
 Open access  Journal Article  DOI:10.1080/0740817X.2012.706378

Reliability assessment for multi-state systems under uncertainties based on the
Dempster–Shafer theory — Source link 

Mohamed Sallak, Walter Schön, Felipe Aguirre

Institutions: Centre national de la recherche scientifique

Published on: 23 May 2013 - Iie Transactions (Taylor & Francis Group)

Topics: Dempster–Shafer theory, Transferable belief model and Reliability (statistics)

Related papers:

 Upper and Lower Probabilities Induced by a Multivalued Mapping

 Reliability assessment under Uncertainty Using Dempster-Shafer and Vague Set Theories

 
Sensitivity Analysis of Epistemic Uncertainty on Input Parameters and System Structure Using Dempster-Shafer
Theory

 
The improvement of uncertainty measurements accuracy in sensor networks based on fuzzy dempster-shafer
theory

 Comparison of Bayesian and Dempster-Shafer theory for sensing: a practitioner's approach

Share this paper:    

View more about this paper here: https://typeset.io/papers/reliability-assessment-for-multi-state-systems-under-
1modg9wyb1

https://typeset.io/
https://www.doi.org/10.1080/0740817X.2012.706378
https://typeset.io/papers/reliability-assessment-for-multi-state-systems-under-1modg9wyb1
https://typeset.io/authors/mohamed-sallak-49xnqrbpoi
https://typeset.io/authors/walter-schon-rxqp1ojiyl
https://typeset.io/authors/felipe-aguirre-1a8wlej9wx
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/journals/iie-transactions-2d1btcyd
https://typeset.io/topics/dempster-shafer-theory-6l6b8mz2
https://typeset.io/topics/transferable-belief-model-39lzf87m
https://typeset.io/topics/reliability-statistics-3gpc4lna
https://typeset.io/papers/upper-and-lower-probabilities-induced-by-a-multivalued-4ezjj1hdbg
https://typeset.io/papers/reliability-assessment-under-uncertainty-using-dempster-32odpzop0k
https://typeset.io/papers/sensitivity-analysis-of-epistemic-uncertainty-on-input-toh8tfi01l
https://typeset.io/papers/the-improvement-of-uncertainty-measurements-accuracy-in-4djemg5vwf
https://typeset.io/papers/comparison-of-bayesian-and-dempster-shafer-theory-for-4fb8l21vqn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/reliability-assessment-for-multi-state-systems-under-1modg9wyb1
https://twitter.com/intent/tweet?text=Reliability%20assessment%20for%20multi-state%20systems%20under%20uncertainties%20based%20on%20the%20Dempster%E2%80%93Shafer%20theory&url=https://typeset.io/papers/reliability-assessment-for-multi-state-systems-under-1modg9wyb1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/reliability-assessment-for-multi-state-systems-under-1modg9wyb1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/reliability-assessment-for-multi-state-systems-under-1modg9wyb1
https://typeset.io/papers/reliability-assessment-for-multi-state-systems-under-1modg9wyb1


HAL Id: hal-00749606
https://hal.archives-ouvertes.fr/hal-00749606

Submitted on 8 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability assessment for multi-state systems under
uncertainties based on the Dempster-Shafer theory

Mohamed Sallak, Walter Schon, Felipe Aguirre

To cite this version:
Mohamed Sallak, Walter Schon, Felipe Aguirre. Reliability assessment for multi-state systems under
uncertainties based on the Dempster-Shafer theory. IIE Transactions, Taylor & Francis, 2013, 45 (9),
pp.995-1007. 10.1080/0740817X.2012.706378. hal-00749606

https://hal.archives-ouvertes.fr/hal-00749606
https://hal.archives-ouvertes.fr


Reliability assessment for multi-state systems

under uncertainties based on the

Dempster-Shafer theory

Mohamed Sallak, Walter Schön, and Felipe Aguirre

Compiegne University of Technology, UMR CNRS 7253

Heudiasyc BP 20529, 60205 Compiegne cedex, France

{mohamed.sallak, walter.schon, felipe.aguirre-martinez}@utc.fr

ABSTRACT

This paper presents an original method for evaluating reliability indices for Multi-State Systems (MSSs)

in the presence of aleatory and epistemic uncertainties. In many real world MSSs an insufficiency

of data makes it difficult to estimate precise values for component state probabilities. The proposed

approach applies the Transferable Belief Model (TBM) interpretation of the Dempster-Shafer theory to

represent component state beliefs and to evaluate the MSS reliability indices. We use the example of

an oil transmission system to demonstrate the proposed approach and we compare it with the Universal

Generating Function method. The value of the Dempster-Shafer theory lies in its ability to use several

combination rules in order to evaluate reliability indices for MSSs that depend on the reliability of the

experts’ opinions as well as their independence.
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I. INTRODUCTION

In traditional binary reliability both systems and components have only two possible states: perfect

functioning and complete failure [9], [25]. However, a system and its components can have different states



characterized by different levels of performance. Such systems are referred to as Multi-State Systems

(MSSs). For example, a power station may have states 0, 1, 2, 3 and 4 that correspond to generating

electricity at 0, 25, 50, 75 and 100 percent of its full capacity [61]. Therefore, reliability analysis of

MSSs is much more complex than for binary state systems.

MSS theory has been a subject of investigation since 1978 in [8], [21]. A comprehensive presentation

of MSS reliability theory and its applications can be found in the first book devoted to the reliability

analysis of MSSs [35]. A recent review of the literature can be found in [39]. Practical methods of

MSS reliability assessment are based on four different approaches [17], [43]: the structure function

[44], [58], the Monte Carlo simulation technique [45], [69], the Markov approach [34], [62] and the

Universal Generating Function (UGF) method [17], [31], [32]. The structure function approach based on

the extension of Boolean models to multi-valued models was the first method to be developed for MSS

reliability assessment. Monte Carlo simulation can represent any real world problem for the purposes of

reliability assessment. In order to use the Markov method we need to generate all the possible states of

a system. However, the number of states can be extremely large, even for a relatively small number of

system elements. The UGF method was introduced in [57] and proved to be very effective in evaluating

the reliability of different types of MSSs [35]. The UGF function extends the moment-generating function

and allows the entire set of MSS performances to be obtained, based on the performance of its components

for several system configurations. This can be done by introducing different composition operators over

the UGF functions. [56] presents an interesting comparison of the four approaches.

Conventional MSS reliability theory makes two fundamental assumptions [17]: (i) every state probability

of an MSS element can be fully characterized by probability measures; and (ii) the performance rate

of any MSS element can be precisely determined. However, for some MSSs, there are different types

of uncertainties about the state probabilities and performance rates of elements [12]. In recent years

a general Fuzzy Multi-State Systems (FMSS) approach has been proposed to handle uncertainties in

reliability assessments of MSSs [19]. This approach assumes that the state probabilities and/or the state

performances of components can be represented by fuzzy values [18], [19], whereas the D-S approach

developed in this paper assumes that the state beliefs of components are represented by belief functions

and that the state performances of components are discrete values. The literature includes several attempts

to extend belief functions to fuzzy events. The first extension of D-S theory to the general framework of
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fuzzy set theory was proposed by Zadeh in the context of information granularity and possibility theory

[67]. A number of different generalizations were then proposed, according to how a measure of inclusion

among fuzzy sets is used to define the belief functions [26], [36], [41], [52], [63], [65], [66]. In order

to take fuzzy numbers into account, fuzzy numbers can be assigned to each focal element of the belief

structure. This may be achieved by considering the upper and lower bounds of α-cuts of fuzzy numbers.

The structure obtained, introduced by Denœux [15], is called a Fuzzy-Valued Belief Structure (FVBS).

This structure is defined as a fuzzy set of belief structures on the frame of discernment Ω, whose belief

masses are restricted by fuzzy numbers. Fuzzy credibility and plausibility can then be evaluated.

In this paper we are only interested in uncertainties about the state probabilities of elements. Uncertainties

are classified into two categories: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty is

the inherent variation associated with the physical system or the environment, such as the inherent vari-

ability of component failure. It is referred to as variability, random uncertainty, and stochastic uncertainty

[40]. Knowledge provided by experts cannot be expected to reduce aleatory uncertainty. This type of

uncertainty is thus also known as irreducible uncertainty. Epistemic uncertainty is an uncertainty that is

due to a lack of knowledge of quantities or processes within the system or the environment. It is also

referred to as reducible uncertainty or subjective uncertainty [27], [37]. Epistemic uncertainty can be

eliminated by obtaining knowledge that was originally lacking, and expert opinion may be useful here.

Over the last few years the risk assessment community has generally held that distinguishing between these

types of uncertainty is useful and important when evaluating the reliability of systems [5]. In case of large

amount of reliability data, the classical probabilistic approach was widely used to manage uncertainties

in risk and reliability assessments [4]–[6]. This approach was based on the definition given by Laplace

of the probability of an event as the ratio of the number of cases favorable to it, to the number of all

possible cases when all cases are equally possible [30]. The frequentist probabilistic approach introduced

by Venn [59] which defined the event probability as the limit of its relative frequency in a large number

of trials was also widely used [4]–[6]. However, in the case of components that fail only rarely (nuclear

systems, chemical processes, railway systems, etc.) or components that have not been operated long

enough to generate a sufficient quantity of reliability data, expert judgment is required and both classical

and frequentist probabilistic approaches become not suitable in these cases [4]–[6], [46]. For this reason,

several methods were proposed to manage uncertainties such as Bayesian approach, interval approach,
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evidence theory, possibility theory, etc.

The Bayesian approach was based on the use of subjective probabilities to represent expert judgment

[3]. The subjective probabilities of an event indicate the degree to which the expert believes it [23].

The probability distributions representing the aleatory uncertainties are proposed such as for example the

representation of a lifetime component by an exponential distribution. The epistemic uncertainties about

the parameter values of the distributions are then represented by prior subjective probability distributions.

The equation of Bayes is used to compute the new epistemic uncertainties in terms of the posterior

distributions in case of new reliability data. Finally, the predictive distributions of the quantities of interest

such as the lifetime of new components are derived by using the total probability law [3], [22], [42],

[68]. The predictive distributions are subjective but they also take into account the aleatory uncertainties

represented by the prior probability models. However, There are some critics about the Bayesian approach

exposed particularly by Walley [60] and Caselton and Luo [11]. In a situation of ignorance a Bayesian

approach must equally allocate subjective probabilities over the frame of discernment. Thus there is no

distinction between uncertainty and ignorance.

The D-S theory also known as the evidence theory or belief functions theory is a generalization of the

Bayesian theory of subjective probability. Whereas the Bayesian theory requires probabilities for each

question of interest, belief functions allow us to base degrees of belief for one question on probabilities

for a related question [50]. To illustrate the idea of obtaining degrees of belief for one question from

subjective probabilities for another, we propose an example in risk assessment inspired from the example

of limb given by Shafer [50]. Suppose we have subjective probabilities for the reliability of a risk expert

A. The probability that A is reliable is 0.75, and the probability that A is not reliable is 0.25. The risk

expert A reports us that a component i is failed. This information which must be true if A is reliable, is

not necessarily false if A is not reliable. The risk expert testimony justifies a 0.75 degree of belief that the

component i is failed, but only a 0 degree of belief (not a 0.25 degree of belief) that the component i is

not failed. This value does not mean that we are sure that the component i is failed, as a zero probability

would. It means that the risk expert’s testimony gives us no reason to believe that the component i

is failed. The 0.75 and the 0 constitute a belief function. Thus there is no requirement that belief not

committed to a given proposition should be committed to its negation. The second important issue in

D-S theory is that belief measures of uncertainty may be assigned to overlapping sets and subsets of
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hypotheses, events or propositions as well as to individual hypothesis. There are several interpretations

of D-S theory (Dempster’s model [14], the Theory of Hints [28], etc.). In this work the Transferable

Belief Model (TBM) interpretation of the D-S theory is proposed.

The paper is organized as follows: Section 2 introduces basic concepts of D-S theory and TBM. Section 3

presents and discusses the proposed MSS model based on the TBM, the corresponding structure function

and reliability indices. Section 4 presents an example comparing the UGF method and the proposed

approach in the case of aleatory uncertainty. The same example with expert opinion is then studied

using the TBM in presence of both aleatory and epistemic uncertainties. Finally section 5 presents some

conclusions.

II. BACKGROUND OF D-S THEORY AND TBM

D-S is a theory for uncertain reasoning under both aleatory and epistemic uncertainties. It was first

developed by Dempster [14] and extended by Shafer [50]. The first work using D-S theory in reliability

assessment was presented by Dempster and Kong [13]. In recent years D-S theory has been used by

numerous researchers to quantify uncertainty in the reliability analysis of binary state systems [1],

[7], [33], [48], [49], [51], [55]. Several different interpretations of D-S theory have been put forward:

Dempster’s model [14], the Theory of Hints [28], the probability of modal propositions model [47] and

the Transferable Belief Model (TBM) [54]. Each model corresponds to a different understanding of the

concept of uncertainty. The interpretation of D-S theory that we have adopted in this paper is based on

the TBM, which is a model developed outside the scope of probability theory and can thus avoid the

accusation that D-S theory is understood as a special form of upper and lower probability theory [5].

A. Basic Belief Assignment (BBA)

The definition domain of the variable of interest x is called the frame of discernment Ω, where all

of the possible events are mutually exclusive elementary propositions. As an example, let us consider a

frame of discernment Ω = {x1, x2}, meaning that x1 and x2 are elementary propositions and mutually

exclusive of each other. The power set 2Ω is the set of all the subsets of Ω including itself, i.e.: 2Ω =

{{∅}, {x1}, {x2},Ω}. A Basic Belief Assignment (BBA) on Ω is a function mΩ : 2Ω → [0, 1] which

maps belief masses onto events or sets of events such that:
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∑

A∈2Ω

mΩ(A) = 1

An agent holding a piece of evidence allocates unitary amounts of belief to the different subsets of Ω.

The number mΩ(A) represents the support to A given by the agent’s belief [53]. There is a distinction

between probabilities and BBAs: probability distribution functions are defined on Ω, whereas BBAs are

defined on the power set 2Ω. This means that there are 2card(Ω) possible hypotheses in D-S theory,

while in probability theory there are only card(Ω) possible hypotheses. Furthermore, the sub-additivity

hypothesis is not required in D-S theory like it is in probability theory.

The subsets A ⊂ Ω such that mΩ(A) > 0 are called focal sets of mΩ. Full knowledge is represented by

a BBA having a singleton {x} (x ∈ Ω) as a unique focal set. A Bayesian BBA is a special case where

all of the focal sets are singletons and is equivalent to probabilities. Complete ignorance is represented

by a BBA having only one focal element equal to Ω and which is termed vacuous.

According to Klir and Folger [24], the BBAs have some important properties which distinguishes it from

being a probability function:

• It is not required that m(Ω) = 1.

• It is not required that m(A) ≤ m(B) when A ⊆ B.

• No relationship between m(A) and m(Ā).

• Also m(A) +m(Ā) does not always have to be 1.

For simplicity, let us consider a component i with two states. The frame of discernment Li of the

component i is then given by Li = {0i, 1i}, where 0i and 1i denote respectively the failed and operational

states of the component i. If an expert asserts a portion of belief xi that the component i is working at

time t and a portion of belief yi that the component i is not working at time t, this will be expressed

as follows: mLi

Expert({1i}) = xi and mLi

Expert({0i}) = yi. The epistemic uncertainty is represented by

mLi

Expert({0i, 1i}) = 1− xi − yi.
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Fig. 1: The belief interval [29]

B. Belief and plausibility functions

The most important measures of uncertainty provided by D-S theory are known as belief and plausibility

functions. The belief Bel and plausibility Pl functions for a subset A are defined as follows:

Bel(A) =
∑

B⊆A

mΩ(B) ∀ A ⊆ Ω, ∀ B ⊆ Ω (1)

Pl(A) =
∑

B∩A 6=∅

mΩ(B) ∀ A ⊆ Ω, ∀ B ⊆ Ω (2)

Bel(A) is obtained by adding the BBAs of propositions that totally agree with A, whereas Pl is

obtained by adding the BBAs of propositions that agree with A totally and partially (cf. Figure 1).

[Bel(A), P l(A)] is the interval that describes the uncertainty of A. The functions Bel and Pl, although

they are also functions mapping events A into [0, 1], ∅ into 0 and Ω into 1, do not fulfill in the general

case the sub-additivity properties given for probability. They are related to each other by the following

equation:

Pl(A) +Bel(A) = 1

where A represents the negation of the event A.

Let us consider the same component i. The belief measure concerning the functioning of component i

at time t is given by: Bel({1i}) = mLi

Expert({1i}) and the plausibility measure is given by: Pl({1i}) =

mLi

Expert({1i}) +mLi

Expert({0i, 1i}). The availability of the component i at time t is then given by:

Ai = [Ai, Ai] = [Bel({1i}), P l({1i})]

The quantity Ai represents the total amount of justified support given to the proposition ”the component
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Fig. 2: Marginalization and vacuous extension operations

i is available at time t”, while the quantity Ai represents the maximum amount of specific support that

could be given to the proposition ”the component i is available at time t” if justified by additional

information. Finally, the quantity Ai −Ai represents the epistemic uncertainty.

C. Marginalization and vacuous extension

The first step in TBM is to define the frame of discernment. As noticed by Shafer [50], the degree of

granularity of the frame is always to some extent a matter of convention, since any element representing

a state of nature can always be split into several possibilities. Hence, it is fundamental to examine how

a belief function defined on a frame may be expressed in a finer or, conversely, in a coarser frame.

Consider two finite sets X and Y . A mapping ρ : 2X → 2Y is called a refining if it satisfies:

• ρ(B) =
⋃

y∈B ρ({y}) ∀B ⊆ Y .

• The set {ρ(y), y ∈ Y } ⊆ 2X is a partition of X .

Y is called a coarsening of X , and X is called a refinement of Y . A BPA mY on Y can be transformed into

a BBA mX on a refinement X by transferring each mass mY (B) for B ⊆ Y to mX(A) for A = ρ(B).

This operation is called a vacuous extension of mY to X (cf. Figure 2). The inverse operation is the

marginalization (cf. Figure 2). The formulas of vacuous extension and marginalization are given in the

Appendix.
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{0i} {1i} {0i, 1i}
Expert 1 0.1 0.3 0.6

Expert 2 0 0.4 0.6

Expert 1 ⊕ Expert 2 0.0625 0.5625 0.3750

TABLE I: Dempster combination of BBAs

D. Combination rules

The D-S evidence theory can aggregate multiple sources of information through the combination rules.

The two most familiar rules of combination are the Conjunctive and Disjunctive rules [50] (the formulas

for the different rules can be found in the Appendix). Dempster’s rule is a widely-used rule that consists

in applying a conjunctive combination followed by a normalization of the conflict factor k (the formula

for Dempster’s rule can be found in the Appendix). This conflict factor is equivalent to the BBA allocated

to the empty set.

Let us suppose that Expert 1 asserts a 0.3 portion of belief that component i is working and a 0.1 portion

of belief that it is not working at time t. Expert 2 asserts a 0.4 portion of belief that component i is

working at time t and no belief at all that it is not working. Dempster’s rule of combination applied to

the BBAs from experts 1 and 2 gives the new BBAs shown in Table I. Also, since BBAs have been

combined the level of conflict k can be gauged. In this case it is k = 0.04, indicating a minor conflict

in the evidence from the two experts.

Several other combination rules have been defined in D-S theory that depend on the reliability of experts

and the conflict between them (Yager rule [64], Dubois and Prade rule [20], Cautious rule [16], etc.).

For more details, see [14], [16], [50], [53].

III. TBM OF MULTI-STATE SYSTEMS

A. General model

Let us consider a system S with n components. For i = 1, ..., n, Xi denotes the state of the i-th

component. The set Li = {0, 1, ...,mi} representing all states of the i-th component is linearly ordered

(Li,≤), i.e. there exists a linear order (total, antisymmetric, transitive binary relation) over each set Li.

Complete failure (the worst state) corresponds to state 0. Perfect functioning (the best state) corresponds

to state mi. A general model of MSS with a partial ordering over the set Li was proposed by Montero
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et al. [38]. In D-S theory, Li can be considered as the frame of discernment of the i-th component. The

state vector of the MSS is X = (X1, X2, ..., Xn).

A central problem in reliability theory is how to determine the relationship between the system states

and the states of its components. This relationship can be described by a structure function defined by

the mapping ϕ : L1 × L2 × ...× Ln → LS . The value ϕ(X1, X2, ..., Xn) is the system state when each

component i is at state Xi. The structure function ϕ is assumed to be non-decreasing, i.e.:

X ≤ Y ⇒ ϕ(X) ≤ ϕ(Y )

This means that improving the state of one or more components cannot lead to a lower system perfor-

mance. We also assume that

ϕ(0, 0, ..., 0) = 0 and ϕ(m1,m2, ...,mn) = mS

The BBAs of the i-th component states are defined by the mapping mLi : 2Li → [0, 1] such that

∑

A∈2Li

mLi(A) = 1 (3)

Let mLi

{j} = mLi(Xi = {j}) denote the BBA that the i-th component is in state j. The BBA mLi

{j,k} =

mLi(Xi = {j, k}) represents the fact that the i-th component is in state j or k.

For j = 0, ...,mi, the vacuous extension is used to extend the BBAs mLi of each component i to the

product space L1×L2...×Ln×LS . The resulting BBAs of all components are combined using Dempster’s

rule. The resulting BBAs are then combined with the BBA representing the system configuration. The

BBA mL1×L2...×Ln×LS

Conf represents the relation between the state of system and the state of its components.

To obtain the BBAs of system states the final results are marginalized on LS :

mLS = (mL1↑L1×L2...×Ln×LS ⊕mL2↑L1×L2...×Ln×LS ⊕ ... (4)

...⊕mLn↑L1×L2...×Ln×LS ⊕mL1×L2...×Ln×LS

Config )↓LS

For example, let us consider a system S with two components 1 and 2. For simplicity we consider that

the system and its components have two states 0i and 1i. We use the vacuous extension to extend mL1

and mL2 to the product space L1 × L2 × LS and we combine the obtained BBAs using the Dempster
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rule. The resulting BBAs are combined with mL1×L2×LS

Config .

For serial configuration (a failure of any component 1 or 2 results in failure of the entire system S) we

have mL1×L2×LS

Series ({(11, 12, 1S), (01, 02, 0S), (01, 12, 0S), (11, 02, 0S)}) = 1.

For parallel configuration (at least one of the two components 1 or 2 must succeed for the system S to

succeed) we have mL1×L2×LS

Parallel ({(11, 12, 1S), (01, 02, 0S), (01, 12, 1S), (11, 02, 1S)}) = 1.

To obtain the BBAs of the system S the final result is marginalized on LS .

Belief and plausibility functions are then computed using Eq. 1 and Eq. 2. Finally, the lower and upper

bounds (belief interval) for the system to be in state j are given by:

hj = [hj , hj ] = [Bel(ϕ(X) = j), P l(ϕ(X) = j)] j = 0, ...,mS (5)

System utility is an important performance measure introduced by Aven [2] for the study of multi-state

systems. At each state j an MSS yields a particular gain. This gain is termed the system utility at state

j and is denoted uj . The overall system utility is the expected utility of the system, defined as follows:

U = [U,U ] = [

mS
∑

j=0

uj .Bel(ϕ(X) = j),

mS
∑

j=0

uj .P l(ϕ(X) = j)] j = 0, ...,mS (6)

The overall system utility of the system S is defined as follows:

U = [u0.Bel(ϕ(X) = 0) + u1.Bel(ϕ(X) = 1), u0.P l(ϕ(X) = 0) + u1.P l(ϕ(X) = 1)]

where belief and plausibility functions are given by:

Bel(ϕ(X) = 0) = mLS({0S})

Bel(ϕ(X) = 1) = mLS({1S})

Pl(ϕ(X) = 0) = mLS({0S}) +mLS({0S , 1S})

Pl(ϕ(X) = 1) = mLS({1S}) +mLS({0S , 1S})
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B. MSS reliability indices

MSS reliability measures were first introduced by Aven [2] and subsequently by Brunelle and Kapur

[10]. In this work we consider the three measures most commonly used by reliability engineers:

1) MSS availability A.

2) MSS expected performance Ed.

3) MSS unsupplied demand Eu.

The aim of this section is to define the above reliability measures in the TBM framework. The set

gi = {gi0, gi1, ..., gimi
} represents the performance rates of component i at states j (j = {0, ...,mi}). The

set G = {G0, G1, ..., GmS
} represents the performance rates of the system. We define MSS availability

A as the belief that the MSS will be in a state with a performance level greater than or equal to the

demand w. MSS availability is given by:

A(w) = [Bel(ϕ(X) ≥ j), P l(ϕ(X) ≥ j)] (7)

where j corresponds to the first state which satisfies the demand w.

Another important measure of system performance is the MSS expected output performance Ed. This

index determines the system’s expected performance, and does not depend on the demand w. Therefore,

Ed defines the average capacity (productivity) of the system. It can be obtained as follows:

Ed = [

mS
∑

j=0

Bel(ϕ(X) = j).Gj ,

mS
∑

j=0

Pl(ϕ(X) = j).Gj ] (8)

In some cases the expected unsupplied demand Eu may be used as a measure of system output

performance. This index can be formulated as:

Eu(w) = [

mS
∑

j=0

Bel(ϕ(X) = j).max(w −Gj , 0),

mS
∑

j=0

Pl(ϕ(X) = j).max(w −Gj , 0)] (9)

It should be noted that the MSS expected output performance Ed and MSS expected unsupplied

performance Eu are particular cases of the overall system utility defined in Eq.6 when the system utility

functions uj at state j are respectively equal to Gj and max(w −Gj , 0).
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C. Construction of BBAs

1) From observations: Let us consider n observations of events or sets of events in the frame of

discernment Ω = {A1, ..., An}. Let ci denote the number of occurrences of an event Ai. The BBAs

related to the occurrence of Ai can then be obtained as follows:

mΩ({Ai}) =
ci
n

If we lack any observations relating to the occurrence of the event Ai, then if ci,j denotes the number

of occurrences of a set of events {Ai, Aj}, we obtain

mΩ({Ai, Aj}) =
ci,j
n

The Bel and Pl functions are then computed from BBAs using Eq. 1 and Eq. 2. For example, let

us consider a system with two components 1 and 2. The two components can have three states, i.e.

L1 = {0, 1, 2} and L2 = {0, 1, 2}. Out of 50 observations we have 30 observations indicating that

component 1 is in state 0 or 1, 10 observations indicating that it is in state 2 and a further 10 indicating

that it is in state 0, 1, or 2. At the same time 32 observations indicate that component 2 is in state 0, 8

observations indicate that it is in state 1 and 10 observations indicate that this component 2 is in states

0, 1 or 2. This is written as:

mL1

{0,1} = 30/50 = 0.6

mL1

{2} = 10/50 = 0.2

mL1

{0,1,2} = 10/50 = 0.2

mL2

{0} = 32/50 = 0.64

mL2

{1} = 8/50 = 0.16

mL2

{0,1,2} = 10/50 = 0.2

Using Eq.1 and Eq.2 the components’ Bel and Pl functions (belief intervals) for being in each of these

different states are computed (cf. Table II).

12



Component 1 Component 2
States [Bel, Pl] [Bel, Pl]

{0} [0, 0.8] [0.64, 0.84]
{1} [0, 0.8] [0.16, 0.36]
{2} [0.2, 0.4] [0, 0.2]
{0, 1} [0.6, 0.8] [0.8, 1]
{0, 2} [0.2, 1] [0.64, 0.84]
{1, 2} [0.2, 1] [0.16, 0.36]
{0, 1, 2} 1 1

TABLE II: Belief intervals of components 1 and 2

Component 3

States Expert 1 Expert 2 Expert 3

{0} 0.3 0.4 0.45
{1} 0.2 0.2 0.15
{2} 0.1 0.2 0.25
{0, 1} 0 0 0
{0, 2} 0 0 0
{1, 2} 0 0 0
{0, 1, 2} 0.4 0.2 0.15

TABLE III: BBAs for component 3 according to experts’ opinions

2) From expert opinion: Suppose that Expert 1 asserts a 0.3 portion of belief that component 3 is in

state 0, a 0.2 portion of belief that it is in state 1 and a 0.1 portion of belief that it is in state 2 (the

remaining 0.4 represents ignorance and will be allocated to the frame of discernment). The corresponding

values asserted by Expert 2 are 0.4, 0.2 and 0.2, while for Expert 3 they are 0.45, 0.15 and 0.25. The

BBAs provided by the experts are shown in Table III, and the BBAs obtained from the combination rules

in Table IV. Finally, the components’ Bel and Pl functions for each state are given in Table V.

The conflict factor k between BBAs is defined as follows:

k =
∑

A∩B=∅,∀A⊆Li,B⊆Lj

mLi(A)mLj (B) (10)

The factor k is equal to 0.3, 0.4 and 0.32 respectively between Expert 1 and Expert 2, Expert 2 and

Expert 3, and Expert 1 and Expert 3. Dempster’s rule therefore does not lead to obvious contradictions,

because the factor k is not high. Dempster’s rule assumes the three experts to be equally reliable and

independent. The Disjunctive rule considers only one of the experts to be reliable, but we do not know
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States Dempster’s rule Disjunctive rule

{0} 0.6316 0.054
{1} 0.1579 0.006
{2} 0.1789 0.005
{0, 1} 0 0.12
{0, 2} 0 0.109
{1, 2} 0 0.037
{0, 1, 2} 0.0316 0.669

TABLE IV: The obtained BBAs for component 3

Dempster’s rule Disjunctive rule
States [Bel, Pl] [Bel, Pl]

{0} [0.6316, 0.6632] [0.0540, 0.9520]
{1} [0.1579, 0.1895] [0.0060, 0.8320]
{2} [0.1789, 0.2105] [0.0050, 0.8200]
{0, 1} [0.7895, 0.8211] [0.1800, 0.9580]
{0, 2} [0.8105, 0.8421] [0.1680, 0.9570]
{1, 2} [0.3368, 0.3684] [0.0480, 0.9460]
{0, 1, 2} 1 1

TABLE V: Interval beliefs for component 3

which one. It is very important to choose a combination rule in accordance with the hypothesis under

consideration (independence, reliability, conflict, etc.).

IV. NUMERICAL EXAMPLES

A. Example 1

The TBM method proposed here has not been used before in MSS reliability assessment, and so we

have chosen to compare it with the UGF method used by Ding and Lisianski for evaluating reliability

indices in an oil transmission system [17]. In this example only aleatory uncertainty is considered (the

components’ state probabilities are precise values) [17].

The oil transmission system (cf. Figure 3) consists of three pipes. The oil flow is transmitted from point C

to point E. The pipes’ performance is measured by their transmission capacity (tons per minute). Elements

1 and 2 have three states. A state of total failure for both elements corresponds to a transmission capacity

of zero, a state of partial failure corresponding to a capacity of 1 ton/min for element 1 and 1.5 tons/min

for element 2, and the operational state corresponds to capacities of 1.5 tons/min for element 1 and 2

14
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Fig. 3: The oil transmission system and its Reliability Block Diagram

tons/min for element 2, so that g1 = {0, 1, 1.5} and g2 = {0, 1.5, 2}. The corresponding probabilities for

element 1 are p10 = 0.1, p11 = 0.1, and p12 = 0.8, and for element 2 are p20 = 0.1, p21 = 0.2, and

p22 = 0.7. Element 3 is binary. It has a state of total failure corresponding to a capacity of zero and a

fully operational state with a capacity of 4 tons/min so that g3 = {0, 4}. The corresponding probabilities

are p30 = 0.04 and p31 = 0.96. The system output performance rate is defined as the maximum flow

that can be transmitted from C to E.

The total flow between points C and D through the parallel pipes 1 and 2 is equal to the sum of the

flows in the two pipes. The flow from point D to point E is limited by the transmission capacity of

element 3. This flow cannot however be greater than the flow between points C and D. Therefore, the

flow between points C and E (the system performance) is:

G = Φ(g1(t), g2(t), g3(t))

where Φ is the function which maps component performance rates into system performance rates, as

shown in Table VI. The set G = {0, 1, 1.5, 2, 2.5, 3, 3.5} represents the system performance rates (the oil

transmission system has 7 states). We shall now evaluate the reliability indices of the oil transmission

system using both the UGF and the TBM methods.

1) UGF Method: The UGF Method (u-functions) was introduced by Ushakov in the mid-1980s [57],

and it has proved to be very effective in evaluating the reliability of different types of MSSs [31], [34],

[35]. It involves intuitively simple recursive procedures combined with simplification techniques. The

UGF method includes the following steps:
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g1 0 0 0 0 0 0 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5
g2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2
g3 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

G = Φ(g1, g2, g3) 0 0 0 1.5 0 2 0 1 0 2.5 0 3 0 1.5 0 3 0 3.5

TABLE VI: Performance rates of the oil transmission system

• Evaluation of individual u-functions for each element.

• Evaluation of the resulting u-function for the whole MSS using composition operators.

• Evaluation of MSS reliability measures.

The u-function representing the probability mass function (pmf) of a random discrete variable Xi is given

by

ui(z) =

mi
∑

j=0

aijz
xij

where xij are the mi + 1 possible values of Xi and aij is the probability that Xi is equal to xij . The

u-function representing the pmf of a function Φ of n independent random variables X1, X2, ..., Xn is

defined using a composition operator ΩΦ as follows:

U(z) = ΩΦ(u1(z), u2(z), ..., un(z))

= ΩΦ(

m1
∑

j1=0

a1j1z
x1j1 ,

m2
∑

j2=0

a2j2z
x2j2 , ...,

mn
∑

jn=0

anjnz
xnjn )

=

m1
∑

j1=0

m2
∑

j2=0

...

mn
∑

jn=0

(

n
∏

i=1

aijiz
Φ(x1j1

,x2j2
,...,xnjn ))

Using performance rates gij and the corresponding probabilities pij(t) that component i (i ∈ {1, ..., n})

is in state j (j ∈ {0, ...,mi}), the u-function for component i is defined as follows:

ui(z) =

mi
∑

j=0

pijz
gij

The u-functions of the three elements of the oil transmission system are then given by:

u1(z) = p10z
g10 + p11z

g11 + p12z
g12

= 0.1z0 + 0.1z1 + 0.8z1.5
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u2(z) = p20z
g20 + p21z

g21 + p22z
g22

= 0.1z0 + 0.2z1.5 + 0.7z2

u3(z) = p30z
g30 + p31z

g31

= 0.04z0 + 0.96z4

The composition operators ΩΦS
for serial elements, ΩΦP

for parallel elements and ΩΦB
for elements

connected in a bridge structure are defined in [35], where corresponding recursive procedures for their

computation were introduced for different types of systems.

Applying the operator ΩΦ with Φ(g1(t), g2(t), g3(t)) over the u-functions of the different elements

comprising the oil transmission system, we obtain:

U(z) = ΩΦ(u1(z), u2(z), u3(z))

= ΩΦS
(ΩΦP

(u1(z), u2(z)), u3(z))

The function Φ is defined by the type of connection between the elements. Here the function ΦS is

defined as the min function, and the function ΦP is defined as the sum function:

Φ(g1, g2, g3) = ΦS(ΦP (g1, g2), g3)

= min((g1 + g2), g3))

The u-function u4(z) for elements 1 and 2 in parallel is determined as follows:

u4(z) = ΩΦP
(u1(z), u2(z))

=

2
∑

j1=0

2
∑

j2=0

p1j1p2j2 .z
g1j1+g2j2

= 0.01z0 + 0.01z1 + 0.1z1.5 + 0.07z2 + 0.02z2.5 + 0.23z3 + 0.56z3.5

17



Based on these procedures, the resulting UGF for the entire MSS can be obtained as follows:

U(z) = ΩΦS
(u4(z), u3(z))

=

1
∑

j3=0

6
∑

j4=0

p4j4p3j3 .z
min{g4j4 ,g3j3}

= 0.0496z0 + 0.0096z1 + 0.096z1.5 + 0.0672z2 + 0.0192z2.5 + 0.2208z3 + 0.5376z3.5

Applying the operators δA, δE and δC (introduced in [35]) over the resulting u-function of the whole

MSS, the following MSS reliability indices are obtained:

• The MSS availability A(w) for the arbitrary demand constant w can be obtained by:

A(w) = δA(U(z), w) = δA(

mS
∑

j=0

pjz
Gj , w) =

mS
∑

j=0

pj1(Gj − w ≥ 0) (11)

where Gj is the performance rate of system at state j and pj is the corresponding probability of the

system being in state j.

• MSS Expected output performance Ed for the given U(z) using the following δE :

Ed = δE(U(z)) = δE(

mS
∑

j=0

pjz
Gj ) =

mS
∑

j=0

pjGj (12)

• MSS performance deficiency Eu(w) for the given U(z) and constant demand w using the following

δD:

Eu(w) = δD(U(z), w) = δD(

mS
∑

j=0

pjz
Gj , w) =

mS
∑

j=0

pjmax(w −Gj , 0) (13)

Using Eq. 11, Eq. 12 and Eq. 13, the availability, expected output performance and performance deficiency

of the oil transmission system obtained for each demand w are computed (cf. Table VII).

2) TBM method: The system consists of 3 components. Components 1 and 2 have 3 states {0, 1, 2}.

Component 3 has 2 states {0, 1}. The state vector of the system is X = (X1, X2, X3). The frames of

discernment of the components and of the system are:

L1 = {0, 1, 2}

L2 = {0, 1, 2}
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Demand w UGF
A Ed Eu

1 0.9504 2.88 0.0496
1.5 0.9408 2.88 0.0792
2 0.8448 2.88 0.1568

2.5 0.7776 2.88 0.268
3 0.7584 2.88 0.3888

3.5 0.5376 2.88 0.6200

TABLE VII: Example 1: MSS reliability indices based on UGF method

X1 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
X2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
X3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

XS = ϕ(X1, X2, X3) 0 0 0 2 0 3 0 1 0 4 0 5 0 2 0 5 0 6

TABLE VIII: Structure function of the oil transmission system

L3 = {0, 1}

LS = {0, 1, 2, 3, 4, 5, 6}

The corresponding BBAs for element 1, 2 and 3 are mL1

{0} = 0.1, mL1

{1} = 0.1, mL1

{2} = 0.8, mL2

{0} = 0.1,

mL2

{1} = 0.2, mL2

{2} = 0.7, mL3

{0} = 0.04, and mL3

{1} = 0.96.

The vacuous extension defined in Eq.15 is used to extend the BBAs for the separate components to the

product space L1 × L2 × L3 × LS . The resulting BBAs are combined using Dempster’s rule, and the

new BBAs are then combined with the BBA mconfig, which represents the structure function ϕ of the

oil transmission system (cf. Table VIII). This BBA is given by:

mConfig({X1 = 0, X2 = 0, X3 = 0, XS = 0} , {X1 = 0, X2 = 0, X3 = 1, XS = 0} , ...

..., {X1 = 2, X2 = 2, X3 = 0, XS = 0} , {X1 = 2, X2 = 2, X3 = 1, XS = 6}) = 1

The resulting BBAs are then marginalized to the frame of discernment LS using Eq.14. Belief and

plausibility functions are computed using Eq.1 and Eq.2, and the belief intervals of system states using

Eq.4 and Eq.5 (cf. Table IX). Finally, using Eq.7, Eq.8 and Eq.9, we obtain the reliability indices sum-

marized in Table X. In the absence of epistemic uncertainty we have Bel(ϕ(X) = j) = Pl(ϕ(X) = j)
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System Performance hj = [hj , hj ]

states j rates (ton/min)

0 0 0.0496
1 1 0.0096
2 1.5 0.096
3 2 0.0672
4 2.5 0.0192
5 3 0.1536
6 3.5 0.6048

TABLE IX: Example 1: Belief intervals of system states

Demand w TBM
A Ed Eu

1 0.9504 2.88 0.0496
1.5 0.9408 2.88 0.0792
2 0.8448 2.88 0.1568

2.5 0.7776 2.88 0.268
3 0.7584 2.88 0.3888

3.5 0.5376 2.88 0.6200

TABLE X: Example 1: MSS reliability indices based on the TBM method

for each state j (hj = hj). Thus we obtain precise values instead of interval beliefs. As expected, the

same reliability indices are obtained for the UGF and TBM methods (cf. Table VII and Table X).

B. Example 2

This example features the same oil transmission system used in Example 1, but epistemic uncertainty is

also taken into account. The corresponding BBAs of component states are given by three experts (Expert

1, Expert 2 and Expert 3), as shown in Table XI. Three combination rules are used to aggregate the

experts’ opinions: Dempster’s rule, the Disjunctive rule and the Cautious rule [16]. Table XII shows the

BBAs of component states obtained using each of these combination rules.

Belief and plausibility functions are computed using Eq.1 and Eq.2. The belief intervals of system states

for each rule are then computed using Eq.4 and Eq.5 (cf. Table XIII). As we can see, the Disjunctive

rule gives a less precise belief interval than Dempster’s rule and the Cautious rule.

The reliability indices of the system (cf. Table XIV) obtained for each demand w using the three

combination rules are computed using Eq.7, Eq.8 and Eq.9.
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Component i Expert 1 Expert 2 Expert 3
m{0} m{1} m{2} m{0} m{1} m{2} m{0} m{1} m{2}

1 0.19 0.2 0.58 0.16 0.3 0.52 0.14 0.32 0.52
2 0.15 0.24 0.56 0.18 0.29 0.53 0.10 0.26 0.6
3 0.29 0.58 0 0.26 0.52 0 0.34 0.52 0

TABLE XI: Example 2: BBAs of component states given by experts

Component i Dempster’s rule Disjunctive rule Cautious rule
m{0} m{1} m{2} m{0} m{1} m{2} m{0} m{1} m{2}

1 0.0302 0.1196 0.8502 0.0043 0.0027 0.0256 0.1560 0.3144 0.5106
2 0.0212 0.1064 0.8724 0.0192 0.0181 0.1568 0.1802 0.2907 0.5116
3 0.2111 0.7798 0 0.1568 0.1781 0 0.3074 0.5662 0

TABLE XII: Example 2: The obtained BBAs after combination

Dempster’s rule is based on the assumption that the BBAs to be combined come from reliable experts.

The expected output performance Ed = [2.572681, 2.603106] never exceeds 3 tons/min and the system

unsupplied demand ever exceeds 1 ton/min. Suppose that the system safety standard requires that the

system operation satisfies a required level of system availability greater than or equal to 0.6. This would

imply that the oil transmission system cannot meet the system availability requirement if the demand w

is greater than 3 (A = [0.578374, 0.585170] for w > 3). The system unsupplied demand Eu is always

lower than 1 ton/min.

The Disjunctive rule merely assumes that at least one source of information is reliable, and we do not

know which one. In the case where a system availability of A > 0.6 is required we cannot reach a

System Performance Dempster’s rule Disjunctive rule Cautious rule

states j rates (ton/min) [hj , hj ] [hj , hj ] [hj , hj ]

0 0 [0.211560,0.220665] [0.025647,0.994379] [0.325023,0.467572]
1 1 [0.001981,0.002005] [0.000008,0.968740] [0.032853,0.175403]
2 1.5 [0.016596,0.016795] [0.000078,0.968810] [0.076276,0.218825]
3 2 [0.020564,0.029713] [0.000119,0.968850] [0.040901,0.183450]
4 2.5 [0.009917,0.010038] [0.000054,0.968786] [0.052999,0.195549]
5 3 [0.151858,0.153676] [0.000981,0.969713] [0.178829,0.321379]
6 3.5 [0.578374,0.585170] [0.004380,0.973112] [0.150569,0.293119]

TABLE XIII: Example 2: Belief intervals of system states
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Dempster’s rule
Demand A Ed Eu

1 [0.779335,0.788440] [2.572681,2.603106] [0.211560,0.220665]
1.5 [0.777354,0.786435] [2.572681,2.603106] [0.318331,0.332001]
2 [0.760753,0.769645] [2.572681,2.603106] [0.433400,0.451734]

2.5 [0.740150,0.748840] [2.572681,2.603106] [0.558751,0.581888]
3 [0.730232,0.738807] [2.572681,2.603106] [0.689060,0.717062]

3.5 [0.578374,0.585170] [2.572681,2.603106] [0.895299,0.929075]

Disjunctive Rule
Demand A Ed Eu

1 [0.052958,0.974353] [0.018774,11.158645] [0.025647,0.947042]
1.5 [0.050538,0.974302] [0.018774,11.158645] [0.038475,1.749088]
2 [0.028428,0.971658] [0.018774,11.158645] [0.051342,2.942482]

2.5 [0.005416,0.967598] [0.018774,11.158645] [0.064268,4.528951]
3 [0.005361,0.967259] [0.018774,11.158645] [0.077222,6.450237]

3.5 [0.004380,0.931722] [0.018774,11.158645] [0.090666,8.841546]

Cautious Rule
Demand A Ed Eu

1 [0.532428,0.674977] [1.425048,1.923970] [0.325023,0.467572]
1.5 [0.499575,0.642124] [1.425048,1.923970] [0.503961,0.789059]
2 [0.423299,0.565848] [1.425048,1.923970] [0.721037,1.219959]

2.5 [0.382398,0.524947] [1.425048,1.923970] [0.958563,1.742584]
3 [0.329399,0.471948] [1.425048,1.923970] [1.222589,2.362983]

3.5 [0.150569,0.293119] [1.425048,1.923970] [1.576030,3.144072]

TABLE XIV: Example 2: MSS reliability indices

decision, because for each demand w the support of A is very large. Moreover, the supports of Ed

and Eu are also very large and greater than the maximum capacity of the oil transmission system (3.5

tons/min). The Disjunctive rule does not generate any conflicts and does not reject any of the information

asserted by the sources. As such, no normalization procedure is required. The drawback of this method

is that it yields a less precise result.

However, both Dempster’s rule and the Disjunctive rule assume that the experts are independent. The

Cautious rule is commutative, associative and idempotent. The property of idempotence makes it suitable

for combining non-distinct items of evidence (i.e evidence from dependent experts). In Table XIV we

can see that using the Cautious rule the oil transmission system may (but we cannot be sure) meet the

system availability requirement (A > 0.6) if the demand is lower than 2 (A = [0.499575, 0.642124] for

w = 1.5). On the other hand, the expected output performance Ed = [1.425048, 1.923970] is always
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lower than 2 tons/min.

V. CONCLUSION

The current work proves the applicability of D-S theory and TBM in determining the reliability indices

of MSSs in the presence of both aleatory and epistemic uncertainties. New definitions are given for MSS

reliability indices in the framework of TBM. In particular, in the case of aleatory uncertainty, the same

reliability indices are obtained for the UGF and TBM methods. Our results show that the proposed model

might be used in practical situations when there is a need to take into account epistemic uncertainties

and experts’ opinions. The use of several combination rules in the TBM framework is also discussed.

APPENDIX

A. Formula of marginalization

Consider a BBA mΩxΩy defined on the Cartesian product ΩxΩy. The marginal BBA mΩxΩy↓Ωx on Ωx

is defined by:

mΩxΩy↓Ωx(A) =
∑

B⊆ΩxΩy/Proj(B↓Ωx)=A

mΩxΩy(B)

∀A ⊆ Ωx

(14)

Where Proj(B ↓ Ωx) = {x ∈ Ωx/∃y ∈ Ωy, (x, y) ∈ B}.

B. Formula of vacuous extension

Consider a BBA mΩx defined on Ωx. Its vacuous extension on ΩxΩy is defined by:

mΩx↑ΩxΩy(B) =







mΩx(A) if B = A× Ωy

0 otherwise.

∀ A ⊆ Ωx

(15)
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C. Formulas of combination rules

The Conjunctive ∩© and Disjunctive ∪© rules are defined by:

mΩ
i ∩©j(H) =

∑

A∩B=H,∀A,B⊆Ω

mΩ
i (A)m

Ω
j (B), ∀H ⊆ Ω (16)

mΩ
i ∪©j(H) =

∑

A∪B=H,∀A,B⊆Ω

mΩ
i (A)m

Ω
j (B), ∀H ⊆ Ω (17)

Dempster’s rule is given by:

mX
i⊕j(H) =

∑

A∩B=H,∀A,B⊆X mX
i (A)mX

j (B)

1−
∑

A∩B=∅,∀A,B⊆X mX
i (A)mX

j (B)
(18)
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