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Due to the small volume and high e�ciency, transformerless inverters have gained much popularity in grid-connected PV
applications, where minimizing leakage current injection is mandatory. 
is can be achieved by either modifying the modulation
schemes or adding extra power switching devices, resulting in an uneven distribution of the power losses on the switching devices.
Consequently, the device thermal loading is redistributed and thus may alter the entire inverter reliability performance, especially
under a long-term operation. In this consideration, this paper assesses the device reliability of three transformerless inverters under
a yearly mission pro�le (i.e., solar irradiance and ambient temperature).
emission pro�le is translated to device thermal loading,
which is used for lifetime prediction. Comparison results reveal the lifetime mismatches among the power switching devices
operating under the same condition, which o
ers new thoughts for a robust design and a reliable operation of grid-connected
transformerless PV inverters with high e�ciency.

1. Introduction

Power electronics converter technology has enabled more
and more renewable energy installations in recent years,
which is also associatedwith an increasing demand for higher
e�ciency and higher reliability [1–7]. In order to reduce the
cost of energy, the demand will be further strengthened in
the future energy mix dominated by wind turbine systems
and photovoltaic (PV) systems [8–11]. Transformerless PV
inverters have gained much reputation in the European
market in terms of high e�ciency, small size, and low weight
compared to their counterparts [7, 12–16]. Its popularity
and its magni�cence in conversion e�ciency induce a shi�
in inverter technology in the United States recently [17].

erefore, an evenwide-scale adoption of transformerless PV
inverters in the future grid-friendly systems is predictable.

Till now, a vast of transformerless PV inverters have been
developed [13–20], and many of those topologies have been
successfully commercialized in residential PV applications,
where size and e�ciency are the main concerns. However,
“transformerless” are also required to minimize the leakage
current injections for safety due to the removal of the galvanic
isolation. 
is is typically achieved by either developing

a special suitable modulation scheme or adding extra power
switching devices [18]. For instance, in [19, 20], optimization
approaches have been proposed to improve the performance
of transformerless PV inverters, while, in [12–14], additional
power switching devices have been introduced to the tra-
ditional full-bridge PV inverter. However, such so�ware or
hardwaremodi�cations will alter the power loss distributions
on the power switching devices, thus contributing to uneven
thermal loading in the PV inverters.

Due to the intermittency of solar energy, transformerless
PV inverters have to handle a �uctuating power. 
us, the
thermal loading on each power switching device will be
di
erent under a long-term mission pro�le (e.g., a yearly
solar irradiance and ambient temperature pro�le) [21–24].

e varying thermal loading (appears as �uctuating junction
temperature) of the power switching devices is one of the
main failure contributors for the power electronics devices
[22–29]. As a consequence, the thermal stress di
erence
among the power switching devices will possibly make the
entire transformerless PV inverter fail to operate [25–32].
Although more advanced transformerless inverters with a
main focus on e�ciency are coming on market, there is
still a lack of a reliability-oriented investigation considering
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Figure 1: A single-phase single-stage grid-connected full-bridge PV
inverter systemwith an LCL-�lter, where VCMV is the commonmode
voltage and �� is the stray capacitor.
mission pro�les for those PV inverters. However, such an
investigation allows new thoughts for a robust design and
a reliable operation of PV system. As a result, a reduction
of the cost can be attained since both the e�ciency and the
reliability of transformerless PV inverters are enhanced.

Taking the above into consideration, this paper explores
the thermal performance of three selected transformerless PV
inverters under a yearly mission pro�le, which thus allows a
qualitative reliability assessment of the PV inverters beyond
e�ciency achievements. Firstly, a description of the selected
transformerless PV topologies is presented in Section 2.
Focus has been put on the mission pro�le translation to the
corresponding device thermal loading of the transformerless
inverters in Section 3, where a mission pro�le based relia-
bility evaluation approach is also introduced. In accordance
with the translated thermal loading pro�les, Section 4 thus
conducts an assessment of the device reliability in those PV
inverters before the conclusions.

2. Selected Transformerless PV Inverters

Depending on the power ratings, transferring PV energy to
an AC power grid has several possibilities [1, 7, 33]. It can be
modular PV converters, which typically harvest the energy
using DC-DC converters (maximum power point tracking)
[34–36], while the string or central inverters can be directly
connected to the grid. Since the grid-connected PV systems
are still dominantly designed for residential applications
[33], the single-phase transformerless PV inverter system is
analyzed.

Figure 1 shows the most commonly used single-phase
full-bridge (FB) PV inverter topology, where the modulation
schemes have to be modi�ed for a smaller leakage current
(�CMV). As it is shown in Figure 1, an LCL-�lter is used for
a better power quality. In some cases, a DC-DC converter is
adopted to boost up the PV output voltage to an acceptable
level for the PV inverters. Conventionalmodulationmethods
for the single-stage FB inverter topology include the bipolar
modulation, the unipolar modulation, and the hybrid mod-
ulation. When considering the leakage current injection in
transformerless applications, the bipolar modulation scheme
is preferable [12, 21], which is chosen in this paper. Notably,
optimizing the modulation patterns is an alternative to
eliminate the leakage currents [19].

Asmentioned early, transformerless structures aremostly
derived from the FB topology by providing an AC path or
a DC path using additional power switching devices. As a
result, during the zero-voltage states, isolation between the
PV modules and the grid is achieved, thus leading to a low
leakage current injection. Figure 2 shows two examples of
transformerless PV inverters derived from the single-phase
FB topology. As it can be seen in Figure 2(a), the H6 inverter
topology [13] has a DC path, which isolates the PV panels
from the grid at zero-voltage states. In contrast, although the
highly e�cient and reliable inverter concept (HERIC) [14]
inverter has the same number of power switching devices as
that of the H6 inverter, it provides an AC path to eliminate
the leakage current injection.

It should be pointed out that there are also many other
transformerless topologies reported in the literature in addi-
tion to the above two solutions [12, 16, 37]. For example,
the Conergy neutral point clamped (NPC) transformerless
PV inverter is based on the multilevel power converter
technology [12, 20]. However, only the FB inverter with a
bipolar modulation scheme (FB-Bipolar), the H6 inverter,
and the HERIC inverter are assessed in terms of reliability.

3. Mission Profile Translation to
Thermal Loading

3.1. Mission Pro�le for PV Systems. A mission pro�le is
normally referred to a simpli�ed representation of relevant
conditions under which the system is operating [27, 32]. As a
result, for the grid-connected PV systems, the mission pro�le
(i.e., solar irradiance and ambient temperature) is actually a
re�ection of the intermittent nature of the solar PV energy
[38, 39], and consequently it has an inherent relationship
with the entire system performance, including the thermal
loading performance. 
e mission pro�le can be a series of
multitime scales, for example, a minute mission pro�le or
a yearly mission pro�le, and it is usually taken as the input
for the reliability analysis in the �eld of power electronics
converters [29, 39–42], which is also focused on in this paper.
Figure 3 shows the mission pro�le applied to the above three
transformerless PV inverters.

With more accumulative real-�eld experience and more
advanced real-time monitoring technology, better mission
pro�les are available for a reasonable lifetime prediction.
Hence, a mission pro�le based analysis approach should be
able to analyze the performance at di
erent time scales, as
it is shown in Figure 4. It can be observed in Figure 4(a)
that, for short-term mission pro�les at the level of millisec-
onds to several seconds, the thermal loading pro�le can
be directly and instantaneously obtained. In contrast, for
long-term mission pro�les within a range of a few minutes
to several months, obtaining the instantaneous thermal
loading will be very time-consuming or even impossible
when the mission pro�le has a high data-sampling rate.
Alternatively, the thermal loading pro�le can be obtained
based on lookup tables [43], which are created in accordance
with the short-term constantmission pro�les, as it is shown in
Figure 4(b).
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Figure 2: Examples of single-phase transformerless PV inverters derived from the single-phase full-bridge topology by adding extra power
switching devices: (a) H6 inverter [13] and (b) HERIC inverter [14].
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Figure 3: A yearly mission pro�le used for the selected transformerless PV inverters (1 sec/sample): (a) solar irradiance and (b) ambient
temperature.
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Figure 4: Approach of the mission pro�le translation to thermal loading at di
erent time scales (MPPT: maximum power point tracking, ��:
junction temperature of the power devices): (a) short-term mission pro�les and (b) long-term mission pro�les.

3.2. �ermal Modelling of Power Switching Devices. As it is
shown in Figure 4, the translation from a mission pro�le
to the corresponding thermal loading pro�le requires a
thermalmodel which links the electrical performance (power
losses, �loss) and the thermal behavior (junction temperature,��). 
e coupled relationship is demonstrated in Figure 5
in a FB PV inverter system, which shows that the power
losses on the switching devices will introduce a temperature
rise due to the thermal impedance in the power switching
devices. 
e thermal impedance can be modeled as a Foster
model [43–47], as it is shown in Figure 6. Details of the
thermal modelling of power semiconductors can be found in
[46, 47].

Typically, for such a model of the thermal impedance, the
parameter data is provided in the datasheet. Table 1 shows
the thermal parameters of the power switching device from
a leading manufacturer used in the paper. Notably, all the
devices are the same in the three transformerless PV inverters
for comparison in terms of thermal loading, and thus the
benchmarking results, indicating the critical components of

Table 1:
ermal impedance parameters of power switching devices
from a leading manufacturer according to Figure 6.

Impedance �th(�-�)� 1 2 3 4

IGBT�th� (K/W) 0.074 0.173 0.526 0.527�� (s) 0.0005 0.005 0.05 0.2

Diode�th� (K/W) 0.123 0.264 0.594 0.468�� (s) 0.0005 0.005 0.05 0.2

transformerless PV inverters, could be a guidance to select
appropriate power switching devices in such applications.

3.3. Translated �ermal Loading to Lifetime. Based on the
thermal model, simulations have been carried out in PLECS
[43] according to Figure 4, where the system parameters are



4 International Journal of Photoenergy

Power losses Device temp.

Electrical domain

�ermal domain

Junction Case Heat-sink Ambient

Pin Pout
�inv

�dc

(Ploss = Pin − Pout)
Tj Tc Th Ta

Zth(j-c)
Zth(c-h) Zth(h-a)

Figure 5: Coupled relationship between power losses and the junction temperature of the power switching devices. �th(�-�): junction to case
impedance, �th(�-ℎ): case to heat-sink impedance, and �th(ℎ-�): heat-sink to ambient impedance.

Tc

Tj

Ptot

Ta

Rth1 Rth2 Rth3 Rth4

C1 C2 C3 C4

Ci = �i/RthiZth(j-c)

Figure 6: Foster model of the junction to case thermal impedance �th(�-�) shown in Figure 5.

Table 2: System parameters for single-phase transformerless grid-
connected PV systems.

Parameter Symbol Value Unit

Grid voltage V�,RMS 230 V

Grid frequency 	� 50 Hz

LCL-�lter

1 3.6 mH�	 2.35 �F
2 4 mH

Damping resistor �
 10 Ω
Switching frequency 	� 10 kHz

Parameters of PV strings (3 strings, 15 panels for each string)
at 25∘C and 1 kW/m2

Power at MPP �MPP 2.99 kW

Voltage at MPP 
MPP 405 V

Current at MPP �MPP 7.38 A

shown in Table 2. In order to create the lookup tables for
long-termmission pro�les, several constant operating condi-

tions (e.g., solar irradiance: 0.8 kW/m2, ambient temperature:
25∘C) have been simulated �rstly, where a perturb-and-
observe maximum power point (MPP) tracking algorithm
has been used [33–35, 38]. Figure 7 exempli�es the simulation
model for a full-bridge inverter system. A proportional reso-
nant current controller has been adopted to control the grid
current considering power quality requirements [2]. Using

the lookup table model, the yearly mission pro�le (Figure 3)
has been resampled (5mins/sample) and translated into
the thermal loading of the corresponding power switching
devices, as it is presented in Figure 8.

Although the transformerless PV inverters (both the H6
and the HERIC) can maintain a higher e�ciency as reported
in the literature in contrast to the FB-Bipolar inverter, the
thermal loading on those switching devices is unequal, as it
can be seen in Figure 8. Speci�cally, the maximum junction
temperature of the extra devices in an H6 inverter is the
highest, indicating high power losses, since they are switched
at a high frequency. However, this is not the case for the
HERIC inverter, where only one of the extra switching
devices is switched at the grid frequency during a half cycle.

erefore, the power losses are lower, and thus the thermal
loading as it is shown in Figure 8. From the above qualitative
analysis, it is implied that much attention has to be paid on
the extra switching devices in transformerless PV inverters.
Particularly, for theH6 inverter, power switching deviceswith
lower conduction losses and higher rated maximum junction
temperature are desirable, while the total cost has to be taken
into consideration as well.

When the thermal loading pro�le appearing in the power
switching devices is available, a quantitative prediction of
the device lifetime under the mission pro�le is enabled by a
rain-�ow counting algorithm [41, 42].
e rain-�ow counting
algorithm is a quantitative representation of the thermal
loading, which extracts the temperature information in detail
in terms of the mean junction temperature ��
, temperature
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Figure 8: Translated thermal loading (maximum junction temperature, ��max
) of the power switching devices of the three di
erent

transformerless grid-connected PV inverters under a yearly mission pro�le shown in Figure 3: (a) the yearly long-term thermal loading
and (b) details of the maximum junction temperature of the power switching devices in a cloudy day of the year.
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Table 3: Parameters of the lifetime model for power devices [48].

Parameter Value Unit Experimental condition� 3.4368 × 1014 —� −4.923 — 64K ≤ Δ�� ≤ 113 K�0 1.942 —
0.19 ≤ ar ≤ 0.42�1 −9.012 × 10−3 —� 1.434 —
0.07 s ≤ ��� ≤ 63 s� −1.208 —	
 0.6204 —�� 0.06606 eV 32.5∘C ≤ ��
 ≤ 122∘C�� 8.6173324 × 10−5 eV/K

cycle amplitude ��, cycle period ���, number of cycles n, and
so forth.
en, the extracted temperature information can be
used for the lifetime prediction according to a speci�c lifetime
model. For example, a lifetime model of power switching
devices is introduced in [48] and it can be expressed as

�	 = �Δ��� (��)�1Δ��+�0 (� + (���)�� + 1 ) exp( ������
)	
,
(1)

where�	 is the number of cycles to fail,	
 is the diode e
ect,�� is the bond-wire aspect ratio, �� is the Boltzmann constant,�� is the activation energy, and �, �, �0, �1, �, and � are
the lifetime model parameters, as it is shown in Table 3. 
e
lifetime model also implies that the junction temperature has
a signi�cant impact on the number of cycles to fail, that is, the
reliability of the power switching devices.

According to Miner’s rule [24, 42, 48], the life consump-
tion LC, the damage due to the thermal stress is the linearly
accumulative damage from di
erent thermal cycles. 
e LC
can then be expressed as


� = ∑
�

 ��	� (2)

in which  � is the number of cycles at the stressΔ��� extracted
by the rain-�ow counting algorithm and �	� is the number
of cycles to fail based on (1). Subsequently, the lifetime of the
power switching devices can be given as


� = ���
� (3)

with 
� being the predicted lifetime and ��� being the
mission pro�le period (e.g., a year).

Using the above reliability analysis procedure, the lifetime
of the power switching devices in the transformerless PV
inverters can then be estimated as long as a mission pro�le
and a lifetimemodel of high con�dence are available. Figure 9
summarizes the mission pro�le based analysis approach,
which can also be used in other power electronics converters,
for example, wind turbine converters, where the mission
pro�les are available.

Mission pro�le

Mission pro�le
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�ermal loading
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Lifetime
prediction

∘C

System models

Loading pro�le
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∙ Tjm-mean junction temp.
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Figure 9: Flowchart of the mission pro�le based reliability analysis
approach for transformerless PV inverters.

4. Reliability Assessment

According to Figure 9, the lifetime of the power switching
devices in the three transformerless PV inverters under the
yearly mission pro�le shown in Figure 3 can be obtained and
evaluated. In order to benchmark the reliability quantita-
tively, the thermal loading pro�les have to be interpreted �rst
according to (1) and Figure 9. A rain-�ow counting algorithm
has been adopted, and the results are presented in Figure 10.
It can be observed in Figure 10 that the additional devices
of the H6 inverter (i.e., S5 and S6) have a larger number
of cycles compared to the other power switching devices of
this topology (S1∼4). 
is indicates that the extra devices to
realize an elimination of the leakage currents become the
most critical components of the H6 inverter according to
(2) and (3). As a consequence, more reliable power devices
are preferable as the extra devices when designing an H6
based transformerless PV system. In the case of the HERIC
inverter based transformerless PV systems, the extra devices
have a smaller number of cycles compared to those of the
H6 inverter. Moreover, the number of cycles of the other
power switching devices of theHERC inverter is even smaller
than that of the FB-Bipolar inverter under the same mission
pro�le. 
is means that the thermal stress on the power
switching devices of the HERIC inverter is the lowest, and
thus the HERIC inverter can achieve the highest reliability
if the same mission pro�le is applied to those inverter
candidates, while also maintaining a higher e�ciency as it
is reported in [12, 14]. 
e discussion is in agreement with
the analysis presented in Section 3.3 based on the translated
thermal loading pro�les.

It should be noted that the life consumption and thus
the lifetime of the power switching devices according to (2)
and (3) can quantitatively be obtained on condition that the
lifetime model of (1) and also the parameters given in Table 3
are at a high con�dent level. However, those parameters are
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Figure 10: Rain-�owing counting results (number of cycles distributions at the cycle amplitude Δ�� and the mean junction temperature ��
)
of the thermal loading pro�les shown in Figure 8: (a) FB-Bipolar inverter, (b) H6 inverter, and (c) HERIC inverter.
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Figure 11: Normalized life consumption (lifetime comparison) of the three transformerless PV inverters under the same mission pro�le: (a)
FB-Bipolar inverter, (b) H6 inverter, and (c) HERIC inverter.

extracted under speci�c conditions (e.g., 0.07 s ≤ ��� ≤
63 s) for the power switching devices introduced in [48].

erefore, quantitative prediction errors will be inevitable.
In order to reduce the parameter dependency and also the
reliability model dependency, the life consumption given in
(2) is normalized, and substituting (1) yields


� = 
�
��
= (∑
�

 �(Δ���)� (��)�1Δ��� [� + (����)�] &��/(������))
⋅ (∑
�

 �(Δ����)� (��)�1Δ���� [� + (�����)�] &��/(�������))
−1

,
(4)

where 
� is the normalized life consumption and LCb is the
base LC for normalization. For example, LCb can be chosen
as the life consumption of the power switching devices of the
FB-Bipolar inverter under the samemission pro�le.
en, the
predicted lifetime can be expressed as


� = 1
�
�� (5)

in which 
�� is the predicted lifetime of the base system used

for normalization.
Figure 11 shows the normalized life consumption of the

three transformerless PV inverters according to (4) and the
counting results enabled by a rain-�ow algorithm. 
e life
consumption of the power switching devices of the FB-
Bipolar (i.e., S1∼4) is selected as the base life consumption for
normalization in Figure 11. It can be seen in Figure 11 that the
extra power switching devices of the H6 inverter consume
much more life compared to the other devices and also those
of the HERIC inverter. It implies that the degradation of the
additional devices of the H6 inverter happens much faster,
and then the entire H6 systemmay fail to operate earlier than
the other two transformerless PV inverters. 
is comparison
further con�rms that the HERIC inverter would be the most
promising solution in terms of reliability.

In addition, by comparing the rain-�ow counting results
shown in Figure 10 with the normalized life consumption
shown in Figure 11, one interesting conclusion can be drawn
which is that although there are a few cycles of a large
temperature cycling amplitude (e.g., ten cycles of 55∘C to
65∘C for the extra devices S5,6 of the H6 inverter), they do
contribute much more damage (e.g., 0.4% in Figure 11(b))
when the lifetime model of (1) is adopted. Large cycling
amplitude is mainly induced by the mission pro�le, which
con�rms that the mission pro�le e
ect has to be taken into
account in a reliability-oriented design of power electronics
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converters. In a word, the reliability assessment in this paper
reveals that much attention has to be put on the thermal
design of the critical components in an entire PV inverter in
order to reduce the cost of energy.

5. Conclusions

In this paper, a qualitative reliability assessment of three
selected single-phase transformerless PV inverters has been
carried out in accordance with a mission pro�le based reli-
ability analysis approach. A real-�eld yearly mission pro�le
has been applied to the selected transformerless candidates
for the reliability assessment. 
e comparison results have
revealed that although minimizing leakage currents as well
as maintaining a satisfactory e�ciency has been targeted
by those inverters, the extra devices that are used for
disconnection of the PV panels or the PV inverters might
be heated up during operation. 
e high thermal loading
will further induce failures of the power switching devices,
being a big challenge to the entire system reliability. As a
consequence, many e
orts should be devoted to a reliability-
oriented design of the critical components in a PV inverter,
and thus a reduced cost of energy can be achieved.
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