
This article was downloaded by: [University of Alberta]
On: 12 October 2012, At: 11:16
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Systems Science
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tsys20

Reliability assessment for fuzzy multi-state systems
Yu Liu a & Hong-Zhong Huang
a School of Mechatronics Engineering, University of Electronic Science and Technology of
China, Chengdu, Sichuan, 610054, China

Version of record first published: 16 Mar 2010.

To cite this article: Yu Liu & Hong-Zhong Huang (2010): Reliability assessment for fuzzy multi-state systems, International
Journal of Systems Science, 41:4, 365-379

To link to this article:  http://dx.doi.org/10.1080/00207720903042939

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tsys20
http://dx.doi.org/10.1080/00207720903042939
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Systems Science
Vol. 41, No. 4, April 2010, 365–379

Reliability assessment for fuzzy multi-state systems

Yu Liu and Hong-Zhong Huang*

School of Mechatronics Engineering, University of Electronic Science and Technology of China,
Chengdu, Sichuan, 610054, China

(Received 29 March 2008; final version received 26 April 2009)

Fuzzy multi-state system (FMSS) is defined as a multi-state system (MSS) consisting of multi-state elements
(MSE) whose performance rates and transition intensities are presented as fuzzy values. Due to the lack,
inaccuracy or fluctuation of data, it is oftentimes impossible to evaluate the performance rates and transition
intensities of MSE with precise values. This is true especially in continuously degrading elements that are usually
simplified to MSE for computation convenience. To overcome these challenges in evaluating the behaviour of
MSS, fuzzy theory is employed to facilitate MSS reliability assessment. Given the fuzzy transition intensities and
performance rates, the state probabilities of MSE and MSS are also fuzzy values. A fuzzy continuous-time
Markov model with finite discrete states is proposed to assess the fuzzy state probability of MSE at any time
instant. The universal generating function with fuzzy state probability function and performance rate is applied
to evaluate fuzzy state probability of MSS in accordance with the system structure. A modified FMSS availability
assessment approach is introduced to compute the system availability under the fuzzy user demand. In order to
obtain the membership functions of the indices of interest, parametric programming technique is employed
according to Zadeh’s extension principle. The effectiveness of the proposed method is illustrated and verified via
reliability assessment of a multi-state power generation system.

Keywords: fuzzy multi-state system (FMSS); fuzzy multi-state element (FMSE); fuzzy reliability assessment;
fuzzy Markov model; fuzzy universal generating function (FUGF); parametric programming

1. Introduction

In the real world, many systems perform their task

with degraded performance levels (performance rates).

This phenomenon is mainly caused by the degradation

of components and parts in the system or/and the

failure of some elements which deteriorates the system

performance. This type of system is called multi-state

system (MSS) and was first introduced in the mid-

1970s by Murchland (1975).
The MSS widely exists in industrial engineering

(Lisnianski and Levitin 2003), e.g. power generation

systems, computing systems, transportation systems,

and radio relay station, etc. Many novel methods

were developed to facilitate the MSS reliability

assessment, e.g. the extended decision diagram-

based method (Shrestha and Xing 2008), the sto-

chastic process (Li and Pham 2005), the universal

generating function (UGF) (Ushakov 1986; Levitin

2005), and the Monte Carlo simulation

(Zio, Podofillini and Levitin 2004; Zio, Marella

and Podofillini 2007), etc. Some specific MSS

existing in particular fields were also studied

in recent years, e.g. the dependent MSS (Levitin

2004), the multi-state weighted system (Li and Zuo

2008), the generalised multi-state k-out-of-n:F system

(Zuo and Tian 2006) and acyclic multi-state-node

networks (Yeh 2006), etc.
However, conventional MSS reliability assessment

methods are based on the following two assumptions
(Ding and Lisnianski 2008):

(1) The state probabilistic distributions of multi-
state element (MSE) in the MSS are precisely

known and measurable;
(2) The performance rate of MSE is precisely

determined.

Actually, these assumptions do not always hold

when precisely evaluating the probability distribution
and performance rate in each state is difficult. There

are two main reasons for this lack of precise

information:

(1) Getting accurate and sufficient data is impos-

sible in some systems and environments.

Therefore, the evaluation of element/system
characteristics can only be expressed in terms

like ‘a unit would fail in about 1 year’ and

‘system performance degrades nearly 200 per

unit time’. Thus, crisp values used to represent
the probabilistic distributions and performance

rates sometimes make no sense.
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(2) Many elements/systems deteriorate continu-
ously or nearly continuously with time, and
they are usually considered as having many
discrete states. To avoid the ‘dimension dam-
nation’ (Lisnianski 2007), the model is simpli-
fied via state combination to reduce the
computational burden. Therefore, the continu-
ously degrading element/system is finally sim-
plified to one with several states separated by
the distinguishable performance rates, and the
number of discrete states is usually not large to
make the computation tractable (Lisnianski
2001).

Because of these two reasons, the conventional
approach for representing the performance and state
distribution of MSE/MSS in crisp values fails to
capture the actual element/system behaviour.

Fuzzy reliability theory, which employs the fuzzy
theory introduced by Zadeh (1965, 1978), is becoming
a new methodology to study the imprecision and
uncertainty phenomena in reliability engineering (Cai
1991), and it has since received increasing attention.
For example, Cai, Wen and Zhang (1991) introduced
the fuzzy success/failure state and the reliability model
to study a gradually degrading computing system.
Huang (1995) assessed the reliability a system in the
presence of fuzziness in operating time. Huang, Tong
and Zuo (2004) proposed to evaluate the failure
possibility via posbist fault tree analysis when statis-
tical data is scarce or failure probability is extremely
small. A novel fuzzy Bayesian approach was developed
by Wu (2004), to create the fuzzy Bayes point
estimator of reliability. Huang, Zuo and Sun (2006)
introduced a Bayesian method to assess system relia-
bility when lifetime data is presented as a fuzzy value.
Fuzzy dynamic reliability evaluation for a deteriorat-
ing system under imperfect repair action was addressed
by Verma, Srividya and Gaonkar (2004). Ke, Huang
and Lin (2006) developed a procedure to construct the
fuzzy steady-state availability when obtained data are
subjective. Two-unit repairable systems suffering
common-cause failure was discussed by Huang, Lin
and Ke (2008), where the time to failure follows
fuzzified exponential distribution. Pandey and Tyagi
(2007) proposed a new method to assess the profust
reliability indices. However, most of the reported
works mainly focus on binary-state system issues. As
stated in Lisnianski and Levitin (2003), the MSS is
already very popular in industry, so the fuzzy reliabil-
ity under MSS context remains an emerging research
paradigm. The concept of fuzzy multi-state system
(FMSS) was first used by Ding and Lisnianski (2008)
in a modelling study of the state probabilities and
performances of a component presented as fuzzy

values. In their work, fuzzy UGF (FUGF) method
was proposed to assess reliability and availability of
FMSS under the fuzzy demand. Afterwards, some
general definitions involving relevancy, coherency,
dominance and equivalence in FMSS were provided
by Ding, Zuo, Lisnianski and Tian (2008), to extend
the basic properties of MSS in crisp case to the fuzzy
context. However, they just gave the steady fuzzy state
probabilities and performance rate for each MSE. To
facilitate engineers in understanding the system beha-
viour and risk with respect to working time, a dynamic
fuzzy reliability assessment method for the FMSS is
investigated in this work.

In this article, FMSS is introduced to overcome the
deficiencies of conventional MSS theory. The state
transition intensity and the performance rates of MSE
are presented as fuzzy values. Fuzzy Markov model are
developed in accordance with the fuzzy transition
intensity matrix. Dynamic fuzzy reliability with respect
to working time can be calculated through the fuzzy
Kolmogorov’s equation of fuzzy Markov model. With
the assistance of FUGF, the fuzzy state probability
and performance rate of FMSS can be evaluated
through aggregating the fuzzy behaviour of FMSE.
The membership functions of indices of interest are
computed by parametric programming technique. In
addition, a modified approach is introduced to assess
the fuzzy availability when the membership functions
of performances rate and user demand are over-
lapping, and the membership function of the fuzzy
availability is examined by regarding the �-cut level as
‘fuzzy risk’ which can be tolerated.

The remainder of this article is organised as
follows. Section 2 introduces the definition of MSS.
Fuzzy set, fuzzy number and extension principle are
briefly reviewed in Section 3. The definitions of FMSE
and FMSS are given in Section 4. The fuzzy Markov
model and FUGF, as well as fuzzy availability, are also
discussed in this section. The proposed model and
approach are illustrated in Section 5 via a power
generation system. A brief conclusion is given in
Section 6.

Nomenclature

N : number of independent elements in the
MSS

kl: number of states for element l
gl: set of possible crisp performance rates for

element l
g l,ið Þ: crisp performance rate of element l in state i
pl ðtÞ: set of crisp state probabilities for element l

at time t
p l,ið ÞðtÞ: crisp probability of element l staying in

state i at time t
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Gl ðtÞ: random variable representing the crisp
performance rate of element l at time t

K: number of states for the MSS
Gs: set of possible crisp performance rates for

the MSS
gsi: crisp performance rate of the MSS staying

in state i
p tð Þ: set of crisp state probabilities for the MSS

at time t
psi tð Þ: crisp probability of the MSS staying in

state i at time t
Gs tð Þ: random variable representing the crisp

performance rate of the MSS at time t
� �ð Þ: MSS structure function
EðtÞ: crisp instantaneous expected performance

rate of the MSS at time t
w: crisp user demand

A t,wð Þ: crisp instantaneous availability of
the MSS when user demand is w at time t

~gl: set of possible fuzzy performance rates for
element l

~g l,ið Þ: fuzzy performance rate of element l in
state i

~gLðl, iÞ� lower bound of the �-cut level set of fuzzy
performance rate when the element l in
state i

~gUðl, iÞ� upper bound of the �-cut level set of fuzzy
performance rate when the element l in
state i

~p l,ið ÞðtÞ: fuzzy probability of element l staying in
state i at time t

~psiðtÞ: fuzzy probability of the FMSS staying in
state i at time t

�li,jð Þ: crisp intensity of element l transiting from
state i to state j

~�li,jð Þ: fuzzy intensity of element l transiting from
state i to state j

~pLl,ið Þ�ðtÞ: lower bound of the �-cut level set of the
fuzzy probability that element l is staying
in state i at time t

~pUl,ið Þ�ðtÞ: upper bound of the �-cut level set of the
fuzzy probability that element l is staying
in state i at time t

~�l,Li,jð Þ�: lower bound of the �-cut level set of the
fuzzy intensity that element l transits from
state i to state j

~�l,Ui,jð Þ�: upper bound of the �-cut level set of the
fuzzy intensity that element l transits from
state i to state j

~pLsi�ðtÞ: lower bound of the �-cut level set of the
fuzzy probability that the FMSS is staying
in state i at time t

~pUsi�ðtÞ: upper bound of the �-cut level set of the
fuzzy probability that the FMSS is staying
in state i at time t

~��: fuzzy performance rate composition oper-
ator in FUGF

~gsi: fuzzy performance rate of the FMSS in
state i

~gLðsi�Þ lower bound of the �-cut level set of fuzzy
performance rate when the FMSS in
state i

~gUðsi�Þ upper bound of the �-cut level set of fuzzy
performance rate when the FMSS in
state i

~EðtÞ: fuzzy instantaneous expected performance
rate of the FMSS at time t

~AL
� ðt, ~wÞ: lower bound of the �-cut level set of the

FMSS instantaneous availability under
the fuzzy user demand ~w

~AU
� ðt, ~wÞ: upper bound of the �-cut level set of the

FMSS instantaneous availability under
the fuzzy user demand ~w

2. Multi-state system

According to Lisnianski and Levitin (2003), a system
that can have a finite number of performance rates
is called an MSS. There are many different situa-
tions in which a system should be considered to be an
MSS:

(1) Any system consisting of different units that
have a cumulative performance effect on the
entire system.

(2) The system consisting of elements with perfor-
mances that can vary as a result of their
deterioration (fatigue, partial failures, etc.)
and repairs.

In order to analyse MSS behaviour under crisp
value context, one has to know the characteristics of its
elements. Any system element l can have kl different
states corresponding to the performance rates, which is
represented by the set:

gl ¼ fgðl,1Þ, gðl,2Þ, . . . , gðl,kl Þg, ð1Þ

where g l,ið Þ ð gðl,iÞ � 0Þ is the performance rate of
element l in its state i, i 2 f1, 2, . . . , klg, and if kl is
greater than two, the element is called an MSE.

Performance rate Gl ðtÞ of element l at any instant
t � 0 is a random variable, taking value from
gl : Gl ðtÞ 2 gl. Therefore, for any time interval ½0,T �,
the performance rate of element l is defined as a
stochastic process. The probabilities associated with
different states of the element l at any instant t can be
represented by the set:

pl ðtÞ ¼ fpðl,1ÞðtÞ, pðl,2ÞðtÞ, . . . , pðl,kl ÞðtÞg, ð2Þ
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where p l,ið ÞðtÞ represents the probability that Gl ðtÞ ¼

g l,ið Þ. The state probabilities should satisfy the condi-

tion
Pkl

i¼1 pðl,iÞðtÞ ¼ 1, for the elements’ states at any
time instant t compose the complete group of mutually

exclusive events.
Suppose an MSS is consisting of N independent

elements: its states are separated through its perfor-

mance rate, which is unambiguously determined by
the system configuration and performance rates of

elements. Without loss of generality, it assumes that
the entire MSS has K different states according to its

possible performance rates, and gsi denotes the system

performance rate in state iði 2 1, . . . ,Kf gÞ. Thus, the
MSS performance rate at time t is also a random

variable GsðtÞ that takes values from the set Gs ¼

gs1, . . . , gsK
� �

, and is given by:

GsðtÞ ¼ �ðG1ðtÞ, . . . ,GlðtÞ, . . . ,GNðtÞÞ, ð3Þ

where Gl ðtÞ, ð1 � l � NÞ is the performance stochastic

process of the l-th element, and �ð�Þ is system structure
function. Thus, the instantaneous probabilities asso-

ciated with the individual system state can be denoted

by the set:

pðtÞ ¼ ps1ðtÞ, ps2ðtÞ, . . . , psKðtÞ
� �

, ð4Þ

where psiðtÞ represents the probability that GsðtÞ ¼ gsi,

and gsi is corresponding performance rate at the i-th

system state. Thus, the instantaneous expected system
performance rate is formulated as:

EðtÞ ¼
XK
i¼1

psiðtÞ � gsi: ð5Þ

The instantaneous availability of the MSS is defined as
the probability that system performance rate is not

less than the user demand w at any instant t, and is
written as:

Aðt,wÞ ¼ PrðGsðtÞ � wÞ ¼
XK
i¼1

psiðtÞ1ðFð gsi,wÞ � 0Þ,

ð6Þ

where 1ðxÞ is unity function: 1ðTRUEÞ ¼ 1,

1ðFALSEÞ ¼ 0, and Fð gsi,wÞ ¼ gsi � w.

3. Fuzzy set theory

3.1. Fuzzy set and fuzzy number

A fuzzy subset ~X of a universal set U is defined by its

membership (or characteristic) function � ~X : U!

½0, 1�. The values of � ~XðxÞ extend from zero to one

which can be interpreted as the membership degree at

which x belongs to ~X.
Let < be a universal set of real numbers and ~X be a

fuzzy subset of <. ~X� ¼ fxj� ~XðxÞ � �g denotes the

�-cut level set of ~X where � 2 ½0, 1�. The interval of this
set is written as ~X� ¼ ½ ~X

L
� ,

~XU
� �, and

~X0 is the closure of

the set ~X0 ¼ fxj� ~XðxÞ � 0g.
~X is called a fuzzy real number if: (1) it is a normal

and convex fuzzy set; (2) its membership function is

upper semi-continuous; (3) the 0-cut level set ~X0 is

bounded in <; (4) the 1-cut level set ~X1 is a singleton

set, and ~XL
1 ¼

~XU
1 ; (5) the boundary functions

Lð�Þ ¼ ~XL
� and Uð�Þ ¼ ~XU

� of membership functions

are continuous with respect to � 2 ½0, 1�.
The membership function of a typical triangle fuzzy

number (TFN) ~X parameterised by the triplet ða, b, cÞ,

is defined as:

� ~XðxÞ ¼

x� a

b� a
, a � x5 b

1, x ¼ b
x� c

b� c
, b5 x � c

0, otherwise

8>>>>><
>>>>>:

, ð7Þ

and is plotted in Figure 1.
In this article, both the state transition intensity

and performance rate of each element are treated as

TFN, because it is straightforward to manipulate

TFN in mathematical calculation, and it has been

widely used in many practical situations and relia-

bility engineering (Ding and Lisnianski 2008; Huang

1995; Verma, Srividya and Gaonkar 2004; Ding,

Zuo, Lisnianski and Tian 2008; Pardo and Fuente

2008; Kleiner, Sadiq and Rajani 2006; Alex 2007;

Chen 1994).

X

ba c

~
1.0

x

M
em

be
rs

hi
p 

m

Figure 1. The membership function of a TFN.
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3.2. Extension principle and parametric programming
technique

Zadeh (1965, 1978) introduced the extension principle
to obtain the membership function of a function with n
fuzzy numbers as inputs:

� ~pð~xÞðzÞ ¼ sup
x2Rn

z¼pðxÞ

minf�~XðxÞg

¼ sup
x12<1,...,xn2<n

z¼pðx1,...,xnÞ

minf� ~X1
ðx1Þ, . . . ,� ~Xn

ðxnÞg,
ð8Þ

where ~X represents a set of input fuzzy numbers
f ~X1, . . . , ~Xng, x is a set of inputs variables x1, . . . , xnf g.
Rn is a set f<1, . . . ,<ng representing the universal sets
of real numbers, and pð�Þ is a function mapping inputs
x to a output variable z. According to the extension
principle, the interval of �-cut level set of fuzzy number
~pð~xÞ is given by:

~p�ð~xÞ ¼ ½min pðx;�~xðxÞ � �Þ, max pðx;�~xðxÞ � �Þ�

¼ ~pL� , ~pU�
� �

: ð9Þ

Thus, the lower and upper bounds of ~pðxÞ at �-cut
level could be obtained by a pair of parametric
programming as follows:

~pL� : min pðx1, . . . ,xnÞ

s:t: ~xL1� � x1 � ~xU1�

..

.

~xLn� � xn � ~xUn�

,
ð10Þ

~pU� : max pðx1, . . . , xnÞ

s:t: ~xL1� � x1 � ~xU1�

..

.

~xLn� � xn � ~xUn�

:
ð11Þ

This parametric programming problem can be realised
by computer program, and it can easily find a couple of
extreme values subjected to different intervals of input
variables x determined by �-cut level.

4. FMSE, FMSS and reliability assessment

4.1. Definitions of FMSE and FMSS

FMSE is defined as the MSE in which the state
performance rates, the corresponding state probabil-
ities or transition intensities between each pair of states
are presented as fuzzy values. In this case, any system
element l has kl different states characterised by
fuzzy performance rates ~gl ¼ f ~gðl,1Þ, . . . , ~gðl,kl Þg, and the
instantaneous state probabilities are represented by
fuzzy values ~pl ðtÞ ¼ f ~p l,1ð ÞðtÞ, . . . , ~pðl,kl ÞðtÞg. The FUGF

proposed by Ding and Lisnianski (2008) can be applied
to describe the dynamic behaviour of each element at
any time instant t, as:

~ul ðz, tÞ ¼
Xkl
il¼1

~pðl,il ÞðtÞ � z
~g l, ilð Þ ¼ ~pðl,1ÞðtÞ � z

~g l, 1ð Þ

þ ~pðl,2ÞðtÞ � z
~g l, 2ð Þ þ � � � þ ~pðl,kl ÞðtÞ � z

~g l, klð Þ :

ð12Þ

Since an MSS is consisting of more than one FMSE,
this kind of MSS is defined as FMSS, for its state
probability and performance rate inherit the fuzzy
property from FMSE. Once the dynamic fuzzy
state probability of each FMSE is available, the
dynamic behaviour of the FMSS can be expressed
through the combination rules based on the system
structure function and the property of its performance
rate under the fuzzy context.

4.2. Fuzzy Markov Model for FMSE

Based on the definition of FMSE, the state-space
diagram of the l-th non-repairable FMSE takes the
form presented in Figure 2, where state kl is the best
state, and state 1 is the worst state (total failure). The
transition intensity between states i and j is presented
as the fuzzy value ~�li,jð Þ.

With the fuzzy transition intensities, the state
probability of elements l at time t is also a fuzzy value
denoted as ~p l,ið ÞðtÞ, where 1 � i � kl. The fuzzy Markov
model is proposed to evaluate the dynamic fuzzy state
probability ~p l,ið ÞðtÞ at any time instant.

The fuzzy transition intensity matrix for the l-th
FMSE is given as:

State 1 . . . ki

j~k
l
j ¼

1

..

.

kl

~�l
ð1,1Þ . . . ~�l

ð1,kl Þ

..

. . .
. ..

.

~�lðkl,1Þ � � �
~�lðkl,kl Þ

0
BBB@

1
CCCA: ð13Þ

where ~�l
ði,iÞ ¼ �

Pkl
j¼1
j 6¼i

~�l
ði,j Þ. For the l-th non-repairable

FMSE, ~�li,jð Þ ¼ 0 for j4 i. Then, the Kolmogorov’s

equation with fuzzy transition intensities takes the

,1l

l
k

lk 1l
k 2 1

,2l

l
k

l
3,2
l

1,1l

l
k

2,1
l

, ll kg , 1ll kg
,2l

g
,1lg

(k
l
 – 1,k

l
 – 2)

l
(k

l
 ,k

l
 – 1)

Figure 2. The state-space diagram of the l-th non-repairable
FMSE.
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form (Trivedi 2002):

d ~p l,klð ÞðtÞ

dt
¼ � ~p l,klð ÞðtÞ

Xkl�1
j¼1

~�lkl,jð Þ

d ~p l,ið ÞðtÞ

dt
¼
Xkl
j¼iþ1

~�lj,ið Þ ~p l,jð ÞðtÞ � ~p l,ið ÞðtÞ
Xi�1
j¼1

~�li,jð Þ,

15 i5 kl, t � 0

d ~p l,1ð ÞðtÞ

dt
¼
Xkl
j¼2

~�lj,1ð Þ ~p l,jð ÞðtÞ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð14Þ

with initial conditions: ~p l,klð Þð0Þ ¼ 1, ~p l,ið Þð0Þ ¼ 0 for
ði 6¼ kl Þ. Sometimes, it is too difficult to solve the first-
order fuzzy differential equations. For the sake of
reducing computational complexity, Laplace–Stieltjes
transform is adopted to transform Equation (14) into
linear equations:

s ~p l,klð ÞðsÞ � 1¼� ~p l,klð ÞðsÞ
Pkl�1
j¼1

~�lkl,jð Þ

s ~p l,ið ÞðsÞ ¼
Pkl

j¼iþ1

~�lj,ið Þ ~p l,jð ÞðsÞ � ~p l,ið ÞðsÞ
Pi�1
j¼1

~�li,jð Þ, 15 i5kl

s ~p l,1ð ÞðsÞ ¼
Pkl
j¼2

~�lj,1ð Þ ~p l,jð ÞðsÞ

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

where s ~p l,ið ÞðsÞ � ~p l,ið Þð0Þ ¼ L ðd ~p l,ið ÞðtÞÞ=dt
� �

and L �½ �
denotes Laplace–Stieltjes operator.

Solving (15) gives ~pl,iðsÞ as function of ~kli,jð Þ and s,
and then the inverse Laplace–Stieltjes transform is
executed to get the ~p l,ið ÞðtÞ in time domain:

~pðl,iÞðtÞ ¼ L�1 ~pðl,iÞðsÞ
� �

¼ fðl,iÞð~k
l
, tÞ, ð16Þ

where L�1 �½ � is reverse Laplace–Stieltjes operator,
and ~p l,ið ÞðtÞ is a function in terms of fuzzy variables
~k
l
¼ f~klðkl,kl�1Þ, . . . , ~klði,j Þ, . . . , ~klð2,1Þg at any time t. The �-

cut level interval of ~p l,ið ÞðtÞ can be obtained as:

~pðl;iÞ�ðtÞ ¼ min fðl;iÞðk
l;t;� ~�lðk

lÞ ��Þ;
�
max fðl;iÞ kl;t;� ~�lðk

lÞ ��
� ��

¼ ~pLðl;iÞ�ðtÞ; ~pUðl;iÞ�ðtÞ
h i

; t� 0; 0��� 1ð Þ

ð17Þ

The lower bound ~pLl,ið Þ�ðtÞ and the upper bound ~pUl,ið Þ�ðtÞ
of any �-cut level set can be calculated by the
parametric programming introduced in Section 3.2.

Lower bound:

~pLl,ið Þ�ðtÞ : min fðl,iÞðk
l, tÞ, ðt� 0, 0� �� 1Þ

s:t: ~�l,L
ðkl,kl�1Þ�

� �lðkl,kl�1Þ �
~�l,U
ðkl,kl�1Þ�

..

.

~�l,L
ð2,1Þ� � �

l
ð2,1Þ �

~�l,U
ð2,1Þ�

,
ð18Þ

Upper bound:

~pUl,ið Þ�ðtÞ : max fðl,iÞðk
l, tÞ, ðt � 0, 0 � � � 1Þ

s:t: ~�l,L
ðkl,kl�1Þ�

� �l
ðkl,kl�1Þ

� ~�l,U
ðkl,kl�1Þ�

..

.

~�l,L
ð2,1Þ� � �

l
ð2,1Þ �

~�l,U
ð2,1Þ�

:
ð19Þ

4.3. Fuzzy universal generating function

Following the basic concept of the UGF (Ushakov

1986; Levitin 2005), that the performance rate and

probability of any system state can be evaluated

through recursive composition operation once the

behaviour of each element at time instant t is known,

the FUGF of the FMSS is written as (Ding and

Lisnianski 2008):

~Usðz;tÞ¼ ~��

Xk1
i1¼1

~pð1;i1ÞðtÞ �z
~gð1;i1 Þ ; . . .;

XkN
iN¼1

~pðN;iNÞðtÞ �z
~gðN;iN Þ

 !

¼
Xk1
i1¼1

Xk2
i2¼1

. . .
XkN
iN¼1

YN
l¼1

~pðl;ilÞðtÞ �z
�ð ~gð1;i1 Þ;...; ~gðN;iN ÞÞ

 !

ð20Þ

The composition function �ð�Þ that maps the fuzzy

performance rates of all the elements into the fuzzy

performance rate of the system is determined by the

system structure and the property of performance rate

(e.g. flow capacity, processing speed, etc.). In general,

if the fuzzy performance rate ~gsi of the FMSS is due to

a certain combination of element states ~gð1,i1Þ, . . . , ~gðN,iNÞ

and denoted as

~gsi ¼ �ð ~gð1,i1Þ, . . . , ~gðN,iNÞÞ, ð21Þ

the associated fuzzy state probability at time instant t is

equal to:

~psiðtÞ ¼
YN
l¼1

~pðl,il ÞðtÞ, ð22Þ

where ~pðl,il ÞðtÞ is a function of ~k
l
and t as shown in

Equation (16).
The interval of �-cut level set of the system fuzzy

performance rate ~gsi is given by:

~gsi�¼ min �ðgð1;i1Þ; . . . ;gðN;iNÞ;� ~gðl;ilÞ
ðgðl;ilÞÞ ��Þ;

h
max�ðgð1;i1Þ; . . . ;gðN;iNÞ;� ~gðl;ilÞ

ðgðl;ilÞÞ ��Þ
i

¼ ~gLsi�; ~gUsi�
� �

; ð1� l�N; 0��� 1Þ:

ð23Þ

The lower bound ~gLsi� and the upper bound ~gUsi� of the

�-cut level set can be calculated by the parametric
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programming as follows.

Lower bound:

~gLsi� : min �ð gð1,i1Þ, . . . , gðN,iNÞ;� ~gðl, il Þ
ð gðl,il ÞÞ � �Þ,

ð0 � � � 1, 1 � l � NÞ

s:t: ~gLð1,i1Þ� � gð1,i1Þ � ~gU
ð1,i1Þ�

..

.

~gLðN,iNÞ�
� gðN,iNÞ � ~gU

ðN,iNÞ�

,

ð24Þ

Upper bound:

~gUsi� : max �ðgð1,i1Þ, . . . ,gðN,iNÞ;� ~gðl, il Þ
ðgðl,il ÞÞ � �Þ,

ð0� �� 1, 1� l�NÞ

s:t: ~gLð1,i1Þ� � gð1,i1Þ � ~gU
ð1,i1Þ�

..

.

~gLðN,iNÞ�
� gðN,iNÞ

� ~gU
ðN,iNÞ�

:
ð25Þ

Assume the fuzzy performance rate of any element

is presented by the TFN ~gðl,il Þðaðl,il Þ, bðl,il Þ, cðl,il ÞÞ,

1 � l � N, 1 � il � klð Þ. Some typical composition

functions usually applied in the flow transmission

and task processing MSS are given in the fuzzy context

as follows:

(1) Flow transmission type of FMSE connected in

parallel

If any two FMSE are connected in parallel, the

composition function for the arbitrary element state

performance rate is given as:

�ð ~gð1,i2Þ, ~gð2,i2ÞÞ ¼ ~gð1,i2Þ þ ~gð2,i2Þ, 1 � i1 � k1, 1 � i2 � k2:

ð26Þ

where ~gð1,i1Þ and ~gð2,i2Þ denote the fuzzy transmission

capacities when elements 1 and 2 are in the state i1
and i2, respectively. According to the mathematical

calculation rule of fuzzy numbers (Chen 1994) or

the parametric programming at any �-cut level as

formulated in Equations (24) and (25), the output

of composition function is exactly equal to a

TFN denoted as ððað1,i1Þ þ að2,i2ÞÞ, ðbð1,i1Þ þ bð2,i2ÞÞ,

ðcð1,i1Þ þ cð2,i2ÞÞÞ, which represents the total fuzzy

performance rate if the elements are connected in

parallel with the fuzzy performance rates of their

current states.

(2) Flow transmission type of FMSE connected in

series

If the two FMSE are connected in series, the

composition function for the arbitrary element state

performance rate is given as:

�ð ~gð1,i2Þ, ~gð2,i2ÞÞ ¼ minf ~gð1,i2Þ, ~gð2,i2Þg, 1 � i1 � k1,

1 � i2 � k2: ð27Þ

This function is no longer a linear operation on fuzzy

numbers as Equation (26), and calculating the mem-

bership function of the composition function output

can only resort to the parametric programming as

Equations (24) and (25). It is a tedious and time-

consuming work (Ding and Lisnianski 2008). To

overcome the deficiency, an approximating approach

is considered to be applied to facilitate the computation

in the non-linear fuzzy number operations (Chen 1994;

Ding and Lisnianski 2008; Lee 2005; Verma, Srividya

and Gaonkar 2004). Thus, the output of Equation (27)

is approximated by a TFN expressed as

ðminfað1,i1Þ, að2,i2Þg, minfbð1,i1Þ, bð2,i2Þg, minfcð1,i1Þ, cð2,i2ÞgÞ,

to void the computational complexity from using

Equations (24) and (25).

(3) Task processing type of FMSE connected in

parallel

If ~gð1,i1Þ and ~gð2,i2Þ represent the fuzzy task proces-

sing speeds of the two parallel-connected elements at

their states i1 and i2, respectively, the composition

function is written as (Levitin 2004):

�ð ~gð1,i1Þ, ~gð2,i2ÞÞ ¼ ~gð1,i1Þ þ ~gð2,i2Þ, 1� i1 � k1, 1� i2 � k2,

ð28Þ

where the function output is a fuzzy processing speed,

which is regarded as the total processing time needed

when the two elements process a unit task in a

simultaneous mode. Thus, one has �ð ~gð1,i1Þ, ~gð2,i2ÞÞ ¼

ððað1,i1Þ þ að2,i2ÞÞ, ðbð1,i1Þ þ bð2,i2ÞÞ, ðcð1,i1Þ þ cð2,i2ÞÞÞ, which is

solved in the same manner as Equation (26).

(4) Task processing type of FMSE connected in series

If the two task processing elements are connected in

series, the total processing time is equal to the

summation of the operation times on these two

elements (Levitin 2004). The total fuzzy task proces-

sing speed in this scenario is formulated as:

� ~gð1,i1Þ, ~gð2,i2Þ
� �

¼ ~gð1,i1Þ � ~gð2,i2Þ
� �

= ~gð1,i1Þ þ ~gð2,i2Þ
� �

,

1 � i1 � k1, 1 � i2 � k2:
ð29Þ

With the assistance of the approximating method for

non-linear fuzzy number operations (Chen 1994), the

total fuzzy processing speed can be also presented as a

TFN written as ððað1,i1Þ � að2,i2ÞÞ=ðcð1,i1Þ þ cð2,i2ÞÞ, ðbð1,i1Þ�

bð2,i2ÞÞ=bð1,i1Þþ bð2,i2Þ, ðcð1,i1Þ � cð2,i2ÞÞ=ðað1,i1Þ þ að2,i2ÞÞÞ.
The performance rate of FMSS can be computed

through the above composition functions recursively,
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while the interval of �-cut level set of the corresponding
fuzzy state probability ~psiðtÞ is given by:

~psi�ðtÞ ¼ min
YN
l¼1

p l;ilð ÞðtÞ;�~klðk
lÞ � �

 !
;

"

max
YN
l¼1

p l;ilð ÞðtÞ;�~klðk
lÞ � �

 !#

¼ ~pLsi�ðtÞ; ~pUsi�ðtÞ
� �

; 0 � � � 1ð Þ:

ð30Þ

In the same manner, a couple of parametric

programming formulas are established to find out the

lower bound ~pLsi�ðtÞ and the upper bound ~pUsi�ðtÞ at any

�-cut level:

Lower bound:

~pLsi�ðtÞ : min
YN
l¼1

p l,ilð ÞðtÞ, ðt � 0, 0 � � � 1Þ

s:t: ~�l,L
ðkl,kl�1Þ�

� �l
ðkl,kl�1Þ

� ~�l,U
ðkl,kl�1Þ�

..

.

~�l,L
ð2,1Þ� � �

l
ð2,1Þ �

~�l,U
ð2,1Þ�

,
ð31Þ

Upper bound:

~pLsi�ðtÞ : max
YN
l¼1

p l,ilð ÞðtÞ, ðt � 0, 0 � � � 1Þ

s:t: ~�l,L
ðkl,kl�1Þ�

� �lðkl,kl�1Þ �
~�l,U
ðkl,kl�1Þ�

..

.

~�l,L
ð2,1Þ� � �

l
ð2,1Þ �

~�l,U
ð2,1Þ�

:
ð32Þ

The instantaneous expected performance rate inherits

the fuzzy property from fuzzy state probability

and performance rate at any time instant, and it is

written as:

~EðtÞ ¼
XK
i¼1

~psiðtÞ � ~gsi: ð33Þ

Thus, the �-cut level set of the fuzzy instantaneous

expected performance rate ~EðtÞ is given by:

~E�ðtÞ¼ min
XK
i¼1

psiðtÞ�gsi;� ~psiðtÞðpsiðtÞÞ��;� ~gsiðgsiÞ��

 !
;

"

max
XK
i¼1

psiðtÞ�gsi;� ~psiðpsiðtÞÞ��;� ~gsiðgsiÞ��

 !#

¼ ~EL
� ðtÞ;

~EU
� ðtÞ

� �
; 0���1ð Þ

ð34Þ

The parametric programming technique can also be

resorted to solve the upper and lower bound of any �-
cut level set.

4.4. Fuzzy availability assessment for FMSS

For an MSS with crisp performance rate and user
demand w where gsi 5w � gsiþ1 ði ¼ 1, . . . ,K� 1Þ, the
acceptable states are the states iþ 1, . . . ,K, and the
instantaneous availability of MSS is equal to:

Aðt,wÞ ¼
XK
j¼iþ1

psjðtÞ: ð35Þ

Considering an FMSS where the user demand is
presented as fuzzy value ~w, and availability of the
FMSS is defined as probability that the performance
of the FMSS satisfies the fuzzy demand ~w. However,
the membership functions of the fuzzy performances
rates and user demand may overlap as shown in
Figure 3. As we consider the value of � as the level
(or degree) of ‘fuzzy risk’ (or fuzzy interval) one is
willing to tolerate, the availability of the FMSS will
vary at different �-cut levels. In other words, if � is
increased, the fuzzy divergence of indices of interest
will shrink and finally the availability will become a
crisp value when � ¼ 1.

The relative cardinality jarijrel originally proposed
by Ding and Lisnianski (2008), is defined as:

jarijrel ¼
jarij

jrij
, ð36Þ

where jarij represents the cardinality of the a~ri, which is
a fuzzy set representing that the system performance
rate in state i is not less than the user demand w, and
jrij is the cardinality of the fuzzy number ~ri ¼ ~gsi � ~w.
However, the definition of relative cardinality neglects
the �-cut level of fuzzy demand and fuzzy performance
under different ‘fuzzy risk’, and the membership
function of fuzzy availability is defined as ~Að ~wÞ ¼PK

i¼1 ~pi � jarijrel. Ignoring the effect of ‘fuzzy risk’ may
result in some problematic issues. Suppose at time t,
the fuzzy state probabilities and fuzzy performance
rates of a two-state FMSS are ~ps1ðtÞ ¼ ð0:15, 0:2, 0:25Þ,
~ps2ðtÞ ¼ ð0:75, 0:8, 0:85Þ and ~gs1 ¼ ð0, 5, 10Þ,

gsi gsi+1w
∼ ∼ ∼

1.0

M
em

be
rs

hi
p 

m

Performance rates

Figure 3. Fuzzy performance rates and demand with over-
lapping membership functions.
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~gs2 ¼ ð10, 15, 20Þ, respectively. If one examines the

availability under the user demand ~w ¼ 15, the avail-

ability is just equal to 0:8 if � ¼ 1, because it can be

considered as a crisp value case. However, according to

the relative cardinality approach in Ding and

Lisnianski (2008), one has ~r2 ¼ ~g2 � ~w ¼ ð�5, 0, 5Þ,

and the availability is equal to 0:4
ð ~A�¼1ðt, ~wÞ ¼ ~ps2�¼1ðtÞ�

jar2j
jr2j
¼ 0:8�0:5¼ 0:4Þ. Appar-

ently, the outcome from the relative cardinality

approach with �¼ 1 is not consistent with the one in

the crisp context. Therefore, we propose a modified

approach to overcome this drawback.
Define the �-cut level cardinality of fuzzy set

~ri ¼ ~gi � ~w by:

jrij� ¼
X

ri2Ri

�~ri
rið Þ��

�~riðriÞ, 0 � � � 1,
ð37Þ

where Ri is range of ri, and define the �-cut level

cardinality of fuzzy set a~ri as:

jarij� ¼
X
ri2Ri
ri�0
�~ri

rið Þ��

� ~riðriÞ, 0 � � � 1:
ð38Þ

Thus, the �-cut level relative cardinality of adequate

demand fuzzy set is given by:

jarij
rel
� ¼
jarij�
jrij�

: ð39Þ

Hence, the �-cut level of the instantaneous availability
~Aðt, ~wÞ is given by ~A�ðt, ~wÞ ¼ ½ ~AL

� ðt, ~wÞ, ~AU
� ðt, ~wÞ� with

lower bound:

~AL
� ðt, ~wÞ : min

XK
i¼1

psiðtÞ � jarij
rel
�

s:t: ~pLsi�ðtÞ � psiðtÞ � ~pUsi�ðtÞXK
i¼1

psiðtÞ ¼ 1

, ð40Þ

and upper bound:

~AL
� ðt, ~wÞ : max

XK
i¼1

psiðtÞ � jarij
rel
�

s:t: ~pLsi�ðtÞ � psiðtÞ � ~pUsi�ðtÞXK
i¼1

psiðtÞ ¼ 1
:

ð41Þ

It should be noted that the reason for adding a pair of

equality constraints into the parametric programming

is to ensure that at any time instant, the summation of

the state probabilities of all possible states is equal to

one. Recall the two-state FMSS as an example: if

w̃¼ 0, both the fuzzy availability with and without

considering the equality constraint are plotted in

Figure 4 by solid and dot-dash lines, respectively.
The availability is exactly equal to one when the
equality constraints are included, so the result is more
acceptable and reasonable. The explanation is that
although the performance rates are fuzzy values, they
are still absolutely greater than the user demand. The
system availability in this scenario would be equal to
one at anytime; however, ignoring the equality
constraint may result in an irrational outcome in
which the availability is not equal to one. Because the
state transition intensities are presented as fuzzy
numbers in our studied case, the summation of state
probabilities determined by any possible transition
intensity is definitely equal to one, even without these
constraints. However, if the steady/instantaneous state
probabilities are presented as fuzzy numbers like the
cases in Ding and Lisnianski (2008), the couple of
equality constraints are very important and necessary.

To solve the non-linear parametric programming in
Equations (18, 19, 24, 25, 31, 32, 40, 41), optimization
routines, such as the steepest descent method, the
Newton–Raphson method, etc. can be realised either in
Matlab or other commercial optimisation softwares.
The function ‘fmincon’ in the Matlab optimisation
toolbox is adopted to solve the constrained non-linear
problems (more details can be found in the Matlab
manual handbook).

5. Illustrative example

Consider a power generation system with three non-
repairable generators as shown in Figure 5. The
generators 1 and 2 are assumed to be binary capacity
elements with nominal performance rate in state 2, and
zero performance rate in failure state 1. The perfor-
mance rates of generator 3 are divided into three levels

A(w=0)

A0.9 1.11.0

M
em

be
rs

hi
p 

m

1.0

Figure 4. The membership of system availability when
~w ¼ 0.
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named perfect (state 3), partially failed (state 2) and
completely failed (state 1) by domain engineers. The
statistical estimation method is problematic because of
the lack of sufficient data, especially for a new system.
Thus, crisp values are not suitable to assess the transi-
tion intensities. On the other hand, the performance
rate may fluctuate around its expected value in each
state. For example the capacity of a solar generator is
affected by the weather conditions and the power of a
water-turbine generator fluctuates with water flow. It
is reasonable to use fuzzy numbers to evaluate the
transition intensities and performance rates according
to expert’s knowledge (Verma et al. 2004), thus each
power generator can be considered as an FMSE, and
the entire system is regarded as an FMSS.

The fuzzy transition intensities and fuzzy perfor-
mance rates of each FMSE are treated as TFN, and
tabulated in Tables 1 and 2.

For element 1:

The FUGF representing the dynamic fuzzy perfor-
mance rate distribution is written as:

~u1ðz, tÞ ¼ ~pð1,2ÞðtÞ � z
~g
1,2ð Þ þ ~pð1,1ÞðtÞ � z

~g
1,1ð Þ

¼ ~pð1,2ÞðtÞ � z
120,150,180ð Þ þ ~pð1,1ÞðtÞ � z

0

where the dynamic fuzzy state probability can be
obtained throughout the exponential distribution, and
one has ~p 1,2ð ÞðtÞ ¼ e�

~�1
2,1ð Þ

t and ~p 1,1ð ÞðtÞ ¼ 1� e�
~�1
2,1ð Þ

t.

For element 2:

In the same manner, the FUGF of the element 2 is

given as:

~u2ðz, tÞ ¼ ~pð2,2ÞðtÞ � z
~g
2,2ð Þ þ ~pð2,1ÞðtÞ � z

~g
2,1ð Þ

¼ ~pð2,2ÞðtÞ � z
240,260,300ð Þ þ ~pð2,1ÞðtÞ � z

0

where ~p 2,2ð ÞðtÞ ¼ e�
~�2
2,1ð Þ

t and ~p 2,1ð ÞðtÞ ¼ 1� e�
~�2
2,1ð Þ

t.

For element 3:

The FUGF for the element is given as:

~u3ðz, tÞ ¼ ~pð3,3ÞðtÞ � z
~gð3,3Þ þ ~pð3,2ÞðtÞ � z

~gð3,2Þ þ ~pð3,1ÞðtÞ � z
~gð3,1Þ

¼ ~pð3,3ÞðtÞ � z
400,450,500ð Þ þ ~pð3,2ÞðtÞ � z

280,320,350ð Þ

þ ~pð3,1ÞðtÞ � z
0

The corresponding Kolmogorov’s equation for sol-

ving the fuzzy state probability of element 3 takes the

form:

d ~pð3,1ÞðtÞ

dt
¼ ~�3ð3,1Þ ~pð3,3ÞðtÞ þ ~�3ð2,1Þ ~pð3,2ÞðtÞ,

d ~pð3,2ÞðtÞ

dt
¼ ~�3ð3,2Þ ~pð3,3ÞðtÞ � ~�3ð2,1Þ ~pð3,2ÞðtÞ, t � 0,

d ~pð3,3ÞðtÞ

dt
¼ � ~�3ð3,1Þ þ ~�3ð3,2Þ

� 	
~pð3,3ÞðtÞ,

8>>>>>>><
>>>>>>>:

with initial condition ~p 3,3ð Þð0Þ ¼ 1 and ~p 3,2ð Þð0Þ ¼
~p 3,1ð Þð0Þ ¼ 0. After using the Laplace–Stieltjes transform,

Element 1 

Element 3 

Element 2 

1

2,1

1, 2
g

1,1
g

2

2,1

2, 2
g

2,1
g

3

2,1

3

3,1
3

3,2

3,2
g

3,1
g

3, 3
g

Figure 5. The structure of the three-element FMSS.

Table 1. TFN for fuzzy transition intensities (per year).

Element 1 ~�12,1ð Þ – –

Fuzzy intensity (0.4, 0.5, 0.6) – –

Element 2 ~�22,1ð Þ – –

Fuzzy intensity (0.7, 0.8, 0.9) – –

Element 3 ~�33,2ð Þ
~�33,1ð Þ

~�32,1ð Þ
Fuzzy intensity (0.4, 0.5, 0.7) (0.2, 0.3, 0.4) (0.4, 0.5, 0.6)

Table 2. TFN for fuzzy performance rates (�103 kW).

State 1 2 3
Element 1 0 (120, 150, 180) –
Element 2 0 (240, 260, 300) –
Element 3 0 (280, 320, 350) (400, 450, 500)
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the following linear equations are obtained:

s ~pð3,1ÞðsÞ ¼ ~�3ð3,1Þ ~pð3,3ÞðsÞ þ
~�32,1ð Þ ~pð3,2ÞðsÞ

s ~pð3,2ÞðsÞ ¼ ~�3ð3,2Þ ~pð3,3ÞðsÞ �
~�32,1ð Þ ~pð3,2ÞðsÞ

s ~pð3,3ÞðsÞ � 1 ¼ � ~�3ð3,1Þ þ
~�3ð3,2Þ

� 	
~pð3,3ÞðsÞ

8>>><
>>>:

,

and one has:

~p 3,3ð ÞðsÞ ¼
1

sþ ~�3
ð3,1Þ þ

~�3
ð3,2Þ

,

~p 3,2ð ÞðsÞ ¼
~�3
ð3,2Þ

sþ ~�3
ð2,1Þ

� 	
sþ ~�3

ð3,1Þ þ
~�3
ð3,2Þ

� 	 ,

~pð3,1ÞðsÞ ¼
s ~�3ð3,1Þ þ

~�3ð2,1Þ
~�3ð3,1Þ þ

~�3ð2,1Þ
~�3ð3,2Þ

s sþ ~�3
ð2,1Þ

� 	
sþ ~�3

ð3,1Þ þ
~�3
ð3,2Þ

� 	 :
Using the inverse Laplace–Stieltjes transform, the

dynamic fuzzy state probabilities can be obtained, as

functions of time t in the form of:

~pð3,3ÞðtÞ ¼ e�ð
~�3
ð3,1Þ
þ ~�3
ð3,2Þ
Þt,

~pð3,2ÞðtÞ ¼

~�3
ð3,2Þ e�ð

~�3
ð3,2Þ
þ ~�3
ð3,1Þ
Þt
� e�

~�3
ð2,1Þ

t
� 	
~�3
ð2,1Þ �

~�3
ð3,2Þ �

~�3
ð3,1Þ

,

~pð3,1ÞðtÞ ¼ 1� ~pð3,2ÞðtÞ � ~pð3,3ÞðtÞ:

Thus, the FUGF of the FMSS is written as:

~Usðz, tÞ ¼ ~��
ser

~��
par

~u1ðz, tÞ, ~u2ðz, tÞð Þ, ~u3ðz, tÞ

 !
,

where ~��ser and
~��par represent the fuzzy composition

operators for series and parallel connected elements,

respectively. Following the composition algorithm

introduced in Section 4.3, the FUGF can be written as:

~Usðz; tÞ ¼ ~pð1;1ÞðtÞ ~pð2;1ÞðtÞ ~pð3;1ÞðtÞ � z
0ð Þ

þ ~pð1;1ÞðtÞ ~pð2;1ÞðtÞ ~pð3;2ÞðtÞ � z
0ð Þ

þ ~pð1;1ÞðtÞ ~pð2;1ÞðtÞ ~pð3;3ÞðtÞ � z
0ð Þ

þ ~pð1;1ÞðtÞ ~pð2;2ÞðtÞ ~pð3;1ÞðtÞ � z
0ð Þ

þ ~pð1;1ÞðtÞ ~pð2;2ÞðtÞ ~pð3;2ÞðtÞ � z
240;260;300ð Þ

þ ~pð1;1ÞðtÞ ~pð2;2ÞðtÞ ~pð3;3ÞðtÞ � z
240;260;300ð Þ

þ ~pð1;2ÞðtÞ ~pð2;1ÞðtÞ ~pð3;1ÞðtÞ � z
0ð Þ

þ ~pð1;2ÞðtÞ ~pð2;1ÞðtÞ ~pð3;2ÞðtÞ � z
120;150;180ð Þ

þ ~pð1;2ÞðtÞ ~pð2;1ÞðtÞ ~pð3;3ÞðtÞ � z
120;150;180ð Þ

þ ~pð1;2ÞðtÞ ~pð2;2ÞðtÞ ~pð3;1ÞðtÞ � z
0ð Þ

þ ~pð1;2ÞðtÞ ~pð2;2ÞðtÞ ~pð3;2ÞðtÞ � z
280;320;350ð Þ

þ ~pð1;2ÞðtÞ ~pð2;2ÞðtÞ ~pð3;3ÞðtÞ � z
360;410;480ð Þ:

Simplify the FUGF via combining the terms with
identical performance rate. Thus, the FMSS only has
five different system states corresponding to its per-
formance rate, and they are:

State 1: ~gs1 ¼ 0 and

~ps1 ¼ ~pð1;1ÞðtÞ ~pð2;1ÞðtÞ ~pð3;1ÞðtÞ � z
ð0Þ

þ ~pð1;1ÞðtÞ ~pð2;1ÞðtÞ ~pð3;2ÞðtÞ � z
ð0Þ

þ ~pð1;1ÞðtÞ ~pð2;1ÞðtÞ ~pð3;3ÞðtÞ � z
ð0Þ

þ ~pð1;1ÞðtÞ ~pð2;2ÞðtÞ ~pð3;1ÞðtÞ � z
ð0Þ

þ ~pð1;2ÞðtÞ ~pð2;1ÞðtÞ ~pð3;1ÞðtÞ � z
ð0Þ

þ ~pð1;2ÞðtÞ ~pð2;2ÞðtÞ ~pð3;1ÞðtÞ � z
ð0Þ;

State 2: ~gs2 ¼ 120, 150, 180ð Þ and ~ps2 ¼ ~pð1,2ÞðtÞ ~pð2,1ÞðtÞ�
~pð3,2ÞðtÞ þ ~pð1,2ÞðtÞ ~pð2,1ÞðtÞ ~pð3,3ÞðtÞ;

State 3: ~gs3 ¼ 240, 260, 300ð Þ and ~ps3 ¼ ~pð1,1ÞðtÞ ~pð2,2ÞðtÞ�
~pð3,2ÞðtÞ þ ~pð1,1ÞðtÞ ~pð2,2ÞðtÞ ~pð3,3ÞðtÞ;

State 4: ~gs3 ¼ 280, 320, 350ð Þ and ~ps4 ¼ ~pð1,2ÞðtÞ ~pð2,2ÞðtÞ�
~pð3,2ÞðtÞ;

State 5: ~gs3 ¼ 360, 410, 480ð Þ and ~ps5 ¼ ~pð1,2ÞðtÞ ~pð2,2ÞðtÞ�
~pð3,3ÞðtÞ.

The parametric programming as Equations (31)
and (32) is executed to calculate the intervals
~psi�ðtÞ ¼ ~pLsi�ðtÞ, ~pUsi�ðtÞ

� �
at any �-cut level of the ~psiðtÞ.

The fuzzy system state probabilities ~psiðtÞ at cut levels
� ¼ 0 and � ¼ 1 are plotted in Figures 6 to 10,
respectively, and the fuzzy instantaneous expect per-
formance rate is depicted in Figure 11. In these figures,
the possible value of the indices of interest falls into
the interval bounded by the outer lines obtained
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Figure 6. The probability ~ps1ðtÞ with � ¼ 1 and � ¼ 0.
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with � ¼ 0. When � ¼ 1, the value of indices is equal to
the results regarding transition intensities and perfor-
mance rates as crisp values. Furthermore, one can find
out the time point with the maximum interval between
the upper and lower bound when � ¼ 0. It means when
one considers the fuzzy uncertainty, the largest uncer-
tainty divergence (fuzzy interval) is at this time point
during the whole system working period. However, the
time points with maximum fuzzy interval for different
indices of interest are not identical. Examining the
divergence incurred by fuzzy uncertainty is significant
when the robustness is greatly concerned.

Figure 12 plots the membership function of fuzzy
state probability ~psiðtÞ at different �-cut level when
t ¼ 0:8 years, and the membership function of
~Eðt ¼ 0:8Þ is illustrated in Figure 13.

Assume that the fuzzy demand for the FMSS is
~w ¼ ð160, 180, 210Þ � 103 kW, and fuzzy performance
rate of state 2 overlaps with user demand. According to
the approach proposed in Section 4.4, the membership
function of availability at t ¼ 0:8 years is presented in
Figure 14 compared with the one using the relative
cardinality, as well as the one using the approach
proposed in Ding and Lisnianski (2008) where the
equality constraints are not considered.

When � ¼ 1, all the fuzzy values, including element
state transition intensity and performance rates, as well
as user demand become crisp numbers. The availability
is also a crisp value by solving the traditional MSS
formulation, and it is equal to 0.4037 (note that since
the crisp performance rates of the system states are
0 kW, 150� 103 kW, 260� 103 kW, 320� 103 kW and
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Figure 10. The probability ~ps5ðtÞ with � ¼ 1 and � ¼ 0.
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Figure 8. The probability ~ps3ðtÞ with � ¼ 1 and � ¼ 0.
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Figure 9. The probability ~ps4ðtÞ with � ¼ 1 and � ¼ 0.
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Figure 7. The probability ~ps2ðtÞ with � ¼ 1 and � ¼ 0.
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410� 103 kW, respectively, the performance rates of
the three states (states 5, 4, 3) are greater than the crisp
user demand of 180� 103 kW, and the availability is
the summation of the three crisp state probabilities).
The result is identical with our proposed method when
one sets � ¼ 1 as shown in Figure 14, but the relative
cardinality methods provide a larger value (0.4214). It
is because the relative cardinality is constant even if the
�-cut level increases, and when � ¼ 1, the relative
cardinality for state 2 still regards the performance
rates as a fuzzy value and the product of relative
cardinality and state probability ~ps2ðtÞ provides a
partial contribution to the availability index.
Furthermore, the membership function according to
relative cardinality gives a proper triangle while our
proposed approach does not, especially at � between
0.3 and 0.4. This is caused by the variation of jarij

rel
�

which is not a constant in our proposed method. The

fuzzy availability can be regarded as a fixed-weight
sum of state fuzzy probabilities in the relative cardi-
nality approach, and it still looks like a TFN when
each probability is TFN-like. However, the proposed
method is like a variable-weight sum which will not
form a TFN, preventing the probability of state 2 to
contribute to the availability when � � 0:4(jarij

rel
� ¼ 0).

To demonstrate the effect of the equality constraints in
Equstions (40) and (41), we directly regard the element
state probabilities as TFN calculated from fuzzy
Markov model, and using the approach in Ding and
Lisnianski (2008) to evaluate the system availability
without considering the equality constraints. The result
is plotted in Figure 14 by the line with diamond marks.
Apparently, the scenario without equality constraints
involved provides a larger fuzzy uncertainty interval,
and for some irrational cases where the summation of
the possible system state probability is less or greater
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Figure 11. The fuzzy instantaneous expected performance
rate ~EðtÞ with � ¼ 1 and � ¼ 0.
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Figure 14. The membership function of ~Aðt, ~wÞ at t¼ 0.8 year
when ~w ¼ ð160, 180, 210Þ � 103 kW.
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Figure 12. The membership function of ~psiðtÞ at t¼ 0.8 year.
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than one are included, which enlarges the set size of
possible availability value in fuzzy context.
Furthermore, an extreme case that user demand
~w ¼ 0 is examined to illustrate the advantage of the
proposed method. Because all the state performance
rates are greater than user demand and system avail-
ability should be exactly equal to one at any �-cut level.
As shown in Figure 15, the result provided by our
method matches above judgment that the availability is
equal to one. On the other hand, the availability
computed by Ding–Lisnianski (2008) method which
does not consider the equality constraints forms a
TFN, produces a fuzzy interval where availability is
less or greater than one, which makes no sense.

6. Conclusions

This article introduces the FMSS that extends the MSS
model to cases when the transition rates and perfor-
mance rates of MSE are uncertain and/or imprecise.
These uncertain parameters are presented as fuzzy
values. A fuzzy Markov model is proposed to establish
the dynamic state probabilities of the FMSE. The MSS
state probability, which inherits the fuzzy property from
FMSE, is evaluated through the FUGF, and the
composition rules for the fuzzy performance rate in
both flow transmission type and task processing type
systems are discussed. The parametric programming
formulas are presented to obtain membership functions
of the instantaneous state probability and expected
performance rate at any time instant. A modified
availability evaluation method is developed when
system performance rate and user demand are presented
as fuzzy values. A power generation system with three
FMSE is studied, and it shows how the proposed
method provides a more effective and reasonable

outcome. This technique is suitable for the reliability
and performance evaluation of MSS where the accurate
data are not available and need to be approximated by
fuzzy values, and it provides engineers with more useful
information about possible system behaviour and,
thereby enabling better decisions to be made about
safety issues. Further research areas include developing
an effective methodology to reduce the computational
complexity, and incorporating the maintenance deci-
sion into the FMSS.
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