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Reliability and Model Fit

Leanne M. Stanley1 and Michael C. Edwards1

Abstract

The purpose of this article is to highlight the distinction between the reliability of test

scores and the fit of psychometric measurement models, reminding readers why it is

important to consider both when evaluating whether test scores are valid for a pro-
posed interpretation and/or use. It is often the case that an investigator judges both

the reliability of scores and the fit of a corresponding measurement model to be

either acceptable or unacceptable for a given situation, but these are not the only
possible outcomes. This article focuses on situations in which model fit is deemed

acceptable, but reliability is not. Data were simulated based on the item characteris-

tics of the PROMIS (Patient Reported Outcomes Measurement Information System)
anxiety item bank and analyzed using methods from classical test theory, factor analy-

sis, and item response theory. Analytic techniques from different psychometric tradi-

tions were used to illustrate that reliability and model fit are distinct, and that
disagreement among indices of reliability and model fit may provide important infor-

mation bearing on a particular validity argument, independent of the data analytic

techniques chosen for a particular research application. We conclude by discussing
the important information gleaned from the assessment of reliability and model fit.
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Psychologists routinely develop tests to measure important theoretical constructs that

cannot be observed directly with the goal of using the resulting scores in basic and

applied scientific work. Providing evidence of the degree to which test scores are

valid for an intended interpretation and/or use is a critical component of the measure-

ment process (American Educational Research Association, American Psychological

Association, & National Council on Measurement in Education, 2014; Kane, 2013;
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Messick, 1989). This often includes (but is not limited to) studying the statistical

properties of test scores in a sample of individuals drawn from a population of inter-

est and using psychometric methods to assess reliability and model fit.

Reliability and model fit are distinct concepts. The former refers to the precision

of scores, representing the degree to which scores are expected to be consistent across

repeated testing occasions (American Educational Research Association et al., 2014).

In the tradition of structural equation modeling (SEM) and confirmatory factor analy-

sis, model fit indices measure discrepancies between observed and model-implied

correlation/covariance matrices. In general, model fit indices represent discrepancies

between observed and model-implied data. It can be helpful to think of reliability and

model fit in terms of the 2 3 2 matrix presented in Figure 1. For the sake of clarity,

this problem has been simplified considerably by assuming that a researcher has

determined criteria for ‘‘acceptable’’ versus ‘‘unacceptable’’ reliability and model fit

appropriate to the research situation. Certainly, these distinctions are not always so

clear, and a level of reliability that is considered acceptable for one purpose, such as

comparing population average scores, may be considered unacceptable for another,

such as comparing individual scores in employee selection.

Given the assumption that both reliability and fit can be categorized as acceptable

or unacceptable, there are four possible outcomes. First, if both reliability and model

fit are deemed acceptable for a given purpose, a researcher can reasonably conclude

that the scores are precise and consistent with the hypothesized dimensional struc-

ture. Second, if both reliability and fit are deemed unacceptable, it is time to consider

alternative models, as neither type of evidence supports the intended scoring strategy.

The conclusions are not quite so clear for the third and fourth cases, in which the

assessment of reliability and model fit appear to provide conflicting evidence about

the extent to which the intended scoring strategy is supported by data. If reliability is

considered acceptable but model fit is not, it is possible that scores reflect multiple

distinct, albeit possibly related, dimensions. Schmitt (1996) illustrated this point,

focusing on the popular coefficient alpha (Cronbach, 1951) as a measure of reliabil-

ity. He demonstrated that a high alpha value alone is not enough to show that a mea-

surement model is supported by data, as alpha does a poor job of detecting

Figure 1. Potential implications when reliability and model fit are deemed acceptable versus

unacceptable.
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underlying multidimensionality. This highlights the point that reliability and model

fit are distinct and that it is important for researchers to assess both when they are

constructing an argument for a particular interpretation and use of test scores.

The fourth potential outcome illustrated in Figure 1 has not received much atten-

tion in the measurement literature and is the focus of the present work. What does it

mean when a model fits well but reliability of the resulting scores is poor? Before

addressing this question, we first present the results of a small simulation. The pri-

mary goal of this simulation is to demonstrate empirically that it is possible to have

‘‘good fit’’ and ‘‘bad reliability’’ simultaneously, as well as to expand on what this

can mean when it is encountered in practice. A secondary goal is to demonstrate that

this is a broad issue and not specific to any particular measure of reliability (or model

fit). Although coefficient alpha is still a widely used measure of reliability, arguments

have been made that it is problematic and should be replaced by other methods for

assessing reliability (e.g., Sijtsma, 2009). Thus, in addition to alpha, we consider a

factor analysis-based reliability index, coefficient omega (McDonald, 1999), as well

as incorporating standard error curves from an item response theory (IRT) approach.

We also use several fit indices drawn from the SEM framework to assess the fit of

corresponding psychometric models.

Method

Simulation Design

Ordinal item response data were simulated using item parameters for a subset of

items from the Patient Reported Outcomes Measurement Information System

(PROMIS) anxiety item bank (Pilkonis et al., 2011), presented in Table 1. These item

Table 1. Calibrated Item Parameters From the PROMIS Anxiety Item Bank.

Threshold

Item Slope 1 2 3 4

1. I found it hard to focus on anything other
than my anxiety

3.86 0.41 1.20 2.05 2.84

2. My worries overwhelmed me 3.64 0.29 0.96 1.71 2.56
3. I felt uneasy 3.64 20.31 0.52 1.50 2.44
4. I felt fearful 3.58 0.27 1.02 1.90 2.64
5. I felt like I needed help for my anxiety 3.53 0.47 0.98 1.80 2.32
6. I felt frightened 3.43 0.42 1.26 2.09 2.82
7. I felt nervous 3.38 20.29 0.56 1.58 2.67
8. I felt anxious 3.34 20.27 0.53 1.51 2.38
9. I felt tense 3.33 20.59 0.24 1.18 2.23
10. It scared me when I felt nervous 3.32 0.55 1.17 2.00 2.70

Note. PROMIS = Patient Reported Outcomes Measurement Information Systems.
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parameters were calibrated from data on 29 five-category items using the logistic

graded response model, an IRT model commonly fit to ordinal data in psychology.

Raw item responses were generated for 10 items and 1,000 simulees in flexMIRT

(Cai, 2013). The generating slopes were multiplied by six different scaling factors to

represent an increasingly unreliably measured unidimensional construct. Slopes were

multiplied by 1, 1/2, 1/3, 1/4, 1/5, or 1/6 with 100 replications for each of these slope

scaling factors. There is a well-established analytic relationship between slopes in the

logistic graded response model and factor loadings for ordinal factor models (Takane

& de Leeuw, 1987; Wirth & Edwards, 2007). Table 2 shows the slopes used to gener-

ate the data converted to the traditional factor loading metric, which may be more

intuitive to readers than the metric of IRT slopes.

Analysis

The simulated data sets were analyzed using a variety of statistical techniques in R

(R Core Team, 2015), Mplus (Muthén & Muthén, 1998-2012), and flexMIRT. For

each data set, coefficient alpha was computed manually in R. Limited-information

estimation was performed in Mplus using mean- and variance-adjusted diagonally

weighted least squares estimation (WLSMV) on a matrix of polychoric correlations,

an estimation technique that tends to work well for ordinal data (Wirth & Edwards,

2007). The estimated item factor loadings were used to compute coefficient omega

in R. Three limited-information fit statistics were extracted from the Mplus output

using the R package MplusAutomation (Hallquist & Wiley, 2014): the root mean

square error of approximation (RMSEA; Steiger & Lind, 1980) and the associated

90% confidence interval, the comparative fit index (CFI; Bentler, 1990), and the

Tucker–Lewis index (TLI; Tucker & Lewis, 1973). These indices are commonly

reported in SEM and factor analysis, and are reviewed in a simulation study by Hu

and Bentler (1999). Full-information estimation was performed in flexMIRT. The

Table 2. Generating Item Factor Loadings.

Item

Slope scaling factor

1 1/2 1/3 1/4 1/5 1/6

1 0.92 0.75 0.60 0.49 0.41 0.35
2 0.91 0.73 0.58 0.47 0.39 0.34
3 0.91 0.73 0.58 0.47 0.39 0.34
4 0.90 0.73 0.57 0.47 0.39 0.33
5 0.90 0.72 0.57 0.46 0.38 0.33
6 0.90 0.71 0.56 0.45 0.37 0.32
7 0.89 0.71 0.55 0.45 0.37 0.31
8 0.89 0.70 0.55 0.44 0.37 0.31
9 0.89 0.70 0.55 0.44 0.36 0.31
10 0.89 0.70 0.55 0.44 0.36 0.31
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development of model fit measures for this type of estimation is an active area of

inquiry (see, e.g., Cai & Monroe, 2013; Edwards, 2013; Maydeu-Olivares, 2013;

Thissen, 2013). To explore their behavior, we obtained from flexMIRT the Akaike

information criterion (AIC; Akaike, 1987) for the fitted model, the ordinal RMSEA

(Joe & Maydeu-Olivares, 2010) for the fitted model and the zero-factor null model,

and the TLI. Additionally, standard error curves were plotted for each slope scaling

factor.

Results

Item parameter recovery results are summarized for each estimation method and each

slope scaling factor in Table 3, including the average bias (estimated parameter–

generating parameter) and root mean square error (RMSE). Generally, item para-

meters were recovered well—certainly in line with expectations given existing simu-

lation studies (Forero & Maydeu-Olivares, 2009; Forero, Maydeu-Olivares, &

Gallardo-Pujol, 2009). There is a slight trend for the RMSE values to be higher for

larger slopes, but as the parameters being estimated are larger this is to be expected

to some extent.

Table 4 summarizes the estimates of reliability and model fit for the simulated

data by slope scaling factor. As expected, the reliability coefficients alpha and omega

decreased quickly as the slopes became weaker. At the same time, the average interi-

tem polychoric correlation became weaker, indicating that item responses were less

closely linked. This highlights the potential diagnostic utility of the average interitem

correlation in reliability assessment because, unlike coefficient alpha, it is not con-

founded by the number of items on a measure. The correlation metric is also widely

used and interpreted by psychologists. The estimated model fit indices (RMSEA,

CFI, and TLI) from the limited-information estimation remained stable for the differ-

ent slope scaling factors. This demonstrates empirically the distinction between the

fit of psychometric models and the reliability of test scores. Unlike the reliability

estimates, which decreased rapidly as the item responses became weaker indicators

of the underlying latent construct, the fit of the unidimensional measurement models

remained quite stable.

The full-information model fit results tell a similar story. The fitted model

RMSEA and TLI behave quite similarly to their limited-information counterparts.

The addition of AIC and the null model RMSEA show that, as the explainable covar-

iance decreases, the utility of a model over no model at all decreases. Average stan-

dard error curves are plotted in Figure 2. Because the generating location parameters

are less concentrated at the lower end of the latent variable continuum, the standard

error values in this region tend to be higher. However, as the average slopes become

weaker, the measurement of the latent construct becomes less precise (i.e., average

standard error increases).
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Discussion

This study focuses on a mostly undiscussed corner in the relationship between relia-

bility and model fit. While many methodologists are comfortable with the theoretical

and functional distinctions between the two concepts, it is our experience that many

applied researchers struggle when confronted with a ‘‘good fitting’’ psychometric

model that produces scores with below-par reliability. We view these results as com-

plementary to those of Schmitt (1996), who eloquently demonstrated cases where

high reliability and poor model fit could coexist. The present work demonstrates

empirically (and conceptually) that reliability and model fit assessment provide dis-

tinct information about the psychometric properties of scores. Given that these results

can occur in practice,1 it is important to consider what this means and what, if any-

thing, should be done when model fit is deemed acceptable and reliability is not.

As mentioned at the outset of this article, given particular decisions about what

constitutes acceptable levels of reliability and model fit, a researcher may find him-

self or herself in any one of the four quadrants of Figure 1. If the model fits well and

the score reliability is deemed acceptable, then fortune (or good planning) has smiled

on the researcher and life proceeds peacefully. If the model does not fit well and the

score reliability is deemed unacceptable, then it seems useful to revisit the basic

assumptions underlying the theoretical development of the instrument. If the model

fits poorly, but the scores are reliable, this can be a sign that what is being treated as

one construct may in fact be multiple constructs. If the model fits well, but the

Figure 2. Test standard error curves for the simulated data sets with six different slope

scaling factors, averaged across replications.
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reliability of the scores is unacceptable, there are several possible causes/courses of

action. First, it is possible that the scale is simply too short. While researchers may

want/need scales to be short for practical reasons, the universe is not always willing

to comply. It may be that more items are needed to reach a targeted level of reliabil-

ity. Second, it seems possible that for some very broad constructs it may be quite dif-

ficult to obtain very high levels of reliability. There is a constant tension between the

breadth of the construct and the consistency of the responses (as often characterized

by alpha in practice). In such contests, alpha usually wins and our scores become

more reliable (as judged by alpha), but tell us about a less conceptually broad con-

struct. Finally, we are reminded that while high levels of reliability/precision are

always nice, they are not always necessary. When making a high-stakes decision

about an individual, one should demand the highest levels of reliability achievable.

On the other hand, when trying to further elaborate a theory using a convenience

sample of 300 undergraduates, a reliability of .6 or .7 might be just fine.
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Note

1. Indeed, it was the appearance of several such situations over the course of the past few

years that motivated us to write this article. The title ‘‘Dear psychometrician—my model

fits but my scale is terrible!’’ was toyed with briefly before we settled on the current one.
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