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Reliability Assessment for the Solenoid 
Valve of a High-Speed Train Braking System 
under Small Sample Size
Jian-Wei Yang1*, Jin-Hai Wang1,2, Qiang Huang3 and Ming Zhou1

Abstract 

Reliability assessment of the braking system in a high-speed train under small sample size and zero-failure data is very 

important for safe operation. Traditional reliability assessment methods are only performed well under conditions of 

large sample size and complete failure data, which lead to large deviation under conditions of small sample size and 

zero-failure data. To improve this problem, a new Bayesian method is proposed. Based on the characteristics of the 

solenoid valve in the braking system of a high-speed train, the modified Weibull distribution is selected to describe 

the failure rate over the entire lifetime. Based on the assumption of a binomial distribution for the failure probability 

at censored time, a concave method is employed to obtain the relationships between accumulation failure prob-

abilities. A numerical simulation is performed to compare the results of the proposed method with those obtained 

from maximum likelihood estimation, and to illustrate that the proposed Bayesian model exhibits a better accuracy 

for the expectation value when the sample size is less than 12. Finally, the robustness of the model is demonstrated 

by obtaining the reliability indicators for a numerical case involving the solenoid valve of the braking system, which 

shows that the change in the reliability and failure rate among the different hyperparameters is small. The method is 

provided to avoid misleading of subjective information and improve accuracy of reliability assessment under condi-

tions of small sample size and zero-failure data.
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1 Introduction
�e statistical model employed and the available sample 

size have a significant effect on the estimation of param-

eters in reliability assessment. A good statistical model 

provides a better fit to the actual lifetime data, and a good 

parameter estimation method can reduce the estima-

tion error. For some time now, the normal distribution, 

lognormal distribution, exponential distribution, and 

Weibull distribution have served as commonly employed 

statistical models in reliability assessment. However, 

these models can only describe a particular type of fail-

ure rate. Lai et  al. [1] developed a new model, denoted 

as the modified Weibull distribution, which included 

three parameters to control the shape of the curve, and 

employed this distribution to describe failure rates over 

the entire lifetime. Liu et al. [2] presented a new Bayes-

ian model based on the Weibull distribution using a 

concave method and the relationships of failure prob-

abilities in time, and verified the stability of the model via 

a practical application. Singh et  al. [3] derived Bayesian 

estimations of hybrid censored lognormal distribution 

compared with maximum likelihood estimations and fur-

ther computed Fisher information matrix, equal-tail and 

highest posterior density, and so on. Soliman et  al. [4] 

studied the point and interval estimations of the modi-

fied Weibull distribution under squared error loss and 

linear exponential loss using the Markov chain Monte 

Carlo (MCMC) technique as an advanced algorithm to 

solve the problem of complex and high-dimensional inte-

gration for progressively type-II censored samples, and 

compared the results obtained based on two real data 
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sets with those obtained using maximum likelihood esti-

mation (MLE). Yang et al. [5] proposed a Bayesian relia-

bility model under conditions of small sample size would 

have been applied to an NC machine tool, and a different 

method from that of MCMC would have been employed 

for high-dimensional integration. Xia [6] proposed a gray 

bootstrap method that can generate simulated data to 

compute reliability without other prior information for 

small sample size zero-failure data. Lord et  al. [7] pro-

posed a Poisson-gamma model describing motor vehi-

cle crashes using Bayesian inference, and compared the 

results of numerical simulation with those obtained from 

MLE to demonstrate that the Bayesian estimation (BE) 

performed better than MLE. Fabrizi et al. [8] proposed a 

generalized inverse Gaussian prior for log-normal linear 

regression models and discussed how to choose parame-

ters of the models under small and medium sample sizes. 

Junttila et al. [9] applied a Bayesian principal component 

regression model for remotely sensed data and verified 

it against other methods under spatial effects, multicol-

linearity and small size using an efficient Markov chain 

Monte Carlo sampling scheme. Hao et al. [10] proposed 

an improve Bayesian approach for precision system reli-

ability assessment through searching for feasible points, 

screening feasible points and then simplifying the likeli-

hood function. Ming et  al. [11] presented the Bayesian 

model based on the mixed beta distribution. Comparing 

with traditional Bayesian analysis, the model presented 

considers differences between similar products. Jin [12] 

applied a bootstrap method for generating data to obtain 

the prior distribution and hierarchy of a Bayesian model 

describing the degradation process of space bearings for 

the purpose of calculating lifetime. A reliability evalu-

ation method for segmented distribution using Bayes-

ian method and an improved information criterion is 

proposed by Li et al. [13]. �e method are proven more 

efficient and accurate than traditional method. Jia et  al. 

[14] verified Bayesian estimation of multiply Type-I cen-

sored Weibull distribution is satisfactory for reliability 

assessment according to Monte Carlo simulation results. 

Peng et al. [15, 16] developed a Bayesian model updating 

approach to integrate subjective information in adjacent 

periods and in specific periods of lifetime stages, and 

applied the approach to assess a newly developed gantry-

type machining center. Yang et al. [17] presented a com-

prehensive reliability allocation method based on cubic 

transformed functions, which can be designed to empha-

size the failure severity or the failure occurrence depend-

ing on requirements. Salvinder et  al. [18] employed a 

Markov chain model to represent the bending and tor-

sion loads and estimated Weibull shape parameter to 

provide an accurate, efficient, fast and cost effective reli-

ability analysis. Hamada et al. [19] and Cai et al. [20] have 

written relevant monographs regarding the use of Bayes-

ian methods in reliability assessment that treat numerous 

topics such as advanced computation algorithms, model 

selection, degradation processes, and reliability growth 

analysis, and discuss several cases. Yao et  al. [21] pro-

posed a reliability assessment method based on T-S fault 

tree method and Bayesian network method, and com-

pared with T-S fault tree method and Bayesian network 

method to prove feasible method.

Considering the hazardous nature of high-speed 

train operation, the assessment of vehicle reliability 

is essential to guarantee its safe operation. It is there-

fore necessary to assess the reliability of key compo-

nents in high-speed trains, which represent issues that 

have been widely and thoroughly studied. Meng et al. 

[22] researched a reliability evaluation method using 

Markov model to describe the trend of the system reli-

ability, and assessed the reliability of high-speed train 

traction transmission system. However, the system 

reliability needs research component reliability, which 

is statistical inference under small sample problem. 

Wang et  al. [23] employed the least squares method 

to analyze the reliability of the key components of 

trains based on the Weibull distribution. The results 

of the study indicated that the sample size had a sig-

nificant effect on the estimation precision. Wu et  al. 

[24] assessed the reliability of relay valves based on the 

characteristic that the failure rate gradually increases 

according to an assumed Weibull distribution. Wang 

et  al. [25] performed a durable test to evaluate the 

reliability of a brake unit for urban rail vehicles. The 

methods discussed above for the reliability assessment 

of high-speed trains can achieve satisfactory results 

under large sample size. Tian [26] employed a virtual 

expansion method to expand data sample size from 

n = 2–3 to n = 12, and then employed the method to 

analyze the reliability of the center sill and body bol-

ster of a C70 gondola car based on a Bayesian method. 

The authors assumed that the lifetimes of parts fol-

lowed normal distributions, and the approach was 

demonstrated to improve the assessment precision. 

Zhu et  al. [27] extended the Bayesian method to the 

Weibull distribution, and verified the robustness of 

the model by assessing the reliability of bearings in a 

high-speed train. Subjective selection was employed to 

define the prior distribution and its hyperparameters, 

and these estimators were solved using an analytical 

method. Dong [28] assessed the reliability of braking 

systems in urban railway vehicles using a goal-ori-

ented (GO) methodology and Bayesian theory based 

on the assumption of an exponential distribution. The 

method was demonstrated to be suitable for analyzing 

conditions where a component follows the rule that 
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the failure rate is constant. Akama [29] calculated the 

crack propagation rate of cracks in a Shinkansen vehi-

cle axle using Bayesian analysis by combining crack 

propagation rates derived from small specimens with 

crack propagation rates derived from full-scale mod-

els. The results showed that the method can narrow 

the variance of the fatigue life distribution, and pro-

vide more confident failure probability values.

Generally, reliability assessments are based on large 

sample size to attain statistical inferences (usually 

n > 30). As such, reliability experiments consume con-

siderable time and money. Owing to the long lifetimes, 

high cost, and complex structures of components 

in high-speed trains, it is necessary to develop reli-

ability assessment theory and methods suitable under 

small sample size. The present study proposes a new 

approach that combines a Bayesian method with a sub-

jective prior distribution for zero-failure data under 

small sample size, and experiments confirm that this 

approach can be safely applied to the reliability assess-

ment of solenoid valves in the braking systems of high-

speed trains. In Section  2, the failure model and the 

characteristics of zero-failure data for the solenoid 

valve are discussed. In Section 3, a Bayesian reliability 

model based on the binomial distribution at censored 

time is developed in detail. In Section  4, a modified 

Weibull distribution is introduced for the solenoid 

valve using least squares estimation based on failure 

probabilities at censored time. In Section 5, a numeri-

cal simulation is performed to compare the results of 

the proposed method with those of MLE. In Section 6, 

an actual numerical case is analyzed for the solenoid 

valve of the braking system in high-speed trains. Sec-

tion 7 provides concluding remarks.

2  Characteristics of the Solenoid Valve 
in the Braking System of High-Speed Trains

�e solenoid valve is an indispensable component in 

braking systems affecting the safety of railway vehicles. If 

the pressure of the braking system is sufficiently low, the 

solenoid valve will execute vehicle braking after arrival of 

the braking signal. Figure 1 illustrates the structure of the 

braking system in a high-speed train. �e solenoid valve 

is of vital significance because of its intermediate posi-

tion between the relay valve and the pressure regulating 

valve for ensuring the proper performance of emergency 

braking.

According to statistical data, the failure probability 

of the braking system in CRH1 EMU high-speed trains 

sharply increases when service distance is greater than 

1.7 × 106  km. Numerous conditions are responsible for 

the failure modes of the solenoid valve, such as conditions 

where the solenoid valve cannot be completely sealed due 

to internal valve fouling, power loss, or mechanical wear 

[30, 31].

As shown in Figure  2, the solenoid valve controls the 

action of a moveable iron core within a solenoid coil for 

Figure 1 Structure of the braking system in high-speed trains

Figure 2 Structure of the solenoid valve
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opening or closing the exhaust valve through powering 

the solenoid coil on or off. It is obvious that the solenoid 

valve is a switch type component that is readily suscepti-

ble to wear-type failure. �e accurate assessment of the 

reliability of the solenoid valve is essential.

2.1  Reliability Assessment Model

�e modified Weibull distribution is a convenient model 

for describing particular failure rate function curves 

employed for components, and consists of three param-

eters that provide greater flexibility than the standard 

Weibull distribution [1]. �e cumulative density function 

F(t), reliability function R(t), probability density function 

f(t), and failure rate function h(t) are given respectively as 

follows:

where α, β, and λ are the parameters of the modified 

Weibull distribution, where α > 0, β ≥ 0, and λ > 0.

�e shape of h(t) for different parameters is illustrated 

in Figure 3. �e shape of h(t) is defined by the parame-

ter β, where, for β ≥ 1, h(t) increases with increasing t to 

describe a wearout period, and, for 0 < β < 1, h(t) provides 

a distinctive shape suitable for describing the lifetime of 

a component. �e modified Weibull distribution reduces 

to the standard 2-parameter Weibull distribution when 

(1)F(t) = 1 − exp
[

−αtβ exp (�t)
]

,

(2)R(t) = exp
[

−αtβ exp (�t)
]

,

(3)

f (t) = α(β + �t)tβ−1 exp (�t) exp
[

−αtβ exp (�t)
]

,

(4)h(t) = α(β + �t)tβ−1 exp (�t),

λ = 0. In addition, the modified Weibull distribution 

reduces to the log-gamma distribution when β = 0.

2.2  Property of Failure Probability under Zero‑Failure Data

Liu et  al. [2] researched the property of the failure 

probability pi and reliability assessment methods under 

the assumption of a Weibull distribution model for 

zero-failure data based on a concave method. In the 

present study, the concave method is applied for evalu-

ating the relationships among pi for an assumed modi-

fied Weibull distribution. For lifetime experiments of 

the solenoid valve in high-speed train braking systems, 

the principle under zero-failure data can be described 

as follows.

(1) Assuming si = mi + mi+1 + · · · + mk is the number 

of the survival solenoid valve in total at ti, where m 

is the number of survival solenoid valve for censored 

time and it can be described as (ti, si).

(2) Assuming pi = P(T < ti) = F(ti), i = 1, 2, . . . , k , 

it is obvious that pi is small, and 

p1 ≤ p2 ≤ · · · ≤ pk .

(3) For t = 0, p0 = P(t = 0) = 0.

Based on lifetime experiment data for a solenoid valve 

that does not fail, it is reasonable to consider β ≥ 1.

�eory 1: for any ti, pi satisfies the relation: 

Proof: R(t) can be transformed to 

From the property discussed above, the followings are 

easily obtained: 

0 ≤ pi ≤ 1 − (1 − pk)
ti
tk , i = 1, 2, . . . , k .

G(t) = − ln R(t) = αtβ exp (�t).

∂G

∂t
= αβtβ−1 exp (�t) + α�t

β exp (�t),

∂2G

∂t2
= αtβ−2 exp (�t)

[

�
2
t
2
+ 2β�t + β(β − 1)

]

,

∵ α > 0,β > 1, � > 0,

∴

∂G

∂t
> 0,

∂
2
G

∂t2
> 0.

Figure 3 Shape of the failure rate curve for two different parameter 

settings for the modified Weibull distribution
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From the above, we conclude that G(t) is a monotoni-

cally increasing concave function. �erefore, from the 

property of a monotonically increasing concave function 

and lnR(t0) = 0, we obtain

�erefore,

Substituting R(ti) = 1 − pi into Eq. (5) yields

Q.E.D.

3  Assessment Method for Failure Probability 
Based on Bayesian Theory

Bayesian theory can combine sample information with 

prior information to obtain a posterior estimator for 

more accurate result. To apply the MCMC method, the 

posterior distribution h(θ|x) must be described in the fol-

lowing form:

where L(x|θ) is a likelihood function, which contains all 

sample information for parameter θ, and π(θ) is the prior 

distribution.

3.1  Likelihood Function of Failure Probability 

for Zero‑Failure Data

It is assumed that pi follows a binomial distribution, and 

L(ri|pi) can be written as

where C is a constant; ri is the number of failure sample. 

Under zero-failure data, ri = 0, and

3.2  Bayesian Inference

3.2.1  Bayesian Inference for Failure Probability pk

�e critical step in Bayesian inference is to specify 

the prior distribution and its hyperparameters. For an 

informative distribution, the beta distribution is usually 

chosen to describe a parameter that is limited in [0, 1], 

such as reliability and failure probabilities, because the 

range of the beta distribution is from 0 to 1 and its shape 

is highly variable according to the value of its parameters. 

�e beta distribution is illustrated in Figure 4.

For zero-failure data, pk is generally very small. In other 

words, pk is more likely to be closer to 0 rather than 1. 

− ln R(ti)

ti
≤

− ln R(tk)

tk
.

(5)[R(ti)]
1
ti ≥ [R(tk)]

1
tk , i = 1, 2, . . . , k .

0 ≤ pi ≤ 1 − (1 − pk)
ti
tk , i = 1, 2, . . . , k .

(6)h(θ |x) ∝ L(x|θ) × π(θ),

(7)L(ri|pi) = Cri
si
p
ri
i (1 − pi)

si−ri ,

(8)L(0|pi) = (1 − pi)
si .

Because of the characteristics of zero-failure data, the 

beta distribution curve is monotonically decreasing with 

a ≤ 1 and b > 1 according to actual conditions.

Under conditions lacking historical data or expert 

information, the non-discrimination principle is applied 

under the assumption of a uniform distribution as the 

prior distribution for parameters limited in a particular 

range. Although a uniform distribution is logical and con-

venient for defining a prior distribution of parameters, 

some problems, including boundedness and a dissatisfy-

ing invariance under variation for parameters, limit its 

application. To address these problems, the present study 

employs Jeffreys prior distribution and vague prior distri-

bution rather than a uniform distribution. In this paper, 

it is assumed that π(pk) follows Beta(Kδ, K(1 − δ)) as the 

prior distribution:

where δ is the mean value of pk and K is the diffusion fac-

tor controlling the shape of the beta distribution. In this 

paper, it is assumed that Kδ = 1, so that K = 1/δ. �ere-

fore, Eq. (9) can be given as

For δ, the hierarchical Bayesian method is applied to 

provide information using Beta distribution with param-

eters η and ν due to its range from 0 to 1. �us, the hier-

archical Bayesian model of pk is written as

(9)

π(pk |K , δ) =
Γ (K )

Γ (Kδ)Γ (K (1 − δ))
pKδ−1

k (1 − pk)
K−Kδ−1

,

(10)π(pk |δ) =
(1 − δ)

δ
(1 − pk)

1−2δ
δ .

(11)π(pk , δ|η, ν) ∝
(1 − δ)ν

δ2−η
(1 − pk)

1−2δ
δ ,

Figure 4 Shape of the beta distribution curve for different a and b 
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where η and ν are hyperparameters that can be calculated 

by numerous approaches such as the moment estima-

tion approach and the percentiles approach. Substituting 

Eqs. (8) and (11) into Eq. (6), the posterior joint probabil-

ity distribution can be obtained as

�e Bayesian method mainly contains two problems. 

�e first problem involves selecting the prior distribu-

tion and obtaining hyperparameters. �e second prob-

lem is that it is nearly impossible to conduct the required 

integration for obtaining the normalizing constant of the 

posterior distribution for high-dimension calculations 

using numerical algorithms. To solve the second prob-

lem, the MCMC algorithm is applied to obtain the Bayes-

ian estimator in this paper.

�e MCMC algorithm provides a simple way to con-

struct a Markov chain whose stationary distribution is 

the distribution of interest. From Eq.  (12), the posterior 

distributions of the two parameters can be given by a 

posterior joint probability distribution as follows:

Based on Eqs. (13) and (14), the Bayesian estimators of 

pk and δ can be obtained using the MCMC algorithm.

3.2.2  Bayesian Inference for Failure Probability pi

By �eory 1, the value of pi(1 ≤ i ≤ k–1) can be limited to

From a conservative perspective, the relationship 

between pi and pk can be defined as

From Eqs. (13) and (15), the prior distribution of pi can 

be given as

From Eqs.  (6), (8), and (16), the posterior distribution 

of pi can be obtained as follows:

(12)h(pk , δ|η, ν) ∝
(1 − δ)ν

δ2−η
(1 − pk)

1−2δ
δ

+sk .

(13)h(pk |η, ν, δ) ∝ (1 − pk)
1−2δ

δ
+sk ,

(14)h(δ|η, ν, pk) ∝
(1 − δ)ν

δ2−η
(1 − pk)

1−2δ
δ .

0 ≤ pi ≤ 1 − (1 − pk)
ti
tk , i = 1, 2, . . . , k .

(15)pi = 1 − (1 − pk)
ti
tk .

(16)π(pi|η, ν, δ) ∝ (1 − pi)
(1−2δ)tk

δti .

(17)h(pi|η, ν, δ) ∝ (1 − pi)

(

1−2δ
δ

+sk

)

tk
ti .

4  Least Squares Estimation
Based on the Bayesian estimators of pi, the parameter 

values of the modified Weibull distribution can be cal-

culated by the least squares method using. From Eq. (2), 

the modified Weibull distribution can be represented as a 

polynomial:

From Eq. (18), the error of the least squares estimation 

can be described as the difference between the actual 

value and the target value with weights ωi:

where ωi = niti

/

∑

k

i=1 niti (i = 1, 2, . . . , k) is the ith 

weight value. �e essence of least squares estimation is to 

minimize Q(α, β, λ):

where α̂ , β̂ and �̂ are the least squares estimators of α, 

β, and λ, respectively. �ese estimators are substituted 

respectively into Eqs. (2) and (4) to obtain R(t) and h(t).

5  Numerical Simulation
�e numerical simulation was performed using an 

acceptance-rejection method to generate samples from 

a specific distribution whose parameters are fixed. 

�en, the estimators of all parameters obtained by the 

proposed Bayesian estimation (BE) were compared 

with those provided by MLE. In addition, the expecta-

tion value of the modified Weibull distribution, which 

is usually employed in reliability assessment to obtain 

the mean time between failures (MTBF), was calcu-

lated. Finally, the bias of each parameter was calculated.

�e numerical simulation framework is given in 

detail by the following steps.

(1) Select a Weibull distribution g(x|a, b) and a constant 

M to satisfy f(x|α, β, λ) ≤ Mg(x|a, b).

(2) Generate a candidate sample x* from g(x|a, b).

(3) Generate a sample u from Unif(0, 1).

(4) Accept x* as a member of f(x|α, β, λ) if u < f(x)/Mg(x); 

otherwise, reject it.

(5) Repeat steps (1)‒(4) until obtaining a sample size n.

(18)y = log (α) + β log (t) + �t.

(19)
Q(α,β , �) =

k∑

i=1

ωi{ln (α) + β ln (t)

+�t − ln [− ln (1 − pi)]}
2,

Q
(

α̂, β̂ , �̂

)

= min
α>0,β>1,�>1

Q(α,β , �),
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(6) Define 95, 85, 75% of the minimum among samples 

as the censoring time to obtain zero-failure data for 

size n.

(7) Calculate the estimators by the proposed BE and 

MLE.

(8) Repeat steps (1)‒(7) 1000 times.

(9) Calculate the bias for each parameter group.

Based on the above steps, the simulations are divided 

into two groups with different parameters. Each group 

simulates 1000 sets of data with n defined as 33, 24, 

12, and 6, respectively. Based on each set of simulation 

data, the estimators are computed by BE and MLE. �e 

simulations for each group of parameters are given as 

follows:

(1) α = 1.5 × 10−5, β = 1.5, λ = 1.5 × 10−5;

(2) α = 1.5 × 10−5, β = 1.5, λ = 1 × 10−5.

Table 1 and Table 2 list the parameter bias results for 

the numerical simulations of the two groups. From a 

comparison of the results, we observe the following.

(1) For estimation of α, BE always performs more poorly 

than MLE. For estimation of β, BE always performs 

better than MLE. For estimation of parameter λ, BE 

always performs better than MLE. For the expecta-

tion value, BE performs more poorly than MLE when 

n is 33 and 24; However, with decreasing n, BE per-

forms better than MLE, and always performs better 

for n less than about 12 with regard to bias.

(2) With decreasing n, the estimation results for both 

methods improve for zero-failure data, although, for 

some cases, the bias values provided by BE and MLE 

do not follow this rule. �is differs from the effects of 

complete data or other censoring data.

In conclusion, BE performs more poorly than MLE 

for estimating parameter α, and performs better than 

MLE for the remaining parameters. In reliability assess-

ment, the expectation is a vitally significant indicator 

for evaluating the durability and lifetime of a compo-

nent, and affects the design of maintenance strategies. 

Moreover, the influence of the parameters on the shape 

of the reliability curve should be considered. Obviously, 

ensuring a high accuracy for β and λ is appropriate for 

controlling the curve shape. As such, the performance 

of the proposed Bayesian estimation method is more 

suitable than MLE for reliability assessment with zero-

failure data under small sample size conditions.

Table 1 Simulation results for group 1

Parameters Bayesian estimation Maximum 
likelihood 
estimation

n = 33

 α −6.21 × 10−4 5.00 × 10−6

 β 6.00 × 10−2 5.77

 λ 3.00 × 10−7
−7.00 × 10−2

 E(t) 8.94 × 102 5.76 × 102

n = 24

 α −3.97 × 10−4 5.00 × 10−6

 β 5.00 × 10−2 5.46

 λ 2.91 × 10−7
−6.00 × 10−2

 E(t) 7.53 × 102 4.15 × 102

n = 12

 α −2.28 × 10−4 5.00 × 10−6

 β 3.00 × 10−2 4.95

 λ 8.62 × 10−7
−4.00 × 10−2

 E(t) 3.66 × 102
−3.90 × 102

n = 6

 α −2.31 × 10−4 5.00 × 10−6

 β 4.50 × 10−2 4.45

 λ 1.97 × 10−6
−2.00 × 10−2

 E(t) −3.70 × 102
−1.62 × 103

Table 2 Simulation results for group 2

Parameters Bayesian estimation Maximum 
likelihood 
estimation

n = 33

 α −6.08 × 10−4 5.00 × 10−6

 β 7.00 × 10−2 5.85

 λ 5.53 × 10−6
−1.00 × 10−1

 E(t) 8.97 × 102 6.00 × 102

n = 24

 α −4.27 × 10−4 5.00 × 10−6

 β 6.00 × 10−2 5.47

 λ 5.43 × 10−6
−7.00 × 10−2

 E(t) 7.27 × 102 5.82 × 102

n = 12

 α −1.55 × 10−4 5.00 × 10−6

 β 3.00 × 10−2 4.88

 λ 5.69 × 10−6
−4.00 × 10−2

 E(t) 2.92 × 102
−5.12 × 102

n = 6

 α −4.75 × 10−4 5.09 × 10−6

 β 5.00 × 10−2 4.42

 λ 6.46 × 10−6 2.00 × 10−2

 E(t) −3.75 × 102
−1.62 × 103
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6  Numerical Case
6.1  Lifetime Experiments for Solenoid Valves

As discussed above, the solenoid valve of the braking 

system is a type of wearout product that plays a vital 

role in the system safety. Lifetime experiments were 

performed on a test rig to obtain lifetime data applica-

ble to numerous types of solenoid valves employed in 

railway vehicles. An image of the test rig employed for 

the lifetime experiments is given in Figure 5.

In this case, a lifetime experiment performs on the 

test rig to observe the number and time of failure sam-

ple. �e experimental framework of the test rig is illus-

trated in Figure 6. In this framework, a hydraulic source 

provides the motive force for controlling the solenoid 

valve to ensure the correct operation of the experiment 

under a range of frequencies. �e test rig controls the 

motion of the valve, and sends a signal reflecting the 

failure time to computer.

6.2  Reliability Analysis for the Solenoid Valve

A series of solenoid valve data with n = z18 was collected 

during reliability experiments. To simplify the calcula-

tion, the lifetime data was converted from counting num-

ber to hour, and the results are listed in Table 3.

Moment estimation was employed to obtain hyper-

parameters η and ν. We conservatively assigned δ = 0.5 

based on the censored data obtained. Moreover, the 

robustness was evaluated because the variance of the 

assignment is an assumed value due to a lack of infor-

mation. �erefore, three variance values were selected 

from the interval [0.1, 0.125], i.e., 0.1, 0.1125, and 0.125. 

�e failure probability results and the parameters of the 

modified Weibull distribution based on least squares 

estimation are listed in Table 4 and Table 5, respectively. 

In addition, the effects of the different variance values on 

reliability and failure rate are illustrated in Figure 7.

�e data in Table 4 shows that the estimators of each 

failure probability change very little when the variance is 

Figure 5 Test rig employed for lifetime experiments of solenoid 

valves

Figure 6 Experimental framework of the test rig employed for lifetime experiments

Table 3 Zero-failure data for solenoid valves

Number i Data ti (h) Quit number mi Survival 
number si

1 800 2 18

2 1000 2 16

3 1200 2 14

4 1500 2 12

5 1750 3 9

6 2000 3 6

7 2150 3 3

8 2300 3 0
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selected from the range [0.1, 0.125], and the maximum 

difference is only 0.81%. Moreover, with increasing vari-

ance, the results are observed to increasingly approxi-

mate estimators based on sample data. �is indicates 

that prior information becomes increasingly ambiguous 

with increasing variance, and reduces the impact of prior 

information on the posterior estimation.

Table 5 shows that the least squares estimators of the 

modified Weibull distribution parameters change very 

little when the variance is selected from [0.1, 0.125]. 

Moreover, as shown in Figure  7, the reliability and fail-

ure rate exhibit little variability with respect to the vari-

ance. �is verifies that the modified Weibull distribution 

model employed in the Bayesian method based on the 

proposed prior is sufficiently robust.

Base on the results in Table 5, the reliability and failure 

rate functions of the modified Weibull distribution with a 

variance of 0.125 can be written as follows:

(20)

R(t) = exp
[

−1.902 × 10−5
t
1.031 exp

(

1.277 × 10−5
t

)]

,

(21)
h(t) = 1.902 × 10−5

(

1.031 + 1.277 × 10−5
t

)

t
0.031 exp

(

1.277 × 10−5
t

)

.

�en, Eq.  (20) and Eq.  (21) are plotted for 0  h to 

20000 h in Figures 8(a) and (b), respectively.

�e data presented in Figure  8(a) verifies the proper 

functioning of the algorithm, because the failure rate 

curve of the solenoid valve is monotonically increasing 

with increasing t in accordance with the initial assump-

tion. Meanwhile, the reliability of the solenoid valve 

remains greater than 50% after an operational period of 

20000 h, as shown in Figure 8(b).

7  Conclusions
(1) �e proposed Bayesian method is established based 

on engineering knowledge and mathematical rela-

tion. �is method makes full use of objective infor-

mation, and avoids misleading by vague subjective 

information. It reduces the difficulty of selecting 

parameters for reliability model.

Table 4 Estimation of  the  failure probability in  censored 

time under three di�erent variance values (%)

Failure probability Variance value

0.1 0.1125 0.125

p1 1.20 1.09 0.91

p2 1.50 1.36 1.13

p3 1.79 1.62 1.36

p4 2.22 2.01 1.69

p5 2.58 2.34 1.96

p6 2.93 2.66 2.23

p7 3.15 2.85 2.39

p8 3.36 3.04 2.55

Table 5 Least square estimators of  the  modi�ed Weibull 

distribution parameters under di�erent variance values

Estimators 
of parameters

Variance value

0.1 0.1125 0.125

α 1.3007 × 10−5 1.7383 × 10−5 1.9020 × 10−5

β 1.054 1.018 1.031

λ 1.946 × 10−6 1.101 × 10−5 1.277 × 10−5

Figure 7 Relations of the variance and time with the reliability and 

failure rate
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(2) A numerical simulation is investigated, and MLE 

method is chosen for comparison. �e comparison 

indicates that the proposed Bayesian method can 

obtain more accurate results of the reliability assess-

ment for the conditions of small sample size (less 

than 12) and zero-failure data.

(3) An application of the solenoid valve of the high-

speed train braking system is introduced at the end 

of the paper. �e results show the proposed Bayesian 

method can provide robust sufficiently estimations 

for different hyperparameters. �e method is easier 

to apply than traditional method in the field of the 

reliability engineering of high-speed train.

Authors’ Contributions

J-WY provided good experimental conditions and overall research objectives 

for the research work. J-HW put forward the research idea, wrote the manu-

script, and carried out theoretical research and data analysis. QH assisted with 

the reliability testing. MZ improved the full text of english writing. All authors 

read and approved the final manuscript.

Author details
1 Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehi-

cles, Beijing University of Civil Engineering Architecture, Beijing 100044, China. 
2 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong 

University, Beijing 100044, China. 3 Locomotive and Car Research Institute, 

China Academy of Railway Science, Beijing 100044, China. 

Authors’ Information

Jian-Wei Yang, born in 1971, is currently a professor at Beijing University of 

Civil Engineering Architecture, China. He received his Ph.D. degree from China 

Academy of Railway Science, China, in 2006. His research interests include 

vehicle system dynamics, failure modeling analysis, system reliability and fault 

diagnosis. He is a senior member of CMES, Great Scholars Project and Beijing 

Recognized Talent Project. He has carried on many research work about reli-

ability and risk assessment, e.g., The National Science Fund Project “The theory 

and analytical method study based on multi-state failure for braking system 

in high-speed train”, China Postdoctoral Science Foundation Funded Project 

“Research on the reliability evaluation method of the vehicle system based on 

the small sample theory and GO method” and The National High Technology 

Research and Development Program of China “Research and verification of 

key equipment monitoring and early warning and emergency technology 

for rail transit operation safety”. He has published about 130 papers in relative 

research field in total. Tel: +86-10-68322515; E–mail: yangjianwei@bucea.edu.

cn.

Jin-Hai Wang, born in 1990, is currently a Ph.D. candidate at School of 

Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, China. 

He received his Master degree from Beijing University of Civil Engineering Archi-

tecture, China, in 2015. His research interests include reliability assessment, 

gearbox dynamics and mechanical fault diagnose. During the master period, 

he assisted his supervisor for studying reliability theory under small sample 

size, fatigue computation for structure of vehicle and optimization work. He 

also took part in Formula Student China 2015 and Honda energy competition 

for vehicle design. E–mail: wangjinhai@bjtu.edu.cn.

Qiang Huang, is a professor of China Academy of Railway Sciences, was born 

in 1946. He obtained his Master degree in Vehicle Engineering from China 

Academy of Railway Sciences, in 1981. His research interests are in vehicle sys-

tem dynamics for heavy load railway vehicle, high–speed railway vehicle. He is 

also chief expert of China Academy of Railway Sciences and rewarded “Zhan 

Tianyou Railway Science and Technology award” in 2001. He carried on many 

research and development work for Chinese high-speed train, e.g., “Research 

for the bogie of 200 km/h EMU”. E–mail: qhuang@rails.com.cn.

Ming Zhou, is an associate professor at Beijing University of Civil Engineering 

Architecture, was born in 1966. He obtained his Ph.D. degree in Mechanical 

Engineering from Dalian University of Technology, China, in 2006. His research 

interests are nonlinear dynamics and control. E–mail: zhouming@bucea.edu.

cn.

Competing Interests

The authors declare no competing financial interests.

Funding

Supported by National Natural Science Foundation of China (Grant 

No. 51175028), Great Scholars Training Project (Grant No. CIT&TCD20150312) 

and Beijing Recognized Talent Project (Grant No. 2014018).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 18 January 2016   Accepted: 5 June 2018

References

 [1] C D Lai, M Xia M, D N P Murthy. A modified Weibull distribution. IEEE 

Transactions on Reliability, 2003, 52(1): 33–37.

 [2] H T Liu, Z H Zhang. Bayesian reliability analysis of Weibull zero failure data. 

Systems Engineering-Theory & Practice, 2008, 28(11): 103–108. (in Chinese)

Figure 8 a reliability and b failure rate from Eqs. (20) and (21), 

respectively, for the solenoid valve in the braking system of a 

high-speed train



Page 11 of 11Yang et al. Chin. J. Mech. Eng.  (2018) 31:47 

 [3] S Singh, Y M Tripathi. Bayesian estimation and prediction for a hybrid 

censored lognormal distribution. IEEE Transactions on Reliability, 2015, 

65(2): 1–14.

 [4] A A Soliman, A H Abd-Ellah, N A Abou-Elheggag, et al. Modified 

Weibull model: A Bayes study using MCMC approach based on pro-

gressive censoring data. Reliability Engineering & System Safety, 2012, 

100(6): 48–57.

 [5] Z Yang, Y Kan, C Fei, et al. Bayesian reliability modeling and assess-

ment solution for NC machine tools under small-sample data. Chinese 

Journal of Mechanical Engineering, 2015, 28(6): 1229–1239.

 [6] X Xia. Reliability analysis of zero-failure data with poor information. 

Quality & Reliability Engineering, 2012, 28(8): 981–990.

 [7] D Lord, L F Miranda-Moreno. Effects of low sample mean values and 

small sample size on the estimation of the fixed dispersion parameter 

of Poisson-gamma models for modeling motor vehicle crashes: A 

Bayesian perspective. Safety Science, 2008, 46(5): 751–770.

 [8] E Fabrizi, C Trivisano. Bayesian conditional mean estimation in Log-

Normal linear regression models with finite quadratic expected loss. 

Scandinavian Journal of Statistics Theory & Applications, 2016, 43(4): 

1064–1077.

 [9] V Junttila, M Laine. Bayesian principal component regression model 

with spatial effects for forest inventory variables under small field 

sample size. Remote Sensing of Environment, 2017, 192: 45–57.

 [10] Z P Hao, S K Zeng, J B Guo. Bayesian method for system reliability 

assessment of overlapping pass/fail data. Journal of Systems Engineer-

ing and Electronics, 2015, 26(1): 208–214.

 [11] Z Ming, J Tao, X Chen, et al. Bayesian demonstration test method with 

mixed beta distribution. Chinese Journal of Mechanical Engineering, 

2008, 21(3): 116–119.

 [12] G Jin. Performance reliability modeling and estimation for space bear-

ing under small sample circumstance. Journal of National University of 

Defense Technology, 2010, 32(1): 133–137.

 [13] H Li, H Zuo, Y Su, et al. Study on segmented distribution for reliability 

evaluation. Chinese Journal of Aeronautics, 2017, 30(1): 310–329.

 [14] X Jia, D Wang, P Jiang, et al. Inference on the reliability of Weibull 

distribution with multiply Type–I censored data. Reliability Engineering 

& System Safety, 2016, 150: 171–181.

 [15] W Peng, H Z Huang, Y Li, et al. Life cycle reliability assessment of new 

products—A Bayesian model updating approach. Reliability Engineer-

ing & System Safety, 2013, 112(112): 109–119.

 [16] W Peng, H Huang, Y Li, et al. Bayesian information fusion method for 

reliability assessment of milling head. Journal of Mechanical Engineer-

ing, 2014, 50(6): 185–191. (in Chinese)

 [17] Z Yang, Y Zhu, H Ren, et al. Comprehensive reliability allocation 

method for CNC lathes based on cubic transformed functions of failure 

mode and effects analysis. Chinese Journal of Mechanical Engineering, 

2015, 28(2): 315–324.

 [18] S Salvinder, A Shahrum, N M N Abdullah, et al. Markov chain model-

ling of reliability analysis and prediction under mixed mode loading. 

Chinese Journal of Mechanical Engineering, 2015, 28(2): 1–8.

 [19] M S Hamada, A G Wilson, C S Reese, et al. Bayesian reliability. New York: 

Springer, 2008.

 [20] H Cai, S F Zhang, J H Zhang. Bayes test analysis and assessment. 

Changsha: National University of Defence Technology Press, 2004. (in 

Chinese)

 [21] C Yao, D Chen, B Wang, et al. Fuzzy reliability assessment method 

based on T–S fault tree and Bayesian network. Journal of Mechanical 

Engineering, 2014, 50(2): 193–201. (in Chinese)

 [22] L Meng, Z Liu, L Diao, et al. Reliability evaluation of high–speed train 

traction transmission system based on Markov model. Journal of the 

China Railway Society, 2016, 38(8): 23–27.

 [23] L Z Wang, Y G Xu, J D Zhang. Research on reliability analysis model for 

key components and parts of railway equipment and its application. 

Journal of the China Railway Society, 2008, 30(4): 93–97. (in Chinese)

 [24] M L Wu, X Y Wang, C Tian. Reliability of relay valve of brake system 

for rail vehicles. Journal of Southwest Jiaotong University, 2009, 44(3): 

365–369. (in Chinese)

 [25] X Y Wang, M L Wu. On the reliability of unit brake for urban rail vehicle. 

Urban Mass Transit, 2010, 13(11): 52–73. (in Chinese)

 [26] Y Tian. Reliability analysis application for structure of beam of C70 railway 

vehicle under extreme small sample size. Beijing: Beijing Jiaotong Univer-

sity, 2008. (in Chinese)

 [27] D X Zhu, H Z Liu. Reliability evaluation of high–speed train bearing with 

minimum sample. Journal of Central South University (Science and Technol-

ogy), 2013, 44(3): 963–969. (in Chinese)

 [28] J Z Dong. Study on urban rail vehicle brake system reliability modeling 

and simulation. Shanxi: Taiyuan University of Science and Technology, 

2012. (in Chinese)

 [29] M Akama. Bayesian analysis for the results of fatigue test using full–scale 

models to obtain the accurate failure probabilities of the Shinkansen 

vehicle axle. Reliability Engineering & System Safety, 2002, 75(3): 321–332.

 [30] W Chen. Study for frequent faults of brake system of CRH1A EMU. Confer-

ence Proceedings: China Railway Society Academic Committee for Trains, 

Passenger Vehicle, Qingdao: China Railway Society, 2012: 271–275. (in 

Chinese)

 [31] H Zhang, H Jiang. The analysis of brake not releasing for CRH5 EMU. Con-

ference Proceedings: China Railway Society Academic Committee for Trains, 

Passenger Vehicle, Qingdao: China Railway Society, 2012: 269–270. (in 

Chinese)


	Reliability Assessment for the Solenoid Valve of a High-Speed Train Braking System under Small Sample Size
	Abstract 
	1 Introduction
	2 Characteristics of the Solenoid Valve in the Braking System of High-Speed Trains
	2.1 Reliability Assessment Model
	2.2 Property of Failure Probability under Zero-Failure Data

	3 Assessment Method for Failure Probability Based on Bayesian Theory
	3.1 Likelihood Function of Failure Probability for Zero-Failure Data
	3.2 Bayesian Inference
	3.2.1 Bayesian Inference for Failure Probability pk
	3.2.2 Bayesian Inference for Failure Probability pi


	4 Least Squares Estimation
	5 Numerical Simulation
	6 Numerical Case
	6.1 Lifetime Experiments for Solenoid Valves
	6.2 Reliability Analysis for the Solenoid Valve

	7 Conclusions
	Authors’ Contributions
	References


