.
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3. Machine Learning Model for Punching Shear Resistance Prediction

The flow of establishment of an ML model is shown in Figure 4, which can be gen-
eralized as the following steps [40]: (1) Divide the compiled database as a training set
(containing 500 data) and test set (containing 110 data) based on the ratio of 80% and 20%;
(2) obtain the optimal hyperparameters by model training; (3) examine the generalization
ability of the candidate model by the test set; (4) output the final prediction model. The
four ML models selected in this paper are all established following this procedure, and the
related introductions for models are displayed in Section 3.1.
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3.1. Overview of Machine Learning Models

As the basic ML algorithms, ANN and DT have been widely studied and thus become
the beginning of two types of artificial intelligence algorithms: deep learning and ensemble
learning [41]. Among ensemble learning algorithms, RF and XGBoost are two representa-
tive algorithms constructed by different ensemble tactics such as bagging and boosting [40].
Due to the four typical ML models possessing different fitting techniques, the comparison
of them enhances the credibility of the final prediction model.

Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) inherits the combination strategy of gradient
boosting decision tree (GBDT) and becomes the advanced implementation of the latter [42].
The employ of two regularization coefficients and the optimization of the second-order
Taylor approximation guarantees not only the generalization ability, but also the prediction
accuracy. The complexity of each base learner can be defined as:

Ω( ft) = γT +
1
2

λ′
∥∥w′

∥∥2 (1)
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where γ and λ’ are the L1 and L2 regularization coefficients; T is the number of base
learners; w’ is the score of the node. Based on the fitting of the residuum of the prediction
result, the prediction error of XGBoost can be further decreased. The fitting objective of
each base learner can be formulated as:

L(ϕ) = ∑
i

l
(

y(i)pred, y(i)
)
+ ∑

k
Ω( fk) (2)

where l is the loss function; ypred is the prediction value of the sample; y is the true value of
the sample. Based on these, a prediction value generated by XGBoost can be expressed as
the linear addition of the prediction values of all the base learners:

ypred =
K

∑
k=1

fk (3)

where K is the number of base learners.

3.2. Prediction Results of Machine Learning Models

The optimal hyperparameters of each ML model are obtained through the grid search
method and through 10-fold cross-validation [43], which are listed in Table 2. To compare
the prediction performances of different ML models, three performance measures, root
mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination
(R2), are adopted and expressed as:

RMSE =

√
1
m

m

∑
i=1

(
y(i)pred − y(i)

)2
(4)

MAE =
1
m

m

∑
i=1

∣∣∣y(i)pred − y(i)
∣∣∣ (5)

R2 = 1−

m
∑

i=1

(
y(i)pred − y(i)

)2

m
∑

i=1

(
y(i) − 1

m

m
∑

i=1
y(i)
)2 (6)

where m is the number of samples.

Table 2. Optimal hyperparameters of ML models.

ML Model Optimal Hyper-Parameter

ANN Learning rate = 0.1, neurons number of hidden layer = 17, maximum iteration = 2000
DT Maximum depth = 8
RF Number of weak learner = 100, maximum depth = 14

XGBoost Number of weak learners = 100, learning rate = 0.5, maximum depth = 3, γ = 0.9, λ’ = 1.4

After the determination of the optimal hyper-parameters, four ML models are all
established. To examine the prediction performance of ML models, five empirical models
containing two design provisions [11,12], two mechanical models [8,14], and a regression
analysis-based model [15] are introduced and listed in Table 3. Their prediction results
are shown in Figure 5, where gray-green and blue-pink represent the prediction results of
empirical models and ML models in the training set and the test set, respectively. XGBoost
has the highest prediction accuracy, which indicates that XGBoost has been well-trained
and possesses the best generalization ability. Such a conclusion is also in line with that of
some studies [17,44]. RF and DT also have good prediction performance; their prediction
tactics are suitable for the regression analysis of the punching shear resistance of RC slab-
column joints [45]. However, the prediction performance of ANN must be improved; its
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characteristic of a nonconvex function suggests that the obtained optimal solution is often
local rather than global [18]. Utilizing the good fitting ability of the regression analysis
method, the prediction model proposed by Chetchotisak et al. [15] has the best prediction
result, but its credibility is low due to its lack of theoretical derivation. The prediction
values of mechanical models proposed by Tian et al. [8] and Wu et al. [14] have a large
deviation with true punching shear resistance, where coefficients reflected the relationships
between influential factors and where punching shear resistance must be further modified.
Furthermore, the prediction results of design provisions such as GB 50010-2010 [11] and
ACI 318-19 [12] skew conservative; the prediction accuracy must be improved.

Table 3. Empirical models used for prediction performance comparison.

Empirical Model Punching Shear Resistance Calculation Equation

GB 50010-2010 [11] V1 = 0.7βh ftηb0,0.5dd; η = min

{
η1 = 0.4 + 1.2

βs

η2 = 0.5 + αsd
4b0,0.5d

ACI 318-19 [12] V2 = min
[

1
3 , 1

6

(
1 + 2

βs

)
, 1

12

(
2 + αsd

b0,0.5d

)]
λs
√

f ′cb0,0.5dd; λs =
√

2
1+0.004d ≤ 1

Tian et al. [8] V3 = 0.65ξ Ac
(
ρ fy
√

f ′c
) 1

2 ; ξ =
√

d
c ; Ac = 4(c + d)d

Wu et al. [14] V4 = 0.00040(ρ)
1
5 b0,2ddL

√
f ′c/

(
0.31 + 24ω

ad+16

)
; ω = 0.0005 0.9d

sin θ ; ad = 20; θ = 45◦

Chetchotisak et al. [15] V5 = 92.43( f ′c)
1.21
(

1
100ρ

)1.47(
b0,0.5d

)0.42d1.35k4.66; k =
√
(nρ)2 + 2(nρ)− (nρ);

n = Es/Ec = 2× 105/4700
√

f ′c
βh is the sectional depth influence coefficient; ft is the design value of the tensile strength of concrete; b0,0.5d is the
critical section perimeter at a distance of 0.5d away from the column; βs is the ratio of the long side to the short
side of the column; αs is the influential coefficient of the column type (40 for interior columns); c is the column size;
b0,2d is the critical section perimeter at a distance of 2d away from the column; L is the perimeter of the column.
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(h) RF; (i) XGBoost.



Buildings 2022, 12, 1750 8 of 16

3.3. Interpretation of the ML Prediction Model

According to the performance comparison of the ML models in Section 3.2, XGBoost
can be regarded as the final prediction model with the best prediction performance. The
feature importance sorting produced by the built-in method of XGBoost [46], as shown in
Figure 6, d has the greatest influence on punching shear resistance. However, this method
can only provide the importance of influential factors; the effect tendency is unknown yet.
Therefore, SHAP is introduced in this paper and utilized for model interpretation.
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3.3.1. Overview of Shapley Additive Explanation

SHapley Additive exPlanation (SHAP) is useful for illustrating the prediction process
of any ML model; it originates from the game theory and was proposed by Lundberg
et al. [47,48]. For each prediction value, it can be formulated as the linear addition of the
baseline value ybase and the SHAP value of each feature f (x):

y(i)pred = ybase +
n

∑
j=1

f
(

xij
)

(7)

where n is the number of features. The quantified contribution of the feature is calculated
through:

f
(

xij
)
= ∑

S⊆N\{j}

|S|!(M− |S| − 1)!
M!

[ fx(S ∪ {j})− fx(S)] (8)

where N is the M-dimensional set containing all of the features; S is the |S|-dimensional
subset extracted from N; fx(S∪{j}) is the prediction calculated through set S and feature j;
fx(S) is the prediction calculated through set S.

3.3.2. Model Interpretation Using Shapley Additive Explanation

The importance sorting provided by SHAP is shown in Figure 7, which is calculated
by sum of the SHAP values of each sample. The feature importance sorting provided by
SHAP is similar to that provided by XGBoost, but they conflict on the impact of s. Figure 7b
shows the impact of each feature on punching shear resistance as positive or negative, and
a feature can be regarded as the positive influential factor if the color of dot transforms
from blue to red with the increase of the SHAP value. It can be seen that d, ρ, A, f’c, fy, and
s have positive impacts on resistance, and λ has a negative impact on resistance, which is
consistent with some experimental studies [49–52]. Based on the importance sorting shown
in Figure 7, the global impact of each influential factor is revealed, i.e., SHAP explains the
global prediction process of XGBoost.
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Figure 8 provides further insight for the impact of influential factors in the form of
dependency plots, where the secondary axis represents the input variable interacting most
frequently with the variable displayed in the x-axis. According to the variation range of
the SHAP values, d and s have the greatest and least impacts, respectively, on punching
shear resistance, which is consistent with the findings expressed by Figure 7a. Furthermore,
the interaction between input variables is too complicated, such that the simple linear
relationship cannot be used to represent it.
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4. Reliability Analysis: RC Slab-Column Joint of an Office Building

The prototype building used for reliability analysis is a 7-story, 5-span RC slab-column
shear wall office building [53], and it was designed using GB 50010-2010 [11] and GB
50011-2010 [54]. The building itself contains 3 m storey height and is supported by a
7.5 m × 7.5 m column grid, and the interior joint shown in Figure 9 is selected as the study
object. The selected joint consists of a slab with an effective depth of 209 mm and a square
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column with side length of 530 mm, which is subjected to the specified dead load of
7.0 kN/m2 and live load of 2.0 kN/m2. According to the requirement of GB 50068-2018 [55],
the dead load and live load used for limit state design must be adjusted by multiplying the
partial safety factors for the load, such as 1.3 and 1.5. Therefore, the limit state function Z
of structure can be defined as:

Z = R− 1.3SG − 1.5SQ (9)

where R is the punching shear resistance; SG is the dead load; SQ is the live load. Further-
more, the measured compressive strength of C50 concrete in the slab is 39.31 Mpa, and the
measured yield strength of HRB400 reinforcement is 421 Mpa. The reinforcement ratio of
the joint is 0.81%, and the main influential factors are listed in Table 4.
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Table 4. Main influential factors of the selected interior joint.

s A/cm2 d/mm f’c/Mpa fy/Mpa ρ/% λ

1 2809 209 39.31 421 0.81 16.67

The statistic information and suitable probability density functions of the stochastic
variables used for reliability analysis are listed in Table 5 [33,56], where COV is the coeffi-
cient of variance. According to the study conducted by Chojaczyk et al. [27], the COV of
failure probability Pf calculated by MCS is accepted when its value is around 0.1; then the
Pf around 10−4 (the normal failure probability of an existing structure) can be calculated
through the simulation based on N samples [57]:

COV
(

Pf

)
=

1
Pf

√√√√(
1− Pf

)
Pf

N
(10)

where N signifying 1,000,000 can be determined according to the aforementioned conditions.
Another method used in the study conducted by Hadianfard et al. [58] stipulates that the
number of samples needed for MCS can be determined through:

N >
− ln(1− C)

Pf
(11)

where C is the confidence level, with values of 0.95 in this paper. Equation (11) suggests that
the number of samples should not be less than 30,000, so that the value range calculated
by Equations (10) and (11) is determined between 30,000 and 1,000,000. In this range, the
variation of COV of failure probability Pf within 10 simulations is shown in Figure 10.
The COV of failure probability decreases with the increase of the sample size from 30,000
to 1,000,000, which means that the result of the reliability analysis increasingly stabilizes.
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Based on this knowledge, 1,000,000 samples are produced randomly and conduced for
reliability analysis by XGBoost and MCS.
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Table 5. Stochastic variables used for Monte Carlo simulation.

Parameter Average Standard
Deviation COV Distribution

d: slab’s effective depth (mm) 209 6.27 0.03 Gaussian
f’c: compressive strength of concrete (Mpa) 39.31 4.32 0.11 Gaussian

fy: yield strength of reinforcement (Mpa) 421 33.68 0.08 Gaussian
SG: dead load (kN) 393.75 27.56 0.07 Gaussian
SQ: live load (kN) 112.5 32.4 0.288 Gumbel

4.1. Results of Structural Reliability Analysis

The efficient implementation of Monte Carlo simulation (MCS) is restricted by the
sample size and the computational efficiency of the surrogate model [59], but this can be
solved by XGBoost. The average computation time for 1,000,000 samples and the reliability
analysis of the slab-column joint is 30 s. This is done by a laptop with four-core CPU and
8 GB memory, which demonstrates the efficiency of ML-MCS. Based on the regression
prediction of punching shear resistance, the distribution and CDF of structural resistance are
shown in Figure 11. The average and standard deviations of the distribution of structural
resistance are 955.96 kN and 52.42 kN, respectively. MCS can estimate the failure probability
of a structure effectively by calculating the probability of Z < 0 in Equation (9), and the
related reliability analysis can also be realized. Table 6 displays the result of reliability
analysis, where Pf is the failure probability of the structure; β is the reliability index; αR and
αS are the sensitivity coefficients of resistance and load; r* and s* are the coordinates of the
design point. The reliability index β indicates that the reliability and safety of the selected
interior joint are good and meet the requirement of GB 50068-2018 [55].

Table 6. Results of reliability analysis.

Pf β αR αS r* s*

0.00546 3.443 −0.655 0.755 837.625 837.625
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4.2. Sensitivity Analysis

The relationship between structural reliability and stochastic variables can be exam-
ined through sensitivity analysis [60]. The reliability index of the structure in the other two
stochastic contexts (the stochastic structural resistance and stochastic loading condition) is
shown in Figure 12. The reduction of the randomness of structural resistance or loading
conditions can improve the reliability index, and the safety and stability of the structure
also can be enhanced.
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Figure 12. The reliability index in different stochastic contexts.

To study the impact of stochastic variables such as d, f’c, fy, and SQ, their multiples
are changed and their relationship with the reliability index is shown in Figure 13. The
reliability index can be improved effectively with the increase of f’c and fy or the decrease
of SQ. However, there exists a complex relationship between slab depth d and reliability
index; the reliability index is reduced when the multiple of d is between 1.15 and 1.35.
The distribution of structural resistance with 1.3d is shown in Figure 14, which can be
used to understand the reason for the reduction of the reliability index. The discontinuous
distribution of structural resistance is existed, and the transition of failure modes from
flexure to punching shear may exist, both through experimental and theoretical observa-
tions [22,61–63]. Therefore, the standard deviation of structural resistance is large, and the
reliability index calculated by that is small.
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5. Conclusions

Structural reliability reflects the safety and stability of the entire practical structure
subjected to permanent action and variable action [36], the calculation of which, through
MCS, is restricted by the computational efficiency of the surrogate model. This work
presents a framework for integrating the machine learning-based surrogate model into a
Monte Carlo simulation to perform the reliability analysis with a satisfying accuracy and
efficiency. An ML model is established and screened from four candidate ML models: as
ANN, DT, RF, and XGBoost; the prediction performances of these are examined through
three performance measures such as RMSE, MAE, and R2. Furthermore, the advantages of
ML models are embodied by comparison with five empirical models. The final prediction
model is used as the surrogate model of MCS, and an RC slab-column joint in an actual
structure is introduced as the object of reliability analysis. The following conclusions can
be drawn from this paper:

The punching shear resistance of RC slab-column joints is influenced mainly by seven
influential factors: s, A, d, f’c, fy, ρ, and λ [38]. The capture of the mapping relationship
between them can guarantee the construction of the ML model. With the help of the grid
search method and 10-fold cross validation, four ML models with optimal hyperparameters
are established. After comparison, XGBoost has the best prediction performance reflected
in RMSE, MAE, and R2, and is selected as the final prediction model and used for reliability
analysis.

To facilitate the understanding of the prediction process of ML, SHAP is utilized to
quantify the contribution of input variables to punching shear resistance, and to visualize
the prediction process. According to the importance sorting of input variables, d and s have
the greatest and least impacts, respectively, on punching shear resistance. Furthermore,
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feature dependency plots display the specific impact of each input variable by marginalizing
the impacts of other variables. The analysis of the influential factors provides not only the
understanding of prediction process, but also the suitable optimization sorting in structural
design.

The actual structure adopted for the case study is an RC slab-column shear wall
office building. The punching shear resistance of 1,000,000 samples produced by random
sampling is calculated through XGBoost. The reliability analysis of the interior joint selected
from the prototype building is conducted through MCS, and the final reliability index β
meets the requirement of the design provisions of GB 50068-2018 [55]. Moreover, the
sensitivity analysis reveals the impact of the stochastic context and the values of stochastic
variables on structural reliability. Based on these, the computational efficiency of the
reliability analysis of the slab-column joints can be enhanced on the premise of high
computational accuracy. In future reliability analysis, some advanced sampling methods,
such as Latin hypercube sampling and importance sampling, can be used to reduce the
number of simulations appropriately. Furthermore, a program with some input windows
of influential factors can be designed as a practical tool for reliability analysis.
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Appendix A

To facilitate the acquirement of data, the entire database has been uploaded to GitHub:
https://github.com/shenyx0126/Database-used-for-reliability-analysis.git (accessed on 3
October 2022).
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