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In this article, themean lifetime of an individual whose lives lost based on a function of the time before which the individual has passed
away is considered. �e measure is used to construct a semi-parametric model called proportional mean departure time model.
Examples are given and evidences are gathered to show that the model is a proper alternative for the proportional mean past lifetime
model. Closure properties of the model concerning several stochastic orders and a number of reliability properties are established.
Finally, the model is extended to entertain random amounts of the parameter and establish a proportional mean departure time frailty
model. Further stochastic properties using several stochastic orders are developed in the context of the frailty model.

1. Introduction

Let X be a non-negative random variable (r.v.) having ab-
solutely continuous cumulative distribution function (c.d.f.)
F and probability density function (p.d.f.) f. Consider a
situation where X is the time-to-failure of a lifespan and
assume that it has been realized that the item has failed
before the time point t. In literature, there has been growing
interest in the study of reliability measures in reversed time
and their applications. �e amount of X, after knowing at
the time t that a past failure has happened, is then the time of
departure among lives lost before the time t. �e mean
departure time (m.d.t.) function of X is de�ned by

mX(t) � E(X|X≤ t),

�
∫t0 xf(x)dx

F(t)
,

� t −
∫t0 F(x)dx
F(t)

,

(1)

which is valid for all t≥ 0 for which F(t)> 0. �e
conditional random variable X(t) � (t − X|X≤ t), where

(X|A) denotes the conditional random variableX given that
the event A has happened, is well-known in the literature as
the past lifetime or the inactivity time (see, e.g., Di Crescenzo
and Longobardi [1] and Kayid and Ahmad [2]). �e random
variable X(t) is also called the revered residual life (see
Nanda et al. [3]). �e concept of mean past lifetime (m.p.l.)
or mean inactivity time (m.i.t.) is closely related to the mean
departure time function given in (1). �e m.i.t (or the m.p.l.)
function provides the expected time elapsed since the failure
of a subject given that he/she has failed before the time of
observation. �e m.i.t. function is given by

MX(t) � E X(t)( ) �
∫t0 F(x)dx
F(t)

, (2)

where F(t)> 0. �e inactivity time X(t) and the measure (2)
have been very useful in science and engineering contexts.
�ey have many applications in various disciplines such as
reliability theory, survival analysis, risk theory, and actuarial
studies, among others (cf. Ortega [4], Izadkhah and Kayid
[5], Jayasinghe and Zeephongsekul [6], Kayid and Izadkhah
[7], Kayid et al. [8], Kayid and Izadkhah [9], Bhattacharyya
et al. [10], Balmert et al. [11], Khan et al. [12], and Kayid and
Alrasheedi [13]). �e inactivity time at random times is one
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of the important notions in reliability and queuing theory
(see, e.g., Kayid et al. [14] and Kundu and Patra [15]).

(e reversed hazard rate (r.h.r.) function of X, as an-
other measure related to the inactivity time, is given by

hX(t) � lim
δ⟶0+

1
δ

P(X< t − δ|X≤ t) �
f(t)

F(t)
. (3)

(e m.d.t. function is connected with the r.h.r. and the
m.i.t. function as follows:

hX(t) �
mX
′(t)

t − mX(t)
, (4)

where mX
′(t) � (d/dt)mX(t) and the m.d.t. function is re-

lated to the m.i.t. function as follows:

MX(t) � t − mX(t). (5)

(e m.i.t. function (2) characterizes the underlying c.d.f.
uniquely. By (5), it follows that the m.d.t. function also de-
termines the underlying distribution in a unique way. It is said
that Xw is a weighted version of X which has p.d.f. fw(x) �

w(x)f(x)/E[w(x)], where w is a non-negative function such
that E[w(X)] < +∞. As pointed out in Equations (2.3) in
Sunoj and Maya [16] by taking the weight function w(x) � x,
the c.d.f. of X can be recovered from the m.d.t. function mX as

F(t) � exp − 
+∞

t

mX
′(x)

x − mX(x)
dx . (6)

Let X and Y have m.i.t. functions MX and MY, respec-
tively. Asadi and Berred [17] constructed a model by holding
the two m.i.t. functions in a proportional relation so that

MY(t) � θMX(t). (7)

For all t≥ 0 and θ> 0 is the constant of proportionality.(e
r.v.X plays the role of the independent variable and the r.v.Y is
the dependent variable whose distribution depends on θ and
also it depends on the distribution ofX.(ismodel is called the
proportional mean past lifetime (PMPL) model. (ere is one
difficulty, as the authors believe and, further, mathematical
strategies confirms it, with the PMPLmodel given in (7) which
makes it somewhat controversial to use this model in applied
situations. (e question is that to what extent the model (7) is
useful to model lifetime events. Repeatedly encountered in
survival analysis applications, consider a situation where X and
Y with c.d.f.sF andG are supported in [0, +∞) and alsoX and
Y have finitemeans. Let us assume that the identity in (7) holds
true. (en, since E(X) � 

+∞
0 F(x)dx< +∞ and also

E(Y) � 
+∞
0 G(x)dx< +∞, thus

θ � lim
t⟶+∞

F(t)

G(t)


t

0 G(x)dx


t

0 F(x)dx
,

� lim
t⟶+∞

F(t)

G(t)

t − 
t

0 G(x)dx

t − 
t

0 F(x)dx
,

� lim
t⟶+∞

tF(t)

tG(t)
� 1,

(8)

which shows that X and Y are identical in distribution.
(e conclusion is that every set of non-negative r.v.s (X, Y)

with finite means having unbounded supports which sat-
isfies Equation (7) has to have identical components in
distribution and θ is not a parameter in this case. (erefore,
the model (7) cannot be useful to model lifetime events on
[0, +∞) which obviously surrounds the applicability of the
model (7). Finding an alternative model of (7) is, therefore,
necessary as there are many cases in which the lifetime data
are left censored and modeling data in the framework of past
failures is needed.

(is article aims to introduce an appropriate alternative
model for the proportional mean past lifetime model. We
show by some examples that the new model is applicable for
modeling random lifetimes with unbounded supports. (e
role of the parameter of the model which is added to the
original distribution is to extend the existing model and
provided flexibility to adjust the mean departure time
function of life spans. (e theory of stochastic orders is used
to provide some comparison results to address the question
of whether the reliability of a device is either improved or
deteriorated under the setup of the model. (roughout the
article, we will not use the terms “increasing” and “de-
creasing” in the strict case and will take these properties
equivalently as “non-decreasing” and “non-increasing” be-
haviors, respectively.

(e organization of the article will be in the following
order. In Section 2, we introduce and illustrate the pro-
portional mean departure time model with some examples.
In Section 3, we consider the closure properties of the model
with respect to some well-known stochastic orders and also a
number of reliability classes of lifetime distributions. In
Section 4, the model is extended to the case where the
parameter of the model is a random variable and some
stochastic ordering properties are investigated. Finally, in
Section 5, we conclude the article with some illustrative
statements to describe our contribution and also we will add
some remarks on possible future studies.

2. Proportional Mean Departure Time Model

In this section, we introduce and describe the PMDTmodel
and study the advantages of this model over the PMPL
model. Further distributional properties of the model are
investigated. We present some examples which fulfill the
PMDT model.

Definition 1. Let us assume that X and Y have m.d.t.
functions mX and mY, respectively. (en, it is said that X

and Y satisfy the PMDT model whenever

mY(t) � θmX(t). (9)

For all t≥ 0 and θ is a positive parameter. (e parameter
θ is called the departure index.

(e departure index θ in Equation (9) represents the
magnitude of departure time of individuals whose lives lost
before t with lifetime Y, in average, relative to the departure
time of individuals whose lives lost before t with lifetime X.
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(e parameter θ is, therefore, a conditional deterioration
rate of Y with respect to X. Unlike the m.i.t function which is
not originally an increasing function of time, the m.d.t.
function is monotonically increasing in time, i.e., it certainly
holds that for all t1 ≤ t2 ∈ R+, mX(t1)≤mX(t2). If we con-
sider the ratio of two m.d.t. functions as a parameter then a
new model, which we call it proportional mean departure
time (PMDT) model, is constructed. (e assumption that
the ratio of two increasing functions which are a reliability
characteristic associated with two different distributions
coincides with a horizontal line is a more appropriate as-
sumption than the same for two arbitrary reliability mea-
sures. In a bivariate setup, when the sample X1, . . . , Xn

copies of X and the sample Y1, . . . , Ym copies of Y is
available then the model (9) may be used and the parameter
θ is estimated by the estimation of m.d.t. functions of Y

divided by the estimation of m.d.t. function of X. (e model
(7) in situations where it is applicable (when X and Y have
finite supports) may not be proper in the two sample setting.
(is is because the shapes of m.i.t. functions in the model (7)
have to be the same since θ does not depend on time and in
spite of that the set on samples on X and Y may not exhibit
similar shapes as the distributions of X and Y may not
belong to the same class of lifetime distributions, e.g., the
increasing mean inactivity time (IMIT) class. (erefore, as
the m.d.t. functions of X and Y are always increasing in-
dependent of the distributions of X and Y, thus the model
(9) may be preferable.

Note that mX(t) � E(X|X≤ t) is the expected time at
which individuals whose deaths happened before the time t

departed. (e time t may be considered as the first time one
realizes that a failure or death has occurred in the past. In the
PMDTmodel, the ratio mY(t)/mX(t) is independent of the
observation time t which induces that the m.d.t. function of
X relative to the m.d.t. function of Y is independent of the
process of observation of past failures. From a mathematical
perspective,

mY t1( 

mX t1( 
�

mY t2( 

mX t2( 
, for all ti ∈ R+, i � 1, 2. (10)

Indicating that relative mean departure time functions
remain unchanged during time. Specifically, when r.v.s X

and Y have finite means, the choices of t1 � t and t2 � +∞ in
(10) lead to

mY(t)

mX(t)
�

E(Y)

E(X)
� θ, for all t> 0. (11)

By appealing to (6) for r.v.sX andY satisfying the PMDT
model one has

G(t) � exp − 
+∞

t

θmX
′(x)

x − θmX(x)
dx , t≥ 0. (12)

For an unspecified mX associated with a general dis-
tribution, the formula (12) may not provide a closed form for
the c.d.f. of the r.v. Y relative to the c.d.f. of X. It is not hard
to verify that (12) is a valid c.d.f. if the following conditions
are satisfied:

(i) For all x> 0, θ≤x/mX(x).
(ii) 

+∞
t

(θmX
′(x)/x − θmX(x))dx <∞, for all

0< t< +∞.
(iii) 

+∞
0 θmX

′(x)/x − θmX(x)dx � +∞.

Denote by X and Y, two r.v.s with p.d.f.s

f(t) �
tf(t)

E(X)
and g(t) �

tg(t)

E(Y)
, (13)

where t> 0 and the expectations are assumed to exist and
they are finite. (e r.v. X (resp. Y) is said to be the length-
biased version of X (resp. Y). We will denote by F and G the
c.d.f.s of X and Y, respectively. (e r.h.r. functions of X and
Y are given by hX(t) � f(t)/F(t) and hY(t) � g(t)/G(t).
(e m.d.t. function appears in the expression of c.d.f. of the
length-biased distribution and also it appears in the ex-
pression of reversed hazard rate (r.h.r.) function of the
length-biased distribution. (erefore, the PMDTmodel can
be characterized by the relationship between the ratios of
c.d.f.s of the length-biased distributions and the ratio of the
c.d.f.s of the underlying distributions. (e model can also be
characterized via the relationship between the ratios of the
r.h.r. functions of the length-biased distributions and also
the r.h.r. functions of the underlying distributions.

(e concept of length-biased distribution as a typical
weighted distribution has been very useful in survival
analysis, etiologic studies, and marketing research (see, e.g.,
Wang [18], Simon [19], and Nowell and Stanley [20]).
Length-biased sampling arises when a component which is
already in use is sampled at a fixed time and then allowed to
fail (see Scheaffer [21]).

Proposition 1. #e random lifetimes X and Y satisfy the
PMDT model if, and only if, (i) or (ii) below holds:

(i) hX
(t)/hY

(t) � θ(hX(t)/hY(t)), for all t> 0.
(ii) F(t)/ G(t) � F(t)/G(t) for all t> 0.

Proof. First, we prove the assertion (i). By Equations (2.5) in
Sunoj and Maya [16], for all t> 0,

hX
(t) �

thX(t)

mX(t)
, and

hY
(t) �

thY(t)

mY(t)
.

(14)

(erefore, it is straightforward that mY(t) � θmX(t), for
all t> 0, if, and only if, hX

(t)/hY
(t) � θhX(t)/hY(t), for all

t> 0 which is equivalent to (i). By applying the identities in
Equations (2.4) in Sunoj and Maya [16], for all t> 0 we have

F(t) �
mX(t)

mX(+∞)
F(t), and

G(t) �
mY(t)

mY(+∞)
G(t).

(15)
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From (10), it follows that mY(t) � θmX(t), for all t≥ 0, if,
and only if,

G(t)

G(t)
�

mY(t)

mY(+∞)
�

mX(t)

mX(+∞)
�

F(t)

F(t)
. (16)

For all t≥ 0. (is is also equivalent to (ii) and hence the
proof is completed.

In survival analysis, the length-biased samples frequently
come up where random sampling from X and Y with re-
spective target distributions F and G cannot be conducted.
In such situations, the available data follow the associated
length-biased distributions F and G. Proposition 1 illustrates
that in the setup of the PMDT model, the ratio of c.d.f.s G

and F (or the ratio of the r.h.r. functions hY and hX) of the
original distributions could be estimated under length-bi-
ased sampling as well as that estimated under random
sampling. If the objective is the estimation of G using length-
biased samples on Y and F is either known or pre-
determined, then Proposition 1 is again useful to present an
estimator of G.

We present an example to introduce two distributions
fulfilling the PMDT model. □

Example 1. Suppose that T is a non-negative r.v. with a
differentiable c.d.f. K which is independent of X and Y such
that K(0) � 0. Let us assume that X and Y are two non-
negative r.v.s such that F(0) � G(0) � 0 with finite means
and respective r.h.r. functions

hX(t) �
K′(t)

t/E[Y] − K(t)
, and

hX(t) �
K′(t)

t/E[Y] − K(t)
,

(17)

where K(t)<min 1/E[X], 1/E[Y]{ }t, for all t> 0. (en, the
r.v.s TX � max X, T{ } and TY � max Y, T{ } have length-bi-
ased distributions associated with the underlying distribu-
tions of X and Y, respectively. It is plain to show that TX and
TY have c.d.f.s F(t) � F(t)K(t) and G(t) � G(t)K(t), re-
spectively. Hence, F(t)/F(t) � G(t)/G(t) � K(t), for all
t≥ 0. By Proposition 1 (ii) it thus follows that X and Y satisfy
the PMDTmodel. For example, let T be an exponential r.v.
with c.d.f. K(t) � 1 − exp(− λt) and let X and Y satisfy
E(X)< 1/λ and E(Y)< 1/λ. (en, the denominators in the
r.h.r. functions given in (17) are positive and X and Y satisfy
the PMDT model.

(e following result determines that a limiting property
of the r.h.r. functions of two r.v.s with the PMDTmodel is a
characteristic for equality in distribution of the two r.v.s.

Theorem 1. Let X and Y having finite means and r.h.r.
functions hX and hY, respectively, and denote limt⟶0+ thX(t) �

l1, limt⟶0+ thY(t) � l2, limt⟶+∞thX(t) � l3, and
limt⟶+∞thY(t) � l4.

(i) If l1 � l2 then, X and Y have PMDTfunctions if, and
only if, they are equal in distribution.

(ii) If l3 � l4 then, X and Y have PMDTfunctions if, and
only if, they are equal in distribution.

(iii) If l1(l2 + 1)/l2(l1 + 1)≠ l3(l4 + 1)/l4(l3 + 1) then, X

and Y do not satisfy the PMDT model.

Proof. We only prove the assertion (i) and the assertion (iii).
(e assertion (ii) can be proved similarly as done for as-
sertion (i). From (9), θ � mY(t)/mX(t), for all t> 0, which is
independent of t. Denote by MX and MY, the m.i.t. func-
tions of X and Y, respectively. One has

θ � lim
t⟶0+

mY(t)

mX(t)
� lim

t⟶0+

t − MY(t)

t − MX(t)

�
1 − limt⟶0+ MY(t)/t 

1 − limt⟶0+ MX(t)/t 
.

(18)

Using L’Hopital’s rule,

lim
t⟶0+

MX(t)

t
� lim

t⟶0+


t

0 F(x)dx

tF(t)

� lim
t⟶0+

F(t)

tf(t) + F(t)
�

1
limt⟶0+ thX(t) + 1

.

(19)

By a similar method, we also have

lim
t⟶0+

MY(t)

t
�

1
limt⟶0+ thY(t) + 1

. (20)

We conclude that θ � 1 and this means that mY(t) �

mX(t), for all t> 0, and since the m.d.t. function uniquely
determines the distribution it follows that F(t) � G(t), for
all t> 0. It can also be shown under the condition of as-
sertion (iii) that there is no value of θ to fulfill the PMDT
model.

Remark 1. The results of Theorem 1 (i) and (eorem 1 (ii)
show that if either the right limits of length-biased r.h.r.
functions given by thX(t) and thY(t) at the point 0 or the
limits of thX(t) and thY(t) at +∞ do not depend on F andG,
respectively, then the PMDT model is not a meaningful
model. For instance, if X has an exponential distribution
with mean 1/λ and also Y has an exponential distribution
with mean 1/η then by the L’Hopital’s rule,

l1 � lim
t⟶0+

thX(t) � lim
t⟶0+

λt

e
λt

− 1
� 1, (21)

and analogously,

l2 � lim
t⟶0+

thY(t) � lim
t⟶0+

ηt

e
ηt

− 1
� 1. (22)

We can also observe that
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l3 � lim
t⟶+∞

thX(t) � lim
t⟶+∞

λt

e
λt

− 1
� 0, and

l4 � lim
t⟶+∞

thY(t) � lim
t⟶+∞

ηt

e
ηt

− 1
� 0.

(23)

(erefore, l1 � l2 and also l3 � l4 thus according to the
result of (eorem 1 (i) and(eorem 1 (ii), if X and Y satisfy
the PMDTmodel then X and Y are equal in distribution, i.e.,
λ � η.

3. Closure Properties With Respect to Some
Reliability Classes and Stochastic Orders

In this section, sufficient conditions to get the closure
property of the PMDT model with respect to the reversed
hazard rate (mean inactivity time) order and also sufficient
conditions to establish the closure property of the model
with respect to four reliability classes related to the inactivity
time will be presented. Closure properties of models in
reliability and survival analysis have attracted the attention
of many researchers in the recent past decades (see, e.g.,
Crescenzo [22], Abouammoh and Qamber [23], Nanda et al.
[24], Nanda and Das [25], Kayid et al. [26], and Jarrahiferiz
et al. [27] among others).

Below the definition of three stochastic orders are
given (see Shaked and Shanthikumar [28] and Ahmad and
Kayid [29]). We will use the convention a/0 � +∞ for
a> 0 when a statement on the monotonicity of a ratio is
made.

Definition 2. Suppose that X and Y are two non-negative
r.v.s with absolutely continuous c.d.f.s F and G, p.d.f.s f

and g, r.h.r. functions hX and hY, and m.i.t. functions MX

and MY, respectively. (en, it is said that X is smaller than
Y in the

(i) likelihood ratio order (denoted by X≤ lrY) when-
ever g(t)/f(t) is increasing in t≥ 0.

(ii) reversed hazard rate order (denoted by X≤ rhrY)
whenever hX(t)≤ hY(t), for all t> 0, or equivalently
if, G(t)/F(t) is increasing in t> 0.

(iii) mean inactivity time order (denoted by X≤ mitY)
whenever MX(t)≥MY(t), for all t≥ , or equiva-
lently if 

t

0 G(x)dx/
t

0 F(x)dx is increasing in
t> 0.

It has been proved that X≤ lrY⇒X≤ rhrY⇒X≤mitY.
(e following result establishes a necessary and
sufficient condition on the parameter θ in the model (9) to
get X is smaller than Y in terms of the r.h.r. (or the m.i.t.)
order.

Theorem 2. Let X and Y satisfy the PMDT model.
X≤ rhr(≤mit)Y if, and only if, θ ≥ 1 .

Proof. It is enough to show that θ≥ 1 implies X≤ rhrY, and
also that X≤ mitY yields θ ≥ 1. From (4)

hY(t) − hX(t) �
mY
′(t)

t − mY(t)
−

mX
′(t)

t − mX(t)

�
θmX
′(t)

t − θmX(t)
−

mX
′(t)

t − mX(t)
, for all t> 0,

(24)

which is non-negative for θ≥ 1 since mX
′(t)> 0, for all

t> 0 because mX(t) � E(X|X≤ t) is increasing in t≥ 0 and
also it is readily proved that θmX

′(t)/(t − θmX(t)) is in-
creasing in θ, and thus θmX

′(t)/(t − θmX(t))≥ mX
′(t)/

(t − mX(t)), for any t≥ 0. (is demonstrates that θ ≥ 1
gives hY(t)≥ hX(t), for all t> 0, i.e., X≤ rhrY. It remains to
prove that X≤mitY provides that θ ≥ 1. From (5), we
can get

MY(t) � t − mY(t),

� t − θmX(t),

� t − θ t − MX(t)( ,

� (1 − θ) + θMX(t), for all t> 0.

(25)

(us, if MX(t)≥MY(t), for all t> 0, then θ �

(t − MY(t))/(t − MX(t))≥ 1, for all t> 0, which completes
the proof.

(e following example shows that the reversed hazard
rate order in(eorem 2 cannot be replaced by the likelihood
ratio order which is stronger than the reversed hazard rate
order and, therefore, it is stronger than the mean inactivity
time order. It is said that a non-negative r.v. T has Lomax
distribution with parameters α> 0 and λ> 0 whenever it has
survival function (s.f.) H(t) � 1/(1 + (t/λ))α and we write
T ∼ L(α, λ).

Example 2. Let X ∼ L(2, 1) and also let Y have c.d.f.

Gθ(t) �
(t + 2)1− (θ/2)tθ/2

t + 2 − θ
 

2/(2− θ)

, t≥ 0, 0< θ< 2. (26)

It can be seen that θ is in fact a departure index pa-
rameter, i.e., mY(t) � θmX(t), for all t≥ 0. Denoted by gθ,
the p.d.f. of Y, and also note that f(t) � g1(t) is the p.d.f. of
X. We can observe that

g3/2(t)

g1(t)
�
48t

2
(1 + t)

3

(1 + 2t)
5 , (27)

is not increasing in t because g3/2(0)/g1(0) � 0, g3/2(1)/
g1(1) � 128/81 and g3/2(t)/g1(t) � 3/2 when t⟶ +∞,
that is, g3/2(0)/g1(0)<g3/2(1)/g1(1)>g3/2(+∞)/g1(+∞).
(erefore, X≰lrY but according to (eorem 2, since θ �

3/2 thus X≤ rhr(≤mit)Y. (is means that the result of
(eorem 2 cannot be strengthened to the case when
likelihood ratio order is used instead for stochastic
comparison of X and Y.

In Section 4, in (eorem 7, we present sufficient con-
ditions under which it is concluded that X≤ lrY. Below, the
definitions of some reliability classes of lifetime distributions
are given.
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Definition 3. Suppose that X is a non-negative r.v. with
absolutely continuous c.d.f. F, the r.h.r. function hX and the
m.i.t. function MX. (en, it is said that X has

(i) a decreasing reversed hazard rate (denoted as
X ∈ DRHR) distribution when hX(t) is decreasing
in t> 0 (see Ahmad and Kayid [29]).

(ii) an increasing mean inactivity time (denoted as
X ∈ IMIT) distribution when MX(t) is increasing
in t> 0 (see Kayid and Ahmad [2]).

(iii) a decreasing proportional reversed hazard rate
(denoted as X ∈ DPRHR) distribution when
PrhX(t) � thX(t) is decreasing in t> 0 (see Oliveira
and Torrado [30]).

(iv) a strong mean inactivity time (denoted as
X ∈ SIMIT) distribution when MX(t)/t is in-
creasing in t> 0 (see Kayid and Izadkhah [7]).

(e foregoing reliability classes are connected as follows:

X ∈ DPRHR ⇒ X ∈ SIMIT

⇓ ⇓

X ∈ DRHR ⇒ X ∈ IMIT

. (28)

According to the PMDT model, we assume that
mY(t) � θmX(t), for all t> 0 in which θ is a positive pa-
rameter (see Equation (8)). We investigate whether the
reliability properties of the DPRHR, the SIMIT, the DRHR,
and the IMIT of X are inherited by the same reliability
properties of Y and vice versa. (e next technical lemma is
useful to establish closure properties with respect to the
foregoing reliability classes.

Lemma 1. Let X ∈ SIMIT such that 0< θ< 1 (resp. θ> 1 )
and assume that mX is differentiable. #en the function c

defined by

c(t, θ) �
θ t − mX(t)( 

t − θmX(t)
, (29)

is an increasing (resp. a decreasing) non-negative function
in t> 0.

Proof. We want to prove that z/ztc(t, θ)≥ (≤ )0, for all t> 0
and for any θ ∈ (0, 1) (θ ∈ (1,∞)), we can get

z

zt
c(t, θ) �

sgn
θ 1 − mX

′(t)(  t − θmX(t)( 

− θ 1 − θmX
′(t)(  t − mX(t)( ,

�
sgn

mX(t) + θtmX
′(t) − tmX

′(t) − θmX(t),

� mX(t) − tmX
′(t)(  − θ mX(t) − tmX

′(t)( ,

� (1 − θ) mX(t) − tmX
′(t)( ,

�
sgn

(1 − θ)
d
dt

t

mX(t)
 ,

(30)

where a�sgnb means that a and b have the same sign. On the
other hand, when MX(t) is the m.i.t. function of X, one has

t

mX(t)
�

1
1 − MX(t)/t( 

, for all t> 0, (31)

and thus X is SIMIT if, and only if, t/mX(t) is increasing in
t> 0, which holds if, and only if, d/dt(t/mX(t))≥ 0, for all
t> 0. Hence, ifX is SIMITand θ < 1, then c(t, θ) is increasing
in t> 0 and if X is SIMITand θ> 1, then c(t, θ) is decreasing
in t> 0. (e proof now is completed.

(e class of SIMITdistributions includes many standard
distributions, for example, if X ∼ U(0, 1), X ∼ Beta(2, 2), or
X ∼ Beta(1, 3) then MX(t)/t � 1/2, MX(t)/t � (2 − t)/
(6 − 4t), and MX(t)/t � (3 − t)/(6 − 3t) which are in-
creasing functions over t ∈ (0, 1] and thus X has a SIMIT
distribution.

Theorem 3. Let X and Y satisfy the PMDTmodel as given in
(9). #en,

(i) For all θ> 0, X ∈ SIMIT if, and only if, Y ∈ SIMIT.
(ii) For any θ< 1, if X ∈ IMIT, then Y ∈ IMIT.
(iii) For any θ> 1, if X ∈ SIMIT and X ∈ DRHR, then

Y ∈ DRHR.
(iv) For any θ> 1, if X ∈ DPRHR, then Y ∈ DPRHR.

Proof. Let us prove the assertion (i). We can see that

MY(t)

t
�

t − E(Y|Y≤ t)

t
,

� 1 −
mY(t)

t
,

� 1 − θ
mX(t)

t
,

� 1 − θ
t − MX(t)

t
,

� θ + θ
MX(t)

t
, for all t> 0,

(32)

where θ � 1 − θ ∈ (− ∞, 1). It can be concluded now that
MX(t)/t is increasing in t> 0 or equivalently X has a SIMIT
distribution, if, and only if, MY(t)/t is increasing in t> 0 or
equivalently Y has a SIMIT distribution. To prove the as-
sertion (ii), note that from the proof of assertion (i), we have

MY(t) � θt + θMX(t), for all t> 0. (33)

(us, it suffices to prove that d/dtMX(t)≥ 0, for all t> 0
implies that d/dtMY(t)≥ 0, for all t> 0. For 0< θ< 1 observe
that

d
dt

MY(t) � θ +
d
dt

MX(t),

≥
d
dt

MX(t),

≥ 0, for all t> 0.

(34)

(e proof of assertion (ii) is thus complete. To prove the
assertion (iii), notice that from (4) the r.h.r. function of X is

6 Journal of Mathematics



written as hX(t) � mX
′(t)/t − mX(t) and further the r.h.r.

function of Y so that Y and X satisfy the PMDTmodel given
in (9), can be written as

hY(t) �
θmX
′(t)

t − θmX(t)
,

�
θ t − mX(t)( 

t − θmX(t)

mX
′(t)

t − mX(t)
,

� c(t, θ)hX(t), for all t> 0.

(35)

From Lemma 1 we know that if X ∈ SIMIT, then for
θ> 1, c(t, θ) is a non-negative decreasing function in t> 0
and since X ∈ DRHR thus hX(t) is also a non-negative
decreasing function in t> 0 and so is hY(t) � c(t, θ)hX(t).
(e proof of this assertion is also complied. It remains to
prove the last assertion. Let us write

PrhY(t) �
θtmX
′(t)

t − θmX(t)
,

�
θ t − mX(t)( 

t − θmX(t)

tmX
′(t)

t − mX(t)
,

� c(t, θ)PrhX(t), for all t> 0.

(36)

By assumption, X ∈ DPRHR which further implies that
X ∈ SIMIT and also we have by assumption that θ> 1.
Hence, Lemma 1 concludes that c(t, θ) is a non-negative
decreasing function in t> 0. Since X ∈ DPRHR thus PrhX(t)

is also a non-negative decreasing function in t> 0 and so is
PrhY(t) � c(t, θ)PrhX(t). (e proof of assertion (iii) is
obtained.

Recently, some authors have shown their interest in
stochastic comparisons of random lifetimes according to
reversed average intensity (r.a.i.) function (see, for instance,
Rezaei and Khalaf [31], Kundu and Ghosh [32], and Buono
et al. [33]). (e r.a.i. function of X is given by
LX(t) � thX(t)/

+∞
t

hX(x)dx. Below is the definition of
r.a.i. stochastic order.

Definition 4. (e r.v.s X and Y with respective r.a.i. func-
tions LX and LY satisfy the r.a.i. order (denoted by X≤ raiY)
whenever LX(t)≥LY(t), for all t> 0, or equivalently if,


+∞
t

hY(x)dx/ 
+∞
t

hX(x)dx is increasing in t> 0.
In the next result, we build the r.a.i. order between X and

Y which satisfy the PMDT model given in (9) under some
sufficient conditions.

Theorem 4. Let X have a SIMIT distribution and let
0< θ< 1, then X≤ raiY.

Proof. We can see that X≤ raiY, if, and only if, for all t> 0,


+∞

t

hY(x)hX(t) − hY(t)hX(x) dx≥ 0, (37)

which holds equivalently if,


+∞

t

hX(x)hX(t)(c(x, θ) − c(t, θ))dx ≥ 0, for all t> 0.

(38)

It is known from Lemma 1 that if X is SIMIT, then for
every 0< θ < 1, c(x, θ)≥ c(t, θ), for all x≥ t> 0. (us the
inequality in (38) holds true and hence the proof.

Remark 2. (e result of (eorem 2 and (eorem 3 can be
developed by symmetry to get the desired closure properties
in the reversed direction. Note that if the m.d.t. function of Y

is proportional to the m.d.t. function of X according to the
identity mY(t) � θmX(t), t> 0, θ> 0, then the m.d.t. func-
tion of X is also proportional to the m.d.t. function of X

since mX(t) � θ∗mY(t), t> 0 where θ∗ � 1/θ which is
positive. (e result of (eorem 7 is thus translated to get

Y≤ rhr ≤mit( X, if and only if , θ≤ 1. (39)

(e result of (eorem 3 can be used to conclude that.

(ii)′ For any θ> 1, if Y ∈ IMIT, then X ∈ IMIT.
(iii)′ For any θ> 1, if Y ∈ SIMIT and Y ∈ DRHR, then
X ∈ DRHR.
(iv)′ For any θ> 1, if Y ∈ DPRHR, then X ∈ DPRHR.
(e result we presented in (eorem 4 can also be
accompanied with the following implication:

Y≤ raiXwhen, Y is SIMIT and θ > 1. (40)

(e following example illustrates an application of
(eorem 4.

Example 3. Suppose that X has c.d.f. F(t) � t(t + 2)/
(1 + t)2, t≥ 0. Let Y have c.d.f. Gθ(t) � ((t + 2)1− (θ/2)tθ/2/t+
2 − θ)2/(2− θ), t≥ 0, 0< θ< 2, θ≠ 2. Note that F(t) �

G1(t). In Example 8, it was shown that mY(t) � θmX(t). It
can be seen that X has an m.i.t. function MX(t) � t(t+

1)/t + 2, thus MX(t)/t � (t + 1)/(t + 2) is increasing in t> 0,
so X has a SIMIT distribution. Notice that from (eorem 3
(i), since X is SIMIT, thus Y is also SIMIT. It can be observed
that 

+∞
t

hY(x)dx � − ln(Gθ(t)), for all t> 0 and for any
0< θ < 2, θ≠ 2. (us, by Definition 12,X≤ raiY holds
whenever, the ratio ln(Gθ(t))/ln(G1(t)) is increasing in t> 0
and also, by symmetry, Y≤ raiX provided that ln(Gθ(t))/
ln(G1(t)) is decreasing in t> 0. Figure 1 presents the plot of
ln(Gθ(t))/ln(G1(t)) for values θ � 4/3, 3/4, 3/2, 2/3. It is
realized that for θ � 2/3 and θ � 3/4 which are smaller than
one, the ratio is increasing which fulfills the result of (e-
orem 4, i.e., X≤ raiY. Furthermore, it is seen in the plot that
for θ � 3/2 and θ � 4/3 which are greater than one, the ratio
is decreasing, i.e., Y≤ raiX and thus the claim given after
assertion (iv)′ in Remark 2 is validated.

4. The Model with Random Departure Index

In recent past decades, frailty models have been frequently
used in survival analysis to handle the influence of the
covariates on the lifetime variable (see, e.g., Hougaard [34]
and Hanagal [35]). In this section, the PMDT model with
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random departure index is considered. By introducing the
PMDT model with random effects, a novel frailty model is
produced where we develop the model given earlier in (9) to
the case where θ is an observation of an r.v. Θ. (e r.v. Θ is
non-negative.

Let us take m0 as the baseline m.d.t. function and
further consider Θ as the random departure index with
p.d.f. k and c.d.f. K. (e r.v. X with the p.d.f. f, c.d.f. F,
and m.d.t. function m0 is considered as the reference
variable. Let us consider a randomly drawn individual
from population for which Θ � θ. Moving forward with
this observation, the m.d.t. function is given by
m(t|θ) � θm0(t), for all t> 0, according to the PMDT
model. In spirit of (12), the c.d.f. of Y with m.d.t. function
m(t|θ) is obtained as

G(t|θ) � exp − 
+∞

t

θm0′(x)

x − θm0(x)
dx . (41)

From which the corresponding p.d.f. is derived as

g(t|θ) �
θm0′(t)

t − θm0(t)
exp − 

+∞

t

θm0′(x)

x − θm0(x)
dx . (42)

Given a predetermined distribution function to be a
choice for the c.d.f. of X, the family of distributions
generated by (41) provides a way to add a parameter to the
family of distributions of X. In the context of statistical
inference, the arisen model could be examined using real
data sets in different scenarios to model lifetime events. For
a given value of θ, since m(t|θ) � θm0(t) is a mean de-
parture time function thus m(t|θ) ≤ t, for all t> 0, thus
θ≤ t/m0(t) for all t≥ 0. (erefore, g(t|θ) � 0, for all
θ> t/m0(t) which means that when F is predetermined and,
therefore, t/m0(t) is fixed then for a value θ satisfying
θ> t/m0(t) the PMDT model does not hold. (is consid-
eration may be useful before proceeding to do a statistical
inference on the model. For example, prior to fitting the
PMDT model to a real data set, we might want to test
whether θ≤ t/m0(t), for all t≥ 0.

To integrate the effect of a random variable Θ which is
random, we have to consider the unconditional r.v.Y∗ with a
mixture distribution according to (13) which has s.f.

G
∗
(t) � 

+∞

0
exp − 

+∞

t

θm0′(x)

x − θm0(x)
dx k(θ)dθ. (43)

With underlying p.d.f.

g
∗
(t) � 

+∞

0

θm0′(t)

t − θm0(t)
exp − 

+∞

t

θm0′(x)

x − θm0(x)
dx 

k(θ)dθ, t≥ 0.

(44)

Remark 3. We may notice that in the PMDTmodel, in the
fixed level of the departure index parameter, the values of θ
and the c.d.f. F cannot be independently determined. (e
identity m(t|θ) � θm0(t) is meaningful whenever
θ≤ t/m0(t), for all t> 0. It is straightforward that t/m0(t) is a
functional of F and can be written as θt(F) � t/m0(t). For
instance, when θ � 3 and F satisfying the inequality
θt(F)< 3 for some choices of t in the support of F, it is
concluded that the PMDTmodel does not hold. In spite of
that, when θ ∈ (0, 1] the selection of F does not depend on
the choice of θ. (is is because the inequality θ≤ 1≤ θt(F),
holds for all t≥ 0 and for all lifetime distributions F with
m.d.t. function m0 without any further consideration.

(e random pair (Y∗,Θ) is assumed to follow the joint
p.d.f g(y, θ) and joint c.d.f. G(y, θ). In the case θ is a re-
alization of the r.v. Θ, the m.d.t. function may be written as

m(t|θ) � E Y
∗
|Y
∗ > t,Θ � θ( ,

� 
t

0

yg(y, θ)

zG(t, θ)/zθ
dy,

� 
t

0

yg(y|θ)

G(t|θ)
dy,

� t − 
t

0

G(y|ξ)

G(t|θ)
dy,

(45)

where g(y|θ) and G(y|θ) are the conditional p.d.f. and the
conditional c.d.f. of Y given Θ � θ, respectively, as given in
(42) and (41). If we denote by T an r.v. with conditional p.d.f.
g(t|θ) for a realization θ of Θ, then, according to (45) one
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Figure 1: (e plot of the function ln(Gθ(t))/ln(G1(t)) in Example 3 for θ � 4/3, 3/4, 3/2, 2/3.
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has m(t|θ) � mT(t) � t − MT(t) where mT and MT are,
respectively, the m.d.t. function and m.i.t. function of T.
(erefore, in view of (43), Y∗ follows a mixture of distri-
butions with proportional mean departure time functions
with respect to the mixing distribution K(θ) for the random
departure index Θ. In fact, when we are uncertain about the
amount of θ in the model, we consider it to be in a dynamical
state. Frequencies of values of θ in different intervals con-
struct an empirical probability distribution for θ which
converges to K as the observations on θ increase. (e c.d.f.
(43) takes an average of distributions, having proportional
mean departure time functions, with fixed level of the de-
parture index parameter θ with respect to the c.d.f. K as a
mixing distribution.In a dynamic population, the departure

index parameter varies from one individual to another and
that is the value ofΘ. Let us assume that an individual enters
our investigation randomly. (e amount of θ for this ran-
domly chosen subject is considered to be a realization of Θ.
(e lifetime of this individual then follows the c.d.f. (43).

(e amount the function G(t|θ) � P(Y∗ ≤ t|Θ � θ) takes
is the probability for failure before time t for an individual
with fixed departure index θ. In statistical Bayesian analysis,
an inference strategy is done using the conditional likelihood
function of an unknown parameter given data which follow
a mixture model. Here, we present the density function of Θ
given a single observation on Y∗. Specifically, given that
Y∗ � t, the density of Θ is obtained as

k(t|θ) �
g(t|θ)k(θ)


∞
0 g(t|θ)k(θ)dθ

,

�
θm0′(t)/t − θm0(t) exp − 

+∞
t

θm0′(x)/x − θm0(x)dx k(θ)


∞
0 θm0′(t)/t − θm0(t) exp − 

+∞
t

θm0′(x)/x − θm0(x)dx k(θ)dθ
.

(46)

(e density function ofΘ among individuals whose lives
lost prior to time t is

k θ|Y
∗ ≤t(  �

G(t|θ)k(θ)


+∞
0 G(t|θ)k(θ)dθ

,

�
k(θ)exp − 

+∞
t

θm0′(x)/x − θm0(x)dx 


∞
0 k(θ)exp − 

+∞
t

θm0′(x)/x − θm0(x)dx dθ
.

(47)

In applied probability, there are always methods to infer
on population without data. By means of concepts arisen by
theory of stochastic orderings we can partially infer on θ
conditional on the events Y∗ ≤ t and Y∗ � t. (e shapes the
density function ofΘ|Y∗ � t and density function ofΘ|Y∗ �

t have are complicated. (erefore, in the Bayesian setting,
the likelihood equation to derive the maximum likelihood
estimations of θ probably fails. For this reason, it may be
more appropriate to investigate some stochastic ordering

properties in terms of the posterior distribution of Θ among
individuals with a certain departure time t and also the
posterior distribution of Θ among the individuals whose
lives lost before time t. (e likelihood ratio order is utilized
here to build a stochastic ordering property. (e likelihood
ratio order is stronger than the hazard rate order and that is
stronger than the usual stochastic order (cf. Shaked and
Shanthikumar [28]).

Theorem 5. Let Y∗ denote an r.v. with c.d.f. (43). #en,

(i) For any t> 0, (Θ|Y∗ ≤ t)≤ lr(≤ hr)[≤ st](Θ|Y∗ � t).
(ii) For all t2 ≥ t1 > 0, (Θ|Y∗ ≤ t2)≤ lr(≤ hr)[≤ st]

(Θ|Y∗ ≤ t1).

Proof. To prove the assertion (i), we have to demonstrate
that g(Θ|Y∗ ≤ t)/g(Θ|Y∗ � t) is decreasing in θ> 0, for all
t> 0. By (46) and (47), we get

k θ|Y
∗ ≤ t( 

k(θ|t)
�

G(t|θ) 
∞
0 g(t|θ)k(θ)dθ

g(t|θ) 
+∞
0 G(t|θ)k(θ)dθ

,

�
t/θ − m0(t)(  

∞
0 θk(θ)/ t − θm0(t)( (  exp − 

+∞
t

θm0′(x)/x − θm0(x)dx dθ


∞
0 k(θ)exp − 

+∞
t

θm0′(x)/x − θv0(x)dx dθ
,

(48)

which is decreasing in θ> 0, for all t> 0. To prove the
assertion (ii), it suffices to establish that g(θ|Y∗ ≤ t) is RR2 in
(θ, t) ∈ R+ × R+. By(eorem 7.1 in Holland andWang [36],

we get the desired property if we show that
(z2)/(zθzt) ln(k(θ|Y∗ ≤ t))≤ 0, for all θ > 0 and for all t> 0.
In the spirit of (19), we obtain
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z
2

zt zθ
ln

G(t|θ)k(θ)


+∞
0 G(t|θ)k(θ)dθ

⎛⎝ ⎞⎠ �
z

zθ
z

zt
ln

k(θ)

J(t)
  − 

+∞

t

θm0′(x)

x − θm0(x)
dx ,

�
z

zθ
θm0′(t)

t − θm0(t)
− ln(J(t)) ,

�
− tm0′(t)

θm0(t) − t( 
2 ≤ 0, for all t> 0, θ> 0,

(49)

in which J(t) � 
+∞
0 k(θ)exp(− 

+∞
t

θm0′(x)/x−

θm0(x)dx)dθ is the normalizing constant for the conditional
density (47) which is free of θ. (e proof is complete.

From the identity m(t|θ) � θm0(t) which holds for all
t> 0, when t approaches +∞ we get E(Y∗|Θ � θ) � θE(X).
(erefore, by the iterated expectation rule, it is deduced that
E(Y∗) � E(Θ)E(X). (e next result reveals the relationship
the m.d.t. function of Y∗ has with the m.d.t. function of X.
Let us denote bymY∗ the m.d.t. function ofY∗. Recall thatm0
is the m.d.t. function of X.

Theorem 6. Let Y∗ follow the c.d.f. (43).
#en,mY∗(t) � E[ΘG(t|Θ)]/E[[G(t|Θ)]m0(t), for all t> 0.

Proof. (e random variable Y∗ follows the p.d.f. (44). (e
m.d.t. function of Y∗ is obtained as

mY∗(t) �


t

0 yg
∗
(y)dy

G
∗
(t)

,

�


t

0 yE[g(y|Θ)]dy

E[G(t|Θ)]
,

�
E 

t

0 yg(y|Θ)dy 

E[G(t|Θ)]
,

�
E[m(t|Θ)G(t|Θ)]

E[G(t|Θ)]
,

�
E[ΘG(t|Θ)]

E[G(t|Θ)]
m0(t), for all t> 0.

(50)

Hence the proof is completed.
By an application of the relationship revealed in (eo-

rem 6, the closure property of the PMDT frailty model with
respect to the mean inactivity time order is obtained. Note
that by dividing (42) to (41), the r.h.r. function of T is
delivered as

h(t|θ) �
g(t|θ)

G(t|θ)
�

θm0′(t)

t − θm0(t)( 
, (51)

is increasing in θ, for all t> 0. (is further implies that

Y
∗
|Θ � θ1( ≤ rhr Y

∗
|Θ � θ2( , for all θ1 ≤ θ2, (52)

which concludes that (Y∗|Θ � θ1)≤ st(Y∗|Θ � θ2), for
all θ1 ≤ θ2. (at is,

G(t|θ) is decreasing in θ> 0, for all t> 0. (53)

By negative association concept, Cov(Θ, G(t|Θ)) ≤ 0, for
all t> 0. From (eorem 6 we deduce

mY∗(t)

m0(t)
�

E[ΘG(t|Θ)]

E[G(t|Θ)]
,

�
Cov(Θ, G(t|Θ)) + E(Θ)E[G(t|Θ)]

E[G(t|Θ)]
,

≤E(Θ), for all t> 0.

(54)

(us if E(Θ)≤ 1, then mY∗(t)≤m0(t), for all t> 0, or
equivalently,MY∗(t)≥MX(t), for all t≥ 0, i.e.,Y∗ ≤mitX.(is
result can be compared with the result of(eorem 2 in Section
3. In (eorem 7 (ii) another conclusion is achieved in this
direction. (e residual part of this article also deals with
stochastic comparisons between X and Y∗ in terms of stronger
stochastic orders than the mean inactivity time order for which
stronger assumptions than E(Θ)≤ (≥ )1 need to be imposed.

We present some sufficient (and/or necessary) condi-
tions in order to terminate that X is smaller than Y∗ in terms
of the likelihood ratio order and also that X is smaller than
Y∗ in terms of the reversed hazard rate order.

Theorem 7. Let Y∗ have p.d.f. (14) and c.d.f. (13). Suppose
that m0 is twice differentiable. #en,

(i) If P(Θ≥ 1) � 1, then X≤ lrY
∗ if, and only if,

m0(t)/
�
t

√
increases in t> 0.

(ii) If P(Θ≥ 1) � 1, thenX≤ rhrY
∗ and thusX≤ stY

∗ and
X≤ mitY

∗.

Proof. (i) (e r.h.r. of Y∗ given Θ � θ is h(t|θ) � θm0′(t)/
(t − θm0(t)). From (44), since P(Θ≥ 1) � 1, thus P(Θ< 1) �


1
0 k(θ)dθ � 0.We know that k(θ)≥ 0, for all θ< 1.(erefore,

as a result in real analysis, k(θ) � 0 for all θ< 1 thus Y∗ has
p.d.f.

g
∗
(t) � 

+∞

1
h(t|θ)e

− 
+∞

t

h(x|θ)dx
k(θ)dθ. (55)

We also notice that X has p.d.f.

f(t) � 
+∞

1
h(t|1)e

− 
+∞

t

h(x|1)dx
k(θ)dθ

� h(t|1)e
− 

+∞

t

h(x|1)dx
.

(56)
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As a result, g∗(t)/f(t) � E[ψ(t,Θ)] where

ψ(t, θ) �
h(t|θ)

h(t|1)
e


+∞

t
(h(x|1)− h(x|θ))dx

. (57)

It can be observed that ψ(t, θ) is non-decreasing in t> 0
if, and only if,

h′(t|θ)

h(t|θ)
+ h(t|θ) ≥

h′(t|1)

h(t|1)
+ h(t|1),

for all t> 0 and for all θ> 1.

(58)

We can write
h′(t|θ)

h(t|θ)
+ h(t|θ) �

m0″(t)

m0′(t)
−
1 − θm0′(t)

t − θm0(t)
+

θm0′(t)

t − θm0(t)
,

�
m0″(t)

m0′(t)
+
2θm0′(t) − 1
t − θm0(t)

.

(59)

Now, we can verify that
h′(t|θ)

ht|θ
+ h(t|θ)  −

h′(t|1)

h(t|1)
+ h(t|1) 

�
(θ − 1) 2t

�
t

√
(d/dt)m0(t)/

�
t

√
( 

t − θm0(t)(  t − m0(t)( 
.

(60)

(erefore, if M(t|θ) is the m.i.t. function of T with p.d.f.
g(t|θ) as given in (42) then

d
dt

g
∗
(t)

f(t)
� 2t

�
t

√ d
dt

m0(t)
�
t

√ 
+∞

1

(θ − 1)ψ(t, θ)

M(t|θ)M(t|1)
k(θ)dθ,

(61)

which is non-negative if, and only if, m0(t)/
�
t

√
is non-

decreasing in t> 0. (is completes the proof of (i). Let us
prove the assertion (ii) now. We obtain the r.h.r. function of
Y∗ as

hY∗(t) �


+∞
0

h(t|θ)e
− 

+∞
t

h(x|θ)dx
k(θ)dθ


+∞
0 e

− 
+∞
t

h(x|θ)dx
k(θ)dθ

,

� 
+∞

0
h(t|θ)k

∗
(θ|t)dθ,

� E h t|Θ∗(  ,

(62)

where Θ∗ is a non-negative r.v. with p.d.f.

k
∗
(θ|t) �

e
− 

+∞
t

h(x|θ)dx
k(θ)


+∞
0 e

− 
+∞
t

h(x|θ)dx
k(θ)dθ

�
G(t|θ)k(θ)

E[G(t|Θ)]
. (63)

We have

z
2

zθ2
h(t|θ) �

2tm0(t)m0′(t)

t − θm0(t)( 
3 ≥ 0, for all t> 0. (64)

(erefore, h(t|θ) is convex in θ and hence by applying
Jensen’s inequality we get

hY∗(t) � E h t|Θ∗(  ≥ h t|E Θ∗( ( , for all t> 0. (65)

From (53) G(t|θ) is, for all t> 0, decreasing in θ thus Θ
and G(t|θ) are negatively associated. Since P(Θ≥ 1), thus

E Θ∗(  �
E[ΘG(t|Θ)]

E[G(t|Θ)]
≥ 1. (66)

Denote by hX, the r.h.r. function of X. Since h(t|θ) is
increasing in θ for all t> 0 and, further, since h(t|1) � hX(t),
thus by (65) we deduce that
hY∗(t)≥ h t|E Θ∗( ( ≥ h(t|1)≥ hX(t), for all t≥ 0. (67)

Keep in mind that MX is the m.i.t. function of the r.v. X

with m.d.t. function m0. (en, m0(t)/
�
t

√
�

�
t

√
− MX(t)/

�
t

√

which has to be increasing in the setup of (eorem 7 (i). In
Example 2, it thus follows thatm0(t)/

�
t

√
�

�
t

√
/t + 2 which is

not an increasing function. Note that whenΘ degenerates at
θ � 3/2 then Y∗ in (eorem 7 equals in distribution with Y

in (eorem 2. (erefore, since m0(t)/
�
t

√
is not increasing

thus according to (eorem 7X≰lrY as acknowledged in
Example 2 in Section 3.

Remark 4. Stochastic orders considered in literature in-
cluding the likelihood ratio order (≤ lr), the reversed hazard
rate order (≤ rhr), and the mean inactivity time order (≤ mit)

are partial orders of distributions. (ere may be situations
where distributions are not ordered. For example, in the
context of (eorem 7, the ratio g∗(t)/f(t) may not be
monotonically increasing as its graph may exhibit a bathtub
(B.T.) shape, an upside bathtub shape (U.B.T.) or even a
roller coaster shape. From Equation (65) in(eorem 7, it can
be found that when P(Θ≥ 1) � 1, the shape the function
m0(t)/

�
t

√
has is analogous with the shape the function

g∗(t)/f(t) has. Consequently, a necessary and sufficient
condition for g∗(t)/f(t) to exhibit a certain behavior when
X≰lrY∗ is that the function m0(t)/

�
t

√
exhibits the same

behavior.

5. Conclusion

(e article has introduced a novel semi-parametric lifetime
model requiring proportional mean departure time func-
tions. (e mean departure time function of a random
lifetime Z given by mZ(t) � E(Z|Z ≤ t) is closely related to
the well-known mean inactivity time function or the mean
past lifetime function of Z which is given by
MZ(t) � E(t − Z|Z≤ t). By using limiting techniques to-
gether with a knowledge of distribution theory, it was shown
that the proportional mean past lifetime model which has
been frequently applied in literature is not a suitable model
for using to model unbounded lifetime events. (e newly
introduced model which deals with past events and can be
used to analysis events occurred in a reversed scale of time is
a proper alternative for the proportional mean past lifetime
model. (e proposed model is described and a distribution
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theory on the model was accomplished. Necessary and
sufficient conditions for two random variables to satisfy
the new model were found. An example was given to
illustrate the derived conditions provide a convenient
tool to construct two random lifetimes with proportional
mean departure time functions. Necessary and sufficient
condition to have closure properties of the new model
with respect to the reversed hazard rate order and the
mean inactivity time order is shown to be the amount of
the parameter to be greater or smaller than one. It was
shown by a counterexample that the model does not have
the closure property with respect to the likelihood ratio
order. Closure property with respect to the reversed
aging intensity order was built under an additional as-
sumption. Letting mY(t) � θmX(t) hold for all t≥ 0 and
θ> 0 preservation of the reliability classes of IMIT,
SIMIT, DPRHR, and DRHR under the transformation
X⟶ Y and also Y⟶ X was inaugurated. We con-
sidered this problem as a closure property of the
model. We have also extended the model to a more
dynamical case when the departure index parameter
considered as a random variable. In this case, the con-
ditional distributions of the random departure index
among individuals with either certain or partially certain
lifetimes have been compared by stochastic orders. In the
context of the new (frailty) model, we develop some
closure properties with respect to the likelihood ratio
order, the reversed hazard rate order and the mean in-
activity time order.

In the future of this study, we will investigate the
properties of the proportional mean departure time frailty
model where the parameter θ is considered to be a random
variable. (e closure properties tracked in this article can be
developed for the extended frailty model and moreover
preservation properties of stochastic orders of random pa-
rameters in the new setting can be obtained. (e procedure
of estimation of the parameter of the model accompanied
with related statistical inferences and also applying the
model to real data sets considering the possibility of having
lifetime data that are left censored can also be considered as
useful study in the future.
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