
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 1

Reliability and Energy-Aware Mapping and Scheduling of
Multimedia Applications on Multiprocessor Systems

Anup Das, Member, IEEE, Akash Kumar, Senior Member, IEEE, and
Bharadwaj Veeravalli, Senior Member, IEEE,

Abstract—Lifetime reliability is an emerging concern in multiprocessor systems as escalating power density and hence temperature
variation continues to accelerate wear-out leading to a growing prominence of device defects. In this paper, we propose a system-level
approach that involves performance-aware mapping of multimedia applications on a multiprocessor system to jointly minimize energy
consumption and temperature related wear-out. Fundamental to this approach is a simplified temperature model that incorporates
not only the transient and the steady-state behavior (temporal effect), but also the temperature dependency on the surrounding
cores (spatial effect). This model is validated against the temperature obtained using the HotSpot tool with transient and steady-state
simulations, and is shown to be accurate within 5.5◦C, leading to an MTTF estimation accuracy of an average 21% with respect to the
state-of-the-art approaches. The proposed temperature model is integrated in a gradient-based fast heuristic that controls the voltage
and frequency of the cores to limit the average and peak temperature leading to a longer lifetime, simultaneously minimizing the energy
consumption. Lifetime computation considers task remapping, which is a common feature available in modern multiprocessor systems.
A linear programming approach is then proposed to distribute the cores of a multiprocessor system among concurrent applications to
maximize the lifetime. Experiments conducted with a set of synthetic and real-life applications represented as synchronous data flow
graphs demonstrate that the proposed approach minimizes energy consumption by an average 24% with 47% increase in lifetime. For
concurrent applications, the proposed lifetime-aware core distribution results in an average 10% improvement in lifetime as compared
to performance-based core distribution.

Index Terms—Lifetime reliability, mean time to failure (MTTF), platform-based design, synchronous data flow graphs.

�

1 INTRODUCTION

LIFETIME reliability is a crucial design concern for
modern multiprocessor systems as escalating power

density and hence temperature variation continues to
accelerate wear-out, leading to an increase in device
defects [1]. This has attracted significant attention both
in the industry and academia to investigate platform-
based design approaches, which involve system-level
techniques such as mapping and scheduling of appli-
cations on a given multiprocessor platform to mitigate
wear-out leading to an extended mean time to failure
(MTTF) [2]–[5]. These studies do not minimize energy
consumption, which is also crucial for battery-operated
embedded devices. Modern cores support a wide range
of voltages and frequencies, which are often exploited to
perform dynamic voltage and frequency scaling (DVFS)
to minimize the task computation energy [6], [7]. This
has motivated researchers in recent years to jointly
optimize lifetime reliability and energy consumption
through intelligent task mappings [8]–[10]. The exist-
ing works on energy-reliability joint optimization suffer
from the following two limitations – accuracy and scope.
Accuracy: Lifetime estimation and optimization at
design-time require predicting the thermal behavior of
an application. HotSpot [11] is the standard and the most
prevalent thermal simulation tool used in academia.
However, integrating this tool directly in the design
space exploration process leads to a super exponential
exploration time, even for a moderate problem size
(in terms of the number of tasks and cores). This is
due to the large simulation time of the HotSpot tool.
Some of the recent studies addressed this scalability
problem by modeling the heat transfer phenomena using
a resistive-capacitive (RC) equivalent model. Although

A. Das is with the School of Electronics and Computer Science, University
of Southampton, United Kingdom, E-mail: a.k.das@soton.ac.uk.
A. Kumar and B. Veeravalli are with the Department of Electrical and
Computer Engineering, National University of Singapore, Singapore E-mail:
{akash,elebv}@nus.edu.sg.
Manuscript received Month Day, Year.

the RC equivalent thermal model can be solved directly
to determine the temperature of a core, the solutions
are too computation intensive to be incorporated in
the design space exploration framework. Steady-state
approximation simplifies the solution, but is accurate if
the execution times of the tasks are comparable to the
thermal time constant of the package, which is typically
of the order of few hundreds of seconds. Finally, ignoring
the spatial dependency leads to simplification of the RC
equivalent model, but results in underestimation of the
temperature and a corresponding overestimation of the
mean time to failure. Additionally, some existing studies
on lifetime reliability approximate MTTF as the time to
the first fault. This is true for systems that are not pro-
visioned to tolerate faults. In this work, multiprocessor
systems are considered with support for task migration.
Such a system continues to operate in the presence of
failures, albeit an acceptable performance degradation.
For such systems, estimating the MTTF as the time to
first failure leaves a significant scope of improvement,
both in terms of lifetime and energy consumption.
Scope: The existing lifetime optimization techniques are
all based on sequential execution of applications repre-
sented as directed acyclic graphs (DAGs) that are not
sufficiently expressive to model streaming multimedia
and other data flow applications. This class of applica-
tions requires support for modeling cyclic dependency,
multi-input tasks, multi-rate tasks, pipelined execution
and a natural way for dealing with latency and buffer
requirements. As discussed in Section 3, synchronous
data flow graphs (SDFGs) allow more suitable modeling
for these applications. The existing techniques for DAGs
cannot be applied directly on SDFGs due to the cyclic
actor dependencies and the overlapping of multiple
iterations (pipelined) in the schedule. Additionally, none
of the existing techniques consider multi-application use-
case (defined as a collection of multiple applications that
are active simultaneously on a multiprocessor system
[12]), which is a common requirement for multiprocessor
systems. As we show in this paper, lifetime-aware dis-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 2

tribution of the cores among the concurrent applications
leads to a significant improvement in MTTF.

To address the limitations of the existing approaches,
a temperature model is first proposed that is based
on thermal characterization of a multiprocessor system
using the HotSpot tool or using other thermal measure-
ment approaches such as using sensors and performance
counters. The model incorporates the following:

1. temporal dependency i.e., the relationship between
the temperature of a core as a function of time
and its dependency on the operating voltage and
frequency; and

2. spatial dependency i.e., the influence of the neighbor-
ing core’s temperature on the temperature of a core.

A gradient-based fast heuristic is then proposed in-
corporating the temperature model to jointly optimize
energy and lifetime reliability of a multiprocessor system
with applications represented as SDFGs. The approach
leverage on the native SDF 3 tool [13], and can be easily
ported to applications represented as DAGs, making
the approach generic for both streaming multimedia
and non-multimedia applications. Following are the key
contributions of this paper:

1. a simplified temperature-model considering tempo-
ral and spatial dependencies;

2. a gradient-based fast heuristic to jointly optimize
lifetime reliability and energy;

3. computing the MTTF from SDFG schedule consid-
ering task remapping;

4. maximizing the MTTF of multiprocessor system
considering use-cases.

Contributions 1 and 2 were proposed in our earlier
work [10]. This paper extends our earlier work by
providing a detailed evaluation of the proposed tem-
perature model and demonstration of the temperature
computation from an SDFG schedule, in addition to the
contributions 3 and 4 above.

The remainder of this paper is organized as follows.
Section 2 provides a brief overview of the state-of-the-
art approaches on temperature prediction for reliability
optimization. This is followed by the problem formula-
tion in Section 3 and the proposed temperature model
in Section 4. The temperature computation from a given
SDFG schedule is demonstrated in Section 5. The design
methodology is discussed next in Sections 6. Experi-
mental results are presented in Section 7 and Section 8
presents the conclusions.

2 RELATED WORKS
System-level reliability management approaches can be
classified into two categories – run-time- and design-
time-based. The run-time reliability management tech-
niques improve lifetime reliability by adapting the hard-
ware power levers and operating system scheduling
decisions based on the continuous feedback from a hard-
ware performance monitoring unit [14], [15]. Design-
time-based approaches use application abstraction mod-
els, such as DAGs or SDFGs, to minimize the average
and peak temperature in order to maximize the MTTF.
This work falls in the later category and is orthogonal
to any run-time reliability management techniques.

A number of techniques have been proposed in lit-
erature to minimize the peak and average temperature
of multiprocessor systems. Examples include the convex
optimization-based approach of [16], mixed integer lin-
ear programming (MILP)-based approach of [17], and
pre-calibration based approach of [18]. These techniques

TABLE 1
Related works on reliability joint optimization.

Related Works Power
Consideration

Application
Model Use-cases Reliability

Model
Temperature

Model

Gu et al. [2],
Meyer et al. [4] dynamic DAGs × task remapping steady-state

Huang et al. [3],
Das et al. [5] dynamic DAGs × first failure steady-state

Chou et al. [22],
Huang et al. [8] dynamic DAGs × first failure steady-state

Ukhov et al. [9] dynamic &
leakage DAGs × first failure

transient,
steady-state &

spatial

proposed dynamic &
leakage SDFGs

√
task remapping

transient,
steady-state &

spatial

are based on the steady-state temperature only. Very
few thermal management techniques exist in literature
that account for both the transient and the steady-
state phases. A temperature-aware technique is proposed
in [19] to distribute the idle time in order to control the
power consumption and hence the temperature. How-
ever, this technique considers a uni-processor system;
therefore it fails to model the spatial temperature depen-
dency when applied to multiprocessor systems. Finally,
both the temporal (transient and steady-state) and the
spatial dependency are modeled in [20], [21] using ther-
mal characterization. However, the cyclic dependency
between power and temperature is not considered.

Different wear-out mechanisms are influenced by tem-
perature differently. Hence, there are studies that op-
timize lifetime reliability, while explicitly considering
these wear-out mechanisms, through intelligent task
mapping. A reliability estimation technique is proposed
in [2] for application specific multiprocessor systems to
consider multiple failures by incorporating the effect of
faults on the subsequent fault rates. A slack allocation
technique is proposed in [4] to optimize lifetime reli-
ability. Both these techniques incorporate the HotSpot
tool in the design space exploration (DSE) framework
to determine the steady-state temperature. However,
the high simulation time of the HotSpot tool leads to
a super-exponential increase in the exploration time
with an increase in the problem size. To overcome this
scalability issue, the temperature characterization step is
detached from the DSE framework in [3]. Specifically,
the steady-state temperature values are determined us-
ing the HotSpot tool for all combinations of the active
tasks on different processors. These temperature data
are stored in a lookup table, and used with a simulated
annealing-based heuristic to determine the task mapping
that maximizes the lifetime reliability of multiprocessor
systems. A convex optimization approach is proposed
as an alternative to simulated annealing in [5]. Although
these approaches determine the impact of mapping and
scheduling on the lifetime reliability, the energy savings
and the lifetime improvement obtained jointly, using
DVFS, is not explored.

A resource management technique is proposed in [22]
to minimize processor wear-out and communication en-
ergy, simultaneously providing tolerance for transient
and intermittent faults. A simulated annealing-based
technique is proposed in [8] to jointly optimize energy
consumption and temperature-related processor aging.
Both these approaches are based on the steady-state
temperature characterization, similar to the approach

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 3

proposed in [3]. An eigen-value decomposition-based
approach is proposed in [9] to optimize the energy con-
sumption, simultaneously with thermal cycling related
wear-outs. Although the temperature model incorpo-
rates the transient, steady-state and spatial dependency
with consideration of dynamic and leakage power, the
model is too complex to be incorporated in the DSE of
SDFGs, enabled individually and concurrently. Table 1
summarizes the related works.

3 PROBLEM FORMULATION
3.1 Application Model
Synchronous Data Flow Graphs (SDFGs, see [23]) are
often used for modeling modern DSP applications and
for designing concurrent multimedia applications im-
plemented on a multiprocessor systems. Both pipelined
streaming and cyclic dependencies between tasks can
be easily modeled in SDFGs. SDFGs allow analysis of
a system in terms of throughput and other performance
properties, e.g. latency, buffer requirements [24].

The nodes of an SDFG are called actors; they represent
functions that are computed by reading tokens (data
items) from their input ports and writing the results
of the computation as tokens on the output ports. The
edges in the graph, called channels, represent dependen-
cies among different actors. Figure 1a shows an example
of an SDFG. There are three actors in this graph. In the
example, a0 has an input rate of 1 and output rate of
2. An actor is called ready when it has sufficient input
tokens on all its input edges and sufficient buffer space
on all its output channels; an actor can only fire when
it is ready. The edges may also contain initial tokens,
indicated by bullets on the edges, as seen on the edge
from actor a2 to a0 in Figure 1a.

Formally an SDFG is mathematically represented as
Gapp = (A, C) consisting of a finite set A of actors and
a finite set C of channels. Every actor ai ∈ A s a tuple
(ti, μi), where ti is the execution time of ai and μi is its
state space (program and data memory). The number of
actors in an SDFG is denoted by Na where Na = |A|. One
of the most interesting properties of SDFGs relevant to
this paper is throughput. Throughput is defined as the
inverse of the long term period, i.e. the average time
needed for one iteration of the application. An iteration
is defined as the minimum non-zero execution such that
the original state of the graph is obtained. This is the
performance parameter used in this paper.

Several scheduling strategies have been proposed
in literature for SDFG [25]. These techniques can be
classified into three categories – dynamic scheduling,
static scheduling and self-timed scheduling. In dynamic
scheduling the actor assignment (mapping) and firing
(timing) are both performed at run-time. Although, this
scheduling technique gives full flexibility to accom-
modate dynamic actor execution time, throughput is
not guaranteed. In static scheduling, both the mapping
and scheduling are performed at design-time. Although,
throughput is guaranteed in this technique, this schedul-
ing technique fails to accommodate dynamic actor execu-
tion time. Self-timed strategy is widely used for schedul-
ing SDFGs on multiprocessor systems. In this technique,
the exact firing of an actor on a core is determined
at design-time using worst-case actor execution-time.
The timing information is then discarded retaining the
assignment and ordering of the actors on each core. At
run-time, actors are fired in the same order as deter-
mined from design-time. This scheduling technique can

� �

�

�

�
�

���

��

���

a0

a1

a2

(a) Application SDFG.

ci

c7

c2

c4

c11

c9 c3 c1 c5

c8

c10

c6

c12

c13

c14c15c16c17

c18

c19

c20 c21 c22 c23

c24

S

S

SS

S

S

S

SS

S

S

S

SS

S

S

S

SS

S

S

S

SS

S

S S S S S

(b) Multiprocessor floorplan.

Fig. 1. Application and architecture model.

accommodate dynamic actor execution time; as long as
actors finish execution earlier than worst-case execution
time (WCET), the throughput can only increase, i.e., the
throughput analyzed using WCET is always guaranteed,
which is important for multimedia and other DSP appli-
cations. The following lemma can be stated [24].

Lemma 1: For a consistent and strongly connected SDFG,
the self-timed execution consists of a transient phase followed
by a periodic (steady-state) phase.

Usually, the number of steady state iterations is a
large number (e.g., periodic decoding of video frames),
and hence for all practical purposes the energy and
reliability of the steady state phase dominates over that
in the transient phase. Therefore, the reliability-energy
joint optimization is performed using the reliability and
energy values per iteration of the steady-state phase.

3.2 Architecture Model
The multiprocessor architecture for this work is shown
in Figure 1b with cores (indicated as labeled boxes) in-
terconnected through switches in a mesh-based topology
(the label on the cores is explained in Section 4). The ar-
chitecture is represented as a graph Garc = (C,E), where
C is the set of nodes representing cores of the architecture
and E is the set of edges representing communication
channels among the cores. The number of cores in the
architecture is denoted by Nc i.e. Nc = |C|. Each core
cj ∈ C supports Nf voltage-frequency pairs denoted by
{(Vk, ωk) ∀k ∈ [0, Nf − 1]}.

3.3 Mapping Representation
The objective of the optimization problem is to maximize
the lifetime reliability (measured as MTTF) and minimize
the energy consumption by solving the following:

• actor distribution: determine the assignment of the
actors of the SDFG on the cores of the platform;

• operating point: determine the voltage and frequency
of the cores for executing the actors of the SDFG.

For the ease of problem representation, two variables
xi,j (representing the actor distribution) and yi,k (repre-
senting the operating point) are defined as follows.

xi,j =
{
1 if actor ai is executed on core cj
0 otherwise

yi,k =
{
1 if actor ai is executed at operating point (Vk, ωk)
0 otherwise

Constraints on these variables are set such that an actor
is mapped to only one core at a single operating point.

Nc−1∑
j=0

xi,j = 1 and

Nf−1∑
k=0

yi,k = 1 ∀ai ∈ A (1)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 4

r00(S0)

r01(S0)

r02(S0)

r10(S1)

r11(S1)

r21(S2)

Core 0

Core 1

Core 2

τ0 τ1 τ2

R2(t)

R1(t)

R0(t)

Time

Fig. 2. MTTF computation with task remapping.

The actor distribution and operating point of SDFG are
represented as two matrices:

Md =

⎛
⎜⎜⎝

x0,0 x0,1 · · · x0,Nc−1
x1,0 x1,1 · · · x1,Nc−1

...
...

. . .
...

xNa−1,0 xNa−1,1 · · · xNa−1,Nc−1

⎞
⎟⎟⎠ (2)

Mo =

⎛
⎜⎜⎝

y0,0 y0,1 · · · y0,Nf−1
y1,0 y1,1 · · · y1,Nf−1

...
...

. . .
...

yNa−1,0 yNa−1,1 · · · yNa−1,Nf−1

⎞
⎟⎟⎠ (3)

The core to which actor ai is assigned is denoted by
φi and is given by φi = Xi × NNc where Xi =
(xi,0 xi,1 · · · xi,Nc−1) and NNc

is the matrix of inte-
gers from 0 to Nc i.e. NNc

= (0 1 · · · Nc − 1)T . The
operating point of actor ai is denoted by θi and is given
by θi = Yi × NNf

where Yi = (yi,0 yi,1 · · · yi,Nf−1).

3.4 Wear-out Modeling
The lifetime reliability of core cj at time t is defined as
the probability of correct operation of the core upto time
t and is given by Rj(t) = e−(t.Aj)λ where Aj is the aging
of the core per iteration and is given by (refer to [1]).

Aj =
1
tp

∑
l

Δtl

α(T l)
(4)

where tp is the period of the application graph, α(T l) is
the fault density (typically Weibull or Lognormal distri-
bution), λ is the slope parameter of the distribution and
T l is the average temperature in the interval Δtl. This
equation allows to model any wear-out effect such as
electro-migration and negative bias temperature instabil-
ity. Refer to [2] for a detailed modeling of the reliability
considering different wear-out effects. The mean time to
failure (MTTF) of core cj with reliability Rj(t) is given
by the area under the reliability curve as

MTTFj =
∫ ∞

0
Rj(t)dt =

∫ ∞

0
e−(t.Aj)

λ
dt (5)

To demonstrate the MTTF computation considering
task re-mapping, an example is provided with three
cores. The initial schedule S0 uses all the three cores
and stresses core 2 more than the other two cores.
The reliability curves for the three cores are shown in
Figure 2. Core 2 has the least lifetime and it breaks at
time τ0. As established in Section 2, the previous works
on lifetime reliability defines MTTF to be the time to the

first failure, hence the MTTF for these works is τ0. At
time t = τ0, a second schedule S1 (using core 0 and 1)
is applied. The change in the reliability profile of core
0 and core 1 are due to different wear-out, which can
be attributed to the difference in temperature from this
new schedule. The new schedule stresses core 0 more
than core 1 and therefore core 0 breaks at time t = τ1.
At this time, all the actors are remapped to core 1. This
schedule is identified in the figure as S2 and results in
reliability profile of r21 . With this new reliability profile,
core 1 breaks at time t = τ2. The lifetime (MTTF) of the
system is therefore τ2.

Besides MTTF, another interesting metric for multi-
processor system supporting task remapping is processor
years, defined as the aggregate utilization of the different
cores of the system over the entire lifetime. For the above
example, this is calculated as follows. For the interval 0
to τ0, all three cores are active; for the interval τ0 to τ1
two core are active; and for the interval τ1 to τ2 only
one core is active. Assuming the time in this figure are
all in years, the processor years of the above system is
3 · τ0 + 2 · (τ1 − τ0) + 1 · (τ2 − τ1).

3.5 Energy Modeling
Actor-level voltage and frequency scaling is assumed for
this work i.e, every actor of an SDFG is associated with a
voltage-frequency value that is set on the core executing
the actor. The energy consumed on a multiprocessor sys-
tem while executing the SDFG consists of the following
components:

• computation energy: dynamic and leakage energy
consumed on the cores due to the actors execution;

• communication energy: dynamic and leakage energy
consumed on the network-on-chip (NoC) due to the
data communication among the connected actors.

A point to note here is that the leakage energy con-
sumed on the NoC is dependent on the NoC type
and the topology. For this work, a spatial division
multiplexing-based NoC is assumed, and therefore the
leakage power consumed on the NoC is negligible [26].
Dynamic Energy of SDFG: The dynamic energy of an
SDFG is given by Edyn = Edyn

tr +Niter ·Edyn
ss where Edyn

tr
is the actor dynamic energy in the transient phase of the
schedule, Edyn

ss is the actor dynamic energy per iteration
of the steady state phase and Niter is the number of
iterations of the steady state phase. The dynamic energy
consumed by an actor ai executed on core cj at the
operating point k is given by

e
dyn(i, j, k) = Ceff · β · V 2

k · ωk · tijk · Rpt[ai] (6)

where β is the activity factor, Ceff is the effective load
capacitance, tijk is the execution time of actor ai on
core cj at operating point k (i.e. operating voltage Vk and
operating frequency ωk) and Rpt[ai] is the number of
firings of actor ai per steady state iteration of the SDFG.
The total dynamic energy of the SDFG is

E
dyn
core =

∑
∀ai∈A

e
dyn(i, φi, θi) (7)

Leakage Energy of SDFG: The leakage energy of core cj
consumed during the execution of actor ai at operating
point k is given by the following formula [27].

e
leak(i, j, k) = NgatesVkI0

[
AT

2
e
αVk+β

T + Be
γVk+δ

]
·tijk ·Rpt[ai] (8)

where Ngates is the number of gates of the core, I0
is the average leakage current and A,B, α, β, γ, δ are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 5

technology dependent constants (refer to [27]) and T is
the average temperature of the actor during the steady-
state iteration. The total leakage energy is

E
leak
core =

∑
∀ai∈A

e
leak(i, φi, θi) (9)

Dynamic Energy on the NoC: In [28], bit energy (Ebit)
is defined as the energy consumed in transmitting one
bit of data through the routers and links of a NoC. This
is given by [29]

Ebit(p, q) =
{
(nhops(p, q) + 1) · ESbit

+ nhops(p, q) · ELbit
if p �= q

0 otherwise
(10)

where ESbit
and ELbit

are the energy consumed in the
switch and the link, respectively and nhops(p, q) is the
number of hops between cores cp and cq .

The dynamic energy consumed on the NoC is there-
fore given by Equation 11 where φi and φi′ are the cores
where actors ai and ai′ are mapped, respectively.

E
dyn
noc =

∑
∀ai,ai′∈A

dij · Ebit(φi, φi′) (11)

The total energy is

E
tot = E

dyn
core + E

leak
core + E

dyn
noc (12)

3.6 Reliability-Energy Joint Metric
To jointly optimize reliability and energy, a single metric
lifetime quotient (lq) is introduced, which as defined as
the ratio of the MTTF to the total energy i.e.,

lq =
MTTF

Etot
(13)

The optimization objective is to maximize lq.

4 PROPOSED TEMPERATURE MODEL
Temperature of a multiprocessor system is usually de-
termined using a RC equivalent thermal model. The
temperature of a single core is related to its power
dissipation according to the following equation [11].

C
dT (t)
dt

+ G (T (t) − Tamb) = P (t, T) = P
dyn(Vk, ωk) + P

leak(Vk, T)
(14)

where C is the thermal capacitance, G is the thermal con-
ductance, t is the time, Tamb is the ambient temperature,
T (t) is the instantaneous temperature and P (t) is the in-
stantaneous power that is composed of the dynamic and
the static components. The dynamic power is dependent
on the voltage and frequency of operation and the static
power is dependent on the temperature. The solution to
the above equation consists of transient and steady-state
phases. In the transient phase, the temperature increases
with time up to a point beyond which, the steady-state
phase settles in and the temperature saturates to its
steady-state value. The core’s wear-out is dependent on
its operating temperature, which needs to incorporate
both the transient and the steady-state phases.

Referring back to Figure 1b, the temperature of any
core, say core ci of a system depends on
A.1 The time of execution of an actor on ci .
A.2 The voltage and frequency of ci.
A.3 The temperature of the cores surrounding ci.
Thus, A.1 and A.2 represents the temporal dependency
and A.3 represents the spatial dependency. For such
a system, the temperature, power, thermal capacitance

c1-c2 c1-c4 c1-c6 c1-c8 c1-c10 c1-c12
20

40

60

80

100

Active neighboring cores

Te
m

pe
ra

tu
re

of
co

re
c i

(
o
C
)

Temperature considering A.1 and A.2
Temperature considering A.1, A.2 and A.3

Fig. 3. Temperature underestimation ignoring the spatial
dependency.

TABLE 2
Specification of the cores of the multiprocessor system

Power Mode Frequency Voltage (V) Current (mA) Power (mW)

OPP50 300MHz 0.93 151.62 141.01

OPP100 600MHz 1.10 328.79 361.67

OPP130 800MHz 1.26 490.61 618.17

OPP1G 1GHz 1.35 649.64 877.01

and thermal conductance in Equation 14 are all vec-
tors. The transient and steady-state values can be ob-
tained by solving the above equation analytically. The
solution to the differential equation is T(t) = eκtT(0) +

κ−1 (
eκt − I

)
C−1P (t), where κ = −C−1G, T(0) is the

initial temperature and I is the identity matrix. The
direct solution technique is usually slow and results in
an exponential design space exploration time. Although
the model of [9] incorporates all the three components,
the execution time is still exponential when applied for
temperature prediction using SDFG.

A simplification to the analytical approach is to ignore
the spatial dependency by considering the temperature
for cores individually, such as the one proposed in [19].
To signify the importance of temperature underestima-
tion by ignoring the spatial dependency (component
A.3), an experiment is conducted using the HotSpot tool
to measure the steady-state temperature. The multipro-
cessor architecture used for the HotSpot tool is shown in
Figure 1b with the specifications of the cores reported
in Table 2. The temperature is determined by setting the
power dissipation of core ci as 0, with a constant power
corresponding to the operating point OPP1G (i.e.,1.35V,
1GHz) set for the one-hop and the two-hop neighboring
cores (cores c1 - c4 are the one-hop neighbors and
cores c5 - c12 are the two-hop neighbors of core ci in
Figure 1b). This simulates the scenario of core ci as idle
with the neighboring cores active at the highest voltage
and frequency. The temperature results are reported in
Figure 3 for some combinations of the neighboring core’s
activity. The label c1 − cn in the figure indicates cores
c1, c2, · · · , cn are active simultaneously. There are two
bars shown on the plot. The left bar for each label
corresponds to the temperature of core ci obtained with
all the core as idle. The right bar corresponds to the
temperature of ci with cores c1, c2, · · · , cn operating at
the highest operating point and core ci as idle. As seen
from the figure, with only the east and the south neigh-
bors active (i.e.,label c1−c2), the temperature considering
spatial dependency is 5◦C higher than the temperature

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 6

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Time (ms)

Te
m

pe
ra

tu
re

of
co

re
c i
(

o
C
)

(1.35V, 1GHz)
(1.26V, 800MHz)
(1.10V, 600MHz)
(0.93V, 300MHz)

Fig. 4. Characterization for temporal dependency.

obtained by ignoring the spatial dependency (i.e., A.3).
This difference increases as more number of neighbors
become active. Finally, with all the one-hop and two-hop
neighbors active, the temperature difference is as high as
18◦C. This leads to significant MTTF misprediction.

To provide a simplified temperature model, a regres-
sion analysis technique is proposed in this paper. This
temperature model is determined using:

• temperature characterization to incorporate the tem-
poral dependency (capturing both the transient and
steady-state behaviors); and

• temperature characterization to incorporate the spa-
tial temperature dependency.

The temperature model is represented as

Ti(t) = f(Vi, ωi, t) + g({Vj , ωj | ∀cj ∈ ℵ(ci)}) (15)

where (Vi, ωi) are the voltage and frequency of core ci, t
is the time and ℵ(ci) are the cores in the neighborhood
of ci. The function f and g represent the temporal and
spatial dependency, respectively and are derived in the
following two steps.

• Determine f : The function f can be determined
using two alternative approaches – by solving Equa-
tion 14 directly for a processing core; or by simula-
tion using the HotSpot tool for the power consump-
tion corresponding to different operating points of
the processing core to capture the transient and the
steady-state behaviors, as shown in Figure 4.

• Characterize g: The temperature data for character-
izing the function g are obtained as follows. The core
ci is set to idle mode and the operating points for the
neighboring cores are varied. Performing exhaus-
tive temperature simulations for different voltage-
frequency combinations of all neighbors (one-hop
neighbors, two-hop neighbors, etc.) is time consum-
ing, but only required once during the characteri-
zation step. A first order of approximation involves
considering the voltage-frequency of only the imme-
diate neighbors i.e., the east, west, north and south
neighbors of a core referred to as (Ve, ωe), (Vw, ωw),
(Vn, ωn) and (Vs, ωs), respectively with all other
neighbors set to operate at the highest operating
point. This is shown in Figure 5, where the voltage
point is only shown for clarity of representation. The
figure plots the temperature of core ci as its voltage
Vi is increased from 0.93V to 1.35V for few of these
neighboring voltage combinations.

The temperature data are fed to the Matlab regression
toolbox to derive the temperature model. The proposed

����� ���� ����� ���	�
��

�

��

��

���

������ �� ���� �

�
�
�
�
�
��
��
��
�
�
 �
��
!

"�# �
$
% �

&
% �

'
% �(�

)
% �

*

����� ���� ����� ���	�
��

�

��

��

���

���

������ �� ���� �

�
�
�
�
�
��
��
��
�
�
 �
��
!

"+# �
$
% �

&
% �(�

'
% �

)
% �

*

����� ���� ����� ���	�
��

��

���

�	�

������ �� ���� �

�
�
�
�
�
��
��
��
�
�
 �
��
!

"�# �
$
% �(�

&
% �

'
% �

)
% �

*

����� ���� ����� ���	�
��

���

���

�
�

���

������ �� ���� �

�
�
�
�
�
��
��
��
�
�

�
��
!

",# �
$
% �

&
% �

'
% �

)
% �

*

�
*
% ���	� �

*
% ����� �

*
% ���� �

*
% ����� �

*
% ����

Fig. 5. Characterization for spatial dependency.

A B1 B2 B3

D2

C

D1

t0 t1 t2 t3 t4 t5 t6

Core 0

Core 1

Core 2

Time

A

D

B

2

1

3

1

3
1

1

2

2

3

C

1

1

Fig. 6. Temperature computation from a SDFG schedule.

temperature model is determined once during the char-
acterization process. The final expression for temperature
(Equation 15) can be easily integrated in the design
space exploration framework. However, the proposed
model incorporates pessimism in three forms – separat-
ing the temporal and spatial dependency; characterizing
the spatial dependency with the steady-state temper-
ature of the nearest neighbors; and characterizing the
spatial dependency with the non-nearest neighbors set
to operate at the highest voltage and frequency. These
pessimism lead to a temperature overestimation by as
much as up to 6◦C for individual applications. However,
as discussed in Section 6.2, this temperature overesti-
mation simplifies the reliability optimization for multi-
application use-cases, which is a common requirement
for multiprocessor systems.

5 TEMPERATURE COMPUTATION
Figure 6 shows an example of a SDFG with four actors
allocated on a platform with three cores. The schedule
corresponding to a particular allocation is also shown in
the same figure. We demonstrate the temperature com-
putation for core 0 using this schedule. The temperature
for other cores can be determined in a similar fashion.
The time duration 0− t6 is divided into seven intervals
by putting a time stamp at the instances when an actor
starts or ends firing.
Core 0: Interval (0 → t0)
In this interval, core 0 executes actor A at operating point
(VA, ωA). The temperature at time t considering temporal

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 7

effect is f(VA, ωA, t). The temperature considering the
spatial effect is due to the idle voltages of core 1 and 2
and is given by g(Vidle, Vidle). The average temperature
in this interval is

T0(0, t0) =
1
t0

∫ t0

0
f(VA, ωA, t)dt + g(Vidle, Vidle) (16)

Core 0: Interval (t0 → t1)
In this interval, core 0 executes the first instance of actor
B. Note in the SDFG, when actor A fires, it produces 3
tokens on the channel from actor A to actor B and one
of these tokens is consumed for each firing of actor B.
Therefore, there are three firing of actor B (indicated in
the figure by B1, B2 and B3). The temperature at time t
due to the temporal effect of actor B is f(VB , ωB , t) and
the temperature due to spatial effect is g(VD, VC). The
average temperature is

T0(t0, t1) =
1

t1 − t0

∫ t1−t0

0
f(VB , ωB , t)dt + g(VD, VC) (17)

Core 0: Interval (t1 → t2)
The temperature computation in this interval is similar
to that in the interval (t0 → t1) and is given by

T0(t1, t2) =
1

t2 − t1

∫ t2−t1

0
f(VB , ωB , t)dt + g(VD, VC) (18)

Core 0: Interval (t2 → t3)
During the execution of actor B3, there is a change in
temperature profile due to the completion of actor D1
and the interval before actor D2 is executed. Hence, the
execution time of actor B3 is split into two intervals (t2 →
t3) and (t3 → t4). The temperature computation in the
interval (t2 → t3) is similar to that in the interval (t0 →
t1)

T0(t2, t3) =
1

t3 − t2

∫ t3−t2

0
f(VB , ωB , t)dt + g(VD, VC) (19)

Core 0: Interval (t3 → t4)
The average temperature in this interval is given by

T0(t3, t4) =
1

t4 − t3

∫ t4−t3

0
f(VB , ωB , t)dt + g(Vidle, VC) (20)

Core 0: Interval (t4 → t5)
In this interval, the temporal effect is due to the idle
temperature of the core and is denoted by T idle

0 . The
average temperature is given by

T0(t4, t5) = T
idle
0 + g(VD, VC) (21)

Core 0: Interval (t5 → t6)
The temperature in this interval is given by

T0(t5, t6) = T
idle
0 + g(Vidle, VC) (22)

Reliability of Core 0
Combining these equations, the aging of core 0 is

r0 =
1
t6

6∑
i=0

ti − ti−1

α (T0(ti, ti−1))
(23)

where t−1 = 0 and α is the fault density.

�����

�����	

Fig. 7. Design methodology

Algorithm 1 Generate reliability and energy aware mappings.
Input: Application set Sapp and multiprocessor system Garc

Output: MapDB and ThRiCoDB
1: for all Application Ai ∈ Sapp do
2: [Gapp Tc] = GetSDFG(Ai)
3: for n = 1 to Nc do
4:

(Md Mo

)
= REOpt(Gapp,Gn

arc,Tc)
5: [S T] = MSDF 3(Md,Mo,Gapp,Gn

arc)
6: MapDB(i, n) =

(Md Mo S)
7: M = CalculateMTTF (i, n,Nmin

c ,MapDB)
8: ThRiCoDB(i, n) =

(
T M

)
9: end for

10: end for

6 DESIGN METHODOLOGY
The design methodology consists of two phases – anal-
ysis at design-time (consisting of the application and
use-case optimizations) and execution at run-time. The
design-time methodology is highlighted in Figure 7. The
run-time manager is not part of the contribution, but is
shown here for completeness. There are two databases
for the multiprocessor system – the set of applications
(Sapp) and the set of use-cases (Suse). The proposed
approach is to determine the actor distribution and the
operating point (refer to Section 3) for every application
using n = 1 to Nc cores of the system. Thus, |Sapp| ·Nc
optimization problems are solved at design-time to gen-
erate Nc mappings for every application supported on
the system. This is performed in the REOpt block. The
solution consists of the actor distribution and operating
point matrices stored in the MapDB database and the
three-dimensional (3D) vector – throughput, reliability
(MTTF) and core count stored in the ThRiCoDB database.

It is to be noted that MapDB contains the mapping
for every application with different core count. When an
application is enabled individually at run-time, the entire
set of cores is dedicated to the application. The optimum
task-mapping for the application is fetched from the
MapDB and applied. When one or more cores fail, the
system restarts and the mapping with the reduced set of
resources is fetched from MapDB. Thus, multiple core
failures are addressed and for every fault-scenario, a
mapping is applied to maximize the operational lifetime
of the MPSoC. The migration to a new mapping with
reduced resources is performed using the migration
overhead minimization approach of [33].

Algorithm 1 provides the pseudo-code of the design
flow. For every application Ai of the set Sapp, the
corresponding SDFG representation and the throughput

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 8

Algorithm 2 CalculateMTTF (): Calculate the MTTF.
Input: Application id i, the core index n, the minimum number of cores for

throughput satisfaction and mapping database MapDB
Output: MTTF M
1: Initialize ttf = 0 and ri = n
2: while ri ≥ Nmin

c do
3: [Md Mo S] = MapDB(i, ri)
4: Determine reliability profiles from S as demonstrated in Section 5
5: Shift the reliability profiles by ttf
6: Determine t, the time to failure of the most stressed core
7: ttf = ttf + t and ri = ri − 1
8: end while

constraint are fetched from the database. This applica-
tion is executed on the multiprocessor system with n
cores identified as Gn

arc, where n is varied from Nmin
c

to Nc. The reliability-energy joint optimization is first
performed on the application (line 4) to obtain the actor
distribution matrix Md and the operating point matrix
Mo. These are stored in the MapDB (line 6). The actor
distribution is used in the MSDF 3 tool that leverage on
the native SDF 3 tool [13], which generates one feasible
actor distribution and the corresponding throughput.
The MSDF 3 tool is the modified form of SDF 3 that
generates the schedule and throughput from a given
actor distribution matrix. The schedule thus obtained is
used in the CalculateMTTF () routine (line 7) to com-
pute the MTTF. The throughput and the MTTF values
corresponding to the number of cores are stored in the
ThRiCoDB for the use-case optimization.

The CalculateMTTF routine determines the MTTF
in an iterative manner as shown as pseudo-code in
Algorithm 2. A running index ri is maintained to index
to the schedule with one less core. The algorithm iterates
as long as ri ≥ Nmin

c , where Nmin
c is the minimum num-

ber of cores required to satisfy the throughput require-
ment. At the start of the iteration, the mapping and the
scheduling are fetched from the MapDB. The schedule is
used to compute the reliability profile of every core of the
system. The reliability profiles are shifted to account for
the aging already encountered in the cores. The time-to-
failure for all the cores are determined using Equation 5.
The minimum time corresponds to the failure of the most
stressed core. This is added to the ttf and the running
index is decremented.

6.1 Reliability Optimization for Applications
The objective function (lifetime quotient) of the opti-
mization problem is non-linear; a gradient-based fast
heuristic is proposed to solve it. This is shown as pseudo-
code in Algorithm 3. The algorithm starts from an initial
allocation, computed using the native SDF 3 tool (line 2).
Subsequently, the algorithm remaps every actor to every
core to determine a priority function defined as

P =
{ lqn−lq

T−Tn
if Tn < T

(lqn − lq) otherwise
(24)

Two conditions are considered in the priority computa-
tion: if the throughput of the current allocation (Tn) is
lower than the original throughput (T), a gradient func-
tion is used to calculate its priority i.e.,assignments that
increase the lifetime quotient with the least throughput
degradation are given higher priorities. Conversely, if
the current throughput is higher than the original one,
high priorities are given to assignments with the largest
increase in the lifetime quotient.

The algorithm remaps actor ai to a core cj at operating
point k (lines 6 - 8). The actor distribution and the
operating point of actor ai are changed (line 10). These

Algorithm 3 REOpt(): Reliability and energy optimization for an
application.
Input: Gapp, Garc and throughput constraint Tc

Output: actor distribution and operating point matrices
(Md Mo

)
, which

maximize lq
1: Initialize Mo =

(
0 0 · · · 1

)
2: [Md S T] = SDF 3(Gapp,Garc)
3: while true do
4: Pbest = 0, Mbest

d = Md, best found = false
5: lq = CalculateLQ(Md,Mo,S,T)
6: for all ai ∈ A do
7: for all cj ∈ C do
8: for all k ∈ [0, Nf − 1) do
9: Mtemp

d = Md and Mtemp
o = Mo

10: Update Mtemp
d ,Mtemp

o using xi,j = yi,k = 1 and xi,l =
yi,m = 0, ∀l �= j and ∀m �= k

11: [Sn Tn] = MSDF 3(Mtemp
d ,Mtemp

o ,Gapp,Garc)
12: lqn = CalculateLQ(Mtemp

d ,Mtemp
o ,Sn,T)

13: Compute P using Equation 24
14: if Tn > Tc and P > Pbest then
15: Pbest = P , Mbest

d = Mtemp
d , Mbest

o = Mtemp
o ,

best found = true, T = Tn

16: end if
17: end for
18: end for
19: end for
20: if best found then
21: Md = Mbest

d and Mo = Mbest
o

22: else
23: break
24: end if
25: end while
26: Return

(Md Mo

)

matrices are used by the MSDF 3 tool to compute the
throughput and schedule corresponding to the allocation
Mtemp

d (line 11). The CalculateLQ function computes
the lifetime quotient using Equation 12 to compute the
energy and Algorithm 2 to compute the MTTF. The
algorithm computes the priority function (line 13). If this
priority is greater than the best priority obtained thus far
and the throughput constraint is satisfied, the best values
are updated (line 15). The algorithm continues to remap
as long as an assignment can be found without violating
the throughput requirement. When no such remapping
is possible, the algorithm terminates.

6.2 Reliability Optimization for Use-cases
In this section, the use-case level optimization problem is
formulated based on the results obtained in Section 6.1.
It is to be noted that when multiple applications are
enabled simultaneously, the temperature due to the ex-
ecution of one application is dependent not only on
the temperature of the cores on which it is executed,
but also on the temperature due to other applications
executing simultaneously. As a result, the wear-out (or
the MTTF) due to single application can be significantly
different than the actual wear-out (or the MTTF) for use-
cases. This limitation is addressed using the pessimism
introduced in the temperature model. Specifically, to
determine the temperature for different cores during
single application mode, all unused cores in the ar-
chitecture (those, which can potentially execute other
applications in multi-application use-case scenario) are
considered to be operating, and their temperature effect
are incorporated in determining the temperature of the
actual operating cores. Although this gives a pessimistic
bound on the temperature (and hence, the reliability),
the approach simplifies the problem solution for multi-
application use-cases.

As indicated previously, the ThRiCoDB contains 3D
databases with throughput and MTTF number for every
core count of every application. The problem addressed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 9

Algorithm 4 Core distribution for use-cases.
Input: ThRiCoDB
Output: Distribution of cores among applications
1: Initialize : zi = 0, 1 ≤ i ≤ n
2: Initialize : RiList.push(Ai, zi, 0), 1 ≤ i ≤ n
3: for j = 1 to Nc do
4: RiList.sort()
5: Let, Ak = Task with least MTTF
6: zk = zk + 1
7: Mk = ThRiCoDB.getMTTF (Ak, zk)
8: RiList.update(Ak, zk,Mk)
9: end for

here is to merge these 3D databases for applications
enabled simultaneously such that the distribution of the
cores among these applications maximizes the system
MTTF. For the ease of problem formulation, the follow-
ing notations are defined:

A1, · · · , An = n applications enabled simultaneously
zi = number of cores for application Ai

Mi = MTTF of Ai mapped on zi cores
= ThRiCoDB.getMTTF (zi)

Ti = Throughput of Ai mapped on zi cores
= ThRiCoDB.getThr(zi)

6.2.1 Formulation
The optimization problem is

maximize min
i

{Mi} subject to
n∑

i=1

zi ≤ Nc (25)

6.2.2 Solution
Algorithm 4 provides the pseudo-code to solve Equa-
tion 25. A list is defined (RiList) to store the applications
(their IDs) of the use-case, the number of cores dedicated
to it, and the corresponding MTTF value. For every core
in the system (line 3), the RiList is sorted to determine
the application with the least MTTF (lines 4 - 5). A core is
dedicated to this application (line 6); the corresponding
MTTF is fetched from the ThRiCoDB (line 7), and the
RiList is updated.

7 EXPERIMENTS AND DISCUSSIONS
Experiments are conducted with real-life as well as
synthetic SDFGs on a multiprocessor system with cores
arranged in a mesh architecture. The synthetic SD-
FGs are generated using the SDF 3 tool [13] with the
number of actors ranging from nine to twenty-five.
These encompass both computation and communication
dominated applications. The real-life SDFGs are H.263
Encoder, H.263 Decoder, H.264 Encoder, MPEG4 Decoder,
JPEG Decoder, MP3 Encoder and Sample Rate Converter.
Additionally, two non-streaming applications are also
considered for this work. These are FFT and Romberg In-
tegration from [30]. The supported voltage and frequency
pairs are reported in Table 2, based on ARM Cortex-
A8 core [31]. Although these voltage-frequency pairs are
assumed for simplicity, the proposed algorithm and the
temperature model can be used with any architecture
with any supported voltage-frequency pairs.

The bit energy (Ebit) for modeling communication
energy of an application is calculated using the formulas
provided in [28] for packet-based NoC with Batcher-
Banyan switch fabric using 65nm technology parameters
from [32]. The parameters used for computing MTTF
are the same as in [3] [8] [10]. The scale parameter of

TABLE 3
Execution time (s) of the MSDF3 tool

Actors
Multiprocessor platform

6 cores 9 cores 12 cores 16 cores
8 3.1 7.6 7.6 7.6

16 6.8 10.1 26.8 101.1
24 217.4 241.7 323.0 409.8
32 899.4 1021.4 2211.0 2789.9

each core is normalized so that its MTTF under idle
(non-stressed) condition is 10 years. All algorithms are
coded in C++ and used with SDF 3 tool for throughput
and schedule construction and HotSpot for temperature
characterization. Additionally, Matlab regression toolbox
is used for modeling the spatial dependency.

7.1 Time Complexity
The time complexity of the algorithms are calculated as
follows. There are Nc loops in Algorithm 1 for each
application. In each loop, the algorithm executes the
REOpt(), the MSDF 3(), and the iterative technique to
compute the MTTF (i.e., Algorithm 2). The complexity of
Algorithm 2 is calculated as follows. Assuming lines 3 - 7
can be computed in unit time, the worst case complexity
of this algorithm is C2 = O (Nc) since Nmin

c ≤ Nc. The
complexity of REOpt() (Algorithm 3) is computed as
follows. Let there be η iterations of the outer while loop
(lines 3 - 25). In each iteration, the algorithm maps each
actor to each core at each operating point to determine
its reliability. The complexity of the this algorithm (C3)
is C3 = O

(
η ·Na ·Nc ·Nf ·O(MSDF 3) · C2

)

The MSDF 3 engine computes the schedule starting
from a given actor distribution. This can be performed in
O (Na logNa +Na ·£) (ref. [33]), where £ is the average
number of successors of an actor. Therefore,

C3 = O (η · Na · Nc · Nf · (Na logNa + Na · £) · Nc) = O
(
N

5
a · Nf

)
(26)

where Nc,£ ≤ Na. The overall complexity of the
reliability-energy joint optimization for each application
is C1 = O

(
C3 + O

(
MSDF 3) + C2

)
= O

(
N5

a · Nf

). The execution
time of the MSDF 3 tool is reported in Table 3.

Finally, the complexity of Algorithm 4 is calculated as
follows. For every iteration of the outer loop (number
of cores), sorting of MTTF is performed once followed
by the memory lookup. If the memory lookup time is
assumed to be constant and there are n applications en-
abled simultaneously on Nc cores, every loop is executed
in O(n log n). The overall complexity of Algorithm 4 is
therefore O(Nc×n log n). On the multiprocessor platform
considered, this algorithm takes between 80-100μsec for
two to six simultaneous applications on an architecture
with nine homogeneous cores.

7.2 Validation of the Temperature Model
The temperature model in Equation 15 incorporates only
the voltage and frequency of the one-hop neighbors
with all other cores operating at the highest operating
point of (1.35V, 1GHz). To determine the pessimism in
this approach, Figure 8 plots the temperature variation
obtained using the simplified model of Equation 15, in
comparison with the temperature obtained using the
HotSpot tool by varying the operating points of the other
neighbors. For this experiment, the execution time of
the synthetic task is set to 300s to enable the proposed
temperature model to reach its steady-state phase. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 10

OPP50 OPP100 OPP150 OPP1G
0.91

0.94

0.97

1

Operating points of ARM cores

N
or

m
al

iz
ed

te
m

pe
ra

tu
re

of
c i
(◦
C
)

Temperature from the model
All one-, two- and three-hop neighbors
All one- and two-hop neighbors

Fig. 8. Temperature variation of the proposed model.

TABLE 4
MTTF estimation accuracy. The table reports average
temperature (◦C) and MTTF (years) for 5 applications.

Applications HotSpot Model of [3], [5] Proposed Model
FFT 60.5◦C (8.0 yrs) 79.4◦C (4.8 yrs) 68.0◦C (6.7 yrs)

MPEG4 52.2◦C (9.0 yrs) 67.2◦C (6.7 yrs) 56.7◦C (8.5 yrs)
JPEG 43.9◦C (9.8 yrs) 55.4◦C (8.2 yrs) 47.6◦C (9.6 yrs)
MP3 58.0◦C (8.1 yrs) 74.1◦C (5.6 yrs) 62.7◦C (7.5 yrs)
SRC 45.9◦C (9.9 yrs) 61.7◦C (7.2 yrs) 53.3◦C (8.7 yrs)

temperature data obtained from the HotSpot tool are the
steady-state values generated by varying the operating
point of core ci and all of its one- and two-hop neighbors
in lock-step, with all other cores set as idle. In terms of
the HotSpot specification, this setup translates to varying
the power of ci and its one- and two-hop neighbors with
the values from Table 2, and setting the power dissipa-
tion as zero for all other cores. The temperature of core
ci obtained from the HotSpot tool (in ◦C) is normalized
with respect to the temperature obtained from the model
for the different operating points. Similarly, the results
for one-, two-, and three-hop neighbors are obtained.
As seen from the figure, with the one- and two-hop
neighboring cores operating at OPP50, the temperature
from the proposed model is an overestimate by 6.4%
(9.5 ◦C in absolute terms). This overestimation decreases
as the operating point is increased. This is expected, as
more cores operate at the highest operating point, the
temperature from the model is close to the temperature
from the HotSpot tool. A similar trend is obtained for
the one-, two-, and three-hop neighbors. For this plot,
the temperature difference between the proposed model
and the HotSpot tool is less than 0.1% at OPP1G.

7.3 MTTF Estimation Accuracy
To determine the accuracy of the proposed model in
estimating the MTTF, an experiment is conducted with
a set of real-life applications on the multiprocessor sys-
tem. For each of these applications, one mapping and
the corresponding schedule are determined using the
unmodified SDF 3 tool. These are then fed to three
temperature models – the HotSpot tool, the temperature
model of [3], and the proposed temperature model. The
average temperature for the schedule and the corre-
sponding MTTF are reported in Table 4. As can be
seen, the temperature using the proposed model is an

0 10 20 30
30

40

50

60

70

80

Time (ms)

Te
m

pe
ra

tu
re

(◦
C

)

SSDTP [9]
Proposed
Ref. [8]

Fig. 9. Comparison with existing temperature models.

overestimate by an average of 5.5◦C for all these ap-
plications. This overestimation is due to the pessimism
introduced in the model to simplify the solution. In
terms of MTTF, this temperature overestimation leads
to an MTTF underestimation by an average 0.8 years.

In comparison with the temperature model of [3] and
[5], the proposed model improves the MTTF estimation
efficiency by an average 21%. Although not explicitly
shown here, despite of the HotSpot tool being accurate,
the inclusion of the same in the design space exploration
leads to an exponential execution time. An experiment
with an SDFG composed of 8 tasks executed on a
multiprocessor platform of 6 cores takes more than 12
hours when the HotSpot tool is integrated in the explo-
ration framework. On the other hand, the same explo-
ration with the proposed model takes an approximate
4.5 hours, clearly demonstrating its superior accuracy-
execution time trade-off.

7.4 Comparison with Existing Temperature Models
Finally, the proposed temperature model is compared
with the steady-state dynamic temperature profile (SS-
DTP) generated using the iterative technique of [9],
and the steady-state temperature model of [8]. A syn-
thetic SDFG is considered for this experiment with a
throughput requirement of 80 iterations per second.
This translates to a steady-state period of 12.5ms. This
SDFG is executed on a multiprocessor system with 9
cores. The steady-state iteration of the SDFG corresponds
to a period of 12ms. The power profile of the SDGF
varies within iteration, and this variable power profile
is repeated every iteration. With such a variable power
profile repeated periodically, the steady-state tempera-
ture is not constant, but varies according to the periodic
power pattern as shown in Figure 9, with the red dashed
line showing the results obtained using the temperature
model of [9]. For the same power profile, the results with
the proposed model are shown in the same figure with
black solid line. The mean temperature for this two tem-
perature plots are 63.5◦C and 66.1◦C, respectively. The
temperature model of [8] assumes a steady-state value
for the duration of operation, which corresponds to the
average power in this duration. This is shown with blue
solid line in the figure and corresponds to a temperature
of 75◦C. (11.5◦C difference from the average temperature
of [9]). Thus, in comparison to the temperature model
of [9], the proposed temperature model is more accurate
than the model of [8].

A point to note here is that, although the proposed
model results in an average temperature close to that
obtained using the accurate model of [9], the thermal
cycling is not captured accurately leading to a mispredic-
tion of the thermal cycling related MTTF. However, the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 11

TABLE 5
Impact of Ignoring the Temperature Transient Phase.

Apps
MTTF using the MTTF using the MTTF using the

model of [3] model of [19] proposed model

FFT 6.1 5.4 6.7

MPEG4 7.2 6.8 8.5

JPEG 8.6 9.4 9.6

MP3 6.4 6.1 7.5

SRC 7.9 8.7 8.7

synth16 6.8 6.0 6.8

advantage is its simple form (non-iterative as opposed
to the iterative technique of [9]), which can be included
in the design space exploration, especially for multi-
application use-cases.

7.5 Impact of Temperature Misprediction
As mentioned in Section 4, some existing techniques
ignore the transient phase of the temperature. This leads
to an inaccuracy in the temperature prediction and a
corresponding inaccuracy in the MTTF computation.
Furthermore, ignoring the spatial dependency also leads
to temperature misprediction. To demonstrate the impor-
tance of the transient phase and the spatial dependency
of the temperature on the MTTF results, an experiment
is conducted with six applications (five real-life and
one synthetic) on the multiprocessor platform with nine
cores. Table 5 reports three MTTF values (in years):
the MTTF obtained using the proposed technique with
the temperature model of [3] that considers steady-state
temperature phase only; the MTTF obtained using the
proposed technique with the temperature model of [19]
that considers the temporal dependency only; and the
MTTF obtained using the proposed technique with the
proposed temperature model.

For the FFT application, the MTTF value estimated
by ignoring the transient phase is 0.6 years lower than
the MTTF value estimated using the proposed approach
(column 2 vs column 4). For this application, the MTTF
value estimated by ignoring the spatial dependency is
1.3 years lower than that estimated using the proposed
approach (column 3 vs column 4). A similar trend is
observed for MP3 Decoder and H.264 Encoder. These
results highlight the fact that the MTTF estimation ac-
curacy is lower when the spatial dependency is ignored
as compared to ignoring the transient phase. This sig-
nifies the importance of spatial temperature component
in the temperature estimation. Finally, as discussed in
Section 1, considering the steady-state temperature is
accurate only if the execution times of the actors of an
application are comparable to the time constant of the
RC equivalent circuit. This is shown for the synthetic
application synth16 (with 16 actors) in the table. The
execution times of the actors are generated with a mean
of 200s and standard deviation of 20s. As can be seen,
the MTTF obtained using the proposed model and the
model of [3] are the same.

Thus far, the validation of the proposed temperature
model is presented. In the next few subsections, we
present the results to validate the proposed approach.

7.6 MTTF Considering Task Remapping
As indicated in Section 3.4, modern multiprocessor sys-
tems support remapping of tasks (actors in the SDFG
terminology) on detection of faults. The MTTF for these
systems need to be computed by considering task remap-
ping, as opposed to the naive way of considering the
time to the first fault. To determine the MTTF differences

TABLE 6
Processor years considering task remapping.

Apps
PY PY with task remapping Throughput Performance

with TTFF 6 cores 5 cores 4 cores Total Constraint 6 cores 5 cores 4 cores
FFT 37.9 37.9 1.6 0.3 39.8 1 1.1 0.90 0.88

MPEG4 39.0 39.0 8.8 2.6 50.4 1 1.01 0.98 0.79
H.264 42.4 42.4 5.5 0.8 48.7 1 1.00 0.97 0.89
JPEG 46.9 46.9 8.2 2.4 57.5 1 1.00 1.00 1.00
MP3 42.6 42.6 1.6 0.3 44.5 1 1.00 0.99 0.97
SRC 45.2 45.2 6.0 0.9 52.1 1 1.01 0.92 0.77

Average 15.1% 0.96 0.88

in the two computation techniques, experiments are
conducted on a multiprocessor system with six cores
and a set of six real-life applications. This is shown in
Figure 10a. There are two bars for every application. The
left bar is for the MTTF considering the first failure and
the right one for MTTF considering re-mapping. As seen
from the figure, the two MTTF values are similar for FFT
and MP3 decoder applications. However, for MPEG4
application (with MTTF constraint of 6.5 years), the two
MTTFs differ by ≈25% (time to first failure is 6.8 years
and MTTF considering remapping is 8.5 years). This
difference implies that if task remapping is allowed for a
multiprocessor system, the design space exploration can
potentially search for another energy efficient mapping,
trading the 1.7 years lifetime but still satisfying the MTTF
requirement. On average for all applications considered,
the MTTF improvement is 15%. To give more insight on
the reason for such low MTTF difference for applications
such as FFT, as opposed to say, JPEG decoder, Figure 10b
plots the mean and the standard deviation of the aging of
the different cores for the six applications. The standard
deviation of the aging values is a measure of how much
the aging of the individual cores differ from the mean
value. A low standard deviation indicates a balanced
situation with all the cores suffering similar wear-out. On
the other hand, a high standard deviation indicates some
cores age faster than others. The standard deviation is
normalized with respect to the mean value of the aging.

As seen from the figure, for applications such as
FFT and MP3 Encoder, the standard deviation of the
aging parameters is close to zero and thus the wear-out
experienced in the cores due to these applications are
similar. For these applications, the MTTF considering the
first failure is similar (less than 0.5% lower on average)
to the MTTF considering remapping. This is intuitive,
because with all cores suffering similar wear-outs, the
break point (the time at which a core fails due to wear-
out) for all the cores are similar and therefore remapping
leads to an insignificant gain in lifetime. For all the other
applications, the standard deviations are high, with some
applications having standard deviation as high as 60%
of the corresponding mean value. For these applications,
the aging values are not balanced. Although a balanced
aging leads to a higher overall MTTF, a further investi-
gation into these applications reveal that the balanced
aging mapping for these applications consumes high
energy; therefore, the proposed gradient-based heuristic
selects the mapping with non-balanced aging, but with
significantly low energy consumption. For these applica-
tions, the MTTF considering remapping is higher by as
much as 24% (average 10%) than the MTTF computation
considering the time to the first failure (TTFF).

Table 6 reports the processor years considering the time
to the first failure and the overall lifetime considering
task remapping. For demonstration purpose, only two
faults are allowed, and therefore the table reports up to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 12

FFT MPEG4 H.264 JPEG MP3 SRC
0

2

4

6

8

10
M

TT
F

(Y
ea

rs
)

(a) MTTF underestimation

MTTF considering first failure
MTTF considering remapping

FFT MPEG4 H.264 JPEG MP3 SRC
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

A
gi

ng

(b) Mean and standard deviation of aging

Mean
Standard deviation

Fig. 10. MTTF considering task remapping.

4 cores used. Column 2 reports the processor years con-
sidering the time to the first failure. This is the aggregate
years spent with all the 6 cores active. The processor years
with task remapping are shown in columns 3, 4 and 5,
with the total in column 6. Specifically, column 3 reports
the aggregate years spent with all the 6 cores active;
column 4 reports the aggregate years with 5 cores active;
and column 5 reports the aggregate years spent with 4
active cores. As seen from the table, the total processor
years considering task remapping for MPEG4 is 30%
higher than the processor years considering TTFF. This
improvement is due to the non-zero processor years with
5 and 4 active cores. This improvement signifies that,
even after the first fault, the multiprocessor system can
be exploited to deliver 30% of the performance delivered
during the time to the first fault. A similar trend is
observed for the other applications in the table. On
average, the processor years considering task remapping is
15% higher than the processor years considering the time
to the first failure.

Finally, columns 7-10 of Table 6 report the normalized
throughput obtained with different number of operat-
ing cores. Throughput numbers for an application are
normalized with respect to the throughput constraint
for the application. For some application such as JPEG
decoding, there is no throughput degradation even with
4 cores, signifying that task remapping increases lifetime
of a device with no throughput degradation. For other
applications such as MPEG4 decoding, the throughput
constraint is satisfied with 6 cores only. The throughput
degradation increases with reduced number of cores,
with a degradation of 21% with 4 cores. In terms of
frames per second (fps) requirement, MPEG4 achieves
19fps (instead of required 24fps) with 4 cores, causing a
video quality degradation. On average for all the appli-
cations considered, the average throughput degradation
with 5 and 4 cores are respectively 4% and 12%. To
conclude, a multiprocessor system with task remapping
allows operation beyond first failure, however, at the
expense of reduced throughput.

FFT MPEG4 H.264 JPEG MP3 SRC
0

0.5

1

N
or

m
al

iz
ed

En
er

gy

(a) Energy comparison

MMax [5]
REJoint [8]
Proposed

FFT MPEG4 H.264 JPEG MP3 SRC
0

0.5

1

1.5

N
or

m
al

iz
ed

M
TT

F

(b) MTTF comparison

MMax [5]
REJoint [8]
Proposed

Fig. 11. Energy-reliability joint optimization results.

7.7 Reliability and Energy Improvement
Figure 11 plots the energy and reliability results of
the proposed approach in comparison to the existing
reliability-energy joint optimization technique of [8] for
six real-life application. Additionally, to determine the
reliability benefit of the dynamic voltage and frequency
scaling, these two techniques are compared with the
highest MTTF technique of [5] (referred to as MMax),
which determines MTTF by solving a convex optimiza-
tion problem. These results are represented as three bars
corresponding to each application. A point to note here
is that, all the application SDFGs are first converted
to homogeneous SDFGs (HSDFGs) before applying the
techniques of [5] and [8]. It is to be noted that the
conversion of an SDFG to HSDFG is of exponential
complexity and therefore the proposed technique is the
first technique for reliability-energy-performance opti-
mization for SDFGs.

The following trends can be followed from the figure.
The energy consumption using the proposed approach
and the existing energy-reliability joint optimization
technique of [8] are lower than the highest MTTF tech-
nique of [5] that does not consider dynamic voltage and
frequency scaling. The MTTF obtained using these tech-
niques are also higher than the MTTF of [5]. These results
signify that, by slowdown of the actor computation, the
reliability can be improved significantly.

On average for all the applications considered, the
existing optimization technique minimizes energy con-
sumption by 10% with a corresponding reliability im-
provement of 26% as compared to the highest MTTF
technique. A point to note here is that, this technique
is based on sequential execution of applications; there-
fore, the throughput slack (difference between the actual
throughput and the throughput constraint) is low, im-
plying a limited scope for actor slowdown. The energy
improvement in this technique is, therefore, not signif-
icant. The proposed technique achieves better results
than this technique by minimizing energy consumption
further by an average 15%, and increasing lifetime by
an additional 18%. In comparison to [5], the proposed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 13

TABLE 7
Design space exploration time.

Actors
Design Space Exploration Time (in minutes)

cores = 4 cores = 6
Convex [5] SA [8] Proposed Convex [5] SA [8] Proposed

4 8 10 4 18 18 6
6 79 51 23 157 83 36
8 677 319 154 1013 524 274

A-B C-D E-F G-H H263-MP3SRC-FFT
0

2

4

6

8

M
TT

F
(y

ea
rs

)

ECD
TCD
Proposed

Fig. 12. MTTF improvements with synthetic use-cases.

technique minimizes energy consumption by 24% and
increases lifetime by 47%.

7.8 Design Space Exploration Speed-up
To highlight the speedup achieved by using the pro-
posed design space exploration heuristic to jointly opti-
mize energy and reliability, Table 7 reports its execution
time in comparison with the convex optimization based
technique of [5] and the simulated annealing based
technique of [8]. The execution time are recorded by
running synthetic SDFGs with varying number of actors
on two multiprocessor systems – with four and six cores,
respectively. The number of actors is limited to 8 as the
convex optimization fails to provide results beyond 8
actors, even for running more than 12 hours. The time
reported in this table are the average results obtained by
generating multiple SDFGs. For example, the execution
time for 6 actors on 4 cores is the average time taken
by the three techniques for 10 different synthetic SDFGs,
with 6 actors each. For fair comparison, the time taken
by the temperature pre-characterization step is omitted
for all these techniques and the time reported are the
time for the respective technique – convex solver for [5],
simulated annealing for [8], and proposed heuristic of
Algorithm 3. As seen from the table, for small number
of actors the execution time of the convex solver is
comparable to that of the simulated annealing (better for
4 actors on 4 cores). However, as the number of actors
is increased, the simulated annealing outperforms the
convex solver. In comparison to these two techniques,
the proposed approach improves execution time signif-
icantly, achieving benefits for small and large problem
sizes. On average, the execution time using the proposed
technique is 70% and 50% lower with respect to [5]
and [8], respectively.

7.9 Use-case Optimization Result
Since this work is the first work on use-case level
MTTF optimization, there is no reference for compari-
son. However, two standard strategies are developed to
distribute the cores among concurrent applications in a
use-case – throughput-based core distribution (TCD) and
equal core distribution (ECD). For implementing these
approaches, the cores of the architecture are first dis-
tributed to the applications based on the corresponding

strategy (equally or in the ratio of the throughput). The
proposed optimization technique is then applied on indi-
vidual applications to determine their MTTF. The overall
MTTF of the use-case is the minimum of the MTTFs of
the concurrent applications. The MTTFs obtained for a
use-case using both these strategies, are compared with
the MTTF obtained using the proposed MTTF-based core
distribution technique. To demonstrate the advantage of
the proposed approach for use-case optimization, a set
of six synthetic use-cases are generated. Four of these
uses-cases are composed of synthetic applications and
the two others are composed of real-life applications.
These use-cases are executed on a multiprocessor system
with nine cores. Figure 12 plots the MTTF for the three
approaches for these uses-cases. The composition of
each use-case is indicated in the label of the figure,
where the application with alphabets are the synthetic
applications. For the use-case A-B, the MTTF obtained
by distributing the cores equally is 4.6 years. The TCD
achieves better results by distributing the cores in the
ratio of their throughput requirements. The improve-
ment in this technique is 27%. The proposed technique
improves this further by achieving 3% higher lifetime. A
similar trend is observed for all other use-cases. As seen
from the figure, for some use-cases such as A-B and G-
H, the improvements using the proposed technique are
insignificant. For other use-cases such as E-F and SRC-
FFT, the improvements are more than 20%. On average
for all the six synthetic use-cases, the proposed technique
improves MTTF by 10% as compared to TCD and 140%
as compared to ECD.

8 CONCLUSIONS
In this work, a simplified temperature model is pro-
posed, based on off-line temperature characterization
using the HotSpot tool. Based on this model, a gradient-
based fast heuristic is proposed to determine the voltage
and frequency of cores such that the energy consumption
is minimized, simultaneously maximizing the system
mean time to failure (MTTF). Experiments are conducted
on a multiprocessor system using a set of synthetic
and real-life application SDFGs, executed individually
as well as concurrently. Results demonstrate that the
proposed approach minimizes energy consumption by
an average 24% and maximizes lifetime by 47% as com-
pared to the existing work. Additionally, the proposed
MTTF-aware core distribution for concurrent applica-
tions results in an average 10% improvement in lifetime
as compared to the performance-aware core distribution.

REFERENCES
[1] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The Case for

Lifetime Reliability-Aware Microprocessors,” in Proceedings of the
Annual International Symposium on Computer Architecture, 2004.

[2] Z. Gu, C. Zhu, L. Shang, and R. Dick, “Application-Specific
MPSoC Reliability Optimization,” IEEE Transactions on Very Large
Scale Integration Systems, 2008.

[3] L. Huang, F. Yuan, and Q. Xu, “On Task Allocation and Schedul-
ing for Lifetime Extension of Platform-Based MPSoC Designs,”
IEEE Transactions on Parallel and Distributed Systems, 2011.

[4] B. H. Meyer, A. S. Hartman, and D. E. Thomas, “Cost-effective
Lifetime and Yield Optimization for NoC-based MPSoCs,” ACM
Transactions on Design Automation of Electronic Systems, 2014.

[5] A. Das, A. Kumar, and B. Veeravalli, “Reliability-driven Task
Mapping for Lifetime Extension of Networks-on-chip Based Mul-
tiprocessor Systems,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2013.

[6] A. K. Singh, A. Das, and A. Kumar, “Energy Optimization by
Exploiting Execution Slacks in Streaming Applications on Multi-
processor Systems,” in Proceeding of the Annual Design Automation
Conference, 2013.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 14

[7] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and
H. Corporaal, “Throughput-constrained DVFS for Scenario-Aware
Dataflow Graphs,” in Proceedings of the IEEE Symposium on Real-
Time and Embedded Technology and Applications, 2013.

[8] L. Huang and Q. Xu, “Energy-efficient Task Allocation and
Scheduling for Multi-mode MPSoCs Under Lifetime Reliability
Constraint,” in Proceedings of the Conference on Design, Automation
and Test in Europe, 2010.

[9] I. Ukhov, M. Bao, P. Eles, and Z. Peng, “Steady-state Dynamic
Temperature Analysis and Reliability Optimization for Embed-
ded Multiprocessor Systems,” in Proceeding of the Annual Design
Automation Conference, 2012.

[10] A. Das, A. Kumar, and B. Veeravalli, “Temperature Aware Energy-
Reliability Trade-offs for Mapping of Throughput-Constrained
Applications on Multimedia MPSoCs,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe, 2014.

[11] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan, “Temperature-Aware Microarchitec-
ture: Modeling and Implementation,” ACM Transactions on Archi-
tecture and Code Optimization, 2004.

[12] A. Kumar, B. Mesman, H. Corporaal, and Y. Ha, “Iterative Prob-
abilistic Performance Prediction for Multi-Application Multipro-
cessor Systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2010.

[13] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Pro-
ceedings of the International Conference on Application of Concurrency
to System Design, 2006.

[14] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini,
“Workload and User Experience-aware Dynamic Reliability Man-
agement in Multicore Processors,” in Proceeding of the Annual
Design Automation Conference, 2013.

[15] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Ku-
mar, and B. Veeravalli, “Reinforcement Learning-Based Inter- and
Intra-Application Thermal Optimization for Lifetime Improve-
ment of Multicore Systems,” in Proceeding of the Annual Design
Automation Conference, 2014.

[16] A. Mutapcic, S. Boyd, S. Murali, D. Atienza, G. De Micheli, and
R. Gupta, “Processor Speed Control With Thermal Constraints,”
IEEE Transactions on Circuits and Systems I: Regular Papers, 2009.

[17] T. Chantem, X. Hu, and R. Dick, “Temperature-Aware Scheduling
and Assignment for Hard Real-Time Applications on MPSoCs,”
IEEE Transactions on Very Large Scale Integration Systems, 2011.

[18] J. Cui and D. Maskell, “A Fast High-Level Event-Driven Thermal
Estimator for Dynamic Thermal Aware Scheduling,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2012.

[19] M. Bao, A. Andrei, P. Eles, and Z. Peng, “Temperature-aware Idle
Time Distribution for Energy Optimization with Dynamic Voltage
Scaling,” in Proceedings of the Conference on Design, Automation and
Test in Europe, 2010.

[20] L. Shang, L.-S. Peh, A. Kumar, and N. K. Jha, “Thermal modeling,
characterization and management of on-chip networks,” in Pro-
ceedings of the International Symposium on Microarchitecture, 2004.

[21] D. Rai, H. Yang, I. Bacivarov, and L. Thiele, “Power Agnostic
Technique for Efficient Temperature Estimation of Multicore Em-
bedded Systems,” in Proceedings of the International Conference on
Compilers, Architecturesand Synthesis for Embedded Systems, 2012.

[22] C.-L. Chou and R. Marculescu, “FARM: Fault-aware Resource
Management in NoC-based Multiprocessor Platforms,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 2011.

[23] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, 1987.

[24] S. Stuijk, M. Geilen, and T. Basten, “Exploring Trade-offs in Buffer
Requirements and Throughput Constraints for Synchronous
Dataflow Graphs,” in Proceeding of the Annual Design Automation
Conference, 2006.

[25] S. Sriram and S. Bhattacharyya, Embedded Multiprocessors; Schedul-
ing and Synchronization. Marcel Dekker, 2000.

[26] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor,
“Concepts and Implementation of Spatial Division Multiplexing
for Guaranteed Throughput in Networks-on-Chip,” IEEE Trans-
actions on Computers, 2008.

[27] W. Liao, L. He, and K. Lepak, “Temperature and Supply Voltage
Aware Performance and Power Modeling at Microarchitecture
Level,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2005.

[28] T. T. Ye, L. Benini, and G. De Micheli, “Packetized On-Chip
Interconnect Communication Analysis for MPSoC,” in Proceedings
of the Conference on Design, Automation and Test in Europe, 2003.

[29] J. Hu and R. Marculescu, “Energy-Aware Communication and
Task Scheduling for Network-on-Chip Architectures Under Real-
Time Constraints,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2004.

[30] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou,
L. Benini, and G. De Micheli, “NoC Synthesis Flow for Cus-
tomized Domain Specific Multiprocessor Systems-on-Chip,” IEEE
Transactions on Parallel and Distributed Systems, 2005.

[31] G. Coley, “Beagleboard System Reference Manual,” BeagleBoard.
org, p. 81, 2009.

[32] W. Zhao and Y. Cao, “Predictive Technology Model for nano-
CMOS Design Exploration,” ACM Journal on Emerging Technologies
in Computing Systems, 2007.

[33] A. Das, A. Kumar, and B. Veeravalli, “Energy-aware Task Map-
ping and Scheduling for Reliable Embedded Computing Sys-
tems,” ACM Transactions on Embedded Computing Systems, 2014.

Anup Das Dr. Anup Das received the B.Eng.
degree in Electronics and Telecommunication
Engineering from Jadavpur University, India, in
2004. He received the Ph.D. degree in computer
engineering in the area of embedded systems
from the National University of Singapore, in
2014. He is currently a post-doctoral research
fellow at the University of Southampton. From
2004 to 2007 he was with STMicroelectronics
Ltd as an IC design engineer. From 2007 to
2011 he was with LSI Corporation (formerly
Agere Systems) as design-for-test engineer of
storage SoCs. His research interests include

reliability and energy-aware system architecture, application mapping
and scheduling on multiprocessor platforms and resource management
for multimedia multiprocessor systems.

Akash Kumar Dr. Akash Kumar received the
B.Eng. degree in computer engineering from the
National University of Singapore (NUS), Singa-
pore, in 2002. He received the joint Master of
Technological Design degree in embedded sys-
tems from NUS and the Eindhoven University of
Technology (Tue), Eindhoven, The Netherlands,
in 2004, and received the joint Ph.D. degree in
electrical engineering in the area of embedded
systems from TUe and NUS, in 2009. His thesis
is entitled Analysis, Design and Management of
Multimedia Multiprocessor Systems. In 2004, he
was with Philips Research Labs, Eindhoven, The

Netherlands, where he worked on Reed Solomon codes as a Research
Intern. From 2005 to 2009, he was with TUe as a researcher under
project PreMaDoNA. Since 2009, he has been with the Department of
Electrical and Computer Engineering, NUS. Currently, he is an Assistant
Professor in the department. His research interests include analysis,
architectures, design methodologies, and resource management of
embedded multiprocessor systems. He has published over 30 papers
in leading international electronic design automation journals and con-
ferences on these topics.

Bharadwaj Veeravalli Dr. Bharadwaj Veeravalli
received the BSc degree in physics from Madu-
rai Kamaraj Uiversity, India, in 1987, the masters
degree in electrical communication engineering
from the Indian Institute of Science, Bangalore,
India, in 1991 and the PhD degree from the
Department of Aerospace Engineering, Indian
Institute of Science, Bangalore, India, in 1994.
He did his postdoctoral research in the Depart-
ment of Computer Science, Concordia Univer-
sity, Montreal, Canada, in 1996. He is currently
with the Department of Electrical and Computer
Engineering at the National University of Singa-

pore, as a tenured associate professor. His main stream research inter-
ests include multiprocessor systems, cluster/grid computing, scheduling
in parallel and distributed systems, bioinformatics and computational
biology, and multimedia computing. He is one of the earliest researchers
in the field of divisible load theory (DLT). He is currently serving on
the Editorial Board of the IEEE Transactions on Computers, the IEEE
Transactions on SMC-A, and the International Journal of Computers and
Applications, as an associate editor. He is a senior member of the IEEE
and the IEEE Computer Society.

