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Summary 

Recent earthquake-induced tsunamis occurred in Padang, 2004 and Tohoku, 2011 

brought huge losses of lives and properties. To date, it is neither practical nor 

possible to accurately predict such hazard and construct perfectly effective 

countermeasures against them. Therefore, it is of our great interest to quantify the 

structural risk caused by earthquake-induced tsunamis. Despite continuous 

advancement in numerical simulation of tsunami and wave-structure interaction, it 

still remains a computationally challenging task to evaluate the reliability of 

structural dynamic system, especially when uncertainties related to the system and 

its modelling are taken into account. The failure of the structure in a tsunami-wave-

structural system (the complement of reliability) is defined as any response 

quantities of the system exceeding specified thresholds during the time when the 

structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. 

 

In this study, attempts have been made from two perspectives. Firstly, the focus is 

concentrated on the physical numerical simulation of the tsunami wave-structure 

interaction. The uncertainty arises from both the stochastic process of earthquake 

source generation and the structural parameters. Therefore, the tsunami generation, 

propagation and runup, are carried out, prior to the modelling of the wave-structure 

interaction. The stochastic earthquake source model is proposed to generate tsunami 

profile which propagates to shorelines. The numerical analysis of the interaction is 

performed through LS-DYNA on a high-performance computing system. 

 

Secondly, various approaches based on a novel integration of the Subset Simulation 

algorithm and two metamodels, i.e. modified moving least squares (MLS) response 

surface approach (Taflanidis & Cheung 2012), as well as Gaussian processes (GP), 

are proposed to evaluate the reliability of the dynamic system. The metamodels are 

used to replace the computationally expensive physical numerical simulations. The 

proposed algorithms follow a logical sequence. First of all, we proposed adaptive 

SSMLS/SSGP (Chapter 4) in order to assess the reliability of the complex system 

more accurately. For problems which involve high dimensional variables, the 



IX 
 

modified sparse Bayesian inference is proposed and a polynomial up to the 4th 

order is employed (Chapter 5). On the other hand, the bias (inconsistency) of the 

metamodels is alleviated to a certain extend by the newly proposed SSMLS-RCM 

which theoretically can rectify the approximation and converge to the exact result 

(Chapter 6). 

 

The results showcase the ability of the proposed stochastic earthquake source model 

and the numerical simulation tools in modelling the complete physical process. 

Furthermore, the novel integration of the Subset Simulation and metamodels 

demonstrates potential benefit in estimating failure probability of a highly nonlinear 

complex system. The effectiveness of the proposed algorithms is discussed by 

comparing the results with the results obtained from the original Subset Simulation 

without using the metamodels.   
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Chapter 1 Introduction 

1.1 Motivation 

Looking back at history, the development of human society is accompanied by 

natural hazards. To date, no efficient preventions for such catastrophes have been 

found in view the evidence of enormous economic loss as well as casualties brought 

by recent hazards as shown in Table 1.  

 

Table 1 List of 10 costliest natural hazards from 1980 to 2014 

Rank 
Overall loss 

[US$ billion] 
Fatalities Event Country Year 

1 210 15,880 Tohoku earthquake JP 2011 

2 125 1,322 Hurricane Katrina US 2005 

3 100 6,430 Kobe earthquake JP 1995 

4 85 84,000 Sichuan earthquake CN 2008 

5 69 210 Hurricane Sandy US 2012 

6 44 61 
Northridge 

earthquake 
US 1994 

7 43 813 Thailand flood TH 2011 

8 38 170 Hurricane Ike US 2008 

9 30 520 Chile earthquake CL 2010 

10 28 46 Honshu earthquake JP 2014 

Source: Munich Re NatCatSERVICE, 2015 

 

On top of that, tsunami hazard, being one of the deadliest natural catastrophes, 

shows an increasing occurrence rate worldwide as seen in Table 2 (Geist & Parsons 

2011). Even though Japan is considered as a leading country in tackling with 

tsunamis, the tendency of underestimating the extreme scenario led to the failure of 

the structure countermeasures such as breakwater and seawalls (Shuto & Fujima 

2009) during the 2011 Tohoku event: the maximum potential earthquake was 

thought as not exceeding Mw 8.2 in that region (Shibata 1998). Similarly, the 

Sumatra earthquake in 2004 and Chile earthquake in 1960 are also considered as 

“black swan” events, indicating an unprecedented and unexpected event in human 
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history at the point when it occurred. It is difficult to predict when and where such a 

tsunami happens and whether there will be a larger one in the future (Kelleher et al. 

1973). Therefore, a probabilistic or probability-based analysis provides a rational 

approach to mitigate the tsunami risk. More importantly, constructing vertical 

evacuations to high ground is the most crucial strategy to effectively reduce 

casualty during the tsunami event. Thus, it is of our great interest to quantify the 

risk to structural dynamic systems due to earthquake-induced tsunamis. 

 

Table 2 List of 10 deadliest tsunamis in the history 

Rank Death toll Location (Trigger) Year 

1. 350,000 Indonesia (EQ*) 2004 

2. 100,000+ Ancient Greece (VC+) 1410 B.C. 

3. 100,000 Portugal (EQ) 1755 

4. 100,000 Italy (EQ) 1908 

5. 40,000 Taiwan (EQ) 1782 

6. 36,500 Indonesia (VC) 1883 

7. 30,000 Japan (EQ) 1707 

8. 26,360 Japan (EQ) 1896 

9. 25,674 Chile (EQ) 1868 

10. 15,854 Japan (EQ) 2011 

      * Earthquake 

      + Volcano eruption  

      Data source: National Geophysical Data Center 

 

The process of an earthquake-induced tsunami interacting with on-shore structures 

is a multi-physics phenomenon consisting of seismology, fluid dynamics and fluid-

structure interactions. Each component can be treated as a complex system and the 

interaction between them is highly nonlinear.  

 

Some parts of the above problems have been investigated separately by researchers 

and engineers. For example, Geist (2005) examined the randomness of the spatial 

slip distribution with its effect on the generated tsunami amplitude. Geist (2005) 

and Seda & Tuncay (2010) discussed the relationship between tsunami amplitude 
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and different earthquake source parameters. Besides, tsunami loading experiments 

are carried out together with numerical analyses to better understand the wave-

structure interaction issue. For instance, Nimmala et al. (2006) and Lau et al. (2011) 

did detailed bridge modelling to quantify the tsunami wave forces. With 

uncertainties pervasive in the whole process, tsunami vulnerability and probabilistic 

tsunami hazard assessment (Koshimura et al. 2009; Omira et al. 2010) are 

commonly adopted to quantify the potential risk. This type of analysis mainly 

focuses on assessing the damage variability and hazard recurrence probability. 

However, the previous probabilistic studies hardly satisfy the requirement of 

reliability analysis, which alternatively, studies the ability of a system to perform its 

required functions within a certain period of time. Given the fact that it is already 

computationally intensive to run a single structure-tsunami interaction simulation in 

order to obtain a structural response, a reliability assessment which normally 

requires thousands of such simulations or more even using the state-of-the-art 

approach such as Subset Simulation (Au & Beck 2001) can be computationally 

prohibitive. Thus, this makes the advancement of the stochastic analysis and 

reliability computation necessary as well as challenging.  

 

1.2 Scope of the study 

In this study, the uncertainty arises from both the stochastic earthquake source and 

the structural parameters. Therefore, the tsunami generation, propagation and runup, 

are carried out, prior to the modelling of the wave-structure interaction. The 

structural reliability (or its complement failure probability) under the risk of 

earthquake-induced tsunamis is examined. The uncertainty parameters come from 

both the earthquake source generation and structural variables. The stochastic 

source model couples the hybrid k-squared slip distribution (Gallovič & Brokešová 

2004) with the rest of the seismological possible rupture variables. All the 

earthquake parameters are used to generate tsunami wave profiles which propagate 

to shorelines. A detailed numerical simulation for the wave-structure interaction is 

modelled using LS-DYNA. Furthermore, novel hybrid approaches are proposed, 

which integrates various metamodels, i.e. modified moving least squares (MLS) 

response surface approach (Taflanidis & Cheung 2012), as well as Gaussian 
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processes (GP) with the Subset Simulation (SS) method (Au & Beck 2001) to 

evaluate the reliability of the structure which interacts with the dynamic tsunami 

waves. The structural reliability analysis involves the computation of a high-

dimensional probability integral with the integrand involving a function of the 

solutions of high-dimensional stochastic differential equations. Failure of the 

structure is defined as any response quantities of the tsunami-wave-structure system 

exceeding specified thresholds during the time when the structure is subjected to 

dynamic wave impact due to earthquake-induced tsunamis.  

 

The schematic flow of the study on a reliability assessment of structural dynamic 

systems due to earthquake-induced tsunamis is shown in Figure 1. The thesis is 

structured in the following way. Chapter 2 firstly describes the state-of-the-art 

related to the study, including the commonly-used earthquake generation models 

and classic computational methods for reliability assessment. Then Chapter 3 

proposed a series of physical models starting from the earthquake source model to 

the nonlinear structural response computation (e.g. maximum displacement, inter-

story drift ratio, etc.). The benchmark study using the proposed physical process is 

included at the end of the chapter. It is followed by a newly proposed reliability 

algorithm in Chapter 4 which generalizes the procedures to evaluate the failure 

probability of a structural dynamic system under earthquake-induced tsunami risks. 

In Chapter 5, a novel algorithm is proposed which utilizes response surface models 

for high-dimensional problems. Chapter 6 discusses two algorithms which serve the 

purpose of enhancing the performance of the algorithms proposed in Chapters 4 and 

5. Finally, Chapter 7 summarizes the results obtained so far and the future works. 
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Figure 1 Overall flowchart of the study 
 

  

Stochastic earthquake source modelling 

Tsunami generation and propagation 

Tsunami runup and wave-structure interaction 

Structural reliability analysis 
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Chapter 2 Literature Review on Tsunami Wave-structure 

Interaction and Computational Methods 

2.1 Tsunamigenic earthquake and tsunami earthquake 

Earthquake is a result from continuous transformations of tectonic plate movements. 

In a micro scale, the relative movement of the plates is initiated due to the 

exceeding of a maximum accumulative stress which a rock can bear on a fault plane. 

The regions where two or more plates converge are called subduction zones. 

 

2.1.1 Tsunamigenic earthquake 

Given the low efficiency in energy transmitting, under-seafloor earthquakes with 

certain source mechanism and moment magnitude Mw greater than 6.8 can trigger 

potential tsunamis (Titov 1997). This type of earthquake is referred to as 

tsunamigenic earthquake. In fact, most of the tsunamigenic earthquakes are from 

the subduction-zones (Pacheco & Sykes 1992; Geist 1998). There are several types 

of subduction-zone earthquakes. The majority of the subduction-zone earthquakes 

are initiated by the relative motion between two plate boundaries, referring to as 

interplate thrust (Geist 1998). This type of earthquake faulting accounts for more 

than 90 per cent of the total seismic energy release around the world (Bolt 2005). 

However, there are possibilities that the earthquake could be in either of the 

continental crust or oceanic crust, creating back-arc thrust and outer-rise fault, 

respectively. The latter is responsible for several mega tsunamis, such as 1933 

Sanriku, 1990 Mariana and 2011 Tohoku (Lay et al. 2011). Figure 2 illustrates 

various types of subduction-zone faulting. 
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Figure 2 Various types of subduction-zone faulting and examples (Geist 1998) 
 

2.1.2 Tsunami earthquake 

On the other hand, there are earthquakes which do not release as much energy in a 

short duration as tsunamigenic earthquake but generate more tsunamis. It is 

considered as tsunami earthquakes firstly defined by Kanamori (1972). Tsunami 

earthquake is a special case of tsunamigenic earthquake. It occurs in shallow 

interplate region close to the edge of two boundaries of the plates named 

décollement. In geology, décollement is defined as a process in which some strata 

partly detach from those underneath and slide over them, causing folding and 

deformation. A typical décollement process is shown in Figure 3. Kanamori (1972) 

stated that the tsunami earthquake, despite of its relatively low energy release, 

contains large effective moment at long period at the order of 100s. This 

observation indicates a long rupture duration τc, comparing to other types of 

earthquakes. Therefore, the slow rupture velocity νr is expected, since νr is inversely 

proportional to the rupture duration (Aki & Richards 1980; Lay & Wallace 1995). 

This was also demonstrated by Pelayo and Wiens (1992) and Kanamori and 

Kikuchi (1993) in their studies on a few damaging tsunami earthquakes. They 

believed that the rupture velocity of tsunami earthquakes is likely to be limited 

owing to the low shear wave speed in accreted or subducted sediment near the 

trench. However, Ihmle (1996) provided another explanation – the low rupture 

velocity lies in the unique frictional properties of décollement sediment itself and 
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the shear wave speed in the sediment rock close to the fault zone may be of normal 

values.  

 

Besides the long rupture duration, another characteristic of tsunami earthquakes is 

their relatively higher slip amount that could trigger highly nonlinear vertical wave 

displacement and considerable local tsunamis. Bilek & Lay (1999; 2002) and Seno 

(2002) suggested that the large dislocation could be the consequence of low rigidity 

(~10 GPa) of the sediments in a shallow subduction region. This can be explained 

from the relationship between seismic moment 0M and fault size A and average slip 

D  given by       ̅ where   is the shear module (rigidity). Please note that we 

do not differentiate the type of triggering earthquakes in this study since the scope is 

to analyse the structural performance given any earthquake which can generate 

potential tsunamis.   

 

Figure 3 Schematic cross section of a Décollement (Saffer & Bekins 1999) 
 

2.2 Earthquake source model and stochastic slip distribution 

Seismic source modelling aims at investigating the kinetic and dynamic properties 

of the earthquake source by modelling the seismogram as well as other observed 

data. Two basic models, kinematic and dynamic models are commonly accepted in 

describing the earthquake source mechanism and dislocation. The concept of the 

kinematic model was introduced by Volterra (1907). The model quantifies the slip 

vector on the fault plane using dislocation theory without considering the causing 
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stress field. Therefore, the slip vector is treated as a function of space and time only. 

While for the dynamic model, it was first presented in Griffith’s work (1921), 

aiming to further understand the stress change on the fault that causes the fracture. 

The earthquake can be better understood through the studies of friction laws and 

associated elasto-dynamic nature of the process. In another word, the dynamic 

model represents the earthquake source physics. A detailed review of the two 

models can be found in Madariaga and Olsen (2002). A number of applications 

have been developed (Kostrov & Das 1989; Madariaga & Olsen 2002) based on 

these two models. The kinematic model is widely applied in both forward and 

inverse problems. In solving the forward problem, the kinematic model helps to 

calculate the ground motion from the earthquake source parameters including the 

slip vector and geometry of the fault. Many slip distributions are proposed for this 

purpose, e.g. uniform slip model, k-squared model and other composite models 

(Zeng et al. 1994). Another major application of the kinematic model is to simulate 

the tsunami and landslide induced by an earthquake. The inverse problem, on the 

contrast, focuses on reproducing the slip distribution of an earthquake and fitting 

the result with the observed strong-motion seismograph, teleseismic, GPS and 

interferometry synthetic aperture radar (InSAR) data. The dynamic model is not 

employed as frequent as the kinematic model because of its complexity and high 

dependence on the numerical solution (Hartzell, S. et al. 2005). However, this 

model has become popular in the community recently along with the increasing 

power of computation technology (Beroza and Mikumo, 1996; Nielsen and Olsen, 

2000; Guatteri et al., 2003, 2004; Peyrat and Olsen, 2004). In the following sections, 

the author presents two kinematic slip distribution models which can be adopted for 

the tsunami generation process. 

 

2.2.1 Uniform slip model 

Similar to other natural systems, an earthquake motion exhibits a source of 

complexity which till now, is hard to be fully understood and many issues are under 

dispute (Wyss & Brune 1967; Carlson & Langer 1989; Rice 1993; Madariaga & 

Cochard 1994; Lavallée et al. 2006). The demands of resolution regarding 

earthquake models are different in analyzing far-field and near-field tsunamis. That 
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is to say, the propagation distance affects the properties of tsunamis generated by 

various seismic source parameters (Geist 1998). For a far-field tsunami, the 

earthquake source model can be treated as point-source or line-source, and it is 

sufficient to simulate reliable wave amplitude. The source parameter that affects a 

far-field tsunami the most is the seismic moment    that reflects the total radiated 

energy in an earthquake event. However, for the near-field case, it is further 

required to fully represent the earthquake model that depends on a number of source 

parameters due to the fact that the high frequency portion of the ground motion is 

dominant in the near field earthquakes. Thus, a finite fault model can be adopted, 

and both temporal and spatial variations are critical.  

 

After examining the effect on tsunami generation, Geist (1998) and F. Løvholt et al. 

(2012) conclude that the slip vector has the largest influence on tsunami amplitude 

compared with the geometric parameters, such as rupture area, dip angle and source 

depth, etc. The uniform slip model, corresponding to a rectangular fault area, also 

known as the Volterra dislocation model, is a compromise of an actual fault as 

shown in the middle pane of Figure 4. This kinematic earthquake source model was 

introduced by Ben-Menahem (1961) and improved by Haskell (1964), in which he 

assumed a uniform dislocation along the fault. By assuming a rectangular fault with 

length L in 1ξ direction and width W in 2ξ direction, the slip function of a point on 

the fault plane is given as: 
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      1ξ 0, L ,  2ξ 0,W  (2.1) 

 

where vr and τr are the rupture velocity and rise time, respectively as described 

above, while D is the ultimate static slip value. This function indicates an 

instantaneous fracture is formed at 0   in W direction and propagates unilaterally 
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over a length L along the 1ξ axis. The slip direction is arbitrary but constant over the 

fault. 

 

Figure 4 The actual fault and two levels of approximation to the slip vector field 

(Lay & Wallace 1995) 

 

Conventionally, there are two approaches to evaluate the average slip. The first 

approach is to compute the average slip amount by assuming either the initial stress    or final stress    to be constant (Shimazaki & Nakata 1980). Since the strain drop 

in Haskell’s model is proportional to 
D

L
or

D

W
, the static stress drop    can be 

related to the strain drop. According to Hooke’s law, it can be written as 

 Cμ Dσ
L

   (2.2) 

where C is a nondimensional constant depending on the geometry of fault, and L is 

the characteristic rupture dimension and is often denoted as S with S being the 

fault area. The second approach utilizes empirical relations derived from the 

centroid moment tensor solution of hundreds of earthquakes (Schwartz & 

Coppersmith 1984). In this method, the slip is directly related to earthquake 

dimensions L and W. Two scaling laws, namely, L-model (Scholz 1982) and W-

model (Rundle 1989; Romanowicz & Rundle 1993) are proposed, in which the 

average slip is related to the rupture length and width, respectively. These two 

models are better fitted in the strike-slip fault type but poorly correlated to 

subduction-zone earthquake and the reverse-slip type (Scholz 1982; Wells & 

Coppersmith 1994). Since the installation of the worldwide standard seismic 

network (WWSSN) was introduced in the 1960s, obtaining higher accuracy ground 

motion data has become possible. Based on the newly available data, Blaser et al. 
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(2010) shows that the scaling law may follow neither L- nor W-model, rather an A-

model in which the slip relies on the total rupture area A.  

 

2.2.2 Stochastic spatial slip distribution 

The uniform slip model is widely used in tsunami early warning system, in which 

the tsunami arrival time is the biggest concern. However, this model lacks of 

accuracy and may lead to underestimated run-up amplitude compared with 

observations (Geist 1998; Geist 2005). Studies by Satake (1994) and Piatanesi et al. 

(1996) showed that the nonuniform slip with different spatial distributions highly 

affect the local tsunami run-up. As mentioned earlier, the slip distribution is derived 

from the inversion of the seismogram, tsunami waves and geodetic data (Kikuchi & 

Fukao 1987; Thatcher 1990; Satake & Kanamori 1991; Ozawa et al. 2011). The 

nature of spatial variance is the result of the fact that the rock layers are 

heterogeneous and the fault geometry is irregular. All of these features point at the 

stochastic behavior of the slip distribution as the high frequency phases of the 

ground motion is random in general (Somerville et al. 1999). 

 

A large amount of papers have been published with a focus on the stochastic slip 

model. Haskell (1966) was among the first to employ a kinematic stochastic source 

model to account for the heterogeneity and the complexity of a strong ground 

motion. Hanks (1979) and Andrew (1980), with a similar idea, related their models 

to the widely-observed power laws (Aki 1967) and proposed stochastic source 

models based on self-similarity and friction functions. Andrew (1980) assumed a 

scale-invariant stress drop, implying that no matter how large or small the 

earthquake size is, the stress drop is constant. This assumption is referred to as 

dynamical similarity in some books (Koyama 1997; Kanamori & Brodsky 2004). 

Afterwards, Andrew (1981) formulated a stochastic model with random slip 

velocity function and applied it to the ground motion simulation. Based on 

Andrew’s work, Herrero and Bernard (1994) proposed the k-squared slip 

distribution model in which the slip amplitude spectrum follows a k-2 decay (k being 

wave number) beyond the corner wavenumber Kc. The radiated wave field of this 

model is consistent with the widely observed w-2 spectral decay in the far-field 
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displacement. From then on, the k-squared model has been further developed by 

many scholars (Bernard et al. 1996; Mai & Beroza 2002; Gallovič & Brokešová 

2004).  

 

2.2.3 Hybrid stochastic k-squared static slip distribution model 

Gallovic et al. (2004) modified the k-squared slip distribution model and introduced 

the 2-D corner wave numbers as K /c
xk L , K /c

zk W , where K is a 

dimensionless constant. The slip function in terms of wavenumber kx and kz is 

assumed to have spatial spectrum decay following a radically symmetric pattern. 

Thus, it leads to the expression as shown in Eqn. 2.3. 
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 (2.3) 

in which   is the phase of the random spectrum, L and W are the fault length and 

width, respectively. The constant K affects the roughness of the generated slip 

distribution. A detailed discussion regarding the effect of the K value can be found 

in Gallovic (2004). The random generator for the phase can be either uniform or 

Gaussian probability distribution. The validation of the k-squared slip model with 

respect to the earthquake dynamics was done by Jan Burjanek et al. (2007) using 

slip weakening friction law (Hisada 2000).  

 

As discussed in Hisada and Gallovic’s studies, the original k-squared model 

proposed by Bernard et al. (1996) used a random slip model and the asperity 

concentrated on the center of the fault plane. This is in contradiction with the 

finding of Somerville et al. (1999), in which they concluded that larger earthquakes 

were likely to yield two or more asperities randomly located on the plane. Therefore, 

a prescribed slip distribution with constant slip for each subfault was suggested to 

be implemented before adding the stochastic component. This deterministic slip 

model could be obtained from seismic data inversion or empirical relations. After 

smoothing out the sudden slip change, the k-squared model is applied in such a way 

that the phase of random spectrum shall be added to the distribution if the 
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wavenumber is higher than the threshold, i.e. Nyquist wavenumbers KN, given as    √(    )  (    ) 
and the characteristic subfault size    and    can be 

obtained from empirical relations (Mai & Beroza 2002).  

 

2.2.4 Temporal slip distribution 

As an earthquake occurs on a finite fault plane with a certain length and width, it 

consumes a certain amount of time for the rupture to develop and propagate on the 

fault plane. The temporal variation of the slip vector can be evaluated providing a 

prior knowledge on the source time function. Basically, the time function is the 

convolution of the rising time rτ  and rupture duration cτ . Geist (1998) examined a 

broad range of rise time from 1s to 100s and found out that increasing rise time has 

the effect of decreasing the amplitude of a local tsunami as well as the maximum 

run-up. The rupture velocity, which is inversely proportional to the rupture duration, 

is comparatively larger than the tsunami propagation speed. Therefore, the effect of 

the rupture propagation can be neglected and an assumption of instantaneous 

rupture can give rise to a slightly conservative result (Yamashita & Sato 1974; 

Kajiura 1982). However, an exception does exist for the tsunami earthquake case, 

where the rupture velocity can be half of the average value of 2.5 to 3.0km/s 

(Somerville, Irikura et al. 1999). For example, the dislocation velocity was around 

1.0 – 1.5km/s during the Nicaragua tsunami earthquake (Kikuchi & Kanamori 

1995). 

 

2.3 Tsunami wave evolution 

Theoretically, a tsunami process can be divided into three phases, i.e. the formation 

of initial sea surface disturbance, wave propagation and run-up. Tremendous energy 

stored in a tsunami wave usually propagates at a speed of 600-900 km/h in deep 

ocean. As a tsunami moves towards the shoreline, the wave speed drops quickly due 

to the sea bottom friction, which causes the increase of the wave amplitude. The 

exchange between gravitational energy and kinetic energy forms the backbone of 

the tsunami propagation and run-up (Okal 1988).  
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2.3.1 Tsunami generation 

In general, volcano eruption, submarine mass failure, asteroid impact and even 

manmade underwater explosion can trigger a tsunami. However, earthquakes, 

among all the potential sources, are the leading causes, given the frequency of large 

earthquakes near a subduction zone.  

 

In seafloor deformation modeling, the elastic fault model is commonly adopted 

which treats the earth as a homogeneous, isotropic and elastic material (Steketee 

1958; Okada 1985). The seafloor displacement depends on several parameters, 

including epicenter, focal depth, length and width of the fault plane, dislocation or 

slip, strike angle θ, dip angle α and rake (slip) angle 𝜆. A schematic plot of the fault 

plane with relevant parameters is shown in Figure 5. The epicenter (marked as * in 

the figure) is the earth surface projection of its focus or hypocenter, which is the 

initiation point of a rupture. Focal depth is defined as the vertical measure from the 

focus to epicenter. The slip vector describes the relative amount of movement and 

the direction of two sides of the fault moving towards one another. Slip angle 𝜆 

describes the relative movement of the hanging wall against the footwall. For 

example, reverse or normal slip type refers to a slip direction of +90 degree or -90 

degree, correspondingly. The angle is zero if the slip is left-lateral and 180 degrees 

if right-lateral slip. Dip angle δ reveals the inclination of the fault measured from 

the earth surface. For instance, a vertical dip represents vertically formed rupture 

plane. The strike angle θ is used to specify the orientation of the fault and measured 

clockwise regarding north. To do so is to keep the dipping always at the right side 

with respect to the strike direction, so as to eliminate the ambiguity. 
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Figure 5 Illustration of fault plane and fault parameters  
 

All the parameters mentioned above are used to calculate the initial water surface 

displacement. One of the most widely used analytical solutions for the surface 

deformation in the vertical direction (uz) due to shear dislocation in a half space is 

derived by Okada (1985). The calculation of the displacement of a finite rectangular 

fault with length L and width W are given in Eqn. (2.5) for the strike component 

and Eqn. (2.7) for the dip component. The final deformation results are represented 

in a compact form using Chinnery’s (1961) notation ||, given as: 

      ( , ) , , , ( , )f f x y f x y W f x L y f x L y W         ‖  (2.4) 

where (ξ, η) and (x, y) represent coordinate systems of fault plane and seafloor, 

respectively (Okada 1985). For the strike-slip component of the displacement, the 

normalized vertical displacement is 
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 (2.5) 

where  
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For the dip-slip component of the displacement, the normalized vertical 

displacement is: 
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and in all the equations, 
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 (2.9) 

The deformation of the seafloor will be projected onto the mean earth surface, i.e. 

the ellipsoid surface, because the surface deformation derived above is in the plane 

surface. In general, a rather coarse assumption states that the initial tsunami wave 

form follows the vertical component of the seafloor displacement due the lack of 

more information.   

 

2.3.2 Tsunami propagation and run-up 

The amplitude of a tsunami generated in deep ocean is much smaller than the ocean 

depth. Thus the depth-averaged Navier-Stokes equations, referred as linear shallow 

water equations (SWE) are implemented. The SWE, including continuity and 
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momentum equations in two orthogonal directions, are sufficient to describe the 

propagation of a tsunami wave. The equations in spherical coordinates are given as: 
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where   and   refer to the water surface elevation and mean water depth, 

respectively. The water flux is given by P Hu , Q Hv , in which H is the total 

water depth and      . u and v are velocity components in the orthogonal 

directions. The Coriolis coefficient sinf   takes into account of the rotation of 

the earth where   is the rotation rate is. Sometimes it is preferred to express the 

SWE in Cartesian coordinates as follows: 
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 (2.11) 

The SWE are valid under condition of / 1h . Particularly, the water depth 

should be greater than 50m (Nagano et al. 1991; Shuto 1991). When the tsunami 

wave approaches coastal area, the amplitude of the tsunami becomes larger and the 

wavelength becomes shorter. The nonlinear effect, i.e. convective inertia force and 

bottom friction terms, cannot be neglected. The following nonlinear shallow water 

equations (NSWE) are implemented instead. The NSWE in spherical coordinates is 

given as: 
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 (2.12) 

 

and in Cartesian  coordinates,  
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 (2.13) 

Fx and Fy represent the bottom friction in x- and y-direction and can be defined 

using Manning’s formula as: 
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where n is the Manning roughness coefficient. It should be noted that the SWE and 

NSWE equations derived above are agreeable with the experimental data under the 

non-breaking tsunami wave condition. The gap between experimental data and 

numerical solutions cannot be ignored for breaking waves (Nistor Ioan et al. 2010). 

 

2.3.3 Numerical methods 

The fast development of 2-D and 3-D tsunami numerical models enables 

researchers and engineers to better evaluate the tsunami risk. Although for local 

tsunami events, the simulation time is roughly the same as the tsunami propagation 

duration, which hardly satisfies the early warning purpose (exceptions exist and 

efforts are making towards an early warning system by various means (Titov et al. 

2005), they are valuable from the perspective of investigating the nature of a 

tsunami and improving the resilience of the society. Several numerical packages are 
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available, such as Method of Splitting Tsunam (MOST) (Titov & Gonzalez 1997), 

TUNAMI (Imamura 1995) and Cornell Multi-grid Coupled Tsunami Model 

(COMCOT) (Wang 2009), etc. The COMCOT, as one of the most widely used 

numerical models, is adopted in this study to simulate the tsunami generation and 

propagation. The SWE and NSWE are solved using the explicit Leap-Frog finite 

difference scheme proposed by Yee (1966). The method updates position      and 

velocities      at interleaved time points. In 1-D problem, the equations can be 

given at integer steps for velocity:  
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 (2.15) 

where    is position at step   and      ⁄ is the velocity at step     ⁄ . The time-

step    must be constant to maintain stability. The volume flux P and Q, as well as 

the water surface elevation are staggered in time and space to form a grid system as 

shown in Figure 6. The COMCOT allows a nested grid system for accurate results. 

As indicated in Figure 7, the elevation and volume flux in the sub-layer are 

determined by interpolation from its parent layer. The Courant condition must be 

satisfied with a time step 
max

x
t

gH


   where Hmax is the maximum water depth 

within the region of the particular grid level. The dispersion effect due to the 

relatively short tsunami wavelength when approaching the coastal area cannot be 

neglected. Imamura et al. (1988) proposed a numerical dispersion term to 

characterize the physical dispersion by choosing the grid size 2 24 ( )x h gh t    .  
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Figure 6 Grid system used in COMCOT (Wang 2009) 

 

Figure 7 Multi-layer grid system schematic (Wang 2009) 

 

2.4 Tsunami wave-structure interaction 

The interaction between an incompressible fluid, e.g. tsunami wave, and a solid 

structure is a typical multiphysics topic that has a wide range of applications in 

many fields. The definition of coupled systems is adequate to capture the essence of 

the fluid structure interaction (FSI) process. Richter (2010) defined it as: “A 

coupled system S is one in which physically or computationally heterogeneous 

mechanical components interact dynamically. Let S1 and S2 denote the subsystems. 

The coupled system S is called one-way, if there is no feedback between the 

subsystems and two-way, if there are feedbacks between the subsystems”. It is 

extremely difficult, if not impossible, to derive analytical solutions. Therefore, the 

focus was shifted towards experimental tests and numerical simulations. 

 

2.4.1 Tsunami force quantification based on experiments and observations 

The two key parameters that determine the magnitude of tsunami forces are the 

inundation depth and the flow velocity. The former can be estimated using the 

maximum water level subtracting the land elevation as indicated in Figure 8. 

Analytically, the wave loading consists of several types of forces, such as 

hydrostatic pressure, impingement force, drag force and debris impact, etc. Various 

empirical equations derived from laboratory tests and field investigations have been 
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proposed. To some extent, the equations are practical in providing instructions for 

constructing tsunami-resistant structures.   

 

There are a few construction guidelines quantitatively measuring the tsunami loads 

acting on the structures, including Federal Emergency Management Agency Coastal 

Construction Manual (FEMA 55), the City and County of Honolulu Building Code 

(CCH), the Structural Design Method of Buildings for Tsunami Resistance 

(SDMBTR), proposed by Okada et al. (2005), and Guidelines for Design of 

Structures for Vertical Evacuation from Tsunamis (FEMA P646). In most of the 

guidelines, five types of forces are commonly considered (Nistor Ioan, Dan Palermo 

et al. 2010). They are: 1) hydrostatic force, FHS 2) buoyant force, FB 3) 

hydrodynamic (drag) force, FD 4) surge force, FS, and 5) impact of debris, Fi. 

Furthermore, the scouring during the tsunami run-up can yield the foundation 

deformation and lead to the collapse of the structure, although it is not considered in 

this paper. Among all the forces, the hydrodynamic and impact forces are the most 

critical ones as the hydrostatic force is much smaller than the drag and surge forces. 

The surge force sometimes refers to as impingement of the advancing water bore or 

the initial bore impact. A brief summary of the five types of force are given below. 

 

Figure 8 Conceptual schematic of inundation depth and run-up height  
(Source: http://walrus.wr.usgs.gov/tsunami/srilanka05/measurements.html) 

 

2.3.1.1 Hydrostatic force 
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It is generated by static or slow-moving water acting on a vertical surface. The 

lateral hydrostatic force per unit width proposed by CCH is given as: 

 2 21
( / 2 )

2HS pF g h u g   (2.15) 

where up is the flow velocity normal to the structural surface. FEMA 55 does not 

consider the velocity head component appearing in the equation since it is 

negligible. The hydrostatic force in general is not comparable with the drag force 

and surge force when the tsunami bore hits the structure. However, the static force 

cannot be ignored when the tsunami acts like a rapid-rising tide (Dames & Moore 

1980; Nistor Ioan, Dan Palermo et al. 2010).  

 

2.3.1.2 Buoyant force 

The buoyant force is given by: 

 BF gV  (2.16) 

where V denotes the volume of water displaced by the structure components. 

 

2.3.1.3 Hydrodynamic (drag) force 

 21
2D DF C Au  (2.17) 

where CD is the drag coefficient and A is the projected area normal to the flow 

direction. The tsunami bore velocity is expressed as u h  in CCH and 2u gh in 

FEMA 55. The difference in the equations results in the discrepancy in the final 

drag force estimated. In fact, the two velocity estimation proposed in CCH and 

FEMA P55 are served as the upper and lower bound of other empirical velocity 

calculations (Kirkoz 1983; Iizuka & Matsutomi 2000; Bryant & Nott 2001) as 

shown in Figure 9. 
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Figure 9 Comparison of tsunami bore velocities  

 

2.3.1.4 Surge force 

The surge force recommended in CCH is given by: 

 24.5SF gh  (2.18) 

Yeh & Robertson (2005) states that the value of 4.5 given in CCH is conservative 

and may overestimate the magnitude of the surge force. In FEMA P646, the surge 

force is quantified as 1.5 times of the hydrodynamic force listed in Eqn. (2.17). 

 

2.3.1.5 Debris impact force 

The debris impact force is consistent in both FEMA P55 and CCH as follows: 

 i
i i

u
F m

t



 (2.19) 

where    is the debris mass,    denotes the debris impacting velocity, and    is the 

interaction duration between the debris and the structure. The determination of    

relies on the impacting materials and the differences between FEMA P55 and CCH 

reside in the empirical impacting duration estimation. In FEMA P646, the impact 

force is given as:  

 i m iF C u mk  (2.20) 

where    is the added mass coefficient and m and k are the mass and the effective 

stiffness of the debris, respectively. 
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2.4.2 Numerical methods 

A laboratory test is straightforward and provides reliable results. It is widely used to 

investigate the basic aspects of fluid-structure interaction. However, experiments 

are often limited in scale and the boundary conditions, which make it difficult to 

simulate complex problems. Therefore, numerical methods are mostly adopted. 

Numerous advanced algorithms were developed, aiming at solving the interaction 

problems for the coupled system.  

 

2.4.2.1 General notes 

As mentioned earlier, the FSI problem involves two or more subsystems. We can 

consider a computational domain Ω with external boundary г. A prototype problem 

may contain a fluid domain   , a structural domain   , and a common boundary    

defined as         . The concept is illustrated in Figure 10. The FSI problem is 

formulated on moving domains, indicating both the fluid domain and structural 

domain are changing with time although the total computational domain remains 

unchanged, i.e.              .  

 

Figure 10 Schematic fluid-structure interaction domains 
 

Numerical methods for the FSI are grouped into two categories globally, namely 

monolithic and partitioned methods. In the first approach, the fluid and structural 

domains are solved simultaneously under an integrated mathematical framework. 

The interaction on the boundary    is computed in an implicit manner. The 

monolithic approach theoretically can achieve a better accuracy but requires a large 

amount of computational resources. Besides, it is difficult to maintain a robust 

numerical code. Nevertheless, one can decouple the interaction process and 

formulate the problem using the partitioned approach. As indicated from its name, 
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the partitioned approach solves the two domains separately using different 

algorithms. The interaction thus is evaluated explicitly. The most desirable 

advantage of this method is that there are many well-established algorithms for a 

complex system in both fluid and structural domains. However, the tradeoff is that a 

small time step resulting from the stability consideration requires a large number of 

iterations. Another difficulty is to keep track of the interface location since the two 

domains use entirely different algorithms. Both of the approaches are demonstrated 

in Figure 11 below. Sf and Ss denote the solutions for the fluid and structure, 

respectively. Most of the available numerical packages dealing with FSI adopt 

partitioned algorithms. 

Sf(tn)

Ss(tn)

Sf(tn+1)

Ss(tn+1)

 

(a) Monolithic approach 

Sf(tn) Sf(tn+1)

Ss(tn) Ss(tn+1)

 

(b) Partitioned approach 

Figure 11 Monolithic and partitioned approach for the coupled system 

 

2.4.2.2 Governing equations of continuum mechanics 

Generally speaking, the governing equations for both fluid domain and structural 

domain follow the D’Alembert’s principle which gives: 

 , 0i ij j iv f     (2.21) 

where  ̇  is the time derivative of velocity field given by  ̇          (   being the 

displacement),       is the internal stress tensor and    denotes the body forces and 

often written as    . The first two terms in Eqn. (2.22) have different expressions in 

fluid and structural domains.  
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In the fluid domain, according to the conservation of mass and momentum in fluid 

dynamics, the inertia term can be written as: 

 i i
i j i

Dv v
v v v

Dt t


   


 (2.22) 

Further assumption of incompressible Newtonian fluid leads the tensor stress into 

the following form, 

 f
ij ij ijp      (2.23) 

where                and µ  is the fluid dynamic viscosity. However, the same 

term is represented in a different form for structural domain. For example, the 

structural stress tensor following Hook’s law is given by: 

 2s
ij ij kk ijG      (2.24) 

where  , ,

1
2ij i j j iu u   , 

2(1 )
E

G





,  
(1 )(1 2 )

E
 


 

(E and ν are Young’s 

modulus and Poisson ratio, respectively)  when assuming a linear elastic material. 

 

The structural domain and fluid domain problems are often described with the 

Eulerian and the Lagrangian formation, respectively. The nodes in the Lagrangian 

meshing coincide with the structure element nodes, and the displacement of the 

structure corresponds to the moving of the Lagrangian meshing. The boundary 

conditions are easy to impose, because the edge of the Lagrangian description 

represents the total structural domain. This feature leads to the wide application of 

the Lagrangian formulation in solving structural problems. However, the large 

deformation of the structure leads to severe distortion of the meshing, thus causing 

instability and unrealistic results. Therefore, for fluid domain that often experiences 

sudden and sharp deformation, it hardly uses the Lagrangian description. Instead, 

the Eulerian formulation is generally utilized to describe the fluid domain. The fluid 

domain under the Eulerian description deforms and moves within a space-fixed 

meshing. In such a case, a convection term is introduced to account for the fluid 

material moving in and out from one element to adjacent elements in each time step. 

 

2.4.2.3 ALE formulation 
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Both the Lagrangian and the Eulerian description have limitations when dealing 

with FSI problems. First of all, all-Lagrangian meshing is inappropriate due to the 

considerable displacement of the fluid material. Secondly, if the fluid domain is 

described by the Eulerian formulation while, the structural domain the Lagrangian 

meshing, a large amount of fluid material advection may present at the interaction 

boundaries, which causes inaccurate numerical results and a smaller time step, thus 

a longer computation time is required. Arbitrary Lagrangian Eulerian (ALE) 

formulation is designed to tackle this problem. Unlike the pure Eulerian formulation 

where the meshing is fixed, the ALE meshing allows a certain degree of movement 

as the simulation progresses. The advection of the fluid material still exists but 

much less than the Eulerian description, indicating potentially more accurate results. 

In fact, the Eulerian formulation is a special case of the ALE in which the moving 

velocity of the meshing is zero. Different approaches used to formulate the problem 

are compared in Figure 12. 

 

 

Figure 12 ALE approach description (Haritos et al. 2005) 

 

The governing equation of the ALE formulation is similar to Eqn. (2.22) except for 

the introduction of the convection term. The equation is expressed as follows:  

 , ,( ) 0m
i j j i j ij j iv v v v f        (2.25) 

where    and     represent, respectively, fluid velocity and meshing velocity. 

If      , we obtain again, the Eulerian description as the convection of meshing is 



29 
 

diminished. On the other hand, the Lagrangian formulation can be derived if       . Consequently,        stands for the relative movement between the 

fluid and the ALE meshing.  

 

2.5 Classical Computational Methods of Reliability Integrals 

Uncertainty and randomness are inherent in engineering problems and the deviation 

from the “most likely” value is unavoidable. Structure performance can vary 

dramatically given a slight change of the input variables and initial conditions. In 

present study, additional challenge is added to provide the relatively small 

occurrence rate of tsunami hazards. Structural reliability provides a rational 

probabilistic measure to quantify the structural system performance when the 

structural system interacts with the dynamic tsunami waves. The failure probability 

(a compliment to reliability) can be written in terms of a limit state function L(θ) 

given by: 

    ( ) 0 ( ) 0 ( )F FP P L I L p d  θ θ θ θ  (2.26) 

where nθ  represents the vector of uncertain variables with joint probability 

density function (PDF) p(θ) of the random variables. The indicator function IF = 1, 

if L(θ)<0 and IF = 0 otherwise.  

 

The structural reliability can be estimated by two measures: safety index and failure 

probability (Choi et al. 2006). A general solution of the integral is intricate and 

sometimes impossible. Hence, approximation and simulation methods are 

implemented. In the following section, we firstly discuss the first-order and second-

order reliability methods (FORM/SORM). The ordinary Monte Carlo simulation 

(MCS) is quickly reviewed since it is a well-known standard procedure with 

applications in almost all the disciplines. An introduction of Monte Carlo Markov 

chain (MCMC) method is presented followed by Metropolis-Hasting (M-H) 

algorithm and a detailed discussion of Subset Simulation method including the 

modified M-H algorithm.  
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2.5.1 First-order and second-order reliability methods 

The FORM was first proposed by Hasofer and Lind (1974) on the basis of the first-

order second moment method (FOSM) (Cornell 1969) with an idea of most 

probable point (MPP) on the linearized limit state function       . After 

transformation from the original correlated random variable space into an 

independent standard normal space U, the reliability index β is written as:  

 T 1 2min( )
u F

u u


  (2.27) 

where F denotes the failure domain and u be standard normal random variables. The 

reliability index represents the algebraic distance between the origin and the 

linearized limit state surface. Thus, the failure probability can be obtained from the 

linearized limit state surface at MPP u*:  

 R ( )FP     (2.28) 

where ФR is the standard normal cumulative distribution function. u* actually is the 

point on the limit state surface closest to the origin and derivation the of u* requires 

an iterative algorithm (Ang & Tang 1984; Choi, Grandhi et al. 2006). 

 

In the case where the first-order linearization of the limit state surface is inadequate 

to capture the nonlinearity of the limit state function      , the second-order 

reliability method (SORM) is used to enhance the accuracy of the approximation by 

expanding the Taylor Series up to the second order. 

 

2.5.2 Monte Carlo simulation  

The Monte Carlo simulation (MCS) is a probabilistic approach that simulates 

possible scenarios using a large number of random numbers. It can be applied to 

different problems and give a complete approximation of the distribution. Each 

parameter of the system is computed by using random samples drawn from its 

predefined distribution. In reliability problems, MCS calculates the expectation of 

the indicator function IF by computing the ratio of the failure samples over the total 

sample size. The MCS estimator for FP can be expressed as: 

  
1

1
( )

N
F

F k
k

N
P P F I F

N N




     (2.29) 
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where θk is independent, identically distributed (i.i.d.) input variable drawn from its 

PDF p(θ). NF is the number of samples lying in the failure region F. The accuracy 

of the MCS is measured by its variance given as: 

 
(1 )

( ) ( )F F F
F

N P P
Var P Var

N N


   (2.30) 

Since the samples are independent and identically distributed, the estimation is 

unbiased. The coefficient of variation (c.o.v.) δ can be measured by calculating the 

ratio of the standard deviation to the mean of PF: 

 
( ) 1δ F F

F F

Var P P

P NP


   (2.31) 

The MCS is the most robust stochastic simulation method which can be used to 

evaluate the integral appearing in Eqn. (2.26). However, when estimating small 

failure probability (i.e., PF <<1), MCS is inefficiency as it requires at least 1/PF 

samples simulated according to p(θ).  

 

2.5.3 Markov chain Monte Carlo simulation method 

The MCMC was invented soon after the ordinary MCS by Metropolis et al. (1953) 

when studying the phase equilibrium equation. It was applied to Bayesian inference 

problems after 80s with the usage of Gibbs sampler (Geman & Geman 1984) which 

sometimes refers to as data augmentation after Tanner & Wong (1987), though the 

theory of the MCMC was not fully understood till early 90s (Gelfand & Smith 1990; 

Geyer & Thompson 1992). Ordinary MCS generates samples which are 

independently and identically distributed whereas the MCMC proposes stationary 

and reversible samples according to the Markov chain. This considers as the most 

different feature between the two, and in fact MCS can be considered as a special 

case of MCMC. 

 

The Markov chain Monte Carlo (MCMC) simulation method tends to generate 

failure samples more efficiently than MCS since the proposal distribution can be 

chosen to do local random walk, instead of the i.i.d. sample. Essentially, the MCMC 

is an integration of Monte Carlo and Markov chain process. Therefore a brief 

introduction of Markov chain is necessary before reviewing the properties of the 
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MCMC method. Let X1, X2…denote a sequence of random variables, the set of 

variables are Markov chain if the conditional probability of x being in present state 

Xn+1 only depends on its previous state and irrelevant to its future or past states. 

Formally, 

    1 1 1 2 2 1| , , , |n n n n n nP X x X x X x X x P X x X x          (2.32) 

The conditional probability of Xn+1 given Xn is called transitional probability. In 

practical MCMC problem, the states are uncountable. Therefore, the initial 

probability and transitional probability are treated as unconditional probability 

distribution and conditional probability distribution, respectively. Two important 

features of Markov chain in developing MCMC are introduced below: 

 A probability distribution π on X is a stationary distribution or invariant 

distribution if 

  1 |i n n j
i X

P X j X i 


    (2.33) 

 where ( )ni P X i   . 

 The transitional distribution of a Markov chain is reversible with respect to 

an initial distribution if  

    1 1| |i n n j n nP X j X i P X i X j        (2.34) 

The reversibility property of Markov chain, also called detailed balance for 

the transitional distribution, implies stationarity, but not vice versa.  

 

The basic idea of the MCMC is to construct a conditional distribution, e.g. q(•|Fi) 

for drawing samples that can be considered as the next state of the Markov chain. 

Eventually the stationary distribution π of the Markov chain is, in fact, the target 

distribution to generate sample from (Au & Beck 2001). Many algorithms were 

developed, including Metropolis-Hasting (M-H), Gibbs sampling, slice sampling, 

Hamiltonian Monte Carlo (HMC), and many others (Andrieu et al. 2003). 

 

Metropolis-Hastings algorithm 

The M-H method is the most widely applied MCMC algorithm. It is mainly used to 

(1) calculate the expectation of complicated distributions and (2) generate samples 
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from an unknown distribution or a distribution known up to a normalizing constant 

which typically appears in Bayesian posterior distribution. The M-H algorithm is a 

two-stage process. First of all, a candidate sample is generated following a proposed 

conditional distribution. Secondly, the candidate is either accepted or rejected as the 

next state of the sample with prescribed criteria. Specifically speaking, the M-H 

method does the following: 

 Generate candidate sample θ* having conditional probability density given 

θk as q(θ*|θk). Suppose the target distribution is given as p(·), then the 

acceptance ratio is: 

 
* *

*
*

( ) ( | )

( ) ( | )
k

k k

p q
r

p q

  
  

  (2.35) 

 Accept the candidate sample θk+1 with probability  * min 1,A r  and reject 

it and keep the current sample θk as the next sample (i.e. θk+1= θk) with 

probability of 1 – A.  

 

The first step can be considered as a local random walk around the current sample 

θk. The second step acts as “pushing” the proposal distribution towards the region 

where the probability density of the target distribution is higher. Therefore, given 

the satisfaction of the conditions for Markov chain (Gelman & Shirley 2011), the 

simulated sample shall converge to the target distribution after a certain number of 

iterations though the initial samples may reside far from the region with high 

probability center of the target distribution. 

Gibbs sampler 

As mentioned earlier, the proposed samples in the M-H algorithm may be rejected 

which leads to extra computation. An alternative is the Gibbs sampler which always 

accepts the proposed samples (Geman & Geman 1984; Gilks 2005). In other words, 

the acceptance ratio for Gibbs sampler is 1. However, one needs to provide an 

analytical expression of the conditional distribution of each variable given the rest 

can be drawn readily from random samples. Equivalently, given a D-dimensional 

target distribution p(θ), where                 , one must provide the 

conditional probability 1 2 1 1( ), ., ,..., , ,..., ) (i i jDi ip j ip  θ θ θ θ θ θ θ θ  The 
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implementation of the Gibbs sampler is almost the same as the M-H algorithm. In 

fact, sampling from the full conditional distribution in the Gibbs sampler is a special 

case of the M-H technique. Thus, the acceptance ratio now can be written as:  

 
*

*

} } )

} ) }

( |{ ) ( {
1

( { ( |{ )
i i i i

i

i

i i i

p p
r

p p

 
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 

 

 
θ θ

θ θ
 (2.36) 

where ( { } )i ip  θ is both the target and proposal PDF, and 

T
1 2 1 1} [{ ], ,..., , ,...,i Di i   θ θ θ θ θθ . Therefore the proposed sample will always be 

accepted. One drawback of the Gibbs sampler is the high correlation between the 

samples due to the conditional probability used to generate new samples. 

 

2.5.4 Importance sampling 

The importance sampling is a variance-reduction version of the original MC method. 

The basic idea of the method is to produce samples efficiently in the important 

region so as to reduce the variance of estimator. In reliability aspect, it means to 

generate samples that lie in the failure region more frequently (Engelund & 

Rackwitz 1993; Katafygiotis & Zuev 2008). Specifically, the failure probability is 

rewritten as:  

 

( ) ( )

( ) ( )
( ) ( )

( )

F F

F F

P I p d

I p I p
q d E

q q



 





θ θ θ

θ θ θ θ
θ

 (2.37) 

Theoretically, the failure probability is estimated by the sample mean estimator 

similar to the one in MCS, which is given as: 

 
( )

1

( )

( )

( ) (1 )
( )

k k

F
k

F
k

N

P
N

I p

q

  θ θ
θ

 (2.38) 

in which q(θ) denotes the important sampling density (ISD). One can also see that 

MCS is a special case of importance sampling where q(·) = p(·). The most critical 

challenge in importance sampling is to construct ISD so that ( ) ~ ( )k q θ . The optimal 

ISD is given by the conditional PDF: ( ) ( ) ( ) / ( )opt F Fq I p P p F θ θ θ θ . However, 

this is practically infeasible since the optimal ISD requires samples from the failure 

region which is to be estimated.  



35 
 

 

In general, there are two ways to provide ISD which covers the important regions in 

the failure domain. The first one is to characterize the region using design points 

(Shinozuka 1983). These points contain the highest probability density compared to 

the rest of the points. However, this method requires a considerable amount of time 

in solving a constrained optimization problem, especially in the case with a multi-

modal probabilistic distribution (Melchers 1989; Liu & Der Kiureghian 1991). 

Alternatively, the kernel density estimator which does not require design points was 

adopted in many studies (Bucher 1988; Ang et al. 1992). It makes use of the pre-

samples lying in the failure region to form a mixture of probability distribution. 

Thus, the more representative the samples, the better the kernel density estimator. 

Theoretically, the kernel density can take up any shape according to the samples 

thus it is possible to propose the distribution similar to the optimal ISD. The 

drawback of the kernel density estimator is that it suffers the curse of 

dimensionality as the performance deteriorates exponentially with the increasing 

number of random variables (Au & Beck 2003).   

  

2.5.5 Subset Simulation method 

The MCS method can be adopted to evaluate the integral appearing in Eqn. (2.26). 

Conversely, as mentioned earlier, the problem arises as MCS requires about 10/PF 

number of simulations to capture small probability events (e.g. PF < 10-3 with 

associated c.o.v. of FP estimator of 30%). The Subset Simulation (SS) method 

proposed by Au & Beck (2001) reduces the computation burden significantly by 

evaluating a sequence of intermediate failure events Fi such that

1 2 m
F F F F    . Thus, the computation of rare failure event probability is 

converted to the problem of assessing several relatively frequent events which are 

conditioned on a previous failure event. In other words, the computation of the rare 

event problem is equivalent to computing a product of conditional probabilities 

P(Fi| Fi-1) given as: 
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 (2.39) 

and 

  1 11
1

1( )
N

F k
k

N
P F I F


  θ  (2.40) 

where the initial failure probability P(F1) can be readily estimated more accurately 

using direct MCS using the samples θk, k = 1,…, N, simulated according to p(θ) 

since the failure probability for the first level is relatively high. The conditional 

probabilities P(Fi|Fi-1) are derived using samples generated by the procedures 

described as follows:   

  1
1

1
| ( )

N

i i k i
k

P F F I F
N




   (2.41) 

where k follows  1| ip F  , k = 1,…,N.  

 

The general steps of the component-based M-H algorithm (modified M-H, MMH) 

proposed by Au and Beck (2001) are summarized as follows: 

 Let j = 1,2,…,n denote the number of uncertain parameters (random variables) 

and for each parameter group generate a candidate sample 1
j

kξ following a pre-

selected proposal PDF j
kj

q
 
 
 
θ  where j

kθ  is the j-th parameter group of the k-th 

sample following P(θ|Fi-1). Compute the acceptance ratio as: 

 1

1 1

1

j
k

j j jjp q jk k k

j j jjp q jk k k

r 

         
        


ξ θ ξ

θ ξ θ
 (2.42) 

Set 1 1

j j
k k θ ξ  with probability of  1min 1, j

kr   and 1
j j
k k θ θ with a probability of

 11 min 1, j
kr  . 

 Accept 1
j

kθ as the next sample 1kθ   following P(θ|Fi-1) if 1k iFθ   , otherwise 

reject it and set 1k kθ θ  . 
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The greatest improvement of MMH over M-H is that some component groups of 

Markov chain samples in MMH are able to change which avoid high correlation 

between current and next samples. This feature is more critical when a large number 

of random variables are involved. The c.o.v. δi of any intermediate level P(Fi|Fi-1) 

derived by Au and Beck (2001) is given as: 

 
 1

(1 )i

i i

i

P

NP
 


   (2.43) 

where 
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and  

 

      / 0i i ik R k R   (2.45) 

where ρi is the correlation coefficient of the stationary sequence at lag k. The 

covariance sequence is estimated by: 
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where Nc, 
 i
jlI and  

,
i

j l kI  are defined as in Au and Beck (2001). Further, if the 

intermediate failure probabilities P(Fi|Fi-1) are assumed to be uncorrelated, the 

overall c.o.v. of the PF estimator is: 

 2δ δi   (2.47) 

In practice, using samples distributed according to p(θ|Fi-1) and the value of the 

limit state function L(θ) corresponding to each sample, the intermediate threshold bi 

corresponding to Fi, i = 1, 2… m, can be chosen adaptively such that the conditional 

probability P(Fi|Fi-1) = p0. A study done by Zuev et al. (2012) has suggested a 

conditional probability p0 between [0.1, 0.3] and the acceptance ratio between 30% 

and 50% to achieve an optimal performance for SS.  
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2.6 Concluding remarks 

This chapter reviews the physics of tsunami generating mechanism, as well as the 

propagation and run-up. The computational method of the fluid-structure interaction 

is also introduced. Lastly, several computational methods of reliability assessment 

are discussed.  

 

The majority of tsunamis are triggered by under seafloor earthquakes. Both 

kinematic and dynamic models are conducted by researchers in order to better 

understand the underlying mechanism. The two models are not isolated from each 

other. In fact, they are interconnected as stated by Kanamori and Brodsky (2004) as 

follows:  

 
1
2 ccG D    (2.48) 

where Gc is the fracture energy required to create new crack surfaces,  refers to 

the static stress drop, and Dc is the critical slip-weakening distance. 

 

Although the constant slip model has been used for the past several decades, the 

variation in the slip distribution produces a more accurate tsunami model given the 

fact that frictions at different locations of the rupture surface are heterogeneous. 

With the advancement in computational simulation, stochastic slip distribution 

models are frequently adopted. The hybrid stochastic k-squared static slip 

distribution model can preserve the original shape of the deterministic slip 

distribution while at the same time being more realistic compared with the constant 

slip model. 

 

The risk assessment component comes into the picture when the tsunami profile, 

characterized into different types of forces, smashes onshore structures. The 

deformation of the structures can be splendid and therefore leaves a challenging 

task for risk mitigation in the aftermath. The wave-structure interaction involved is 

a multiphysics process. The ALE approach which combines the best features of 

Eulerian and Lagrangian descriptions is the most suitable technique for modeling 
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the interaction process. An imaginary mesh with velocity varying between the one 

of fluid particle and stationary keep the deformation in manageable level.  

 

The FORM and SORM methods are still among the most popular techniques in 

structural reliability computations due to their simplicity. However, a major issue 

with FORM and SORM is that the linearized and second order limit state functions 

cannot be adopted to represent complex systems since the true limit state function 

cannot be explicitly expressed.  

 

The MCS does not require any mathematical simplifications and considers the 

entire probability domain for simulation. The statistical features are well studied. As 

one of the most common numerical stochastic approximation algorithms used 

worldwide, it can solve a wide range of problems involving any types of response 

functions explicitly or implicitly. As stated earlier, a potential issue with MCS is 

that the number of simulations required is inversely proportional to the associated 

failure probability. This leads to a considerable often prohibitive amount of 

computational time. Furthermore, the convergence rate of MCS is rather slow 

(  √ ).  

 

The MCMC method is currently the most general technique in generating samples 

from any type of posterior probability distributions. The popularity of the MCMC 

method revitalized the Bayesian statistics. Two of the well-known MCMC 

algorithms are M-H and Gibbs sampler. The M-H algorithm is more general given 

the fact that Gibbs sampler can be slow in exploring the space when the dependence 

of the component groups is strong (Gilks & Roberts 1996). The biggest short-

coming of MCMC is that the samples are correlated due to the use of Markov 

chains in the proposal step. Importance sampling alleviates the correlation issue by 

incorporating an adaptive kernel density estimator since the samples are 

independent and identically distributed. However, constructing an accurate 

important sampling density (ISD) is challenging, especially in high dimensional 

case. 
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The basic idea of the Subset Simulation is straightforward: to partition the rare 

probability event into a sequence of more frequent failure events. The MCMC-

based algorithms are adopted in each intermediate failure level of the SS except for 

the MCS sampling in the first level. Instead of using the original M-H algorithm, 

MMH is proposed, which to some extent eliminates the inapplicability of M-H in 

higher dimensional problems. However, it adds another layer of complexity in order 

to check if the proposed samples are located within the failure space. More often 

than not, the numerical computation required in the last step can be time demanding. 
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Chapter 3 Proposed Tsunami Wave-structure Interaction Model 

3.1 General remarks 

The structural response under tsunami wave impact is illustrated using Minami 

Gamou Wastewater Treatment Plant, a three-story concrete structure located at 

Sendai coastline. The actual structure undergone severe damage and failed through 

out-of-plane flexure due to the tsunami impact as shown in Figure 13. In this study, 

the structure model is simplified with properly defined boundary conditions. The 

maximum displacement during the wave-structure interaction is considered as the 

output variables denoted as z(θ) where θ denotes the input variables, e.g. wave 

velocity and wave height.  

Figure 13  Minami Gamou Wastewater Treatment Plant out-of-plane flexure 
damage (a) exterior and (b) interior (Carden et al. 2012) 

 

3.2 Tohoku tsunami modelling 

After the Tohoku tsunami in 2011, numerous studies have been conducted in order 

to investigate both the earthquake source mechanism (Fujii & Satake 2007; Ozawa, 

Nishimura et al. 2011; Atsushi Nozu 2013; Breanyn et al. 2013), and local & far-

field tsunami propagation with energy dissipation (Ozaki 2011; Grilli et al. 2012). 

Site surveys for the structural damage evaluation were also carried out under groups 

of experts (Chock et al. 2012; Yim et al. 2012). The existing studies mentioned 

above are utilized to quantify the earthquake source parameters. The generated 

tsunami profiles are compared with the observed data. 
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3.2.1 Tsunami model 

The earthquake source parameters are input into the numerical software, COMCOT, 

to generate tsunami amplitudes and volume flux. The Tohoku tsunami event in 

2011 is modelled to evaluate the adequacy of the bathymetric and topographic data 

used in this study. Three levels of nested grids are used so as to accurately simulate 

the tsunami run-up. The resolution of the first layer (layer01) is 2 arc-minutes 

(≈3,700m) with nested grids of 0.5 arc-minutes (≈1,000m) and 0.05 arc-minutes 

(≈100m), respectively, for the sub-layers (layer02 and layer03). Figure 14 shows the 

three nested grids in the computational domain and the epicenter of the Mw 9.1 

Tohoku earthquake is denoted in diamond shape in layer01 and layer02. The 

bathymetric data for the first layer is obtained from ETOPO2 of National 

Geophysical Data Center (NGDC). The second layer dataset is provided by 

GEBCO_08 grid data. In order to acquire higher resolution topological data for 

Sendai region, Shuttle Radar Topography Mission (SRTM 90) data covering digital 

elevation model above mean sea level, is combined with the interpolated 

GEBCO_08 grid data using ArcGIS. The detailed information about the nested grid 

data is provided in Table 3. 

 

(a) Layer 01 
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(b) Layer 02 (c) Layer 03 

Figure 14 Bathymetry and topology of the three nested grids used in the simulation 
 

Table 3 Summary of COMCOT nested grid setting 
 Layer01 Layer02 Layer03 

Grid cells (Lon ×Lat) 601*451 836 * 1076 330*460 

Lat. Range [deg] 30.000-45.000 35.021-43.979 37.909-38.291 

Lon. Range [deg] 135.000-155.000 140.021-146.979  140.800-141.083 

Grid size  2.0 0.5 0.05 

Parent grid - 01 02 

Grid ratio - 4 10 

Time step 1.00 0.25 0.025 

Coordinates Spherical Spherical Spherical 

Governing equation Linear SWE Linear SWE Nonlinear SWE 

Manning coefficient - - 0.035 

 

3.2.2 2011 Tohoku earthquake source parameters 

As mentioned above, a number of studies are published regarding the 2011 Tohoku 

earthquake source mechanism. Four source mechanism models, developed by 

Hayes (2011), Shao et al. (2011), Fujii et al. (2011), and Wei et al. (2012), are 

chosen as candidate models. Initial water surface displacement and generated 

maximum inundation maps in Sendai Plain are compared for all the models. In 
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addition, Global Centroid Moment Tensor (GCMT) solution 

(http://www.globalcmt.org) is provided, which represents the constant slip model. 

Shao et al. and Hayes included the time variation with the resultant total rupture 

duration spanning to 170 sec and 240 sec, respectively. The time variation affects 

the initial water surface profile as shown in Table 4, and the inundation afterwards. 

Keeping all other parameters constant, an instantaneous slip model would trigger a 

higher initial water amplitude since the energy is released at the same time, i.e. at t 

= 0. Hayes’ solution has a longer rise time which leads the energy released with a 

longer duration, thus causing a lower maximum initial surface height compared to 

Shao’s time-variant source model that activates an initial water as high as 14.5 

meters at t = 60s. The initial surface profiles for the instantaneous slip models vary 

from 6.7 meters to 13.6 meters.  

 
Table 4 Maximum initial water surface height (m) 

 Hayes Shao et al. Fujii et al. Wei et al. GCMT 

t = 0s 1.9209 3.0616 13.6192 6.6766 11.6194 

t = 60s 9.0425 14.4667 - - - 

t = 120s 6.4717 12.0385 - - - 

t = 180s 4.3766 9.7381 - - - 

 

For both instantaneous and transient seafloor motion, the fault plane can be divided 

into several subfault segments. By assigning various slip amplitudes and the starting 

time to each subfault, a non-uniform transient seafloor rupture motion can be 

generated. The number of subfault is a delicate parameter to be decided. On one 

hand, according to Geist (2005), the initial profile of the generated tsunami will be 

underestimated if the size of the subfaults is larger than the focal depth of that 

particular event. On the other hand, even though there is no restriction for more 

subfaults, the influence of subfault size vanishes if it is less than the focal depth.  

 

A comparison of the maximum inundation maps from different earthquake source 

models suggests that both Shao’s and GCMT models are consistent with the 

observations. Please note that other models are more conservative than these two 

only in Sendai plain. It is not equivalent to arrive at the conclusion that the others 
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are not accurate in general. On the contrary, other models provide better or same 

results in other regions along the eastern coast of Japan. This is also stressed in 

Breanyn (2013). Table 5 provides the parameters required in COMCOT and an 

example of GCMT solution for the Tohoku earthquake source parameters. 

 
Table 5 Earthquake parameters required in COMCOT and  

2011 Tohoku earthquake parameters from Harvard GCMT 

Parameter COMCOT Range Tohoku Earthquake  

Epicenter (Lat, Lon) [deg] (-90 – +90, 0 – 360) 38.32, 142.37 

Strike direction (θ) [deg] (0 – 360) 203.00 

Dip angle (α) [deg] (0 – 90) 10.00 

Rake angle (λ) [deg] (-180 – 180) 88.00 

Focal depth [m] N.A. 24400 

Length of fault [m] N.A. 300000 

Width of fault [m] N.A. 150000 

Dislocation (slip) [m] N.A. 30 

Note: N.A. indicates no limits for the corresponding parameter in COMCOT 

 

3.2.3 Tsunami model results and validation 

The earthquake source model developed by Shao et al. is implemented to further 

compute the wave amplitude and velocity at Sendai plain. Figure 15(a) shows the 

maximum inundation map for layer03, which corresponds to the Sendai plain. The 

yellow star in the figure indicates the location of Gamou wastewater treatment plant. 

The total wall-clock time in the simulation is three hours. As shown from the figure, 

higher water amplitude is observed on the northeast corner of the interested area at a 

wave height of 20 meters and above. The inundation depth decreases with the 

further distance from the shoreline. A comparison is made with post-tsunami survey 

done by Breanyn et al. (2013) as shown in Figure 15. The water height is measured 

from the mean sea level for both cases. The simulation result of the maximum 

inundation depth matches the observation, although the elevation at each point 

slightly differs, mainly due to the inaccuracy of the interpolated topological data 

and numerical error.  
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(a) (b) 

Figure 15 Maximum inundation map (a) COMCOT simulation (b) Post-tsunami 
survey observations and inundation lines (Breanyn, Gusman et al. 2013) 

 

The water depth is obtained by subtracting the elevation of 5 meters at Gamou 

wastewater treatment plant. Therefore, the tsunami wave height responsible for the 

impact loading is 4.6 meters. This wave height is used in the numerical simulation 

of the tsunami-wave-structure interaction. 

 

3.3 Structural model setup 

The structural model in this case study is simplified since the out-of-plane 

deflection occurred only on the side of the ocean-facing wall with a two-story high-

bay as shown in Figure 13. The tsunami wave is represented by its amplitude and 

velocity derived from COMCOT.  
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3.3.1 Structural geometry and material modeling 

The thickness of the wall is assumed to be 400mm.The details of the structural 

dimension is demonstrated in Figure 16. The unit is in millimeter. All the values are 

derived from the site survey pictures for both the exterior and interior parts of the 

structure. The height of the wall structure is equivalent to a common three-story 

building. Beams are located at one third of the total height of the wall. The roof-

high beam is neglected since the structural wall is fixed at the four sides. Eight #25 

(diameter of 25.4mm) steel rebars for the column and six for the beam are arranged 

as longitudinal reinforcement. The #19 rebars are used for both longitudinal and 

horizontal reinforcement for the wall. The clear distance between two adjacent 

rebars in the concrete wall is 500mm and 200mm, respectively, as shown in Figure 

16(d). 

 

(a) concrete wall with columns and beams at clear height of 3700mm 

  

(b) reinforcement details of the beam (c) reinforcement details of the column 



48 
 

 

(d) reinforced grid of wall (corner portion of the wall for illustration only) 

Figure 16 Geometry details of the tsunami-facing wall model   
 

The column element size is 200mm × 125mm × 125mm and further divided into 

200mm × 62.5mm × 62.5mm locally, to ease the modeling of the longitudinal 

reinforcement. The beam element size is 250mm × 125mm × 150mm. The wall 

element has a dimension of 500mm × 200mm × 200mm. A total number of 30,000 

elements are used in this model. 

 

3.3.1.1 Concrete material modeling 

The concrete material for this study has a density of 2400kg/m3, Young’s modulus 

of 27800MPa and Poisson’s ratio of 0.2. There are several concrete constitutive 

models in LS-DYNA. Material type MAT_72R3, namely, CONCRETE 

DAMAGE_REL3 (Schwer & Malvar 2005; Magallanes et al. 2010), is adopted in 

this study with the following reasons. First of all, it is a plastic-based model using 

three-invariant failure surface formulation, i.e. maximum failure surface, residual 

failure surface and yield failure surface. Therefore it can simulate the nonlinear 

behavior of the concrete material. Secondly, the user only needs to provide the 

unconfined compression strength     and concrete mass density, which simplifies the 

modeling procedure and minimizes the potential numerical uncertainties. The rest 

of the parameters in MAT_72R3 are self-generated by the program, which provides 

a good average fit to various material characterization tests. The unconfined 

compressive strength     for the concrete is 34.5MPa in this case study. Lastly, the 

MAT_72R3 allows the strain-rate effect, which is important in impact analysis 

since the concrete static strength can be doubled or tripled in terms of the Dynamic 

Increase Factor (DIF). For compression strength, DIF is expressed as: 
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where   is the strain rate, s  is the static strain rate,  6.156 2s

s e    with 

 01/ 5 9 /s c cf f    in which 0 10MPacf  . The strain rate table adopted for this 

study is shown below based on Malvar et al. (1998). The negative value in abscissa 

denotes concrete in tension. 

 

 

Figure 17 DIF for concrete material 
 

3.3.1.2 Reinforcement material modeling 

Most of the tensile strength of a concrete structure is provided by the embedded 

reinforcement bar. The MAT_72R3 concrete model does not consider the 

reinforcement. Therefore, a separate material model for the reinforcement is 

required. Again, various material models are capable to represent the characteristic 

of steel in LS-DYNA. In this study, a common choice of MAT_03, 

PLASTIC_KINEMATIC card is applied. A bilinear curve is defined to represent 

the plastic behavior and isotropic, kinematic hardening effect of the steel material. 

The mass density of the reinforcement is 7800kg/m3, Young’s modulus Es = 

200GPa and Poisson’s ratio equals to 0.3. The stress-strain relationship for the 

initial loading is shown in Figure 18 below.  
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Figure 18 Strain-rate curve of reinforcement bar of with σy 460MPa 
 

3.3.2 Tsunami force modeling 

In order to acquire the structural response under tsunami loadings, a two-step 

loading pattern is considered. The gravity is firstly treated as a body force acting on 

all the material, including water, concrete and reinforcement. The quasi-static 

gravity loading takes effect within 0.6s. Then, the wave loading characterized by its 

height and speed crashes the structural wall. The water height variation can be 

modeled by activating different groups of water part elements in non-overlapping 

time intervals. The minimum water element size decides the highest resolution of 

the water part. The water element size used for this case study is 1m × 1m × 0.5m. 

Owing to the large water element size, it is not possible to trace the velocity 

changes within 1m. Therefore, a constant velocity is assumed throughout the 

simulated period. This assumption is valid since the total simulated time is 3 sec. 

The depth-averaged water velocity components u and v are derived based on the 

simulated water flux P and Q in x and y directions, respectively. The velocity 

components at a particular grid i are given as 

 ,i i
i i

i i

P Q
u v

H H
   (3.2) 

where Hi is the water depth at the i-th grid. The resultant velocity U is defined as 

the square root of the sum of squares of the two velocity components. In this case 

study, the resultant wave velocity is 5.5m/s.  
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3.3.3 Boundary conditions  

Boundary conditions are highly important for numerical modeling. As shown in 

Figure 19, the red box displays the water part, and the blue box the “void” region 

which is going to be occupied by water during the simulation. The structure stands 

in the void region with a distance of 2.0 meters from the front of the water. The 

boundary conditions for the two boxes are specified as follows: 1) the eight nodes 

of the water part (red) are fixed in all directions, 2) four edges of the water part in 

the z direction are constrained in the x and y directions, 3) four edges along the x 

direction of both water and void parts are constrained in the y and z directions, 4) 

bottom surface, i.e. x-y plane at the bottom, is constrained in the z direction, 5) all 

the nodes in the x-z plane are constrained in the y direction, 6) nonreflecting 

boundary is assigned to the y-z plane surface at the back of the structure to avoid 

the bounce of tsunami wave which is unrealistic. With the boundary conditions 

modeled above, the wave can flow towards the structure without leakage and flood 

out of the fluid domain freely. The structural boundary condition is rather 

straightforward as mentioned previously: four sides of the structural wall are fixed. 

 

Figure 19 Tsunami wave-structure interaction model setup in LS-DYNA 

Void 

Water 
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3.4 Structural performance 

With the properly defined wave loadings and boundary conditions, the resultant x-

direction deflection of the structural wall is shown in Figure 20(a). The maximum 

displacement of 0.9m occurs near the center at time of t = 5.0s. The result is 

compared with the observation obtained from LiDAR scan in Figure 20(b) and 

static FEM analysis done by Carden et al. (2012) in Figure 20(c). The wave 

pressure distributions used in Carden’s analysis is based on the empirical equation 

derived by Robertson et al. (2010). It can be seen that the magnitude of the highly 

plastic wall displacement shown in Figure 20(a) exhibits a similar pattern and 

magnitude compared to the scanned image (Figure 20(b)), i.e., the maximum 

displacement located below the geometry center of the wall with a magnitude of 1.0 

– 1.1 meters. The simulated maximum deflection of the current study is less than 

the ones from the observation by 0.1m - 0.2m. Note that the maximum displacement 

of 0.9m using LS-DYNA is based on the tsunami velocity and height of 5.5m/s and 

4.9m, respectively. These two values estimated by Carden et al. (2012) are 6.5m/s 

and 6m respectively, according to the footage and site survey. The wave profile 

differences mainly contribute to the difference in the maximum displacement. In 

general, the position of the maximum displacement and the deformation region 

agree well with both LiDAR result and Carden’s analysis. 

 

 

(a) 
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(b) (c) 

Figure 20 Deformation of the structural wall (a) FEM tsunami impact analysis from 
this study (b) a triangulated LIDAR scan showing out-of-plane deformation (c) a 

FEM analysis of damaged wall (Carden, Chock et al. 2012) 
 

The time-history results of the pressure variation and displacements at selected node 

are presented in Figure 21. The average pressure is measured from the central 

bottom of the tsunami-facing wall. The maximum resulting pressure distribution 

represents an applied load of 900kN/m of the width of the wall. The selected node is 

placed at the joint of the middle column and beam (Figure 16a). From the 

preliminary result, it is noticeable that the largest pressure appears during the initial 

impact between the tsunami bore and the structural wall. However, a monolithic 

increasing curve is observed for the x-direction displacement.  
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Figure 21 Time-history curves for wave average pressure 
(up) and nodal displacement (bottom) 

 

The total computational time is 5.2 hours. The computational platform used for the 

wave-structure interaction is a four-processor computer, Intel Core i7-2600. The 

minimum time step t , controlled by the smallest element size in the computational 

domain, is 2.7 × 10-5 second on average.  

 

3.5 Benchmark problem for reliability analysis 

The numerical simulation of the tsunami and wave-structure interaction 

demonstrated in the previous sections indicates that the designed simulation 

processes along with the numerical tools are sufficient to precisely model the 

tsunami wave-structure interaction problem. Thus, it can be adopted to carry out the 

reliability analysis of on-shore structures subject to earthquake-induced tsunami 

waves.  

3.5.1 Stochastic earthquake source model 

For this study, a total of 16 random variables, i.e. rake angles from 16 subfaults, 

with a truncated normal distribution of mean 90 and standard deviation 30 are 

generated. This is consistent with the observation of historical earthquakes in 

Tohoku region (Yamamoto & Hori 2004). Other earthquake source parameters are 

fixed to keep the number of free variables in a relatively low dimension. This 

synthetic earthquake model only represents a small portion of all the possible 

tsunamigenic earthquake scenarios due to the assumed ranges of the earthquake 

source parameters. The earthquake moment magnitude Mw is set to be 8.3, which 
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corresponds to the seismic moment of M0 ≈ 3.5 × 1028 dyne-cm. The fault length 

and width are approximately equal to 230km and 90km, respectively, based on the 

empirical relations log10L = a+bMw (a, b being constant coefficients) from Blaster et 

al. (2010). The correlation length and width are 45km and 18km, respectively, 

according to Mai & Beroza (2002). The number of subfaults are six for both along-

strike and along-dip directions, resulting in a total number of 36 subfaults on the 

fault plane. The 2011 Tohoku Earthquake parameters are used for the dip angle, 

strike angle, and fault depth. The slip amplitudes, modelled by the hybrid k-squared 

model, are fixed as well. Due to the fact that slip amplitudes are confined at the 

edges of the fault plane, 16 non-zero amplitudes out of 36 subfaults are obtained. 

The detailed information of the earthquake model parameters are compiled in Table 

6. A sample input to COMCOT can be found in Appendix A.1. 

 

Table 6 Earthquake parameters for the benchmark study 
Earthquake parameter Value used 

Magnitude [Mw] 8.3 

Epicenter [deg] 38.1(latitude)  & 143.2 (longitude) 

Strike direction (θ) [deg] 199.0 

Dip angle (α) [deg] 10.0 

Rake angle (λ) [deg] X~N(90,30)* with truncated interval [-180, 180] 

Focal depth [m] 24400 

Fault Length[m] 10^(-2.37+0.57*Mw)** 

Fault Width [m] 10^(-1.86+0.46*Mw)** 

Dislocation (slip) [m]  ̅       & hybrid k-squared slip model*** 

Fault discretization 6 × 6 
* Yamamoto & Hori, 2004; 
** Blaster, 2010; 
*** Gallovic, 2004. 

 

To demonstrate the validity of the proposed stochastic earthquake source model, 

especially the hybrid k-squared slip distribution model, a set of earthquake 

parameters are generated with an earthquake magnitude of 9.1, and the strike angle, 
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dip angle, slip angle are the same as those in the 2011 Tohoku earthquake event. 

The simulated inundation map is shown in Figure 22. It can be seen that the 

inundation boundary is slightly larger than the site survey result in Figure 15b. The 

inundation height close to the coastal region is similar to the one in Figure 15b. 

More specifically, the inundation distribution is consistent with the actual 

inundation map, i.e., the inundation height is ranged between 12m – 18m in the 

north and 6m – 12m in the south. Thus, for the purpose of this study, the proposed 

stochastic earthquake source generator is adequate to produce credible future events 

for reliability analysis purpose.  

 

Figure 22 Inundation map generated using proposed earthquake source generator 
 

3.5.2 Simplified structural model 

As mentioned earlier, the overall computational time of the entire tsunami wave-

structure interaction process, including tsunami propagation and run-up simulation, 

easily exceeds six hours. Since the focus of the study is to propose efficient 

algorithms which can reduce the total number of simulations required, it is logical 

to simplify the numerical model to reduce the individual computational cost. For 

illustrative purpose, the structural model is simplified into a structural wall without 

column and beam components. The geometry of the model is scaled to half of the 

original one in order to reduce total number of elements. The water element size 

used for this benchmark is 0.25m × 0.25m × 0.25m. The refined resolution allows a 
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minimum water height difference to be 0.20m. The velocity and tsunami wave 

height are extracted from the previous COMCOT simulation with constant values 

assumed during the impact. A total wave-structure interaction of 3.0 seconds is 

simulated using LS-DYNA.  

 

The total numerical simulation time has dropped from 5.2 hours to 3 hours using the 

same computational environment. The structural displacement relative to its original 

position is plotted in Figure 23 using a random sample generated from the 

stochastic source model described in the last section. The wave height and velocity 

are 2.25m and 5.0m/s, respectively. The fringe level indicates the displacement in 

meter. The resultant displacement time-history from the node 20318 is recorded as 

shown in Figure 24. The maximum value from the record is chosen as the 

maximum displacement of the structure. 

 

 

Figure 23 Maximum structural displacement diagram  
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Figure 24 Nodal displacements time-history curve 
 

3.5.3 Benchmark reliability analysis results  

In this benchmark study, the original Subset Simulation (SS) is used. Four 

intermediate failure levels (m = 4) are calculated with N = 500 samples of θ 

generated for each level. The sample are selected such that P(Fi|Fi-1) = p0 is 

approximately 0.1. Thus, the total number of numerical evaluations is n = N×[1 + 

(m − 1)(1 − p0)] = 2000. Normal distribution is used as the proposal PDF j
kj

q
 
 
 
θ . 

Thus, the acceptance ratio becomes the acceptance ratio between the target 

distribution with the proposed and the original sample 1 1
j

k
j jj jp pk kr 

         
 ξ θ . The 

computational time for the SS is approximately 98 hours with parallel computing 

using 64 logical processors on a work station with AMD Opteron 6282 SE @ 

2.60GHz and a RAM of 96 GB. A total of 50 independent runs were carried out in 

order to obtain the average failure probability as well as estimating the c.o.v. of the 

SS results.   

 

The four intermediate failure threshold levels are estimated to be b1 = 1.115cm, b2 = 

3.133cm, b3 = 4.821cm and b4 = 6.068cm on average, which correspond to the 

maximum structural displacements considering all the nodes and the whole duration. 

These values will be used later as benchmark for evaluating the accuracy of the 

results obtained by the proposed algorithms. The mean exceedance probability 
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curve as well as the failure probability curves obtained in the 30 independent SS 

runs is presented in Figure 25. In order to investigate the accuracy and bias of the 

Subset Simulation, the results are compared with the original MCS with 10,000 

samples. It can be seen that the results by the two methods agree well up to the 

second intermediate failure level (PF = 10-2). The discrepancies beyond the second 

intermediate failure level are greater as the accuracy in estimating failure 

probability decreases due to the insufficient number of samples in the MCS method. 

According to Eqn. (2.31), the c.o.v. at the second level is approximately 10% with 

10,000 samples, which is an reliable estimate. However, the c.o.v. of the MCS 

estimator rises to 30% and 100% for the third and fourth intermediate failure levels, 

respectively. 

 

Figure 25 Failure probability estimates of the 30 Subset Simulations and the 
averaged curve 

 

The variability of the Subset Simulation estimator is examined using the sample 

c.o.v. over the 30 independent runs. It is compared with the lower bound c.o.v. and 

theoretical c.o.v. of MCS using Eqn. (2.43) and Eqn. (2.31), respectively. The 

comparison is plotted in Figure 26. The c.o.v. estimation of MCS at a given 



60 
 

intermediate failure level is assumed to have the same number of stochastic samples 

as for the SS method so as to keep the computational effort comparable. As seen 

from the figure, the uncorrelated c.o.v. (dashed line) lies close to the sample c.o.v. 

and hence the correlation between the conditional failure probabilities of 

consecutive levels in SS is small. According to the trend of the c.o.v., it is clear that 

the efficiency of the SS method outweighs the MCS with decreasing failure 

probabilities. Thus, the results from the SS method are valid to be used as the 

benchmark for the following chapters against which the proposed algorithms are 

compared.  

 

Figure 26 Coefficient of variation of failure probability estimate for benchmark 
 

Besides the overall performance of the reliability algorithm, the evolution of the 

marginal probability distribution with respect to the intermediate failure levels is 

also of interest since it can provide insight of the physical process. The relative 

position of the 16 variables on an imaginary fault plane is shown in Table 7. Four 

types of lines indicating the kernel density estimates of the four intermediate failure 

levels is shown in Figure 27: solid line for the 1st level, dashed line for the 2nd 

level, dot-dashed line for the 3rd level, and dotted line for the last level. The x- and 

y-axes represent the rake angle and probability density function of a subfault, 
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respectively. Note that the probability density functions for the first intermediate 

failure level of all the random variables are almost identical because they follow

 90,  30N . The probability density functions estimated using conditional failure 

samples and kernel density start to deform from the second failure level onwards 

and each with its own way. The more the discrepancy, the greater sensitivity it 

contains. According to the figure, the majority of the model parameters share a 

similar shape of the probability density functions among themselves for the first two 

to three intermediate failure levels, except for V2, V3, V6 and V7 in which clear 

trends of moving leftward or rightward can be observed. Furthermore, the estimated 

marginal probability density function of the fourth failure level has more peaks than 

the previous failure levels. Information entropy which quantitatively measures the 

relative change between different failure levels of the marginal proposal distribution 

is adopted. The results are compiled in Table 8.  Apparently, larger information 

entropy ultimately indicates greater influence on the stochastic sampling process. 

The data has been normalized to 0 – 1 range for easier comparison.  It agrees with 

the observation from Figure 27 that V6 and V7 have relatively largest information 

entropy among the 16 random variables for the first and second intermediate failure 

level, respectively. Furthermore, the V11 is the most sensitive one in the third 

failure level.  

Table 7 Location of the 16 slip angles on a fault plane 
V1 V2 V3 V4 
V5 V6 V7 V8 
V9 V10 V11 V12 
V13 V14 V15 V16 
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Figure 27 Kernel density plots of random variables for various intermediate failure levels
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Table 8 Normalized information entropy for the marginal probability distribution of 

the 16 random variables 

 Level 1-2 Level 2-3 Level 3-4 

V1 0.06 0.20 0.46 

V2 0.82 0.33 0.18 

V3 0.25 0.25 0.20 

V4 0.00 0.02 0.04 

V5 0.26 0.00 0.21 

V6 1.00 0.98 0.13 

V7 0.21 1.00 0.84 

V8 0.04 0.33 0.15 

V9 0.19 0.16 0.25 

V10 0.01 0.71 0.24 

V11 0.04 0.38 1.00 

V12 0.05 0.35 0.01 

V13 0.06 0.18 0.15 

V14 0.05 0.39 0.05 

V15 0.08 0.11 0.00 

V16 0.02 0.36 0.14 

 

For the 16 slip angles, a correlation matrix is showcased in Figure 28. In the upper 

diagonal of the matrix, positive correlations are displayed in blue and negative 

correlations in red colour. The colour intensity and the size of the circle are 

proportional to the correlation coefficients indicated in the lower diagonal of the 

matrix. The legend colour shows the correlation coefficients and the corresponding 

colours. The paired variables of slip angle with absolute higher correlation value 

can be found between V3-V13, V6-V14, V6-V16, and V7-V11. Note that the actual 

interaction of these variables on a fault plane is much more complex and requires 

further investigation. 
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Figure 28 Correlation matrix of the 16 slip angles 
 

 

3.6 Closing remarks 

The process of a tsunami generation and wave-structure interaction is presented in 

this chapter. An accurate tsunami profile at any location can be obtained by 

providing reliable bathymetric dataset with appropriately defined earthquake source 

parameters. Nonlinear structural response under transient and sustained tsunami 

wave loading is modeled using LS-DYNA. The results lay the foundation for the 

structural reliability analysis and provide insights of the structural performance 

under tsunami wave loading.  

 

A benchmark reliability study using a simplified structural model is constructed by 

the original SS method. The maximum structural displacements correspond to 

various intermediate failure probabilities have been carried out. The resultant failure 
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probability and variation of the SS method are compared with the ones obtained 

from MCS. A parametric study is presented in order to better understand the 

statistical relationship among the random parameters. Apart from this, there are a 

few points worth mentioning. 

 

i. Although the hybrid k-squared stochastic slip model is used, a lower 

subfault number i.e., 6×6 with large earthquake amplitude, i.e., Mw 9.1, 

result in stable slip amplitude since no corner frequency exceeds the 

threshold for any of the subfaults.  

 

ii. The Tukey window (Tukey 1967), also known as the tapered cosine window 

is adopted to “seal” the fault boundary as well as to smooth the dislocation 

in order to avoid spectral holes caused by the sudden change. A common 

choice of the parameter α in the Turkey window ranging from 0.1 to 0.5. An 

α value of 0.2 is selected and proven to be suitable for this study.  

 

iii. The parametric study concentrates on the evolution of the marginal proposal 

distribution. The interaction among the variables, such as correlation, though 

calculated, can hardly be used to explain the physics of the tsunami 

earthquake mechanism.    
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Chapter 4 Proposed Adaptive Metamodels for Structural 

Reliability Analysis  

4.1 Challenges  

The case study demonstrated in Chapter 3 indicates that the designed simulation 

processes along with the numerical tools are sufficient to precisely model the 

tsunami-wave-structure interaction problem. A benchmark reliability study of on-

shore structures subject to earthquake-induced tsunami is also illustrated using the 

original Subset Simulation (SS) method. 16 random variables are involved in the 

benchmark problem. A general evaluation framework using the SS method can be 

summarised as follows: 

1) Generate stochastic earthquake source parameters following prescribed 

distributions; 

2) Obtain tsunami wave profiles from the numerical model; 

3) Evaluate the structure responses (e.g. maximum displacement, acceleration, 

inter-story drift, etc.) performance during the wave-structure interaction using 

LS-DYNA; 

4) Repeat steps (2) and (3) using original MCS to generate N (e.g. 500) samples;  

5) Use MCMC-based algorithms (e.g. modified Metroplis-Hasting) to further 

generate conditional failure samples which require running steps (2) and (3) 

and computing the limit state function L(θ) and thus, the failure probability of 

the structure. 

 

The Steps (4) to (5) represent the core of reliability assessment in this study. More 

importantly, the most computational demanding part of the reliability analysis in 

this work is the computation of L(θ) which requires numerous computationally 

intensive dynamic analyses as stated in Section 3.4. On top of that, when estimating 

small failure probability (i.e., PF <<1) with a coefficient of variation (c.o.v.) of, for 

example, 30% in its estimator, the problem arises as the MCS requires about 10/PF 

samples simulated according to p(θ), which in turn, requires about 10/PF tsunami-

wave-structural interaction dynamic analyses. For instance, at least 10,000 of 

stochastic samples are required in order to get an acceptable result (e.g. c.o.v. of 30% 
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in PF estimator) with failure probability of 10-3. This is equivalent to compute the 

above-mentioned physical process 10,000 times. Even using the Subset Simulation 

algorithm to obtain a c.o.v. of about 24.5% in PF estimator, a total number of at 

least 1,500 stochastic samples are required, assuming N = 500 samples for each 

intermediate failure level P(Fi|Fi-1) = p0 = 0.1. Even though the computational time 

required by the original Subset Simulation algorithm can be reduced to 90 – 100 

hours (i.e. 3.8 – 4.2 days) with the help of a HPC system, it is still far from being 

acceptable for a practical engineering problem such as the one investigated in this 

study. Not to mention that the assessment is based on a simplified structural model 

used in the benchmark study. 

 

4.2 Response surface methods 

The most computational demanding part of the reliability analysis in this work is 

due to numerous computations of limit state function L(θ) which requires a large 

number of computationally intensive dynamic analyses. The key to solving this type 

of problem is to construct an approximation model to replace the original true limit 

state function. By doing so, the number of computational intensive numerical 

simulation realizations is reduced though a certain number is still required in order 

to estimate the function.  

 

Many response surface models (RSM), also refer to as metamodels, are valid 

candidates to partially replace the original physical model for the reliability analysis. 

Some of the most popular metamodels are as moving least square response surface 

approximation (MLS), Gaussian processes (GP) (Rasmussen & Williams 2006), 

artificial neural network (ANN) and stochastic response surface methods such as 

stochastic polynomial chaos (Ghanem & Spanos 1990; Xiu & Karniadakis 2002) 

and stochastic collocation methods (Babuska et al. 2007; Nobile et al. 2008), to 

name just a few. In the following sections, the author will briefly introduce the 

moving least square response surface approximation. The most recent development 

by Taflanidis & Cheung (2012), is presented to exhibit a better solution for highly 

nonlinear systems. At last but not the least, the GP approximation model is 

described. 
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4.2.1 Moving least square metamodel 

The MLS has a wide range of applications in meshless methods and image 

processing, etc. It was introduced by Lancaster et al. (1981) based on the Shepard 

scheme (Shepard 1968). Let nT
1 n  [      ] R 


   θ  be the free variables, the goal is 

to define a function ˆ ( )f θ  to approximate the system response, given a new set of 

independent variables. The formulation of MLS is similar to the global least squares 

method except that the coefficient vector in the MLS is a function of θi since the 

interpolated points are weighted by their distance to the support points. The 

expression is given below: 

        T

1

)ˆ (
NB

i i
i

f b a


 θ θ θ b θ a θ  (4.1) 

where b(θ) and  a θ are the vector of basis functions and the corresponding 

coefficients, respectively. NB denotes the total number of elements in b(θ) and  a θ . 

A common choice of a second order polynomial basis functions (i.e. 

2 2 T
1 n 1 21 n( )  [ 1       ]

 
      b θ ) would give NB as follows: 

 
( 3) 2

2

n n
NB    

  (4.2) 

where n  is the spatial dimension (Fries & Matthies 2003). The unknown 

coefficients  a θ  can be determined by minimizing the weighted sum of square 

error  RJ θ at supporting points. Unlike the global least squares method that 

evaluates the model without considering the relative importance of information near 

the interpolated point, the MLS metamodel involves a weight function  w θ  which 

helps to construct the model in a local approximation manner. The idea is to 

compute the weight function for any arbitrary fixed point nθ  and compare it 

with the entire variable field by measuring the distance between the interpolated 

point and the supporting points  θ ; 1, , NSI I    expressed as d(θ; θI) = ||θ – θI|| 
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where ||· || denotes a norm in n . The weighted sum of square error  RJ θ  for 

MLS is thus expressed as 

 
         

   

2

1

[ ] { }[ ]

NS
T

R I I I
I

T

J w f


   
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θ θ

Ba θ F W θ Ba θ F

b θ a θ θ
 (4.3) 
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f f
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




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


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B b θ b θ
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The minimization of Eqn. (4.3) yields the following solution:  

   1{ } { }θ Μ θ G θ Fa  (4.4) 

where     TM B W θ Band      TG θ B W θ . Thus the approximation function is 

expressed as 

      1( )f̂ θ b θ M θ G θ FT  (4.5) 

In principle, any function which has a maximum at d = 0 and vanishes outside the 

influence domain is capable to be used as weight function. Many weight functions 

have been proposed, e.g. in forms of Gaussian (Levin 1998), exponential, etc. A 

popular choice of the weight function ( ( ; ))iw d θ θ is expressed by: 
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in which c and k are the shape factors. The distance d(θ; θI) between the 

interpolated point and the supporting points can be measured by computing the 

weighted quadratic norm denoted as  

    2 2
,

1

;
m

I i i l id v  θ θ  (4.7) 

where vi in the above equation represents the relative weight of each variable θi. 

The weight function for a specific supporting point is non-zero only if the distance 
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of that point to the interpolated point is within an influence domain. Please refer to 

Taflanidis & Cheung (2012) for more details. The influence radius D has to be 

chosen such that enough supporting points are included and yet vanish after the 

prescribed threshold.  

 

The weight selection highly affects the efficiency of the interpolation function. 

Traditional MLS response surface approximation method does not consider how the 

response surface needs to be created or established so as to benefit the stochastic 

sampling from some target probability distribution, for example, simulating samples 

according to the target distribution π(θ) taking the following form:  

 
( ) ( )

( ) ( ) ( )
( ) ( )

z p
z p

z p d




 


θ θθ θ θ
θ θ θ

 (4.8) 

where z(θ) is some function of the system output which needs to be obtained by 

running a computational intensive numerical analysis and p(θ) is some probability 

density function. Taflanidis and Cheung (2012), based on Taflanidis’ previous 

finding (Taflanidis 2009), proposed a relative information entropy to quantify the 

discrepancies between the marginal target distribution π(θi) and the marginal 

proposal distribution q(θi):  

 
( )

( ( ) ( )) ( ) log
( )

i

i
re i i i i

i

D q d
q

      


 
  

 
  (4.9) 

The greater the value, the more sensitive a particular parameter is, thus, more 

important in generating samples following the target distribution. The weights vi, 

integrates the relative information entropy and the normalized standard deviation σi, 

into the following expression:  

 
( ( ) ( ))re i i

i

i

D q
v

  


  (4.10) 

where σi is the standard deviation of the i-th component supporting points. 

 

4.2.2 Gaussian processes for regression 

The Gaussian processes (GP) is defined as a collection of random variables with 

every point in some input space following Gaussian distribution (Rasmussen & 
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Williams 2006). The basic theory of Gaussian processes can be dated back to 

1940’s (Wiener 1949). It has been widely used in spatial statistics field under the 

name of kriging method (Matheron 1973; Ripley 1991). O’Hagan et al. (1978) 

generalized the GP and presented it in a general regression context. The idea of 

Gaussian processes regression in machine learning was firstly proposed by 

Williams and Rasmussen (1996). However, it was not commonly used till late 

1990’s when computational technology facilitated the application of GP in large 

data set (Tang et al. 2010). A brief introduction of GP in regression is given in the 

following section. 

 

Let us consider N realization of responses                  , computed from 

real-time numerical simulations. Each response corresponds to D-dimensional 

training dataset               . A GP regression model considers the 

deterministic output      as a random process which has a prior distribution 

following with a Gaussian stochastic process. This can be written as: 

  '~ ( ), ( , )y GP m x k x x   (4.11) 

where m(x) and k(x, x’) represent the mean function and the covariance function, 

respectively. One common choice of the mean function is a linear combination of 

elementary basis functions, which can be written as follows: 

 
0

( ) ( ) ( )
k

j j
j

m x m x M x


  β  (4.12) 

where                is the coefficient vector, and                     represents the basis function.  

 

The covariance function '( , )k x x describes the similarity between the two data points 

according to their nearness and has to be positive semidefinite. Theoretically, any 

arbitrary positive definite matrix can be adopted as a covariance function (Bailer-

Jones 2002). The covariance function is categorized as stationary and non-

stationary, in general, depending on whether it is affected by the translations. A 

widely-adopted stationary covariance function is squared exponential (SE) 

covariance function which is given as: 
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2
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2

( ')( , ') exp( )
2SE f

x x
k x x

l
    (4.13) 

where    and   are called hyperparameters following the nomenclature in the neural 

network method. They define the amplitude and characteristic length-scale, 

respectively. Other types of stationary covariance functions include rational 

quadratic (QR), the Matérn class, and piecewise polynomial covariance functions 

with compact support.  

 

From the perspective of Bayesian inference, the posterior probability of the function      given a set of data   {        } can be derived using:  

 
( ) ( )

( )
( )

p f p D f
p f D

p D
  (4.14). 

Therefore, with a set of prediction input variables  , the joint distribution of the 

training output,  , and the prediction function    is given as: 
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where m(·) and K(·) are mean and variance functions, respectively. The prediction 

*( )m X  and *( , ')k X X  given by: 
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 (4.16) 

The hyperparameters which defines the mean and covariance functions are not 

known in advance and they can be estimated using one of the statistic inference 

methods: variographic analysis (VA), maximum likelihood estimation (MLE) or 

Bayesian estimation (BE) (Dubourg et al. 2011). The MLE method is the mostly-

used technique which obtains the optimal hyperparameters 2{ ,  , } f lθ β by 

maximizing the likelihood function     . In practice, it is easier to minimize the 

negative log marginal likelihood      which is given as follow: 

 T 1( (
1 1log ( , ) ( )) ( )) log log(2π)
2 2 2y y

N
p x m X m X     y y yθ K K  (4.17) 
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where    refers to        in (4.16). The local optimal solution can be derived by 

taking the gradient of the marginal likelihood function with respect to the individual 

hyperparameter    which can be written as: 

 1 1T 1( (( )) ( )1
2

) 1 tr( )
2

y y

j j j
y y ym X m X

  
   
   

  
y y

K K
K K K  (4.18) 

 where tr( ) is trace of the squared matrix.  

 

4.2.3 Remarks 

Although both the MLS and GP belong to the response surface method, there are 

some differences between the two. First of all, in GP, all the training data are 

utilized and their covariance functions have to be calculated, whereas in MLS, only 

those within the influence radius will be selected. It indicates that the influence 

radius is a function of the training data with the proposed stochastic sample being 

the centre of the circle. This will not only result in a difference in computational 

time, but more importantly, the quality of the constructed regression function. To be 

more specific, a subset of the training data for GP has to be carefully selected. 

Researchers have studied on how to choose the subset of data for GP. The most 

straightforward way is to choose randomly which turned out to be effective but lack 

of accuracy (Snelson 2007). More advanced selecting algorithms were proposed,  

such as projected latent variables (Seeger et al. 2003), informative vector machine 

(Lawrence 2005), and sparse pseudo-input Gaussian processes (Snelson & 

Ghahramani 2006), to name just a few. The majority of the above-mentioned 

studies involve constructing various types of information criterion after adding or 

deleting data from the subset. 

 

A unique feature of the GP model is that it is a probabilistic model which allows 

one to estimate not only the mean, but the uncertainty on predictions as well. 

However, this requires the formation of the covariance function and optimization of 

its hyperparameters. Although both the MLS and GP methods contain O (N3) 

operations in their standard form, it is easier to fix the free parameters in MLS 

(Krishnamurthy & Romero 2002). 
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4.3 Proposed adaptive SS-MLS and SS-GP algorithms for reliability 

analysis
1
 

In this section, a novel framework is proposed to estimate the reliability of a 

structure under earthquake-induced tsunami impact and at the same time alleviate 

the computational burden and yet accurately assess the structural reliability.  

 

Since the metamodels are able to transform the original engineering simulation 

problem into a pure mathematical function, it can be utilized to achieve the system 

reliability assessment purpose without computing as many times as it requires in 

original MCS and Subset Simulation. Similar to the SS, the modified Metropolis-

Hasting algorithm facilitates the implementation of reliability since the local 

random walk allows the stochastic samples to explore the failure domains rather 

than the entire boundary. Consequently, a novel integration of the Subset 

Simulation (SS) method (Au & Beck 2001) and two metamodels: (1) modified MLS 

approach (Taflanidis & Cheung 2012); and (2) GP regression model are proposed. 

The proposed algorithm can be summarized as follows: 

1. Denote the number of MCS of the numerical process by n, the number of 

metamodel samples for each intermediate failure level by M, and the 

prescribed conditional probability by   . 

2. Generate n samples   following      using MCS and performing numerical 

simulations of the physical process to produce the response samples. The n 

samples are used later as supporting points for the metamodels. 

3. Construct MLS/GP metamodels using the n supporting samples. 

a. For MLS, a subset of n samples which exceed a prescribed threshold are 

considered to follow the target distribution in order to estimate the 

entropy (Taflanidis & Cheung 2012).  

4. Generate M stochastic samples   from      using MCS with the limit state 

function computed using the metamodels. 

5. Sort the M samples in a descending order according to the responses 

computed by the metamodels and select a certain number of samples (say m, 

                                                 
1 The proposed methodology presented in this section is partially published in the 11th International 
Conference on Structural Safety & Reliability, New York, 2013. Cheung, S. H. and S. Zhe (2013). 
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m<M) that exceed a prescribed threshold to carry out the original numerical 

simulations. 

6. Aggregate the n samples in step 2 and the newly generated m samples in 

step 5 as new set of supporting samples.  

7. Construct MLS/GP metamodels using     samples. 

a. For MLS, the samples with the responses exceeding a prescribed 

threshold are used to estimate the entropy. The influence radius D is 

updated. 

b. For GP, a subset of     samples is chosen as the supporting samples. 

8. Generate M stochastic samples   from    |   using the modified M-H 

algorithm with the first    samples in Step 5 as the seeds. The limit state 

function is computed using the metamodels. 

9. Repeat steps 5-8 until a desired failure probability is reached. 

 

Compared to the SS framework presented in Section 4.1, the most distinguishable 

feature of the proposed procedure is Step 5 where the samples generated by 

considering metamodels  ̃    that are more likely to lie in the failure domain (i.e. 

response exceeding a prescribed threshold) are replaced by the actual original 

numerical simulation     . The samples generated by the metamodel which are 

“away” from the limit state function are kept as it is. The reason behind it is that the 

straightforward use of the metamodels may lead to erroneous result, no matter how 

many samples are produced from the metamodels. The finite accuracy of the 

metamodel, to large extend, does not affect the accuracy of the failure probability 

estimates since the samples close to the limit state is evaluated using the original 

simulation. On the other hand, the total number of original simulation is much less 

than the MCS and SS. 

 

Regarding the subset of supporting point mentioned in Step 7(b), the training point 

selecting mechanism is used because not all the samples obtained from the 

numerical simulation can be taken as the support points. It is due to the fact that GP 

takes into account all the training data feeding to it when estimating the 

approximation (both mean and covariance functions). This is, to a certain extent, 
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acting as a global regression which could result in an over or underestimation of the 

approximation, depending on whether the support points are “far away” from the 

interpolation points. According to Eqn.(4.2), a minimum number of supporting 

points, decided by the number of basis terms (NB), have to be employed to avoid 

singularity in the solution for the coefficients of GP. Furthermore, the thresholds 

derived from the SS algorithm naturally divide the supporting points into various 

classes. In fact, as the purpose of the metamodel is to approximate limit state 

function in the next intermediate failure level, the supporting points which have the 

responses exceeding the latest threshold (refer to as N+) have priority to be selected 

as the support points for constructing the GP for next conditional failure level. 

Considering all the above-mentioned factors, the following mechanism is proposed. 

All the supporting points are sorted in descending order based on the maximum 

structural displacements. The support points with their responses higher than the 

current threshold value (N+) are kept. If the number of N+ is more than or equal to 

the number of basis terms (NS+ ≥ NB), the selection is completed: only the N+ are 

included for constructing the GP model in the next conditional failure level. 

Otherwise, another portion of support points is randomly selected from the rest of 

the support points (N-). The flowchart shown in Figure 29 summarizes the training 

points selecting framework. 
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N+  : {N | N > current threshold}

NS+ > NB

N+

YES

N+     N-

NO

Pooling support points generated from current 
and previous intermediate failure levels

 

Figure 29 Training data selecting process in GP method 
 

4.4 Illustrative example 

4.4.1 SS-MLS and SS-GP  

In this illustrative example, the reliability analysis of a structure under tsunami 

wave impact is presented using the proposed algorithms. For illustration, the limit 

state function L(θ) considered here is equal to t - d(θ) where t is the threshold 

corresponding to some pre-specified failure probability and d(θ) is the maximum 

displacement of the structure during the wave-structure interaction. Different ways 

of integrating the modified MLS and Gaussian Processes with Subset Simulation 

method are described below.  

4.4.1.1 SS-MLS results and discussion  

For comparison purpose, a non-adaptive way of using the metamodel in reliability 

assessment is firstly presented: a metamodel is constructed using the samples 

generated by the numerical simulations. The same metamodel is used throughout 

the reliability assessment process (e.g. Monte Carlo or Subset Simulation) to 

evaluate the limit state function. In fact, this is equivalent to steps 1-3 in the 

proposed algorithm. The detail of this counterexample is as follows. A total of 500 
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supporting points (NS = 500) are used to construct the full quadratic basis MLS. 

The relative information entropy for the MLS is formed using the samples which 

lead to the top 10% (    = 0.1) of the maximum structural displacement, i.e., θ 

distributed according to p(θ|F1) and are considered as samples from π(θ) in MLS. 

For each intermediate level of SS, a number of M = 2,000 samples, including    samples from the previous intermediate failure level, are generated using the 

modified M-H algorithm. Therefore, the number of new samples produced at each 

conditional failure level is       = 1,800. The constructed MLS are employed 

to replace the numerical simulation for the limit state function. The above version 

of the SS-MLS is named ori-SSMLS to distinguish from the proposed algorithm. 

 

A total of 50 independent sets of simulations were carried out using the ori-SSMLS 

algorithm. The mean failure probability curve considering the 50 runs is plotted in 

Figure 30. The result is compared with the benchmark study. The fitness (error) is 

defined as the failure probability derived from the SS method divided by that from 

the SS-MLS approach at various threshold levels. A value of 1 indicates the 

performance is the same as the benchmark result. The fitness of the ori-SSMLS is 

23.8 at the second conditional failure level and beyond comparison (Inf.) at the 

third level. As expected, deterioration develops with increasing of failure levels in 

the performance of the ori-SSMLS. It is mainly due to the fact that a lack of 

support points in the failure region corresponding to higher threshold levels and 

smaller failure probability leads to the underestimation of the maximum 

displacement in this problem. 

 

To address this issue, a portion of the samples     out of M samples distributed 

according to    |  :  1,  2,  3jp F j j θ which lead to the top 10% of the maximum 

displacement are selected and their maximum displacements are computed using 

the original physical numerical simulation, instead of using the metamodel. The 

basic idea is to gain more supporting samples lying in the failure domain in order to 

acquire a more accurate approximation function for the subsequent failure levels. 

As stated in the procedure of the proposed algorithm, the modified MLS has to be 

constructed at each intermediate failure level (denoted as MLS-lvj) since the 
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supporting points are expanding with the decreasing of the failure probability. 

Furthermore, the influence radius of the MLS is updated accordingly to reflect the 

change in supporting points. The integration of SS and MLS in adaptive manner 

described above is named adv-SSMLS.  

 

Similarly, a total of 50 independent sets of simulations using adv-SSMLS algorithm 

were carried out. The mean failure probability curve of the adv-SSMLS over 50 

runs is shown in Figure 30. As indicated from the figure, the estimation errors of 

adv-SSMLS are stable throughout different intermediate failure levels compared to 

the ori-SSMLS. A slightly lower fitness value of adv-SSMLS at the first threshold 

level is primarily due to the less supporting points used (NS = 200) compared to the 

ori-SSMLS (NS = 500). The fitness corresponding to the second and third threshold 

levels of adv-SSMLS are 1.86 and 1.40, respectively, which is a significant 

improvement compared to the result obtained from the ori-SSMLS algorithm. The 

above final version of the approach is taken as the proposed approach for the SS-

MLS algorithm.  

 
Figure 30 Failure probability estimates of SS, ori-SSMLS and adv-SSMLS 
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4.4.1.2 SS-GP results and discussion 

The same procedure as described and implemented in section 4.4.3.1 for SSMLS is 

applied to the integration of SS with Gaussian processes. A total of 500 supporting 

points (NS = 500) are used to construct the GP. The same metamodel is used 

throughout the computation of the failure probability, i.e., the non-adaptive SSGP 

or ori-SSGP. For each intermediate level, a number of M = 2,000 samples are 

simulated. The constructed GP are employed to replace the numerical simulation for 

the limit state function. 

 

Concerning the adv-SSGP, i.e., adaptive SSGP, a number of 200 supporting 

samples (NS = 200) are selected for the first level of the intermediate failure 

probability. Similar to the adv-SSMLS, a portion of the samples which lead to the 

top 10% of maximum displacement as computed by the Gaussian Processes are 

selected and their maximum displacements are computed using the original 

numerical simulation. After the proposed training point selecting mechanism 

presented earlier, a portion of the supporting points are activated for constructing 

the GP metamodel of the next intermediate failure conditional level. Repeating the 

process until the designed failure probability is computed. 

 

After 50 independent running of the ori-SSGP and adv-SSGP algorithms, the mean 

failure probability over 50 runs is plotted in Figure 31 together with the benchmark 

result. Besides, Figure 31 also includes the 95-percentile and 5-percentile estimation 

which are derived from the covariance matrix in the GP method. As expected, the 

performance of adv-SSGP is consistent in every intermediate level, while the ori-

SSGP underestimates the result from the second conditional level onwards. A 

relative better estimation of the ori-SSGP in the first level gives rise to the 500 

support points used compared to the 200 in adv-SSGP. An important observation is 

that the benchmark result is always inside the upper and lower bounds of the adv-

SSGP result which indicates a reliable performance of the GP model. 
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Figure 31 Failure probability estimates of SS, ori-SSGP and adv-SSGP with their 

associated uncertainty levels 

4.4.1.3 Comparison between adv-SSMLS and adv-SSGP algorithms 

In this section, the results from adv-SSMLS and adv-SSGP algorithms stand side by 

side for cross comparison. The effectiveness and computational efforts of the 

algorithms are evaluated. The results from non-adaptive version of the integration, 

i.e., ori-SSMLS and ori-SSGP, are not included since the accuracy of these two 

algorithms is incomparable to the adaptive version. As mentioned in the previous 

sections, 30 independent runs were conducted for the benchmark and 50 for adv-

SSMLS and adv-SSGP algorithms each. The c.o.v. for all the algorithms are 

presented in Figure 32. It can be seen that the variation of the adv-SSMLS 

algorithm is the largest among the three between the failure probabilities of 100 – 

10-2.5. The c.o.v. of the benchmark study rises after 10-2.5 and remains the highest up 

to PF = 10-3. On the other hand, the uncertainty level of adv-SSGP algorithm is 

consistently lower than the others with a mild uptrend all the way.  
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Figure 32 The c.o.v. of failure probability estimator for SS, SSMLS and SSGP 
 

The exact values of the c.o.v. for the SS, adv-SSMLS, and adv-SSGP algorithms are 

listed in Table 9. A comparison of the computation efficiency of the three 

algorithms is also shown in Table 9. The “Nb. Smln” represents the total number of 

numerical evaluations used for each algorithm. Due to the nature of the MCMC 

algorithm, repetitive samples are unavoidable from the second conditional failure 

level onwards. Therefore, the total number of simulations for each run of the 

SSMLS and SSGP algorithms is subject to change and the number shown in the 

table is the averaged value from the 50 independent runs. The c.o.v. value δ at the 

target failure probability (PF = 10-3) is given. The unit c.o.v., denoted by TN   

(Au & Beck 2003), is also listed in the table. This factor reflects the characteristic 

of the algorithm – the smaller the value, the more efficient the algorithm is. The 

adv-SSGP has the highest efficiency score among the three, on account of a lower 

number of the simulation and the lowest c.o.v. The adv-SSMLS is the second in 

terms of the efficiency owing to the least numerical simulation used, even though 

the c.o.v. is higher than SS. 
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Table 9 Comparison of the computation efficiency 

PF = 10-3 Nb. Smln δ Δ 
Subset Simulation 1500 0.987 38.226 

adv-SSMLS 581 1.066 25.695 

adv-SSGP 666 0.780 20.129 

 

4.5 Closing remarks 

In this chapter, an innovative algorithm which integrates the Subset Simulation with 

the second-order metamodels, i.e. MLS and GP, are proposed. The adaptive features 

of the algorithms enable the metamodels to update the support points and influence 

radius so as to better estimate the samples lie within failure domain corresponding 

to rarer events. The results obtained from the adaptive integration show great 

enhancement in terms of prediction accuracy compared to the naïve non-adaptive 

integration. They also reduce the total number of numerical simulations required to 

nearly one third of that for the benchmark. The efficiency of the algorithms is 

estimated based on the unit c.o.v. derived from 50 independent runs of the proposed 

algorithms. Some observations as well as a few constraints made in this chapter are 

summarized below.   

 

First of all, the choice of 200 support points to start with for the adv- version of the 

SS-MLS and SS-GP methods is an ad hoc selection. The bottom line is to choose a 

number higher than the number of basis so as to avoid singularity issue in 

estimating the coefficients. Although additional 200 support points, i.e. 10% of the 

2000 samples generated by metamodels, are supposed to be evaluated for each of 

the intermediate failure level, the 200 samples contain repetitive ones due to nature 

of the MCMC algorithms. More repetitive samples are observed with increasing 

intermediate failure probability level due to a higher rejection rate. Thus less 

numerical simulations are required. In fact, in each intermediate failure level of adv-

SSMLS and adv-SSGP, increasing the sample size to a huge number (M >> 2,000) 

but restricting the number of additional support points can be used to bring down 

the c.o.v. of the failure probability estimator, since the computational time of the 

metamodel is negligible compared to the physical model simulation.  
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Secondly, it can be seen that the proposed SS-GP algorithm tends to overestimate 

the structural performance given the same failure probability. This indicates that the 

overestimation is related to the quality of the support points and thus, the nature of 

the training point selection mechanism proposed at the end of section 4.3. As 

mentioned in the section, Gaussian processes (GP) is different from moving least 

square (MLS) where the former takes all the support points into account when 

making a prediction. The proposed selection mechanism consists of two types of 

training points: those within the failure domain and those outside. In the first a few 

intermediate failure levels, a relatively large portion of the training points are those 

outside the failure domain due to the fact that only the top 10% samples are failure 

samples. This is gradually altered with the increasing number of samples. Although 

accurate failure estimation is undoubtedly the best result, overestimation which 

leads to a conservative measure is not unacceptable in reliability analysis when 

disaster management is the main concern.  

 

According to the simulation results, both the proposed algorithms perform well 

compared to the benchmark study. The computational time of SS-MLS is faster 

than that of SS-GP as the latter needs to construct subset training data selection. 

However, the covariance matrix of GP enables the uncertainty to be quantified in 

failure probability estimate even with a single simulation.  
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Chapter 5 Higher Dimension Metamodel in Reliability Analysis 

In Chapter 4, the adaptive SSMLS and SSGP algorithms are proposed and 

illustrated with an illustrative example of 16 random variables, i.e. earthquake 

subfault slip direction, is illustrated. Although response surface models offer 

comparative reliability estimation with higher efficiency compared to the original 

Subset Simulation method, they suffer from the curse of dimensionality. Especially 

in complex systems where the first and second-order functions are not adequate and 

higher order is necessary.  

 

Furthermore, in real-time stochastic simulation, the earthquake parameters besides 

slip direction, such as earthquake magnitude, focal depth, and rake angle etc. are all 

subject to vary. Furthermore, the structural parameters are essential and their 

uncertainty should be considered in the stochastic simulation. Thus, the number of 

the random variables can easily exceed a hundred, which requires over 5,000 

samples in order to formulate, for example, a second order approximation in MLS 

or the second order mean function in GP. Not to mention using a higher order 

polynomials for the basis function. 

 

5.1 Sparse Bayesian modeling 

In general, the training phase in the regression process requires O(N3) 

computational efforts where N denotes the number of data points. Due to the 

characteristic of the physical model, N can be very large. However, it turns out that 

the influence of an individual basis in a polynomial is heterogeneous and can be 

quantified using various methods. Introducing sparsity in the basis function can 

reduce the model complexity as well as avoid over-fitting problem. Furthermore, it 

minimizes the computational resource required. In recent years, attempts have been 

made for the sparse approximation, such as sparse pseudo-input Gaussian processes 

(SPGPs) (Snelson & Ghahramani 2006), automatic relevance determination (ARD) 

(Neal 1995), and relevance vector machine (RVM) (Tipping 2001) etc. In these 

studies, each coefficient in the basis function was assigned with a weight and only 

the basis with non-zero weight is kept in the function.  
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In this section, the sparse Bayesian modeling approach is integrated with the 

SSMLS and SSGP in order to include more random variables which render the 

simulation of the physical phenomenon more practical. Apart from this, higher 

order basis functions will be tested using the same number of variables as in 

Chapter 4 and the results will be discussed at the end of this chapter. 

 

5.1.1 Sparse Bayesian Inference 

Consider a standard linear regression problem for i =1,…, N with prediction error , 

which gives:  

 T
i i iy  x β ε  (5.1) 

where β is the parameter vector and the   is assumed to be normally distributed 

random variables:                  . This error term indicates a probability 

model which corresponds to the following multivariate Gaussian likelihood 

function:  
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The prior probability      is chosen as a Gaussian distribution to reflect the 

uncertainty of the parameter vector. It is given by:  

 1 22 T1
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where diagonal matrix                    with each hyperparameter    

controls the weight of the corresponding prior. The introduction of            

enables the function to ultimately prune out the irrelevant basis terms and gains the 

sparsity property (Tipping 2001). Chang et al. (2008) categorized the Gaussian 

prior into three cases, in which the ARD prior corresponds to Tipping’s approach. 

The conditional posterior distribution of the parameter   given data can be derived 

by combining the likelihood function and prior probability distribution of the 

parameter according to Bayes theorem, which is given by: 
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It is proven to follow        where 2 1( )   A X XT  and 2  μ X yT .  

 

Instead of extending the hyperparameters into Bayesian inference, Bayesian model 

class selection is adopted to estimate the most probable ones. To estimate the most 

probable model class 2( )Μ α,σ condition on data y is equivalent to finding the 

hyperparameters which maximize the corresponding posterior probability. This can 

be derived using the Bayes theorem with the evidence ( )y Mp and the prior ( )Mp . 

Under the assumption that the prior probability of selecting each model class is 

equal, the problem is reformulated to maximise the evidence or its equivalent, 

logarithm L(α, σ2):  
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where 2 1 TC    I XA X . By proper mathematical and matrix manipulation, the 

L(α,σ2) becomes  
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 (5.6) 

where                       . By setting this way, the maximum log 

likelihood is decomposed into two parts: the contribution from the ith basis vectors 

2,( )i  and the rest of the basis terms. The details in the derivation of Eqn. (5.6) 

can be found in both Tipping and Faul (2003) and Chang (2008) studies. 

 

5.2 Proposed SB-SSMLS for higher order metamodels and higher 

dimensional random variables 

Many reliability problems involving complex systems have adopted metamodels in 

order to reduce the computational time (Bailer-Jones, C. A., 2002, Nobile et al. 

2008, Tang et al. 2010). However, as illustrated in Chapter 4, the accuracy of the 

metamodels deteriorated due to a lack of support points in low probability region. 

The proposed algorithms in the previous chapter try to solve the problem by 
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providing additional support points adaptively. The results have shown a great 

amount of improvement on the accuracy of the approximation. Note that all the 

previously used metamodels are second order functions due to a limited number of 

support points that can be afforded computationally. Since the response of a 

complex system with many random variables tends to be highly nonlinear, a lower 

order (first or second) metamodel may not be sufficient to handle such problem. 

Hence, an alternative is to increase the nonlinearity of the basis functions in the 

metamodels to allow them to apply to much complicated responses.  

 

In this section, a sparse Bayesian-based metamodel is proposed. First, it copes with 

higher order (third and fourth) metamodels. The same benchmark study used in 

Chapter 4 is employed to demonstrate the efficiency of the proposed algorithm. 

Secondly, the proposed algorithm is adopted to include more random variables, 

including both structural and earthquake ones to make the reliability analysis more 

robust. 

 

The algorithm starts with constructing the metamodel functions as described in 

Chapter 4. However, before estimating the coefficients for the basis function, the 

hyperparameters αi for each basis term is calculated and updated sequentially by 

equalling the partial derivative of Eqn. (5.6) with respect to the corresponding αi to 

zero. This is given as:  
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which yields the unique solution:  
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where 1T
i i i is C

 X X  and 1T
i i iq C

 X y . Therefore, only the terms with 

2 0i i iq s    and a finite αi value should be included in the basis function. The 

coefficients for the selected terms are then derived. This procedure is iteratively 

done until every basis term is evaluated. The framework is summarized in Figure 33.   
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Figure 33 Sparse Bayesian metamodel framework 
 

An extension of Tipping’s work (2001) focuses on the modification of the variance 

term σ in C. In the MLS context, the errors of the support points are not i.i.d. 

samples. Therefore, the C is no longer expressed as 2 1 TC    I XA X  in the 

previous section. Instead, the variance for the input vectors is represented by the 

inverse of the variable weight function ( , ) ( ( ;   ))ic k w d θ θW  as in Eqn.(4.6) which 

mainly depends on the distance between the interpolation point and the input 

vectors. For the simplicity of the expression, here it is defined that 1( , )c kWω . 

Thus, the matrix is transformed into 1 T  XA XωC . For reasons that will 

become clear later, the evidence maximization with respect to z which represents 

both c and k is written in the form:  

 T 11
log

2
L

z z
       

y yω ω  (5.9) 
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In the equation, the derivative of the log determinant of a positive definite matrix ω 

is given by 1log

z





ω
ω and the derivative of the inverse of the matrix

1
1 1

x x
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  

 
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ω ωω ω . Therefore, the gradient of the evidence is transformed into: 
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By defining 2 2and ( )k kcD
S c T

d
   , the partial derivatives of the weight function 

with respect to c and k are given by: 
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The above equations are incorporated into the sparse Bayesian scheme for the high 

dimensional variable studies presented in Section 5.3.2. 

 

5.3 Illustrative example  

In this section, integrating the sparse Bayesian method with the SSMLS and SSGP 

is illustrated. In Section 5.3.1, third- and fourth-order polynomial basis functions 

are utilized for the SSMLS and SSGP algorithms without computing additional 

numerical simulations at each intermediate failure level, i.e. ori-SSMLS and ori-

SSGP. In Section 5.3.2, the sparse Bayesian method is integrated with the adaptive 

SSMLS algorithm proposed in Chapter 4 for evaluating the reliability of a system 

with a total of 53 random variables.   
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5.3.1 Higher-order SB-SSMLS and SB-SSMGP models  

The sparse Bayesian inference greatly reduces the number of terms in the basis 

function. Thus it makes constructing higher order basis function possible for the 

metamodels. This feature enables the metamodel to create a more flexible and 

robust response surface for a complex system without using a large amount of 

training data which are often not affordable in practice. 

5.3.1.1 SB-SSMLS 

Before constructing a higher-order SSMLS using sparse Bayesian framework, it is 

worthwhile to compare the performance of the second-order SSMLS with and 

without sparse Bayesian framework. In order to compare the results obtained from 

different versions of the algorithms, 500 support points are used to construct the 

second order MLS. 50 independent runs for the sparse Bayesian SSMLS (SB-

SSMLS) are carried out. The mean failure probability estimates over 50 runs by the 

SS, second order ori-SSMLS and second order SB-SSMLS are plotted in Figure 34. 

It can be seen from the figure that the SB-SSMLS estimate performs slightly better 

than the ori-SSMLS in each conditional failure level. This indicates that the 

metamodel with fewer basis terms can perform better than the one with more terms. 

In fact, this is the whole spirit behind the proposed algorithm that it is important to 

have appropriate combination of "terms" given some data points.  
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Figure 34 Failure probability estimates of SS, ori-SSMLS and SB-SSMLS 
 

In terms of the appropriate combination of basis terms, Figure 35 summarizes the 

frequency of the basis term used for the 50 independent runs. The terms with 

frequency less than 3 are not shown. Overall, the sparsity of the basis function is 

significant. For the MLS method, the influence radius is prescribed to include 100 

support points. Since each stochastic sample requires an iterative sparse Bayesian 

inference, it is not possible to present all the records. The figure only shows the last 

chosen terms of the sample out of the 2000 stochastic samples. It can be seen that 

some of the terms are never selected such as 7, 37, 79, etc., meaning these terms 

have little influence on the approximation. On the other hand, terms such as 38 and 

53 have been chosen for more than half of the 50 simulations. It is also found that 

the first three frequently chosen terms 38, 53 and 103 correspond to the 

combination of variables x2x6, x3x7, and x7x11. Individually speaking, the random 

variables 2, 3, 6, 7, and 11 have relatively higher information entropies according to 

Table 8. It has to be emphasized that the 16 variables are equally important in the 

earthquake source modeling. It is perhaps only due to the mathematical 

manipulation which leads to the above-mentioned observation. The exact 

mechanism of selecting these combinations needs further investigation. The average 
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number of basis terms used for each sample is 11 with a minimum and maximum of 

4 and 32, respectively.  

 

 

Figure 35 Frequency of the basis terms chosen by sparse Bayesian MLS 
 

The third and fourth order SB-SSMLS use the same framework as in the second 

order SB-SSMLS except that higher order basis functions are applied. The number 

of basis terms for the full cubic and quartic polynomials are 969 and 4845, 

respectively. The mean failure probability estimates by the SS, third order and 

fourth order SB-SSMLS are plotted in Figure 36. The fitness of the two higher 

order SB-SSMLS algorithms are compared to the Subset Simulation. In general, the 

performances of the two are rather similar and both agree well with the benchmark 

reliability result. The fourth order SB- SSMLS is slightly better than the third order 

SB-SSMLS in the first and third conditional failure levels.  
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Figure 36 Failure probability estimates by SS, third order and fourth order SB-
SSMLS 

 

Again, the frequency of the basis term used for the 50 independent runs for both the 

third order and the fourth order SB-SSMLS are plotted in Figure 37. The terms with 

frequency less than 3 are not shown. In Figure 37(a), the first 153 terms represent 

the first and second order whereas the following 816 terms are third order. In Figure 

37(b), the basis terms after 969 indicate the fourth order polynomials. It can be seen 

that the algorithm tends to use the higher order terms much more frequent than the 

lower order terms. The average total number of basis terms used for the third and 

fourth order SB-SSMLS is 31 and 24, respectively. The minimum and maximum 

number of basis terms for the third order is 5 and 95, respectively, compared to 5 

and 85, respectively, for the fourth order case. According to the figure, the fourth 

order SB-SSMLS shows more sparsity compared to the third order one although the 

total number of basis terms for the quartic polynomial is five times the size of the 

cubic one. A possible explanation is that the fourth order terms are representative 

and containing more information than the third order ones. Further investigation is 

required to better understand this issue.  
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(a) 

 

(b) 

Figure 37 Frequency of the basis terms chosen by SB-SSMLS.  
(a) third order and (b) fourth order 

 

A comparison of the computation efficiency of the SS, third order and fourth order 

SB-SSMLS algorithms are presented in Table 10. Although the c.o.v. for the SB-

SSMLS algorithms are a little higher compared to the benchmark, the total number 

of numerical simulations is only one third of the benchmark. This leads to a better 

efficiency in terms of Δ. The c.o.v. for all the algorithms are presented in Figure 38. 

Note that the total computational time for the two higher order SB-SSMLS are close 

since only 30 basis terms are used on average with the sparse Bayesian scheme.  
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Table 10 Comparison of the computation efficiency for SB-SSMLS algorithms 

PF = 10-3 Nb. Smln δ Δ 
Subset Simulation 1500 0.987 38.226 

3rd order SB-SSMLS 500 1.018 22.763 

4th order SB-SSMLS 500 1.017 22.741 

 

 

 

Figure 38 The c.o.v. of failure probability estimates for SS, third order and fourth 

order SB-SSMLS 

5.3.1.2 SB-SSMGP 

Initially, the same framework as used for the SB-SSMLS was applied to the SSGP. 

However, the performance of the higher order SB-SSGP does not overweigh the 

second order one. This is illustrated from the resultant reliability functions for the 

sparse Bayesian integrated GP metamodel with various orders of basis functions 

plotted in Figure 39. It is shown that the employment of a higher order basis 

function has limited influence on the GP approximation. The improvement obtained 

from the third and the fourth order SB-SSGP is hardly noticeable. In contrary to this, 

the accuracy of the SB-SSMLS algorithm is enhanced with increasing order of the 
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basis function. In fact, the SB-SSGP performs similarly to the ori-SSGP result as 

shown in Figure 31. On one hand, the improvement in accuracy of the adv-SSGP is 

achieved by adaptively introducing more numerical evaluations within or near the 

failure domain as well as properly choosing the subset support points. On the other 

hand, the SB-SSMLS in the previous section performs quite well without additional 

numerical simulations. This leads to the following proposed modification to the SB-

SSGP algorithm.  

 

Figure 39 Failure probability estimates of SB-SSGP with various order basis 

function 

 

As stated at the end of Section 4.2.2, an important characteristic of MLS is that only 

the training points within an influence radius will be selected. Although the subset 

selection of the training points for GP as shown in Section 4.3.3.2 helped in the 

SSGP approximation, the selecting mechanism is not applicable in this case since 

no extra training points are generated. Thus, a novel moving Gaussian processes 

(MGP) is proposed in this section to be integrated with the sparse Bayesian 

inference. The MGP works in a similar way as MLS except for the basis and 

covariance functions which are calculated by Gaussian processes. The distance 
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between the interpolated point and the supporting points is computed before 

carrying out the GP model. Only the support points within the influence radius are 

used in the GP regression. With this pre-processing step, the SB-SSMGP algorithm 

is implemented for the reliability assessment.  

 

50 independent runs were conducted for both third order and fourth order SB-

SSMGP algorithms. The resultant reliability estimates by SB-SSMGP with 2nd – 4th 

order basis functions are plotted in Figure 40. The fitness of the SB-SSMGP 

algorithm compared with the Subset Simulation is derived quantitatively and 

summarized in Table 11. The failure probability estimation results derived from the 

SB-SSMGP algorithms are greatly enhanced compared to the original version of 

SB-SSGP. This suggests that the ability of “moving” for each stochastically 

generated point allows the Gaussian processes to use the most relevant support 

points to construct the basis and covariance functions. Hence, a better 

approximation result can be achieved. According to Table 11, the third and fourth 

order SB-SSMGP algorithms have similar performance which is also observed in 

SB-SSMLS algorithms.  

 

Figure 40 Failure probability estimates of SS and various orders SB-SSMGP 
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Table 11 Fitness of the higher order metamodel compared to benchmark 

 Lv1 Lv2 Lv3 

3rd order SB-SSMGP 0.86 1.61 1.64 

4th order SB-SSMGP 0.91 1.67 1.87 

 

The c.o.v. of the SB-SSMGP algorithms are presented against the benchmark study 

as shown in Figure 41. In general, the uptrend is slightly milder than the benchmark 

c.o.v. from the second conditional level onwards, due to a large number of samples 

used in each intermediate failure level. The computational efficiency of the SB-

SSMGP algorithm is summarized in Table 12. Compared to Table 10, the SB-

SSMGP outperforms the benchmark study not only in terms of the efficiency Δ but 

the c.o.v. as well. Similar to the case of adv-SSMLS and adv-SSGP, further 

reduction in c.o.v. of the failure probability estimator of 3rd-order and 4th-order 

SBMGP is expected with more samples without extra original numerical simulation. 

 

Figure 41 The c.o.v. of failure probability estimates for the third and fourth orders 

SB-SSMGP 
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Table 12 Comparison of the computation efficiency for SB-SSMGP algorithms 

PF = 10-3 Nb. Smln. δ Δ 
Subset Simulation 1500 0.987 38.226 

3rd order SB-SSMLS 500 0.892 19.946 

4th order SB-SSMLS 500 0.888 19.856 

 

5.3.2 Adaptive SB-SSMLS for high dimensional random variables 

In this section, a total of 53 random variables are considered, including both the 

earthquake and structural parameters, to better understand the tsunami-structure 

interaction mechanism. The number of subfault is increased to 8×8. The outskirts of 

the fault are assumed to be zero to reflect the actual earthquake source mechanism. 

Therefore, the 36 inner sub-faults are non-zero. The random variables consist of 

earthquake magnitude, focal depth, subfault strike angle, rake angle, dip angle, 

subfault slip magnitude, and structural variables, i.e. Young’s modulus of steel 

reinforcement, yield strengths of steel reinforcement, tensile strength of concrete, as 

well as Poisson ratios for the two materials. The distributions used for the 

earthquake source parameters and material properties are consistent with the 

observation of historical earthquakes in Tohoku region (Yamamoto & Hori 2004) 

and study by Mirza, S. A., and MacGregor, J. G. (1982), respectively. The fault 

length and width are determined by the earthquake magnitude. The distributions of 

the 53 random variables and their basis are provided in Table 13. A sample 

COMCOT input for the case study is presented in Appendix A.2.   

 

Since a full set of the second order metamodel has 1485 coefficients to be evaluated, 

applying the metamodel directly results in at least 1485 numerical simulations. 

More simulations are required for adaptive metamodel algorithms such as the one 

proposed in Chapter 4. Therefore, the integration of the sparse Bayesian method 

with the adaptive second order metamodel, i.e., adaptive SB-SSMLS, is illustrated 

in this section. The purpose of such integration is to include more random variables 

and at the same time maintain the accuracy of the reliability estimate. As it will be 

shown later, fewer than 300 coefficients out of the full set of the second order 

coefficients are kept using the sparse Bayesian method. Thus, a total of 500 support 
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points are firstly assigned to construct the MLS function. For each intermediate 

level, a number of M = 2,500 samples are simulated. A portion of the samples 

which lead to the top 10% of maximum displacement as computed by the MLS is 

selected and their maximum displacements are computed using the original 

numerical simulation. The newly generated samples are included as support points 

to improve the accuracy of the approximation for samples from rare region. 

 

Table 13 Distributions of the 53 random variables 
Parameter PDFs Nb. of variables 

Earthquake magnitude [M
w
] G-R relation [8.0, 9.0] 1 

Focal depth [km] U(20, 70) 1 

Strike direction [deg] N(204, 30) 1 

Dip angle [deg] N(25, 10) 1 

Rake angle [deg] N(90, 34) 36 

Dislocation [m] Hybrid K-squared  8 

Young’s modulus of steel  N(200GPa, 20GPa) 1 

Yield strengths of steel N(460MPa, 46MPa) 1 

Poisson ratios of steel N(0.3, 3e-3) 1 

Tensile strength of concrete N(3.2MPa, 0.57MPa) 1 

Poisson ratios of concrete N(0.2, 2e-3) 1 

Total  53 

 

It was shown in Chapter 4 that the influence radius for the MLS is updated when 

new support points are included. However, due to the higher dimensional random 

variables, the lower range of the influence radius is limited by the number of 

coefficients remained after the sparse Bayesian inference. This indicates that the 

optimization of the influence radius might be compromised. Therefore, the free 

parameters c and k which control the weight function in MLS are subject to change 

so as to retain the performance of MLS as in the case where the optimal radius is 

applied. The ranges for the c and k are 0.1 to 1.0, and 0.4 to 1.8, respectively. A 

sequential optimization scheme is adopted to obtain the c, k, and influence radius. 

The optimization objectives are the difference between the intermediate thresholds 

of the pre-samples and the support points and information entropy between the two.  
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The mean failure estimates by the proposed adaptive SB-SSMLS is shown in Figure 

42, together with the Subset Simulation results involving the 53 random variables. It 

can be seen that the approximation by the proposed algorithm overestimates the 

failure probability before PF = 0.1, and underestimates it afterwards. However, the 

gap is closer as the failure probability decreases. The greatest discrepancy between 

the two is at the end of the second intermediate failure level. The average 

cumulative number of support points for the three levels are 500, 750, and 951, 

respectively. The optimized value of influence radius, MLS shape factors c and k, 

are listed in Table 14. The c and k in the first intermediate level are at their original 

value (0.4, 0.1) as used in other literatures. As can be seen from the table, the radius 

is increasing with the number of conditional levels. The minimum radius is 

confined by the number of coefficients selected by the sparse Bayesian algorithm, 

which can be the reason for the overestimation in the first conditional failure level. 

For the subsequent levels, although the influence radius as well as the shape factors 

c and k vary, the performance of the MLS is barely passable due to a lack of support 

points in the rare region.   

 

Figure 42 Failure probability estimates of SS and adaptive SB-SSMLS 
 

Table 14 Sub-optimized MLS parameters in adaptive SB-SSMLS 
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 Radius D c k 

1st level 190 0.40 1.00 

2nd level 530 0.39 0.90 

3rd level 710 0.48 1.11 

 

Apart from the failure probability estimates, the interaction among different 

variables provides a better understanding of the physical process and help to 

comprehend the algorithm intuitively. The correlation matrix of the earthquake 

magnitude, earthquake depth, strike and dip angles at the third conditional failure 

level, is shown in Figure 43. All of the four parameters have high correlation 

coefficients, indicating a relatively strong linear relationship between the paired 

variables. The earthquake depth and dip angle shows the highest correlation 

coefficient in a negative value. In general, a shallower earthquake causes severer 

tsunami and the optimal dip angle for a maximum run-up is between 20° - 30° 

(Geist 1998). Therefore, the simulation result coincides with the observation in 

other studies.  
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Figure 43 Correlation matrix of four earthquake parameters 

 

The marginal probability distributions of the variables obtained from the simulation 

is also presented. For example, the marginal distributions of the earthquake 

magnitude of the three intermediate failure levels are shown in Figure 44. The 

kernel density estimates are derived based on the total samples generated at each 

level. As the conditional failure level increases, the peak of the magnitude density 

moves towards the upper boundary of this case study, i.e. Mw 9.0. The marginal 

PDF of the earthquake depth is plotted in Figure 45 where the depth becomes 

shallower end as the level increases. 

 

Figure 44 Kernel density estimates of earthquake magnitudes for the three 
intermediate failure levels 
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Figure 45 Kernel density estimates of earthquake depth for the three intermediate 

failure levels 

 

For the 36 slip angles, an upper diagonal of the correlation matrix is showcased in 

Figure 46. Positive correlations are displayed in blue and negative correlations in 

red colour. The colour intensity and the size of the circle are proportional to the 

correlation coefficients. The legend colour shows the correlation coefficients and 

the corresponding colours. The paired variables of slip angle with higher correlation 

magnitude can be found between V1-V16, V3-V31, V4-V31, and V18-V21. The 

location of the 36 variables on an imaginary 6×6 fault plane is shown in Table 15. 

Note that the actual geological interaction on an earthquake fault is much more 

complex and requires further investigation.   
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Figure 46 Upper diagonal correlation matrix of the slip angles 
 

Table 15 Location of the 36 slip angles on a fault plane 
V1 V7 V13 V19 V25 V31 
V2 V8 V14 V20 V26 V32 
V3 V9 V15 V21 V27 V33 
V4 V10 V16 V22 V28 V34 
V5 V11 V17 V23 V29 V35 
V6 V12 V18 V24 V30 V36 

 

Regarding the 8 slip amplitudes, the correlation matrix at the third conditional 

failure level is presented in Figure 47. The linear correlations among the pairs are 

hardly visible, except for V1-V7 which has a relatively higher correlation 

coefficient of -0.46. However, the correlation is not sufficient to imply dependence 

(causation). Again, the knowledge in earthquake physics is required for further 

interpretation of the simulation result. 
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Figure 47 Upper diagonal correlation matrix of the slip amplitude 
 

The marginal distribution of the structural parameters, i.e. yield strength, Young’s 

modulus, and Poisson ratio of steel (labelled as Yd-S, E-S, and nu-S, respectively); 

as well as tensile strength and Poisson ratio of concrete (labelled as Ts-C and nu-C, 

respectively), are examined. The correlation matrix of the five variables at the third 

conditional failure level is presented in Figure 48. It can be seen from the figure that 

correlations are low in general, except for the Young’s modulus and Poisson ratio of 

the steel which has a positive correlation of 0.58. This is reasonable since Young's 

modulus (E) is related to Poisson ratio (ν) by the following relationship:               , where G is the shear modulus. 

 



108 
 

 

Figure 48 Correlation matrix of the five structural variables 

 

5.4 Closing remarks 

This chapter has shown the possibility of using metamodels with higher order basis 

functions as well as using metamodels to solve system with high dimensional 

random variables. One thing in common for these two problems is that they require 

thousands of support points derived from physical computations which are hardly 

affordable for such complex system. The elimination of the irrelevant terms in the 

basis function is the key to solving such challenge. In the case studies, only a few 

hundred basis terms are conserved after the sparse Bayesian inference. Therefore, 

only 500 simulations are required for the higher-order SB-SSMLS and 951 for the 

adaptive SB-SSMLS for high-dimensional problem, compared to 1,500 for the 

Subset Simulation benchmark study.  

 

The sparse Bayesian inference is applied to both SSMLS and SSGP. The accuracy 

of the third and fourth order SB-SSMLS are greatly improved compared to the 
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second order case. However, the higher order SB-SSGP does not perform as 

expected due to the limitation in subset selection of the training points. It turns out 

that the integration of the sparse Bayesian with SSGP alone cannot fulfil the 

accuracy requirement. Therefore, a moving GP (MGP) conceptually similar to MLS 

is proposed, i.e., the approximation only relies on the support points within the 

influence radius. As seen from Figure 40, the SB-SSMGP algorithm with higher 

order basis functions achieves a more accurate result compared to the second order 

case. The influence radius feature assists the GP to use a few yet important training 

points to construct the model. The MGP is a possible solution for a bunch of 

problems where uncertainty quantification is desired and subset data selection has 

difficulty in providing relevant training data.  

 

The performance of the adaptive SB-SSMLS in higher dimensional (53 dimensions) 

problems is not as good as the other cases which have 16 random variables. It seems 

that a relatively high portion of basis terms are relevant in the adaptive SB-SSMLS. 

The correlations among the source parameters indicate they are potentially 

connected in a certain way. The subfaults with high correlation can be proposed in a 

joint distribution manner in the stochastic sampling part, which will improve the 

performance of the proposed algorithm. Furthermore, the statistical analyses can 

shed some light on earthquake engineer or geologist who studies the fault 

mechanism aiming at better understanding the physical behaviour. 

 

Nonetheless, there are a few limitations in this work which requires follow-up 

studies. First of all, the selection of the highest order of polynomial is not trivial. In 

this study, the third and fourth order polynomials are adopted. As it is seen from 

Figure 36 and Figure 40, minimum improvement in terms of accuracy are achieved 

by adopting the fourth order and that is one of the reasons to stop at fourth order. 

Another reason is the limit number of support points since full-basis polynomials 

requires       number of training points to avoid singularity where d is the number 

of variables and m is the highest order of the polynomials. The most straightforward 

way is to use statistical analyses for trial run of the metamodel in order to determine 

the order. On the other hand, Chebyshev polynomials can be adopted to select the 
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uncorrelated coefficients (Gavin and Yau 2008). Another approach involves 

Bayesian model class assessment in order to choose the appropriate highest order to 

be used (Cheung, S. H. and Beck, J. L. 2010).  

 

Secondly, in the sparse Bayesian inference algorithm, the forward-backward feature 

selection algorithm adds or deletes one term at a time. It is confined in a way such 

that only a local maximum of marginal likelihood is achieved. In another word, 

global optimization of marginal likelihood requires adding or deleting more than 

one term at a time, which is not implemented in the algorithm. The main concern of 

operating with one term only comes from the computation time as the permutation 

of the terms is exponentially proportional to the number of terms. Although the 

sparse Bayesian algorithm tremendously reduces the number of terms in the basis 

function, the limit still exists when the influence radius is optimized. According to 

the correlation matrix among the random variables, some of them show strong 

linear relationship among them and therefore, a multi-dimensional proposal PDF 

reflecting the dependence among the random variables can be used in order to 

achieve a higher acceptance ratio in MCMC algorithm in the Subset Simulation 

scheme.   
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Chapter 6 Other Enhancements over Metamodel-Based Reliability 

Analysis 

6.1 Consistent reliability evaluation using SS-MLS integrated with response 

conditioning method 

The introducing of response surface models help to provide more insights of the 

system behavior by generating stochastic samples more efficiently. However, due to 

the approximation nature, its resultant reliability estimates are not consistent in the 

sense that they do not converge to that obtained by solely running the original 

simulations regardless of the number of the stochastic samples generated by 

metamodel-based approaches. Furthermore, more often than not, the metamodels 

are implemented solely without checking the accuracy of its reliability estimates. In 

the next section, the response conditioning method (RCM) proposed by Au (2007) 

is integrated with the previously-proposed metamodel-based algorithms and a case 

study is presented.  

6.1.1 Response conditioning method 

The governing principle of the RCM is the Theorem of Total Probability. The 

failure probability can be expressed as: 
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The metamodel function ˆ( )f   is assumed to be computed with negligible amount 

of effort compared to the original numerical physical simulation. From Eqn. (6.1), it 

is clear that the failure probability can be partitioned by  :  0,  1, ,iB i m  . The 

xi’s in Eqn. (6.2) are prescribed thresholds. Therefore, instead of estimating the 

failure probability P(F), the RCM assesses the bin probability ){ ( : 0,1,..., }iP B i m

and the conditional probability ){ ( : 0,1,..., }iP F B i m .  
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The Subset Simulation (SS) method is naturally a good choice to be integrated with 

RCM. The bin probability P(Bi) can be estimated based on a commonly specified 

value of p0 in the SS algorithm. The bin probability is given by:  
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where P denotes the sample estimate. A certain number of original numerical 

physical simulations which calculate the responses are required to evaluate the 

conditional probability ) )( ( ( ) 0i iP F B P L B θ  where L(θ) is the limit state 

function. To avoid the clustering effect for better estimating the lower probability 

regime in each bin, a sub-bin concept was adopted which partitions the bin to 

equally sized sub-bin. One sample will be taken from each sub-bin to run the actual 

simulation. A choice of 50 sub-bin was used in Au’s case studies. 

 

Let N denote the number of samples at each intermediate failure level, and N1 is the 

number of samples from each bin to evaluate the conditional probability. Then the 

failure probability can be written as:  
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where ( )iI F  is an indicator function and ( ) 1iI F  when L(θ) < 0 and zero otherwise; 

iP approximates ( )iP B as given in Eqn. (6.3). The framework of the RCM shares a 

similar concept of a method called Auxiliary Domain Method (ADM) in which it 

assumes an auxiliary failure domain in order to explore the dependency between the 

target and conditioning responses (Katafygiotis et al. 2007). ADM assumes the 

samples obtained by auxiliary response conditional on the auxiliary failure domain 

can be obtained by forming the failure domain as a union of linear half-space. It 

avoids the gradually propagation of the failure domain from frequent to rare region.  

6.1.2 Adaptive RCM integrated with SS-MLS algorithm 

The RCM has shown promising results in Au’s case studies (Au 2007) where the 

“corrected” results are close to the ones obtained by MCS. However, as pointed out 

in his paper, the RCM may not perform well for those problems in which the 

approximation and the target response are not well correlated. This is proven by 
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using the RCM directly for the benchmark problem. The failure curves are plotted 

in Figure 49. The dashed lines indicate the eight independent failure probability 

curves derived using the RCM integrated with MLS without adaptation. From the 

result, one can see that the RCM does not provide reliable estimation even though 

the sub-bin size is doubled from 50 to 100 from the second conditional failure level 

onwards. For some of the cases when the failure probability increases, the RCM 

estimation returns zero which means no extra samples exceed a particular threshold. 

Nonetheless, it does give consistent value at the first intermediate failure level for 

most of the cases. Furthermore, the information provided by the RCM is generally 

correct, i.e. the RCM produces higher failure probability estimation when the 

metamodel approximation is lower than the actual result and vice versa. However, it 

tends to overcorrect the original results. 

 

Figure 49 Results of a few typical runs using the RCM 
 

Figure 50 shows the conditional samples derived from both numerical simulation 

(x-axis) and metamodel (y-axis) of the sub-bins. The umax is defined as the 

maximum structural displacement. The dashed line indicates the thresholds for the 

intermediate failure probability. Ideally, the sample points should fall in straight 

line with gradient 1, indicating that the approximation (umax-MLS) is the same as 

the numerical simulation (umax). However, this is impossible since approximation 

does not converge to the exact solution. Therefore the points are spread around. It 
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can be seen that the correlation between the two methods is low. The average 

correlation coefficients between the actual numerical simulation and approximation 

from metamodel for the four intermediate failure levels are 0.46, 0.13, 0.09, and 

0.11, respectively. The nonlinearity of the system reduces the accuracy of the 

metamodel in the rest of the failure levels, which results in an unreliable estimate of 

the failure probability.  

 

Figure 50 Scattergram of the samples selected from the sub-bins 

 

Based on the observation from the direct implementation of RCM, there are two 

places where the integration of the RCM with the metamodel based algorithms can 

be improved in order for it to be used for problems involving highly nonlinear 

systems. First of all, a better approximation of the original model by metamodel 

beyond the first failure level can be achieved by adaptively introducing more 

support points in the part of the failure domain for each level as proposed in 

Chapter 4 thus gradually covering more and more parts of domain important for 

accurate failure probability estimation or through sparse Bayesian method as 

proposed in Chapter 5. Secondly, the results obtained from RCM contains 

information which can help construct a more robust metamodel by comparing the 

approximation by the metamodel and the RCM result at each conditional failure 
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level. Thus, the metamodel can be updated quantitatively according to the 

difference of the two.  

 

The detailed procedure of the proposed algorithm using MLS as illustration is as 

follows.  

1. Sampling using the MLS is firstly carried out. Similar to the adv-SSMLS 

algorithm, the influence radius is optimized according to the support points.  

2. The RCM is implemented and the “correction” is obtained.  

3. The influence radius D of the MLS is re-optimized in order to minimize the gap 

between the approximation and the correction. 

4. Sampling of MLS using the newly derived radius for the failure level. 

5. The sub-bin samples in RCM which have their corresponding responses 

computed by numerical simulations are included as support points for a better 

approximation of the original model by metamodel. 

6. Iterate these five steps until a prescribed failure probability is reached. 

 

The samples generated by MLS in Step 1 are not for estimating the failure 

probability but rather for RCM correction in the next step. Thus, the sampling in 

this stage is called pre-sampling to distinguish it from the samples for assessing the 

failure probability. The purpose of the pre-sampling in the first step is to acquire 

additional support points using the RCM and make use of the difference between 

the pre-sampling and RCM results to re-calibrate the influence radius of the MLS. 

The proposed algorithm has two advantages: (a) the sub-bin samples computed 

using the original simulation is taken into account as support points so as to enhance 

the performance of the metamodel; (b) the RCM is implemented before the 

sampling stage which allows a real-time adjustment of the metamodel. The 

adjustment of the influence radius D in step 3 is made based on the difference 

between the RCM result and the original MLS pre-samples. Among the entire set of 

candidate influence radii, the one which gives the absolute minimum error will be 

chosen to construct the MLS. An illustration of the influence radius adjustment is 

shown in Figure 51. As shown in the figure, the result from the RCM indicates that 

instead of a failure probability of 0.1 (PF = 10-1) obtained from the MLS pre-
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sampling, the actual failure probability at this particular threshold is 0.18 (PF-RCM = 

0.18). Thus, the influence radius D is updated to minimize the difference between 

the two results. The MLS sampling after adjustment is then carried out as shown in 

the figure.  

 

Figure 51 An illustration of the interaction between MLS and RCM 

 

6.1.3 Illustrative example 

The proposed adaptive SSMLS-RCM algorithm is tested using the 16-variable 

benchmark problem. Initially, 200 support points (NS = 200) is used to construct the 

MLS. A number of 1,000 pre-samples are generated using metamodel for each 

conditional failure level before the sampling stage. The pre-samples are further 

divided into N1 = 50 and N2 = 100 sub-bins for the first intermediate failure level 

and the subsequent intermediate failure levels, respectively. One sample from each 

sub-bin will be drawn randomly and proceed with the numerical simulation. The 

reason for a higher number of sub-bins for the subsequent intermediate failure 

levels is to improve the resolution of the RCM.  

 

30 independent runs are carried out and the mean failure probability curve is plotted 

in Figure 52. The black dotted lines represent 10 out of the 30 independent runs. It 

can be observed that the mean failure probability curve agrees well with the 

PF-RCM = 0.18  
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benchmark result at all the intermediate failure levels. More importantly, the spread 

of the independent runs are considerably reduced compared to the direct application 

of the RCM as shown in Figure 49.  

 

Figure 52 Failure probability estimates of SS and adaptive RCM estimates 
 

The c.o.v. of the adaptive SSMLS-RCM algorithm is presented against the 

benchmark study as shown in Figure 53. An overall uptrend is observed similar to 

the Subset Simulation case. However, a drastic fluctuation is recorded at PF = 0.1. 

The fluctuation may give rise to the varying influence radius used as well as lack of 

support points at the first failure level. As more support points are generated, the 

radius is steadier, so as to the approximation. This trend can be directly observed 

from Figure 52 where the spread of the independent runs is wider at both ends and 

narrows down at PF = 10-1.8. The computational efficiency for the adaptive SSMLS-

RCM algorithms is summarized in Table 16. The number of simulations for 

adaptive SSMLS-RCM is supposed to be NS+N1+2×N2 = 450. However, due to the 

nature of the MCMC algorithm, a few of the samples taken from the sub-bins are 

repetitive and therefore the original model simulation computed once for these 

samples. Although the overall c.o.v. of the adaptive SSMLS-RCM is slightly higher 

than the one of the Subset Simulation, the computational efficiency of the adaptive 

SSMLS-RCM is 40% higher than the SS. It should be noted that without increasing 
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the number of original model simulations, the c.o.v. of the proposed SSMLS-RCM 

can be reduced significantly by increasing the number of samples obtained by 

considering metamodel for each conditional failure level. 

 

 

Figure 53 The c.o.v. of failure probability estimates for SS and the SSMLS-RCM 

 

Table 16 Computation efficiency for SSMLS-RCM algorithms 

PF = 10-3 Nb. Smln δ Δ 
Subset Simulation 1500 0.987 38.226 

SSMLS-RCM 415 1.129 22.999 

 

Similar to Figure 50, the conditional samples of umax derived from both numerical 

simulation (x-axis) and the metamodel (y-axis) of the sub-bins for the SSMLS-

RCM are plotted in Figure 54. Two main differences can be observed from Figure 

54 compared to Figure 50. First of all, the number of sub-bins is doubled from the 

second intermediate failure level onwards. Secondly, the linear correlations between 

the actual numerical simulation and approximation from metamodel for the third 

and fourth levels are higher which indicates a better performance of the metamodel. 

The correlation coefficients for the four conditional failure probabilities are 

presented in Figure 55. A triple and double increase of the linear correlations for the 

third and fourth levels, respectively, can be seen from the chart.  
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Figure 54 Scattergram of the samples selected from the sub-bins for SSMLS-RCM 
 

 

Figure 55 Comparison of the correlation coefficients for the direct RCM and 
SSMLS-RCM 

 

6.2 Subset data selection with multiple criterion in GP regression 

It was illustrated in Chapter 4 that the Gaussian processes regression is extremely 

sensitive to the input data. The subset data (SD) selection is a popular topic and 

many studies have contributed to this issue, such as (Seeger, Williams et al. 2003; 

1 2 3 4
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Snelson 2007). Most of the studies involve selecting an active data set based on 

some sort of criterion which essentially converts the problem into an optimization 

issue. Compared to single-objective optimization, multi-objective optimization 

(MOO) gives rise to a number of optimal solutions. It is a process of simultaneously 

optimizing more than one objective subject to certain constraints. Many algorithms 

were suggested in the past decades (Fonseca & Fleming 1993; Zitzler & Thiele 

1999). In the following section, we present the MOO algorithm for the active data 

set selection in Gaussian processes regression and use the same benchmark study to 

illustrate the effectiveness of the proposed algorithm.  

 

6.2.1 Subset data selection for Gaussian processes using multi-objective 

optimization 

The non-dominated sorting genetic algorithm II (NSGA-II) proposed by Deb and 

Srinivas (1994; Deb et al. 2002) obtains a Pareto front based on non-domination 

sorting. The so-called non-domination has two-fold of meanings: (1) a solution 

which is better than all the other ones in at least one objective and (2) not dominated 

by all the other solutions. The resultant non-dominated solutions are theoretically 

equally optimal.  

 

The proposed framework of the multi-objective optimizations integrated with the 

adaptive SSGP algorithm (MOO-SSGP) is as follows. First of all, the samples 

generated by numerical simulations are sorted in descending order based on the 

structural performance. The samples exceeding the current threshold are preceded 

with the MCMC algorithm without checking the failure condition (e.g. Metropolis-

Hasting). This step serves the purpose of varying the elements of the random 

variables since they are part of the training data for the metamodel. The same set of 

input is given to the metamodel with different sets of possible combination of the 

training data. This is similar to the framework shown in Figure 29. The difference 

between the approximation and the exact result obtained by original model 

numerical simulations are evaluated. Instead of using single criterion for the subset 

data selection, three objectives are chosen for the study, namely, mean absolute 

error (MAE), two-sample Kolmogorov–Smirnov test (K-S test), and log-likelihood. 
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Upon obtaining the comparison results, non-dominated sorting is implemented 

which results in a few choices lying on the Pareto front. At last, one set of training 

data randomly chosen from the Pareto front is selected. Although the three 

particular objectives are chosen for the study, there are other measures which can 

quantitatively compare the differences between the two sets of data. The reason to 

use these three is because they are the most representative and well-established 

methods from various perspectives. The MAE focuses on the prediction error by 

checking the individual points. The two-sample K-S test is used to examine the 

difference between the prediction and simulations in the context of one-dimensional 

probability distributions. Finally, the log-likelihood comparison between the two 

data sets is made based on the best distribution that fits the data. 

 

6.2.2 Illustrative example 

An example using the same benchmark study is carried out to showcase the benefit 

of adopting MOO-SSGP over SSGP. In the MOO step, 20 points are used for the 

numerical simulation. 50 combinations of subset data were prepared for the three 

objectives, respectively. The general procedure of the MOO-SSGP follows the 

adaptive SSGP method. 

 

30 independent runs were conducted for the MOO-SSGP algorithm. A sample result 

of non-dominated sorting is shown in Table 17. Objectives 1 to 3 refer to average 

absolute error, Kolmogorov–Smirnov test, and log-likelihood, respectively. Eight 

rankings are identified by the non-dominated sorting algorithm. 

 

Table 17 Sample result of non-dominated sorting for MOO-SSGP 
Nb. Objective -1 Objective -2 Objective -3 Ranking 
1 1.277 0.997 10.563 8 

2 0.977 0.860 0.930 1 

3 1.066 0.901 4.000 3 

4 1.082 0.995 7.617 6 

5 1.132 0.998 8.938 8 

6 0.967 0.980 6.771 4 
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7 1.244 1.000 11.086 9 

8 1.040 0.953 4.336 4 

9 0.981 0.992 8.247 6 

10 1.057 1.000 3.462 5 

11 1.080 1.000 12.420 8 

12 0.937 0.999 7.864 4 

13 1.259 0.969 6.926 6 

14 0.989 1.000 12.515 7 

15 0.968 0.901 4.743 3 

16 1.068 0.860 2.853 2 

17 0.957 0.931 3.056 3 

18 1.294 0.987 10.389 7 

19 0.996 0.901 3.113 2 

20 0.956 0.901 2.954 2 

21 1.038 0.931 0.152 1 

22 0.980 0.739 6.097 2 

23 1.024 0.999 8.614 7 

24 1.042 1.000 3.646 5 

25 0.901 0.987 3.660 1 

26 0.942 0.999 9.785 5 

27 1.092 0.997 11.616 8 

28 0.928 0.992 5.811 3 

29 0.927 0.901 4.613 2 

30 1.066 0.995 7.909 6 

31 1.010 0.901 2.566 2 

32 0.975 0.987 4.664 5 

33 0.989 0.969 2.741 2 

34 0.995 0.953 6.368 5 

35 0.954 0.901 1.694 1 

36 0.942 0.999 9.538 4 

37 1.069 0.997 8.602 7 

38 0.972 0.931 4.986 4 
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39 1.062 0.931 6.949 5 

40 1.051 0.807 5.649 2 

41 0.977 0.739 3.885 1 

42 1.151 0.931 5.899 4 

43 0.920 0.807 3.426 1 

44 1.104 0.995 6.139 6 

45 1.045 0.999 8.168 6 

46 0.968 0.980 3.443 4 

47 0.924 0.992 5.571 2 

48 1.008 0.807 0.936 1 

49 0.995 0.860 5.517 2 

50 0.865 0.969 5.973 1 

 

The paired results of the three objectives are plotted in Figure 56. The 

approximations by the metamodel are plotted in circles. The first three rankings are 

labeled in different line types. 
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Figure 56 Ranking based on the non-domination sorting 

 
The failure probability estimates by the SS, adv-SSGP and MOO-SSGP are plotted 

in Figure 57. The fitness of the SB-SSMGP algorithm compared with the Subset 

Simulation is derived quantitatively and summarized in Table 18. According to the 

figure and table, the difference between the two versions of the SSGP methods is 

relatively small. The adv-SSGP method has better performance up to PF = 0.1 and 

the MOO-SSGP overtakes it beyond PF = 0.1.  
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Figure 57 Failure probability estimates of SS, adv-SSGP, and MOO-SSGP with 

their associated uncertainty levels 

 

Table 18 Fitness of the adv-SSGP and MOO-SSGP compared to SS 

 Lv1 Lv2 Lv3 

adv-SSGP 0.68 0.82 0.61 

MOO-SSGP 0.59 1.04 0.72 

 

The c.o.v. of the MOO-SSGP is plotted in Figure 58, together with the c.o.v. of the 

benchmark and adv-SSGP. The MOO-SSGP has a lower c.o.v. throughout the 

conditional failure levels compared to the other two. Both versions of the SSGP use 

half of the numerical simulations of the SS. The lowest simulation number and 

c.o.v. make the MOO-SSGP the most efficient algorithms among the three though 

the adv-SSGP is close. The c.o.v. of the MOO-SSGP can be reduced significantly 

by increasing the samples generated by metamodel at each intermediate failure level 

without additional original model numerical simulations. 
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Figure 58 The c.o.v. of failure probability estimates for SS, adv-SSGP and MOO-

SSGP 

 

Table 19 Comparison of the computation efficiency 

PF = 10-3 Nb. Smln δ Δ 
Subset Simulation 1500 0.987 38.226 

adv-SSGP 666 0.780 20.129 

MOO-SSGP 630 0.738 18.524 

 

6.3 Closing remarks 

This chapter presents two algorithms, SSMLS-RCM and MOO-SSGP, aiming at 

further improving the performance of the metamodels based algorithms proposed in 

the work presented in the previous chapters. As stated at the beginning of this 

chapter, results obtained by metamodels cannot converge to the results obtained by 

the original model numerical simulations, due to its approximation nature. Using 

the original RCM algorithm proposed by Au (2007) can only solve problems where 

the approximations are more or less linearly correlated with the target response. 

Therefore, an interactive SSMLS-RCM algorithm is developed to release the 

constraint to a certain degree. The highlights of the SSMLS-RCM algorithms are: (1) 

incorporating the RCM-generated numerical simulations into the support points for 
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the metamodel; and (2) adjusting the influence radius in MLS based on the 

information obtained from the RCM. The purpose of the algorithm is to increase the 

linear correlation between the metamodel and the conditioning samples. The 

resultant exceedance probability curve performs well compared to the benchmark 

problem while the c.o.v. is significantly reduced compared to the case without the 

interaction between the RCM and the SSMLS.  

 

The multi-objective optimization allows conflicting objectives to work interactively 

and provides a set of compromised solutions. The proposed MOO-SSGP algorithm 

uses the non-dominated sorting algorithm to select the best active data set for the 

GP regression. Three criteria, i.e., mean absolute error, two-sample K–S test, and 

log-likelihood, are chosen for the study. Although the failure probability estimates 

do not significantly improve over the single objective case presented in 4.4.3.2, the 

c.o.v. is lower with less numerical simulations involved. Therefore a higher 

computational efficiency is achieved. It is clear that a stable performance in 

choosing the active data set for the GP reduces the variation of the independent runs.  

 

Apart from the work mentioned above, a few observations which require future 

investigation are discussed. In the SSMLS-RCM algorithm, a total of 460 

simulations were carried out. Increasing the number of sub-bins can further enhance 

the performance of the integrated metamodel and SS based algorithms which lead to 

a reduction of the overall c.o.v. To adopt a higher-order basis function as presented 

in Chapter 5 to improve the quality of the approximation is tempting and worth 

developing in future. The choice of the objectives in the MOO-SSGP algorithm is 

subjective. However, more objectives lead to more points in the first Pareto front 

increasing the uncertainty of choosing the optimal solution.  
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Chapter 7 Conclusion and Future Works 

7.1 Conclusion 

An increasing frequency of a tsunami event has inevitably raised the potential risk 

for the tsunami-prone area in terms of both human life and building infrastructure. 

The current study focuses on the latter in the hope of alleviating the potential 

structural damage by evaluating the structural reliability. Thus, an efficient yet 

rigorous approach of evaluating the reliability of critical structures is essential to 

mitigate the corresponding risk. In order to accomplish the goal, various types of 

novel reliability analysis algorithms are proposed. A brief review for each chapter is 

summarized below. 

 

In Chapter 3, an innovative integration of the numerical simulations of the tsunami 

wave-structure interaction is realized. A stochastic tsunami generation scheme is 

proposed. The random variables cover all aspects of the earthquake mechanism, 

including the rake, dip, slip angle, dislocation, focal depth, fault length and width. 

The number of random variables largely depends on the number of subfaults since 

each subfault contains different value of the rake, slip angle, and dislocation. The 

COMCOT is adopted to simulate the tsunami process. The resultant inundation map 

of a particular area is validated using the 2011 Tohoku event. The output obtained 

from the tsunami modelling, i.e. wave velocity and height, is passed to the wave-

structure model to calculate the structural response. The structural model is 

constructed using LS-DYNA which is able to simulate the wave-structure 

interaction through Arbitrary Lagrangian Eulerian (ALE) formulation. The 

reliability analysis of the dynamic system under the risk of earthquake-induced 

tsunami requires thousands of such numerical simulations. A benchmark problem is 

set up using the Subset Simulation method at the end of Chapter 3. It is used to 

compare the results obtained from the proposed algorithms in the following 

chapters. The main issue for the benchmark problem lies in the repetitive evaluation 

of the structural response which requires considerable computation efforts.  

 

In Chapter 4, adaptive SS-MLS and adaptive SS-GP algorithms are introduced, 

focusing on efficiently as well as accurately assessing the structural failure 
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probability. Both algorithms are constructed based on the novel integration of the 

Subset Simulation framework and different metamodels. The former is used to 

estimate the probability for rare events, i.e., the failure probability is evaluated by a 

sequence of intermediate failure events, and the latter alleviates the computational 

burden of the numerical simulation. Two metamodels for stochastic sampling are 

examined in this study: (1) a recently proposed entropy-based moving least squares 

response surface (MLS) and (2) Gaussian processes regression (GP). The case 

studies using the proposed algorithms showcase the potential benefits brought by 

the integration of Subset Simulation (SS) and adaptively constructed metamodels. 

The adaptive feature enables the metamodels to approximate the responses 

corresponding to rare probability region more accurately. It can be seen that a 

comparable failure probability estimate is obtained using the proposed algorithms 

with much fewer computational efforts compared with the Subset Simulation 

without integrating with the metamodels. However, the Gaussian processes 

regression tends to overestimate failure probability in the first few conditional 

levels, compared to the MLS. This may arise when the choice of the subset of the 

training data for GP is not optimal and the support points are not sufficient.  

 

More often than not, engineers deal with a complex system containing variables 

more than a conventional metamodel can handle in practice. Besides, a lower order 

(first and second-order) basis function in metamodels is not adequate in the case of 

predicting responses of highly nonlinear systems. In both cases, the metamodel 

faces the curse of dimensionality, i.e., the number of support points required for the 

metamodel can easily exceed a thousand or even tens of thousands for naïve choice 

of basis functions. Since the number of support points is determined by the number 

of coefficients in the basis function, feature selection using Bayesian inference is 

adopted in Chapter 5. The feature selection reduces the redundant terms in a 

considerable number which enables the metamodel to be used in higher dimensional 

problem. According to the results obtained from the two examples, the higher 

orders MLS with fewer random variables (16 parameters) performs better than the 

second order MLS with higher random variables (53 parameters). Furthermore, the 

latter has the number of remaining basis two or three times the former after sparse 
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Bayesian, even though the total number of basis terms is one quarter of the former. 

This indicates that more basis terms in the higher dimensional case are relevant 

compared to the higher orders MLS with lower dimension.  

 

Chapter 6 deals with two other important aspects of the metamodels in reliability 

assessment. As the result of the metamodel does not converge to the actual result 

regardless of the number of samples, it is essential to provide a measure for the 

consistency of the metamodel. The response conditioning method (RCM) and 

Auxiliary Domain Method (ADM) methods proposed by Au (2007) and 

Katafygiotis et al. (2007), respectively, have shed light on the consistent reliability 

estimation at the price of extra numerical simulations. However, the original RCM 

cannot provide consistent correction of the approximation due to the poorly 

correlated conditional samples and the samples based on considering metamodels. 

The proposed SSMLS-RCM algorithm becomes an effective tool even for problems 

involving highly nonlinear systems by modifications made to the RCM including (1) 

expanding the sub-bins for higher conditional failure levels, as well as (2) creating 

the communication between the MLS and the RCM. The resultant reliability 

estimate and c.o.v. are greatly improved when compared to using the RCM and 

MLS independently.  

 

In conclusion, the objective of the thesis is to develop efficient algorithms to 

evaluate the performance and reliability of dynamic systems under earthquake-

induced tsunami. The main issue is the computational burden introduced by the 

numerical simulation of the wave generation, propagation, and wave-structure 

interaction problem. Various algorithms proposed in Chapter 4 – Chapter 6 attempt 

to crack the problem from different aspects. The accuracy of the metamodel is the 

most important factor and therefore discussed first. Chapter 5 intends to apply the 

metamodel on often computationally prohibitive high dimensional problems. Last 

but not least, the efficiency and consistency of the algorithms are also of great 

importance. The flowchart of the core structure of the thesis is summarized in 

Figure 59. 

. 
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Figure 59 Schematic structure of the study of the structural reliability analysis  

 

7.2 Future works 

Due to time constraints, the limitations and potential releases described at the end of 

each chapter are for future works. They will be carried out to further improve the 

proposed algorithms.  

 

From a global point of view, it should be emphasized that many other metamodels, 

such as artificial neural network (ANN), stochastic polynomial chaos (Ghanem & 

Spanos 1990; Xiu & Karniadakis 2002; Xiu & Karniadakis 2003) and stochastic 

collocation methods (Babuska, Nobile et al. 2007; Nobile, Tempone et al. 2008), to 

name just a few, are valid candidates of metamodels to partially replace the original 

physical model for the reliability analysis. There are other advanced stochastic 

simulation algorithms such as spherical subset simulation (S3) (Katafygiotis et al. 

2010) and domain decomposition method (Katafygiotis & Cheung 2006), etc., 

which are capable in generating failure samples. These algorithms have a similar 

function as the Subset Simulation used in the proposed algorithms but more 

efficient in generating failure samples. Incorporating these advanced algorithms to 

further develop the proposed methodology is one of our future works. 
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From a micro-scale perspective, there are two directions worth being explored in 

the near future. Firstly, metamodels which incorporate multiple outputs (Boyle 2003) 

is useful when more than one output (max. structural displacement in this case) is 

desired. Secondly, the adaptive RCM method proposed in Chapter 6 can be applied 

to the adaptive SB-SSMLS algorithm, which could potentially improve the 

performance of the metamodel further in higher dimensional system.  

 

Furthermore, the scope will be expanded to cover other civil engineering systems 

including transportation system, etc. The quantification of economic loss due to 

earthquake-induced tsunamis is helpful in decision making of disaster mitigation 

and is a valuable supplement to the thesis.   
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Appendix A.1 Sample COMCOT Input for the Benchmark Study 

No. Time Longitude Latitude Fault Length[m] Fault Width [m] Focal depth [m] Strike [deg] Dip [deg] Rake [deg] Slip [m] 

1 0 142.2 38.4 45923.0 18156.4 24400.0 199 10 6.4 0.0 

2 0 142.0 37.9 45923.0 18156.4 24400.0 199 10 133.4 0.0 

3 0 141.9 37.4 45923.0 18156.4 24400.0 199 10 79.9 0.0 

4 0 141.7 36.9 45923.0 18156.4 24400.0 199 10 119.7 0.0 

5 0 141.5 36.5 45923.0 18156.4 24400.0 199 10 122.5 0.0 

6 0 141.4 36.0 45923.0 18156.4 24400.0 199 10 103.8 0.0 

7 0 142.4 38.4 45923.0 18156.4 27552.8 199 10 92.9 0.0 

8 0 142.2 37.9 45923.0 18156.4 27552.8 199 10 132.9 15.9 

9 0 142.1 37.4 45923.0 18156.4 27552.8 199 10 46.9 21.6 

10 0 141.9 36.9 45923.0 18156.4 27552.8 199 10 70.3 25.0 

11 0 141.7 36.4 45923.0 18156.4 27552.8 199 10 51.4 19.3 

12 0 141.6 35.9 45923.0 18156.4 27552.8 199 10 75.9 0.0 

13 0 142.6 38.3 45923.0 18156.4 30705.7 199 10 45.5 0.0 

14 0 142.4 37.8 45923.0 18156.4 30705.7 199 10 129.7 18.2 

15 0 142.3 37.3 45923.0 18156.4 30705.7 199 10 95.1 24.4 

16 0 142.1 36.8 45923.0 18156.4 30705.7 199 10 106.1 27.8 

17 0 141.9 36.3 45923.0 18156.4 30705.7 199 10 108.0 21.6 
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18 0 141.8 35.8 45923.0 18156.4 30705.7 199 10 140.6 0.0 

19 0 142.8 38.2 45923.0 18156.4 33858.5 199 10 70.2 0.0 

20 0 142.6 37.7 45923.0 18156.4 33858.5 199 10 48.3 15.9 

21 0 142.5 37.2 45923.0 18156.4 33858.5 199 10 56.5 21.0 

22 0 142.3 36.7 45923.0 18156.4 33858.5 199 10 106.5 23.3 

23 0 142.1 36.3 45923.0 18156.4 33858.5 199 10 95.2 18.2 

24 0 142.0 35.8 45923.0 18156.4 33858.5 199 10 98.4 0.0 

25 0 143.0 38.2 45923.0 18156.4 37011.3 199 10 96.7 0.0 

26 0 142.8 37.7 45923.0 18156.4 37011.3 199 10 81.1 11.3 

27 0 142.7 37.2 45923.0 18156.4 37011.3 199 10 38.4 14.7 

28 0 142.5 36.7 45923.0 18156.4 37011.3 199 10 96.0 15.9 

29 0 142.3 36.2 45923.0 18156.4 37011.3 199 10 138.1 12.5 

30 0 142.1 35.7 45923.0 18156.4 37011.3 199 10 54.5 0.0 

31 0 143.2 38.1 45923.0 18156.4 40164.1 199 10 120.3 0.0 

32 0 143.0 37.6 45923.0 18156.4 40164.1 199 10 131.3 0.0 

33 0 142.9 37.1 45923.0 18156.4 40164.1 199 10 64.8 0.0 

34 0 142.7 36.6 45923.0 18156.4 40164.1 199 10 89.2 0.0 

35 0 142.5 36.1 45923.0 18156.4 40164.1 199 10 97.9 0.0 

36 0 142.3 35.6 45923.0 18156.4 40164.1 199 10 123.0 0.0 
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Appendix A.2 Sample COMCOT Input for Higher Dimensional Case Study 

No. Time Longitude Latitude Fault Length[m] Fault Width [m] Focal depth [m] Strike [deg] Dip [deg] Rake [deg] Slip [m] 

1 0.0 142.7 39.5 49272.2 18009.5 33190.1 250.3 25.9 45.3 0.0 

2 0.0 142.2 39.3 49272.2 18009.5 33190.1 250.3 25.9 67.7 0.0 

3 0.0 141.7 39.1 49272.2 18009.5 33190.1 250.3 25.9 58.2 0.0 

4 0.0 141.1 38.9 49272.2 18009.5 33190.1 250.3 25.9 160.5 0.0 

5 0.0 140.6 38.7 49272.2 18009.5 33190.1 250.3 25.9 71.5 0.0 

6 0.0 140.1 38.5 49272.2 18009.5 33190.1 250.3 25.9 112.4 0.0 

7 0.0 139.5 38.3 49272.2 18009.5 33190.1 250.3 25.9 84.2 0.0 

8 0.0 139.0 38.1 49272.2 18009.5 33190.1 250.3 25.9 116.7 0.0 

9 0.0 142.8 39.3 49272.2 18009.5 41045.2 250.3 25.9 67.1 0.0 

10 0.0 142.3 39.1 49272.2 18009.5 41045.2 250.3 25.9 47.9 13.3 

11 0.0 141.7 38.9 49272.2 18009.5 41045.2 250.3 25.9 47.3 21.9 

12 0.0 141.2 38.7 49272.2 18009.5 41045.2 250.3 25.9 104.6 21.4 

13 0.0 140.7 38.5 49272.2 18009.5 41045.2 250.3 25.9 84.7 24.4 

14 0.0 140.1 38.3 49272.2 18009.5 41045.2 250.3 25.9 84.1 17.2 

15 0.0 139.6 38.1 49272.2 18009.5 41045.2 250.3 25.9 132.6 20.2 

16 0.0 139.1 37.9 49272.2 18009.5 41045.2 250.3 25.9 98.7 0.0 
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17 0.0 142.9 39.1 49272.2 18009.5 48900.3 250.3 25.9 95.9 0.0 

18 0.0 142.3 38.9 49272.2 18009.5 48900.3 250.3 25.9 137.6 22.5 

19 0.0 141.8 38.7 49272.2 18009.5 48900.3 250.3 25.9 65.9 25.2 

20 0.0 141.3 38.5 49272.2 18009.5 48900.3 250.3 25.9 110.9 28.3 

21 0.0 140.7 38.3 49272.2 18009.5 48900.3 250.3 25.9 115.1 31.2 

22 0.0 140.2 38.1 49272.2 18009.5 48900.3 250.3 25.9 82.7 24.0 

23 0.0 139.7 37.9 49272.2 18009.5 48900.3 250.3 25.9 96.5 21.4 

24 0.0 139.1 37.7 49272.2 18009.5 48900.3 250.3 25.9 55.0 0.0 

25 0.0 142.9 38.9 49272.2 18009.5 56755.4 250.3 25.9 55.6 0.0 

26 0.0 142.4 38.7 49272.2 18009.5 56755.4 250.3 25.9 93.1 23.5 

27 0.0 141.9 38.5 49272.2 18009.5 56755.4 250.3 25.9 111.7 21.9 

28 0.0 141.3 38.3 49272.2 18009.5 56755.4 250.3 25.9 167.6 33.4 

29 0.0 140.8 38.1 49272.2 18009.5 56755.4 250.3 25.9 70.0 25.7 

30 0.0 140.3 37.9 49272.2 18009.5 56755.4 250.3 25.9 95.6 28.0 

31 0.0 139.7 37.7 49272.2 18009.5 56755.4 250.3 25.9 87.5 19.7 

32 0.0 139.2 37.5 49272.2 18009.5 56755.4 250.3 25.9 32.0 0.0 

33 0.0 143.0 38.7 49272.2 18009.5 64610.5 250.3 25.9 76.8 0.0 

34 0.0 142.5 38.5 49272.2 18009.5 64610.5 250.3 25.9 36.2 20.6 

35 0.0 141.9 38.3 49272.2 18009.5 64610.5 250.3 25.9 115.2 22.3 

36 0.0 141.4 38.1 49272.2 18009.5 64610.5 250.3 25.9 63.4 25.2 
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37 0.0 140.9 37.9 49272.2 18009.5 64610.5 250.3 25.9 93.0 27.0 

38 0.0 140.3 37.7 49272.2 18009.5 64610.5 250.3 25.9 73.7 22.1 

39 0.0 139.8 37.5 49272.2 18009.5 64610.5 250.3 25.9 99.1 18.5 

40 0.0 139.3 37.4 49272.2 18009.5 64610.5 250.3 25.9 72.0 0.0 

41 0.0 143.1 38.5 49272.2 18009.5 72465.5 250.3 25.9 104.7 0.0 

42 0.0 142.5 38.3 49272.2 18009.5 72465.5 250.3 25.9 112.2 12.7 

43 0.0 142.0 38.1 49272.2 18009.5 72465.5 250.3 25.9 141.4 23.0 

44 0.0 141.5 37.9 49272.2 18009.5 72465.5 250.3 25.9 84.2 20.2 

45 0.0 140.9 37.7 49272.2 18009.5 72465.5 250.3 25.9 25.8 24.3 

46 0.0 140.4 37.5 49272.2 18009.5 72465.5 250.3 25.9 64.8 17.3 

47 0.0 139.9 37.4 49272.2 18009.5 72465.5 250.3 25.9 130.6 20.7 

48 0.0 139.4 37.2 49272.2 18009.5 72465.5 250.3 25.9 57.8 0.0 

49 0.0 143.1 38.3 49272.2 18009.5 80320.6 250.3 25.9 118.8 0.0 

50 0.0 142.6 38.1 49272.2 18009.5 80320.6 250.3 25.9 93.7 14.4 

51 0.0 142.1 37.9 49272.2 18009.5 80320.6 250.3 25.9 133.1 13.4 

52 0.0 141.5 37.7 49272.2 18009.5 80320.6 250.3 25.9 31.2 15.9 

53 0.0 141.0 37.5 49272.2 18009.5 80320.6 250.3 25.9 84.1 15.7 

54 0.0 140.5 37.3 49272.2 18009.5 80320.6 250.3 25.9 53.8 15.2 

55 0.0 139.9 37.2 49272.2 18009.5 80320.6 250.3 25.9 177.2 10.2 

56 0.0 139.4 37.0 49272.2 18009.5 80320.6 250.3 25.9 114.8 0.0 
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57 0.0 143.2 38.1 49272.2 18009.5 88175.7 250.3 25.9 131.4 0.0 

58 0.0 142.7 37.9 49272.2 18009.5 88175.7 250.3 25.9 58.3 0.0 

59 0.0 142.1 37.7 49272.2 18009.5 88175.7 250.3 25.9 75.9 0.0 

60 0.0 141.6 37.5 49272.2 18009.5 88175.7 250.3 25.9 81.8 0.0 

61 0.0 141.1 37.3 49272.2 18009.5 88175.7 250.3 25.9 123.0 0.0 

62 0.0 140.5 37.2 49272.2 18009.5 88175.7 250.3 25.9 81.7 0.0 

63 0.0 140.0 37.0 49272.2 18009.5 88175.7 250.3 25.9 111.0 0.0 

64 0.0 139.5 36.8 49272.2 18009.5 88175.7 250.3 25.9 28.4 0.0 

 

 


