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Abstract: Airbag systems are important to a car’s safety protection system. To further improve the
reliability of the system, this paper analyzes the failure mechanism of automotive airbag systems
and establishes a dynamic fault tree model. The dynamic fault tree model is transformed into a
continuous-time Bayesian network by introducing a unit step function and an impulse function, from
which the failure probability of the system is calculated. Finally, the system reliability and average
life are calculated and analyzed and compared with the sequential binary decision diagram method.
The results show that the method can obtain more accurate system reliability and effectively identify
the weak parts of the automotive airbag system, to a certain extent compensating for the lack of
computational complexity of dynamic Bayesian networks in solving system reliability problems with
continuous failure processes.
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1. Introduction

An airbag is a protective device used in conjunction with seat belts to aid passenger
safety [1]. It is often used as a last resort in collisions and consists mainly of airbag bags,
sensors, inflators, and igniters. The sensor receives an impact signal and ignites the gas
generator, generating a large quantity of gas, which is filtered and cooled into the airbag,
causing it to break through the liner and rapidly deploy in a very short time, creating an
elastic air cushion in front of the driver or occupant. Airbags can leak and contract in time
to absorb impact energy, thus effectively protecting the human head and chest. They save
the driver and passengers from injury or reduce the degree of injury suffered. The quality of
car airbags is directly related to the safety of the driver and passengers. However, in actual
traffic accidents, airbags sometimes fail to open, causing serious injuries and huge losses to
the driver and passengers [2]. Therefore, it becomes a very important project to improve
the reliability of the individual devices and systems in the automotive airbag system.

One of the common analysis methods used in reliability analysis is fault tree analysis,
which is widely used in fault diagnosis and safety performance studies of components or
systems [3]. The fault tree method has been used in the reliability assessment and design
of systems due to its clear cause–effect relationships, ease of use, and combination of
qualitative and quantitative aspects. However, it should also be noted that the traditional
fault tree analysis method also has its limitations. While it can effectively handle systems
with static logical characteristics, it is not ideal for systems characterized by dynamic
properties such as temporality, redundancy, and correlation [4–6].

Especially in engineering applications, many meta-components or systems are not
simply static, but often have characteristics such as uncertainty, dynamics, and continu-
ity [7–9]. Static fault trees cannot model the reliability of dynamic systems. Therefore,
dynamic fault tree analysis has been developed. Dugan proposed the concept of dynamic
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fault trees in 1990, adding dynamic logic gates such as priority AND gates, cold spare
gates, and cascading priority AND gates on top of static logic gates, forming the Dugan
dynamic fault tree analysis method [10]. Scholars at home and abroad have focused on
the quantitative analysis of Dugan dynamic fault trees [11] and dynamic logic gate expan-
sion [12]. In terms of quantitative analysis of algorithms, the main methods are Markov
chain analysis, Bayesian network analysis, Monte Carlo analysis, and sequential binary
decision diagrams [13–15]. Among them, Boudali et al. [16] introduced the dynamic fault
tree analysis method based on the Markov chain. However, when the system is relatively
complex, this method will lead to the exponential increase in the computation amount with
the increase in the state, so it also has some shortcomings. Walker and Papadopoulos [17]
extended the logical basis of fault trees to enhance the ability of dynamic fault trees to
express temporal correlations. Fault tree analysis is also widely used in various fields.
Pang et al. [18] analyzed and diagnosed the electromagnet manufacturing process based
on fuzzy fault trees and evidence theory. Yang et al. [19] used models such as fault trees to
analyze the spread, identification, and causes of capital-raising frauds. Zhang et al. [20]
used a fault tree model to analyze the collision risk factors of ship collisions, which can
effectively guide rescue efforts.

As can be seen from the above analysis, both static and dynamic fault trees make some
assumptions about the fault state of the system. These include the assumption that the
event has only two states, “normal” and “fault”, without considering the existence of other
intermediate states [21]. As a result, there is a problem of inaccurate description of the
system state and unclear identification of the system failure mode [22], and any errors can
lead to large-scale economic losses [23,24]. In this case, therefore, the failure mechanism
of the system and the logical relationships between events are usually described with the
help of probabilities, but the probabilistic model cannot be described by relying solely on
the logic gates in the fault tree. To make up for the shortcomings of fault trees in this area,
the American scientist Judea Pearl introduced the concept of Bayesian networks in 1988.
This concept has quickly become a hot topic of research and is widely used in various
fields because it combines the well-established theories of probability theory and graph
theory [25]. Bayesian networks are probability-based directed acyclic graphs with which
complex inference problems can be handled [26], which have important applications in
both fault diagnosis and reliability analysis. After analyzing the relationship between
fault trees and Bayesian networks, complex uncertainty problems can be well handled
with the help of Bayesian networks, which represent the interrelationships between nodes
using conditional probability tables. It allows a two-way inference analysis: both forward
calculation of the reliability of the system and backward diagnosis of the influence of one
or some components on the system [27,28]. Bobbio et al. [25] found a way to transform
the traditional static fault tree model into a static Bayesian network. For static Bayesian
networks, the nodes do not contain dynamic logical relationships with each other. Therefore,
static Bayesian networks cannot analyze the system reliability problems of continuous
systems at arbitrary times. In order to fully consider the timing of each event occurring
in the system, the dynamic Bayesian network is formed on the basis of the static Bayesian
network. Dynamic Bayesian networks take into account the conditional independence of
variables, and the number of parameters in the conditional probability table is much lower
than the number of states in the Markov model, so the solution complexity of the Bayesian
network model is low. These advantages of Bayesian network models have led to their
increasing application in system reliability modeling and evaluation [29,30].

The fault tree model is quickly constructed through fault analysis and then converted
directly into a Bayesian network model, which reduces the modeling process. The excellent
bidirectional inference computational capability of Bayesian networks can be applied for
multistate reliability analysis of complex systems, which can complement the shortcomings
of fault tree analysis in multistate analysis and complex system applications. Therefore,
this paper takes an automotive airbag system as a background and draws on the nature of
Bayesian networks. It is discussed how the dynamic fault tree model can be transformed
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into a continuous Bayesian network. The reliability of the automotive airbag system at
any time is derived where the probability distribution obeyed by the failure process of the
system events can be obtained.

The rest of this paper is organized as follows. Section 2 briefly describes the com-
ponents of an automotive airbag system and presents an example of fault analysis of the
system with dynamic fault tree modeling. Section 3 transforms the dynamic fault tree model
of the automotive airbag system into a continuous Bayesian network model with the help
of the unit step function and impulse function, and analyzes the reliability and expected
life of the automotive airbag system. The sequential binary decision diagram method is
also used to compare with the method proposed in this paper. Section 4 concludes the
paper. The research framework of this paper is shown in Figure 1.
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2. Dynamic Fault Tree of Automotive Airbag System

In this paper, the airbag system failure is identified as the top event of the fault
tree Z. The automotive airbag system mainly consists of sensors, inflators, and electronic
control units. Failure of any one of these three subsystems can lead to airbag system
failure. A redundant configuration is used, as the sensors and electronic control unit are
key components of the airbag system. The sensor subsystem block has a hot standby sensor
and the electronic control unit subsystem has a cold standby power circuit. For the inflator
subsystem, there are three parts: the inner filter, the outer filter, and the ignition transfer
mechanism. The ignition transfer mechanism consists of a bridge wire, an electric ignition
device, and a flame transfer hole. The electric ignition apparatus consists of two parts: the
spreading charge and the ignition charge. Therefore, the failure mechanism of the system
is analyzed. The dynamic fault tree model of the system is shown in Figure 2.

The structure of the automobile airbag system is shown in Figure 3. The meaning of
each symbol in the fault tree model is shown in Table 1. Then, according to the analysis of
the failure process of the automotive airbag system, the distribution and failure rate obeyed
by each component in the system during the failure process can be obtained as follows.
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Based on the above analysis, we can obtain the automotive airbag system’s dynamic
fault tree model and failure rate distribution. Further derivation of the method for convert-
ing the dynamic fault tree of an automotive airbag system into a Bayesian network will be
presented in the subsequent sections.
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Table 1. Table of symbol meanings and their failure distribution in dynamic fault trees.

Symbols Meaning Distribution Functions Failure Rate

Z Airbag system failure
Y1 Sensor failure
Y2 Gas generator failure
Y3 Electronic control unit failure
Y4 Failure of ignition transfer
Y5 Failure of electric ignition device
X1 Sensor 1 failure Index distribution λ1 = 1.06 × 10−5

X2 Sensor 2 failure Index distribution λ2 = 1.06 × 10−5

X3 Internal filter failure Index distribution λ3 = 1.5 × 10−5

X4 External filter failure Index distribution λ4 = 2.9 × 10−5

X5 Power circuit failure Index distribution λ5 = 2.7 × 10−5

X6 Backup power circuit failure Index distribution λ6 = 2.7 × 10−5

X7 Bridge wire failure Index distribution λ7 = 2.9 × 10−5

X8 Fire transmission hole failure Index distribution λ8 = 3.8 × 10−5

X9 Flame extender failure Index distribution λ9 = 1.06 × 10−5

X10 Ignition powder failure Index distribution λ10 = 1.06 × 10−5

3. Reliability and Life Analysis

Based on the dynamic fault tree model of automotive airbags proposed in the previous
chapter, the reliability and lifetime will be analyzed in this chapter.

3.1. Reliability and Life Analysis Based on Bayesian Network

The dynamic fault tree model for each part of the automotive airbag system is next
transformed in parts into an equivalent continuous Bayesian network model. The dynamic
fault tree model of the overall automotive airbag system will be further transformed in the
following. A Bayesian network topology equivalent to it is obtained, as shown in Figure 4.
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According to the structural characteristics of the airbag system, based on Table 1, the
failure processes of all the bottom events obey the exponential distribution. The probability
density function of the exponential distribution can be obtained according to the content of
the probability theory, as shown in Equation (1); x is the time variable of the component,
and the distribution function of the exponential distribution is shown in Equation (2)

f (x) =
{

λe−λx x > 0
0 x ≤ 0

(1)

F(x) =
{

1− e−λx x ≥ 0
0 x < 0

. (2)

(1) The failure processes of the dynamic logic AND gate event X9 and event X10 obey
exponential distribution, and the failure rates of the events are λ9, and λ10, respectively.
Based on the above analysis of the transformation of the dynamic logic AND gate and the
nature of exponential distribution, it can be obtained that the marginal probability density
function of the failure of lower level event Y5 is

fY5(y) =
d
[
FX9(y)FX10(y)

]
dy

= λ9 e−λ9y + λ10e−λ10y − (λ9 + λ10)e−(λ9+λ10)y. (3)

The probability distribution function for the failure of the lower-level event Y5 is

FY5(t) = FX9(t)FX10(t) = 1− e−λ9t − e−λ10t + e−(λ9+λ10)t. (4)

(2) The failure processes of the dynamic logic OR gate event Y5, event X7, and event
X8 all obey exponential distribution. The probability distribution function of the failure
of event Y5 has been found, and the failure rates of event X7 and event X8 are λ7 and λ8,
respectively. According to the construction method of the upper-level event as two, the
dynamic OR gate structure of this layer is transformed into a two-layer virtual dynamic
OR gate structure. That is, event X7 and event X8 constitute event W1.

The marginal probability density function for the failure of the lower-level event W1 is

fW1(y) = fX7(y) + fX8(y)−
d
[
FX7(y)FX8(y)

]
dy

. (5)

The probability distribution function for the failure of the lower-level event W1 is

FW1(t) = FX7(t) + FX8(t)− FX7(t)FX8(t) = 1− e−(λ7+λ8)t. (6)

The marginal probability density function for the failure of the lower-level event Y4 is

fY4(z) = fY5(z) + fW1(z)−
d
[
FY5(z)FW1(z)

]
dz

. (7)

The probability distribution function for the failure of the lower-level event Y4 is

FY4(w) = FY5(w) + FW1(w)− FY5(w)FW1(w). (8)

(3) The failure processes of dynamic logic OR gate event Y4, event X3, and event X4 all
obey exponential distribution. The probability distribution function of the failure of event
Y4 has been found, and the failure rates of event X3 and event X4 are λ3 and λ4, respectively.
According to the construction method of the upper-level event as two, the dynamic OR gate
structure of this layer is transformed into a two-layer virtual dynamic OR gate structure.
That is, event X3 and event X4 constitute event W2.
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The marginal probability density function for the failure of the lower-level event W2 is

fW2(y) = fX3(y) + fX4(y)−
d
[
FX3(y)FX4(y)

]
dy

. (9)

The probability distribution function for the failure of the lower-level event W2 is

FW2(t) = FX3(t) + FX4(t)− FX3(t)FX4(t) = 1− e−(λ3+λ4)t. (10)

The marginal probability density function for the failure of the lower-level event Y2 is

fY2(z) = fY4(z) + fW2(z)−
d
[
FY4(z)FW2(z)

]
dz

. (11)

The probability distribution function for the failure of the lower-level event Y2 is

FY2(w) = FY4(w) + FW2(w)− FY4(w)FW2(w) (12)

(4) The failure processes of dynamic logic hot standby gate events X1 and event X2
obey exponential distribution, and the failure rate of event X1 and event X2 is λ1 and
λ2, respectively, and λ1 = λ2, based on the above analysis of the transformation of the
dynamic logic hot standby gate and the nature of the exponential distribution. The marginal
probability density function for the failure of the upper-level event Y1 can be obtained as

f
Y1
(y) =

d
[
FX1(y)FX2(y)

]
dy

= 2λ1e
−λ1y
− 2λ1e

−2λ1y
. (13)

The probability distribution function for the failure of the lower-level event Y1 is

FY1(t) = FX1(t)FX2(t) = 1− 2e−λ1t + e−2λ1t. (14)

(5) The failure process of the dynamic logic cold-ready gate event X5 obeys an expo-
nential distribution with a failure rate of λ5. The independent failure process of event X6
also obeys an exponential distribution with a failure rate of λ6 and λ5 = λ6, based on the
above analysis of the transformation of the dynamic logic cold-ready gate and the nature of
the exponential distribution. The marginal probability density function for the failure of
the upper-level event Y3 can be obtained:

fY3(y) =
∫ ∞

0

∫ ∞
0 v(x6 − x5)ζ(y− x6)v(x6 − x5)λ6e−λ6(x6−x5)λ5e

−λ5x5 dx5dx6

= λ5λ5
∫ ∞

0

∫ ∞
0 [v(x6 − x5)]

2
ζ(y− x6)e−λ5x6 dx5dx6

= λ5λ5
∫ ∞

0 [v(y− x5)]
2e
−λ5y

dx5

(15)

From the properties of the unit step function, the following equation can be obtained:

[v(y− x5)]
2 =


1 y > x5
1
4 y = x5
0 y < x5

. (16)

Because the marginal probability density function for finding the failure of event Y3
is a Riemann integral over its probability density function, it follows from the nature of
the Riemann integral that changing the value of a point does not affect the result of the
integration. Therefore, when y = x5, one can make [v(y − x5)]2 = 1.

Then the value of the above equation is

fY3(y) = λ5λ5
∫ ∞

0 [v(y− x5)]
2e−λ5 ydx5

= λ5λ5e−λ5 y∫ y
0 1dx5

= λ5λ5ye−λ5 y
(17)
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The probability distribution function for the failure of the upper-level event Y3 is

FY3(t) =
∫ t

0
fY3(y)dy =

∫ t

0
λ5λ5ye−λ5 ydy = 1− e−λ5 y − λ5te−λ5 y. (18)

(6) For an OR gate structure consisting of event Y1 and event Y2, from the above
analysis of the transformation of dynamic logic OR gates, the probability distribution
function for the failure of event W is calculated using Matlab and yields the following result:

FW(t) = FY1(t) + FY3(t)− FY1(t)FY3(t). (19)

Similarly, the probability distribution function for the failure of event Z is calculated as

FZ(t) = FY2(t) + FW(t)− FY2(t)FW(t). (20)

Reliability is the ability of a device to perform a specified function under specified
conditions and within a specified time. The probability measure of reliability is called
dependability. It represents the probability that a component, product, or system will
perform a specified function under specified conditions and within a specified time. For
the automotive airbag system described above, assuming that the specified time is t and
the life of the system is Z, the reliability is expressed as the probability that Z > t.

RZ(t) = P(Z > t). (21)

The probability of failure characterizes the probability that a component, product, or
system will lose a specified function under specified conditions and within a specified time.
For the above automotive airbag system, assuming a specified time of t and a system life of
Z, the probability of failure of the system is

FZ(t) = P(Z ≤ t) = 1− RZ(t). (22)

From the above analysis, the reliability and probability of failure of an automotive
airbag system can be obtained. Substituting the values of the failure rate for each basic
event into the above equation, and making t = 1000 h, t = 5000 h, t = 10,000 h, t = 15,000 h, t
= 20,000 h, and t = 25,000 h, respectively, we obtain Table 2.

Table 2. Probability of failure and reliability of automotive airbag systems.

T (h) 1000 5000 10,000 15,000 20,000 25,000

FZ(t) 0.1054 0.4336 0.6868 0.8302 0.9095 0.9524
RZ(t) 0.8946 0.5664 0.3132 0.1698 0.0905 0.0476

At 1000 h, the probability that the system can complete the specified function under
certain conditions is 0.8946; at 10,000 h, the probability that the system can complete the
specified function under certain conditions is 0.3132. From Table 2, we can see that after
10,000 h, the reliability of the system is very low and cannot meet the needs for the safe
operation of the system at all.

The reliability and probability of failure of the airbag system of the car with time are
shown in Figure 5. When the airbag system operates at 40,000 h, the reliability of the system
is close to 0, and the system must be repaired or replaced at this time.

Once the reliability of an automotive airbag system has been obtained, the average life
of the system can be predicted based on the resulting reliability. The average life can be
obtained from the integration of the reliability of the system RZ(t) over (0, ∞). The average
life of the system is approximately 8410 h. The average life is a guide for the replacement
of equipment and the evaluation of the safety performance of the system.
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By considering the reliability RZ(t) of the automotive airbag system as a function of
λ1, λ5, λ7, and λ9, the trend of the reliability with the parameters at any moment can be
found. When t = 2000 h, the system reliability RZ(t) can be obtained as a function of a
single parameter, as shown in Figure 6. According to Figure 4, we can know the trend of
reliability with parameters at any moment: the reliability of the system is negatively related
to each parameter and decreases with the increase in the failure rate of each component, and
components with a significant trend of change have a greater impact on system reliability.
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3.2. Reliability Analysis Based on Sequential Binary Decision Diagrams

Sequential binary decision diagrams can also be used to analyze dynamic fault trees
containing various logical gates such as priority and standby gates [15]. In order to verify
the effectiveness and accuracy of the method in this paper, the method is compared with the
sequential binary decision diagram method. In a dynamic fault tree, the failure sequence
relationship of logic gate input events has a significant impact on system failure, so the
relational notation will be used to describe the timing relationship of the basic events. For
example, A→ B means that event A occurs before event B. A~B means that events A and B
occur simultaneously. The following is a brief description of the spare parts gate timing
logic used in dynamic fault trees.

(1). Cold Standby Gates

The cold standby gates are regarded as having no consumption before entering the
working state, so the failure rate is 0, and the reserve events must be selected to fail
sequentially according to the sequence, whose algebraic description is A→ B.

(2). Hot Standby Gates

The backup events of hot standby gates have the same probability of failure during
the reserve and active states. When the coverage of the standby structure is not considered,
the hot standby gate is equivalent to a parallel structure.

Convert the dynamic fault tree in Figure 2 to the sequential binary decision diagram
in Figure 7.
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Analyzing the sequential binary decision diagram in Figure 7, 21 failure paths of
system disjunction can be obtained, and the specific paths are shown in Table 3.
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Table 3. Failure paths of automotive airbag systems.

No. Failure Paths No. Failure Paths

1 X1·X2 12 X1·X3·X9·X7·X8
2 X1·X3 13 X1·X3·X9·X10·X7·X8

3 X1·X2·X3 14 X1·X2·X3·X9·X7
X8·X4

4 X1·X2·X3·X9·X10 15 X1·X2·X3·X9·X10
X7·X8·X4

5 X1·X3·X9·X10 16 X1·X3·X9·X7·X8·X4
6 X1·X2·X3·X9·X7 17 X1·X3·X9·X10·X7·X8·X4

7 X1·X2·X3·X9·X10·X7 18 X1·X2·X3·X9 · X7
X8·X4·(X5→ X6)

8 X1·X3·X9·X7 19 X1·X2·X3·X9·X10 · X7
X8·X4·(X5→ X6)

9 X1·X3·X9·X10·X7 20 X1·X3·X9·X7·X8
X4·(X5→ X6)

10 X1·X2·X3·X9·X7·X8 21 X1·X3·X9·X10·X7·X8
11 X1·X2·X3·X9·X10 ·X7·X8 X4·(X5→ X6)

The life of the components in the cold standby gate are X5 and X6, and they are
independent of each other, so the life of the cold standby gate is

XX5→X6 = X5 + X6 (23)

The failure rate of the cold standby gate (X5 → X6) is

FX5→X6(t) = F5(t) ∗ F6(t) (24)

The probability of occurrence of failure of each path is Oi (i = 1, 2, . . . , 21), where Oi
denotes the probability of failure of path i. Therefore, the reliability function of the system is

R(t) = 1− · · · (O1 + · · ·+ O21) (25)

Using Matlab to calculate the system failure probability and reliability in the time
range 0–8000, the obtained variation curves are essentially the same as those transformed
into dynamic Bayesian networks using dynamic fault trees.

System failure probability calculation under two methods is shown in Table 4 by
selecting different task times.

Table 4. Failure probability of automotive airbag systems under two methods.

t 1000 5000 10,000 15,000 20,000 25,000

BN 0.1054 0.4336 0.6868 0.8302 0.9095 0.9524
BDD 0.1057 0.4380 0.6951 0.8389 0.9167 0.9576
Error

analysis 0.28% 1.01% 1.2% 1.04% 0.79% 0.54%

The results of the two methods are compared to demonstrate the accuracy of the
transformation of dynamic fault trees into dynamic Bayesian network methods. Moreover,
compared with the method in this paper, for dynamic fault trees containing spare parts, the
sequential decision diagram method is affected by the transformation method and suffers
from problems such as node redundancy and excessive size, thus reducing the effectiveness
of dynamic fault tree qualitative analysis. In contrast, the dynamic Bayesian network-based
method can provide a general fault tree transformation method with high computational
efficiency and save computing time, which is more suitable for complex dynamic fault tree
analysis with more spare parts.
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4. Conclusions

In this paper, a dynamic fault tree model of the automotive airbag system is estab-
lished. Secondly, the discussion in this paper focuses on constructing continuous Bayesian
networks with the help of unit step functions and impulsive functions, and an in-depth
analysis of the transformation of dynamic logic with AND/OR gates is carried out. The
results prove that the transformation of the dynamic fault tree model into a continuous-time
Bayesian network model is feasible and can reduce the problem of the dynamic Bayesian
network model being too computationally intensive when dealing with complex systems.
Finally, after transforming the dynamic fault tree model of an automotive airbag into a
Bayesian network, the reliability parameters of the system are analyzed and calculated.
When each component of the system has a continuous failure process, the model con-
struction method proposed in this paper can be used, and the reliability of the system
at any moment can be further derived. Comparison with the sequential binary decision
method shows that the method proposed in this paper can provide a scientific basis for the
reasonable maintenance of airbag systems.

In future research, we will consider a maintenance policy that meets optimal replace-
ment times and minimizes expected replacement costs based on system reliability.
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