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Abstract

The prominent energy management technique, Dy-
namic Voltage and Frequency Scaling (DVFS), was re-
cently shown to have direct and adverse effects on sys-
tem reliability. In this work, we investigate static and dy-
namicreliability-aware energy managementschemes for
a set ofperiodic real-time tasksto minimize energy con-
sumption while preserving system reliability. Focusing
on EDF scheduling, we first show that the static prob-
lem is NP-hard and propose twotask-levelutilization-
based heuristics. Then, we develop ajob-level dynamic
(on-line) scheme by building on the idea ofwrapper-
tasks, to monitor and manage dynamic slack efficiently
in reliability-aware settings. Our schemes incorporate
recovery tasks/jobs into the schedule as needed for reli-
ability preservation, while still using the remaining slack
for energy savings. Simulation results show that all the
proposed schemes can achieve significant energy savings
while preserving the system reliability. Moreover, the en-
ergy savings of the static heuristics are close to those of
the static optimal solution by a margin of5%.

1 Introduction

The phenomenal improvements in the performance of
computing systems have resulted in drastic increases in
power densities. For battery-operated devices with lim-
ited energy budget, energy is now considered a first-class
system resource. One common strategy to save energy
is to run the system components at low-performance op-
eration points, whenever possible. For example, DVFS
scales down the CPU frequency and supply voltage si-
multaneously to save energy [24].

For real-time systems where tasks have stringent tim-
ing constraints, scaling down the clock frequency (pro-
cessing speed) may cause deadline misses and special
provisions are needed. In recent past, several research
studies explored the problem of minimizing energy con-
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sumption while meeting all the deadlines for various real-
time task models. These include a number of power
management schemes which exploit the available static
and/or dynamicslackin the system [3, 19, 21].

Reliability and fault tolerance have always been ma-
jor factors in computer system design. Due to the effects
of hardware defects, electromagnetic interferences and/or
cosmic ray radiations, faults may occur at run-time, es-
pecially in systems deployed in dynamic/vulnerable en-
vironments. With the continued scaling of CMOS tech-
nologies and reduced design margins for higher perfor-
mance, it is expected that, in addition to the systems that
operate in electronics-hostile environments (such as those
in outer space), practically all digital computing systems
will be remarkably vulnerable totransient faults[8].

The backward error recoverytechniques, which re-
store the system state to a previous safe state and repeat
the computation, can be used to tolerate transient faults
[20]. It is worth noting that both DVFS and backward re-
covery techniques are based on (and compete for) the ac-
tive use of the system slack. Thus, there is an interesting
trade-off between energy efficiency and the system relia-
bility. Moreover, DVFS has been shown to have a direct
and adverse effect on the transient fault rates, especially
for those induced by cosmic ray radiations [29], further
complicating the problem. Hence, for safety-critical real-
time embedded systems (such as satellite and surveil-
lance systems) where reliability is as important as energy
efficiency, reliability-cognizantenergy management be-
comes a necessity.

Until recently, only a few studies investigated the im-
plications of having both fault tolerance and energy effi-
ciency requirements [7, 18, 23, 25]. As an initial study,
we previously proposed areliability-aware power man-
agement (RA-PM)scheme that dynamically schedules a
recovery job at task dispatch time, hence preserving the
system reliability [26]. The scheme is further extended
to multiple tasks with a common deadline [27]. How-
ever, preemptive scheduling, which is common forperi-
odic real-time tasks, has not been considered.

In this work, we investigate both static and dy-



namic RA-PM schemes for a set of periodic real-time
tasks scheduled by the preemptive Earliest-Deadline-
First (EDF) policy. Specifically, we consider the problem
of exploiting the spare CPU capacity for energy savings
while preserving the system reliability. We show that the
optimal static RA-PM problem isNP-hardand propose
two efficient heuristics for selecting a subset of tasks to
use the spare capacity for the objectives of energy and re-
liability management. Moreover, we develop ajob-level
dynamic RA-PM algorithm that monitors and manages
the dynamic slack which may be generated at run-time,
again for these dual objectives. The latter algorithm is
built on thewrapper-taskmechanism: the key idea is
to conservethe dynamic slack allocated to scaled tasks
for recovery across preemption points, which is essen-
tial for preserving reliability. To the best of our knowl-
edge, this is the first research effort that provides a com-
prehensive energy management framework forperiodic
real-time taskswhile preserving the system reliability.

The remainder of this paper is organized as follows.
The models and problem formulation are presented in
Section 2. Section 3 focuses on the task-level, utilization-
based static RA-PM schemes. Thewrapper-taskconcept
is introduced and the job-level dynamic RA-PM scheme
is presented in Section 4. Simulation results are presented
and discussed in Section 5. We conclude in Section 6.

2 System Model and Problem Description

2.1 Application Model

We consider a set of independent periodic real-time
tasksΓ = {T1, . . . , Tn}. The taskTi is characterized
by a pair(pi, ci), wherepi represents its period andci

denotes its worst case execution time (WCET). Thejth

job of Ti, which is referred to asJij , arrives at time
(j − 1) · pi and has a deadline ofj · pi.

In DVFS settings, it is assumed that the WCETci of
task Ti is given under the maximum processing speed
fmax. For simplicity, we assume that the execution time
of a task scaleslinearly with the processing speed1. That
is, at speedf , the execution time of taskTi is assumed to
beci · fmax

f .

The system utilization is defined asU =
∑n

i=1 ui,
whereui = ci

pi
is taskTi’s utilization. The tasks are to be

executed on a uni-processor system according to the pre-
emptive EDF policy. Considering the well-known feasi-
bility condition for EDF [17], we assume thatU ≤ 1.

1A number of studies have indicated that the execution time of tasks
does not scale linearly with reduced processing speed due to accesses
to memory [22] and/or I/O devices [4]. However, exploring the full
implications of this observation is beyond the scope of this paper and is
left as our future work.

2.2 Power Model

The relation between the supply voltage and operating
frequency is known to be almost linear [5]. DVFS re-
duces supply voltages for lower frequencies [24] and we
will use the termfrequency changeto stand for both sup-
ply voltage and frequency adjustments. Considering the
ever-increasing static leakage power due to scaled fea-
ture size and increased levels of integration [15] as well
as the power-saving states provided in modern power-
efficient components (e.g., CPU [2] and memory [16]), in
this work, we adopt the simplesystem-level power model
proposed in [29], where the power consumptionP of a
computing system is given by:

P = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceffm) (1)

Despite its simplicity, this power model captures the es-
sential components for system-wide energy management.
Here,Ps is thestatic power, which includes the power to
maintain basic circuits and keep the clock running. It
can be removed only by powering off the whole system.
Pind is thefrequency-independent active power, which is
a constant and corresponds to the power that is indepen-
dent of CPU processing speed. It can be efficiently re-
moved by putting systems into sleep state(s) [2, 16].Pd

is thefrequency-dependent active power, which includes
processor’s dynamic power andany power that depends
on system processing speeds [5, 16].

When there is computation in progress, the system is
activeandh̄ = 1. Otherwise, when the system is turned
off or in power-saving sleep modes,h̄ = 0. The effec-
tive switching capacitanceCef and the dynamic power
exponentm (in general,2 ≤ m ≤ 3 [5]) are system-
dependent constants.f is thenormalizedprocessing fre-
quency withfmax = 1.

Intuitively, when executing a given job, lower fre-
quencies result in less frequency-dependent active en-
ergy consumption. But with reduced speeds, the job runs
longer and thus consumes more static and frequency-
independent active energy. Therefore, a minimalenergy-
efficient frequencyfee, below which DVFS starts to con-
sume more total energy, does exist [12, 15, 21]. Consid-
ering thatenergyis the integral of power over time, from
the above equation, one can find that2 [29]:

fee = m

√
Pind

Cef · (m− 1)
(2)

Consequently, for energy efficiency, we assume that
fee ≤ f ≤ fmax. We develop our framework by as-
suming continuous frequency. The implications of hav-
ing discrete speed levels are discussed in Section 5.3.

2Considering the prohibitive overhead of turning on/off a system
(e.g., tens of seconds), we assume that the system will not be turned off
during the interval considered andPs is always consumed.



2.3 Fault Model

At run-time, faults may occur due to various reasons,
such as hardware failures, electromagnetic interferences
as well as the effects of cosmic ray radiations. The
transient faults occur much more frequently thanper-
manentfaults [14], especially with the continued scaling
of CMOS technologies and reduced design margins [8].
Consequently, in this paper, we focus on transient faults,
and use backward recovery techniques for fault tolerance.
It is assumed that the faults are detected usingsanity(or
consistency) checks at the completion of a job’s execu-
tion, and if needed, the recovery task is dispatched, in the
form of re-execution [20].

In our previous work [29], we have studied the nega-
tive effects of DVFS on transient faults induced by cos-
mic ray radiations. Assuming that transient faults follow
Poisson distribution [25], the average transient fault rate
for systems running at frequencyf (and corresponding
supply voltage) can be expressed as [29]:

λ(f) = λ0 · g(f) (3)

whereλ0 is the average fault rate corresponding tofmax.
That is,g(fmax) = 1. With reduced processing speeds
and supply voltages, fault rate generally increases [29].
Therefore, we haveg(f) > 1 for f < fmax.

2.4 Problem Description

Our primary objective in this paper is to develop
power management schemes for periodic real-time tasks
executing on a uni-processor system and preserve system
reliability at the same time. We define thereliability of
a real-time job as theprobability of its being correctly
executed before its deadline. One of the key findings re-
ported in [29] is that the reliability of a job whose execu-
tion is scaled through DVFS decreases drastically due to
the increased fault rates andextended execution time.

The reliability of a real-time system depends on the
correctexecution ofall jobs within their deadlines. With-
out loss of generality, we assume that the system reliabil-
ity is satisfactorywhen no power management scheme is
applied, even under the worst-case scenario (i.e., when
jobs take their WCETs). To preserve system reliability,
for simplicity, we focus on maintaining the reliability of
individual jobs in this work. Specifically,for a peri-
odic real-time task set with utilization U , we consider
the problem of how to use the spare CPU utilization
(1 − U), as well as the dynamic slack generated at
run-time, for maximizing energy savings while keep-
ing the reliability of any job of task Ti no less thanR0

i

(i = 1, . . . , n), whereR0
i = e−λ0ci (from Poisson fault

arrival pattern and the average fault rateλ0 [26]) is the
original reliability of Ti’s jobs, when there is no power
management and the jobs use their WCETs.

2.5 Reliability-Aware Power Manage-
ment (RA-PM)

Conventionally, DVFS-basedordinary power man-
agement schemes exploit all the available (static and/or
dynamic) slack for energy management and are, conse-
quently,reliability-ignorant(in the sense that no attention
is paid to the potential effects of DVFS on task reliabil-
ities). Instead of usingall the available slack for DVFS
to save energy, one can reserve a portion of the slack to
schedule arecovery jobRJ for any job J whose exe-
cution is scaled down, to recuperate the reliability loss
due to the energy management [26]. The recovery job
RJ will be dispatched (at the maximum frequencyfmax)
only if a transient fault is detected whenJ completes.
The recovery can be in the form of re-execution andRJ
has the same WCET as that ofJ [20].

With the help ofRJ , the overallreliability R of job J
will be the summation of the probability ofJ being ex-
ecuted correctly andthe probability of having transient
fault(s) duringJ ’s execution while the recovery jobRJ
being executed correctly. We have shown that,if the
amount of available slack ismorethan the WCET of a
job, by scheduling a recovery job (e.g., re-execution),
one canguaranteeto preserve the reliability of a real-
time job while still obtaining energy savings using the
remaining slack, regardless of different fault rate in-
creases and scaled processing speeds[26]. In increas-
ing level of sophistication and implementation complex-
ity, we first introduce thetask-level staticschemes and
thenjob-level dynamicschemes in the next two sections.

3 Task-Level Static Schemes

To start with, we consider static RA-PM schemes that
make their decisions at thetask-level. In this approach,
for simplicity, all the jobs of a task have the same treat-
ment. That is, if a given task is selected for energy
management, all its jobs will run at the same scaled fre-
quency; otherwise, they will run atfmax. From the above
discussion, to recuperate reliability loss due to scaled ex-
ecution, eachscaled job3 will need a corresponding re-
covery job within its deadline, should a fault occur.

To provide the required recovery jobs, we can con-
struct periodicrecovery tasks (RT)by exploiting the spare
CPU capacity (or,static slack). The recovery task will
have the same timing parameters (i.e., WCET and period)
as those of the task to be scaled. Hence, we can schedule
a recovery job for eachprimary job and preserve its re-
liability. Note that a recovery job will be activated only
when the correspondingprimary job incurs a fault.

As a concrete example, suppose that we have a pe-
riodic task set of three tasksΓ = {T1(1, 7), T2(2, 14),

3We use the expressionscaled jobto refer to any job whose execu-
tion is slowed down through DVFS, for energy management purposes.
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Figure 1. Static schemes for a task set with
three tasks {T1(1, 7), T2(2, 14), T3(2, 7)}.

T3(2, 7)} with system utilization asU = 4
7 . Without

considering system reliability, theoptimalordinary static
power management (SPM) under EDF will scale down
all tasks at the speedf = U · fmax = 4

7 as shown in
Figure 1a [3, 19]. In the figure, the X-axis represents
time and the height of task boxes represents processing
speed. Due to the periodicity, only the schedule within
the least common multiple (LCM) of tasks’ periods is
shown. However, by uniformly scaling down the execu-
tion in this way, the reliability figures of all the tasks (and
that of the system) would be significantly reduced [29].

When applying static RA-PM, we first compute the
spare capacity as1 − U = 3

7 . After constructing the re-
covery taskRT1(1, 7), which has the same WCET and
period as the taskT1 with the utilizationru1 = 1

7 , the
overall system utilization will beU ′ = U + ru1 = 5

7 . If
we allocate the remaining spare capacity (i.e.,1 − U ′ =
2
7 ) to taskT1, all jobs ofT1 can be executed at the speed
of 1

3 . With the recovery taskRT1 and the scaled exe-
cution ofT1, theeffectivesystem utilization isexactly1
and the modified task set is schedulable under EDF as
shown in Figure 1b. From the figure, we can see that
every scaled job of taskT1 has a corresponding recovery
job within its deadline. Therefore, allT1’s jobs could pre-
serve their reliability levelR0

1. Since the jobs of tasksT2

andT3 run atfmax, their reliability figures are preserved
at the levels ofR0

2 andR0
3, respectively.

Therefore, by incorporating a recovery task for the
task to be managed, the task-level utilization-based static
RA-PM scheme could preserve system reliability while
obtaining energy savings. In [27], we reported that it is
not optimal (in terms of energy savings) for the RA-PM
scheme to utilize all the slack for a single task in case of
aperiodictasks. Similarly, we can use the spare capacity
for multipleperiodic tasks for better energy savings. For
instance, Figure 1c shows the case where bothT1 andT2

are scaled to speed23 after constructing the recovery tasks
RT1 andRT2. For illustration purposes, we assume that

the system power is given by a cubic function. Simple al-
gebra shows that, managing only taskT1 could save8

9E,
whereE is the energy consumed by all jobs of taskT1

within LCM under no power management. In compari-
son, the energy savings would be11

9 E if both T1 andT2

are managed, which is a significant improvement.

3.1 Intractability of Task-Level RA-PM
The inherent complexity of the optimal static RA-PM

problem warrants an analysis. Suppose that the system
utilization of the task set isU and the spare capacity is
sc = 1 − U . If a subsetΦ of tasks are selected for man-
agement with total utilizationX =

∑
Ti∈Φ ui < sc, af-

ter accomodating all recovery tasks, the remaining spare
capacity (i.e.,sc − X) could be used to scale down the
selected tasks for energy management. Considering the
convex relation between power and processing speed (see
Equation 1), the solution that minimizes the energy con-
sumption will uniformly scale down all jobs of the se-
lected tasks, where the scaled processing speed will be
f = X

X+(sc−X) = X
sc . Therefore, without considering

the energy consumed by recovery jobs, the amount of to-
tal fault-freeenergy consumption withinLCM would be:

ELCM = LCM · Ps + LCM(U −X)(Pind + cef · fm
max)

+LCM · sc
(
Pind + cef ·

(
X

sc

)m)
(4)

where the first part is the energy consumption due to
static power, the second part captures the energy con-
sumption of unselected tasks, and finally, the third
part represents the energy consumption of the selected
tasks. Simple algebra shows that, whenXopt = sc ·
(Pind+Cef

m·Cef
)

1
m−1 , ELCM will be minimized.

If Xopt ≥ U , all tasks should be scaled down ap-
propriately to minimize energy consumption. Otherwise,
the problem becomes essentially a task selection prob-
lem, where the summation of the selected tasks’ utiliza-
tion should beexactlyequal toXopt, if possible. In other
words, such a choice would definitely be the optimal so-
lution.

Theorem 1 For a set of periodic tasks, the problem of
the task-level utilization-based static RA-PM is NP-hard.

Proof We consider a special case of the problem with
m = 2, Cef = 1 andPind = 0; that is,Xopt = sc

2 .
We show that even this special instance is intractable, by
transforming the PARTITION problem, which is known
to be NP-hard [10], to that special case.

In PARTITION, the objective is to find whether it is
possible to partition a set ofn integersa1, . . . , an (where∑n

i=1 ai = S) into two disjoint subsets, such that the
sum of numbers in each subset is exactlyS

2 .
Given an instance of the PARTITION problem, we

construct the corresponding static RA-PM instance as
follows: we haven periodic tasks, whereci = ai and
pi = 2 · S. Note that, in this case,U =

∑ ci

pi
= 1

2 ,



sc = 1 − U = 1
2 . Observe that, the energy savings

will be maximized if it is possible to find a subset of
tasks whose total utilization is exactlyXopt = sc

2 = 1
4 .

Sincepi = 2S ∀i, this is possible if and only if one can
find a subset of tasksΦ such that

∑
i∈Φ ci = S

2 . But
this can happen only if the original PARTITION prob-
lem admits a YES answer. Therefore, if RA-PM problem
had a polynomial-time solution, one could also solve the
PARTITION problem in polynomial-time, by construct-
ing the corresponding RA-PM problem, and checking if
the maximum energy savings that can be obtained cor-
respond to the amount we could gain through managing
exactlyXopt = sc

2 = 25% of the periodic workload.

3.2 Heuristics for Task-Level RA-PM

Considering the intractability of the problem, we pro-
pose two simple heuristics for selecting tasks for en-
ergy management:Largest-utilization-first (LUF)and
Smallest-utilization-first (SUF). Suppose that the tasks
in a given periodic task set are indexed in the non-
decreasing order of their utilizations (i.e.,ui ≤ uj for
1 ≤ i < j ≤ n). SUF will select the firstk tasks, where
k is the largest integer that satisfies

∑k
i=1 ui ≤ Xopt.

Similarly, LUF will select the lastk tasks, wherek is the
smallest integer that satisfies

∑n
i=k ui ≤ Xopt.

Here, SUF tries to manage as many tasks as possible,
since any managed jobs could achieve better reliability.
However, at some point, when the remaining spare capac-
ity is not enough to accomodate a recovery task for the
task with the next smallest utilization, SUF may waste
significant portion of the spare capacity. LUF tries to
select larger utilization tasks first, where the amount of
wasted spare capacity is at most the smallest utilization
among all tasks. The potential drawback of LUF is that,
sometimes, relatively few tasks might be managed for en-
ergy savings. These heuristics are evaluated in Section 5.

4 Job-Level Dynamic RA-PM

In our backward recovery framework, the recovery
jobs are executed only if their corresponding scaled jobs
fail. Otherwise, the CPU time reserved for recovery jobs
is freed and becomes dynamic slack at run-time. More-
over, it is well-known that real-time tasks typically take a
small fraction of their WCETs [9]. Therefore, significant
amount of dynamic slack can be expected at run time,
which should be exploited to further save energy and/or
enhance system reliability.

Unlike the greedy RA-PM scheme which allocates all
available dynamic slack for the next ready task when the
tasks share a common deadline [26], in periodic execu-
tion settings, the run-time dynamic slack will be gen-
erated at different priorities and may not be always re-
claimable by the next ready job [3]. Moreover, possible
preemptions that a job experiencesafter it has reclaimed

some slack further complicates the problem. This is be-
cause, once a job’s execution is scaled through DVFS,
additional slackmustbe reserved for potential recovery
operations to preserve system reliability.Hence, main-
taining the reclaimed slack until the job completes suc-
cessfully is essential in reliability-aware settings.

The slack management problem has been studied ex-
tensively (e.g., CASH-queue [6] andα-queue [3] ap-
proaches) for different purposes. By borrowing and also
extending some fundamental ideas from these studies, we
provide a new framework which guarantees theconserva-
tion of the reclaimed slack, thereby maintaining the reli-
ability figures.

Specifically, in this work, we propose thewrapper-
taskmechanism to track/manage dynamic slack. For any
dynamic slack generated at run-time, a new wrapper-task
will be created with the following two timing parameters:
a sizethat equals the amount of dynamic slack generated
and adeadlinethat is equal to that of the job whose early
completion gave rise to this slack. A wrapper-task is de-
stroyed when all the slack it represents isreclaimedor
wasted. Otherwise, it will compete for CPU along with
normal real-time jobs. When a wrapper-task has the high-
est priority (i.e., the earliest deadline) and is “scheduled”,
it will “fetch” the highest priority job in the ready queue
(if any) andwrap the job’s execution during the interval
when the wrapper-task is “executed”. If there is no ready
job, the CPU will become idle, the wrapper-task is said to
“execute no-ops” and the corresponding dynamic slack is
consumed/wasted during this time interval.

4.1 An Example with Wrapper-Tasks

Before formally presenting the algorithm, we first
illustrate the idea of wrapper-tasks through a detailed
example. We consider a task-set with four periodic
real-time tasksΓ = {T1(1, 6), T2(6, 10), T3(2, 15),
T4(3, 30)}. For jobs withinLCM (= 30), suppose that
J21, J22, J23 andJ41 take2, 3, 4 and21

3 time units, re-
spectively, and all other jobs take their WCETs.

Recall that EDF scheduling is used.For jobs with the
same deadline, the one with the smaller task index is as-
sumed to have higher priority.WhenJ21 completes early
at time3, 4 units of dynamic slack will be generated and
the system state is shown in Figure 2a. Here, a wrapper-
task (shown asdotted rectangle) is created to represent
the slack, which is labeled by two numbers: asize(e.g.,
4) and adeadline(e.g.,10). Similar to ready jobs that
are kept in the ready queue (Ready-Q) (where the dead-
lines are indicated by the numbers at the bottom of the
job boxes), wrapper-tasks are kept in aWT-Queuein in-
creasing order of their deadlines.

It is known that, the slack that a jobJx can reclaim (i.e.
the reclaimableslack) should have a deadline no later
than Jx’s deadline [3]. From our previous discussion,
to recuperate reliability loss due to energy management,
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Figure 2. Using wrapper-tasks to manage dynamic slack

a recovery job needs to be scheduled withinJx’s dead-
line. Hence, a non-scaled job will reclaim the slack only
if the amount of reclaimable slack is larger than the job
size. Thus, at time3, J31 reclaims the available slack and
scales down its execution as shown in Figure 2b. Here, a
recovery jobRJ31 is created. The scaled execution ofJ31

uses the time slots of the reclaimed slack and is scaled at
speed2

4 = 1
2 , while RJ31 will take J31’s original time

slots. BothJ31 and RJ31 could finish their execution

within J31’s deadline in the worst case.
Suppose that the scaledJ31 finishes its execution cor-

rectly at time8, after being preempted byJ12 at time6.
The recovery jobRJ31 will be removed fromReady-Q
and all its time slots will become slack as shown in Fig-
ure 2c. But this slack is not sufficient for reclamation
by J41. However, since the corresponding wrapper-task
has higher priority, it is scheduled and wraps the execu-
tion of J41. When the wrapper-task finishes at time10, a



newwrapper-task with the same size is created, but with
the deadline ofJ41. It can also be viewed asJ41 bor-
rowing the slack for its execution and returning it with
the extended deadline (i.e., the slack ispushed forward).
The schedule and queues at time10, afterJ22 arrives, are
shown in Figure 2d.

WhenJ22 completes early at time14 (after being pre-
empted byJ13 at time12), 3 units of slack is generated
with the deadline of20, as shown in Figure 2e. Now, we
have two pieces of slack (represented by two wrapper-
tasks, respectively) with different deadlines.

Note that, as faults are assumed to be detected at the
end of a job’s execution, afull recovery job is needed to
recuperate the reliability loss due to evenpartially scaled
execution4. Thus, when thepartially-executedJ41 re-
claims all the available slack (since both wrapper-tasks
have deadlines no later thanJ41’s deadline), a full recov-
ery job RJ41 is created and inserted intoReady-Q. J41

uses the remaining slack to scale down its execution ap-
propriately as shown in Figure 2f.

When the scaledJ41 finishes early at time15, both
its unused CPU time andRJ41 are freed as slack. After
the arrival ofJ32 at time 15, the schedule and queues
are shown in Figure 2g. Here,J32 will reclaim the slack
and be scaled to speed25 after reserving the slack for the
recovery jobRJ32. After the scaledJ32 is preempted
by J14 andJ23, at time18 and20, respectively, andJ23

completes early at time24, Figure 2h shows the newly
generated slack and the state ofReady-Q, which contains
J15 (with arrival time24). Note that, the recovery job
RJ32 (i.e., the slack time) is conserved even afterJ32 is
preempted by higher priority jobs.

J15 reclaims the new slack. Suppose that both of the
scaled jobsJ15 andJ32 fail, then,RJ15 andRJ32 will be
executed as illustrated in Figure 2i. It can be seen that all
jobs (including recovery jobs) finish their executions on
time and no deadline is missed.

4.2 Job-level RA-DPM Algorithm

As the example illustrated, in addition toReady-Q
that is used to hold the ready jobs, a wrapper-task queue
(i.e.,WT-Queue) is needed to track/manage available dy-
namic slack. The rules for managing dynamic slack with
wrapper-tasks are as follows:

• Rule 1 (slack generation):When new slack is gen-
erated due toearly completion of jobsor removal of
recovery jobs, a new wrapper-task is created. How-
ever, it may be merged with an existing element in
WT-Queueif they have the same deadline. That is,
all wrapper-tasks inWT-Queuerepresent slack with
different deadlines. Wrapper-tasks inWT-Queueare
kept in the increasing order of their deadlines.

4Although checkpointing could be used for partial recovery [25],
we have shown that checkpoints with a single recovery section cannot
guarantee to preserve task reliability [26].

Algorithm 1 EDF-based RA-DPM Algorithm
1: In the algorithm, tpast is the elapsed time since last

scheduling point. J and WT represent the current job
and wrapper-task, respectively (each can have the value of
NULL if there is no such a job or wrapper-task).J.rem
andWT.rem denote the remaining time requirements;J.d
andWT.d are the deadlines.

2: Step 1:
3: if (J !=NULL and J.rem− tpast > 0) {
4: J.rem − = tpast;
5: if (J completes)
6: CreateWT(J.rem, J.d);//slack of early completion
7: elseEnqueue(J , Ready-Q);}
8: if (WT !=NULL and WT.rem− tpast > 0) {
9: WT.rem − = tpast; Enqueue(WT , WT-Queue);}

10: if (WT !=NULL and J !=NULL)
11: CreateWT(tpast, J.d);//push forward slack;
12: if (J is scaled and succeeds){
13: RemoveRecoveryJob(J ,Ready-Q);
14: CreateWT(J.c, J.d);//slack from recovery job;}
15: Step 2:
16: for (all newly arrived jobNJ){ NJ.rem = NJ.c;
17: NJ.f = fmax; Enqueue(NJ , Ready-Q);}
18: Step 3://in the following, J and WT will represent the

next job and wrapper-task to be processed, respectively;
19: J=Dequeue(Ready-Q);
20: if (J !=NULL) ReclaimSlack(J , WT-Queue);
21: WT=Header(WT-Queue);
22: if (J !=NULL){
23: if (WT ! = NULL andWT.d < J.d)
24: //WT wrapsJ ’s execution (a timer is needed)
25: WT = Dequeue(WT-Queue);
26: elseWT = NULL;//normal execution ofJ
27: Execute(J);}
28: else if(WT !=NULL)
29: WT = Dequeue(WT-Queue);//WT executes no-ops

• Rule 2 (slack reclamation):The slack is reclaimed
when: (a) a non-scaled job has the highest priority
in Ready-Qandits reclaimable slack is larger than
the job size; or (b) the highest priority job inReady-
Q has been scaled (i.e., its recovery job has been
reserved) but its speed is higher thanfee and there
is reclaimable slack. After the slack is reclaimed,
the corresponding wrapper-tasks are removed from
WT-Queueand destroyed.

• Rule 3 (slack forwarding/wasting): the wrapper-
tasks of non-reclaimed slack compete for CPU along
with ready jobs. When a wrapper-task has higher
priority (i.e., earlier deadline) and wraps the execu-
tion of a job, the corresponding slack ispushed for-
ward; otherwise, if a wrapper-task executes no-ops,
the corresponding slack is wasted. Note that, when
wrapped execution is interrupted by higher priority
jobs, only part of slack (which is consumed by the
wrapped execution) will be pushed forward, while
the remaining part has the original deadline.



The outline of the EDF-based RA-DPM algorithm is
shown in Algorithm 1. Note that, RA-DPM may be in-
voked by three types of events:job arrival, job com-
pletion and wrapper-task completion(a timer can be
used to signal a wrapper-task’s completion to operating
system). As common routines, we useEnqueue(J, Q)
to add a job/wrapper-task to the corresponding queues
and, Dequeue(Q)to fetch the highest priority (i.e., the
header) job/wrapper-task and remove it from the queue.
Moreover, Header(Q) is used to retrieve the header
job/wrapper-task without removing it from the queue.

At each scheduling point, as the first step (from line
3 to line 14), the remaining execution time information
of the currently running job and wrapper-task (if any)
are updated. If they did not complete, they are put back
to Ready-QandWT-Queue(lines7 and9), respectively.
When a wrapper-task (WT ) is used and wraps the execu-
tion ofJ (line11), as discussed before, the corresponding
amount of slack (i.e.,tpast) is pushed forward by creat-
ing a new wrapper-task with the deadline of the currently
wrapped job. Otherwise, the slack is consumed (wasted).

If the current job completes early (line6) or its recov-
ery job is removed due to the primary job’s successful
scaled execution (lines13 and14), new slack is gener-
ated and corresponding wrapper-tasks are created.

Secondly, if new jobs arrive at the current scheduling
point, they are added toReady-Qaccording to their EDF
priorities (line17). The remaining timing requirements
will be set as their WCETs at the speedfmax. The last
step is to choose the next highest priority ready jobJ (if
any) for execution (lines19 to 29). J first tries to reclaim
the available slack (line20; details are shown in Algo-
rithm 2). Then, depending on the priority of the remain-
ing wrapper-tasks, the execution ofJ may be wrapped by
a wrapper-task (line25) or executed normally (line26).
When a wrapper-task has the highest priority but no job
is ready, the wrapper-task executes no-ops (line29).

Algorithm 2 further shows the details of slack recla-
mation. As mentioned previously, recovery jobs are ex-
ecuted atfmax and are not scaled (line1). For a jobJ ,
by traversingWT-Queue, we can find out the amount of
reclaimable slack (lines3 and5). If J is not a scaled job
(i.e., its recovery job is not reserved yet) and the amount
of reclaimable slack is no larger than the size ofJ (i.e.,
J.c), the available slack is not enough for reclamation
(line 7). Otherwise, after properly reserving the slack for
recovery (line8), J ’s new speed is calculated, which is
bounded byfee (line 9; as discussed in Section 2). The
actual amount of slack used byJ includes those for en-
ergy management (line10) as well as the slack for recov-
ery job (where the recovery job is created and added to
Ready-Qin line 12). For the reclaimed slack, the cor-
responding wrapper-task(s) will be removed fromWT-
Queueand destroyed (lines15 to 20), which ensures that
this slack isconservedfor the scaled job, even if higher-

Algorithm 2 ReclaimSlack(J , WT-Queue)
1: if (J is a recovery job) return; //recovery job is not scaled
2: Step 1: //collect reclaimable slack
3: slack = 0;
4: for (WT ∈WT-Queue)
5: if (WT.d ≤ J.d) slack+ = WT.rem;
6: Step 2: //scale downJ if the slack is enough
7: if (!J.scaled && slack <= J.c) return;
8: if (!J.scaled) slack− = J.c; //reserve for recovery
9: tmp = min(fee,

J.rem∗J.f
slack+J.rem

fmax);

10: slack = J.rem∗J.f
tmp

− J.rem; //slack needed for PM
11: J.f = tmp; //new speed
12: if (!J.scaled){CreateRecoveryJob(J);slack+ = J.c;}
13: J.scaled = true; //label as scaled
14: //remove reclaimed slack fromWT-Queue;
15: while (slack > 0){
16: WT =Header(WT-Queue);
17: if (slack ≥ WT.rem){slack− = WT.rem;
18: WT =Dequeue(WT-Queue);}
19: else{WT.rem− = slack; slack = 0;}
20: }

priority jobs preempt the scaled job’s execution later.

4.3 Analysis of RA-DPM

Note that, when all jobs in a task set present their
WCETs at run time, there will be no dynamic slack and
no wrapper-task will be created. In this case, RA-DPM
will perform the same as EDF and generate the same
worst case schedule, which is feasible by assumption.
However, as some jobs complete early, RA-DPM will un-
dertake slack reclamation and/or wrapped execution, and
one needs to show that the feasibility is preserved even
after these changes in CPU time allocation of jobs.

Theorem 2 For a periodic real-time task set whose uti-
lization does not exceed100%, the feasibility of the task
set is preserved under RA-DPM.

The full formal proof is omitted due to space limi-
tations, but can be found in [28]. To sketch the proof,
first, we observe that, the elements ofWT-Queuerepre-
sent the slack of tasks that complete early. These slack
elements, while being reclaimed, may be entirely or par-
tially re-transformed to actual workload. Our strategy
consists in proving that,at any timet during execution,
the remaining workload could be feasibly scheduled by
EDF, even if all the slack elements in WT-Queue were
to be re-introduced to the system, with their correspond-
ing deadlines and remaining worst-case execution times
(sizes). This, in turn, allows us to show the feasibility of
the actual schedule, since the above-mentioned property
implies the feasibility even with an over-estimation of the
actual workload, for any timet.

Regarding the time complexity, note that the deadlines
of wrapper-tasks correspond to real-time jobs’ deadlines.



At any timet, there are at mostn different deadlines cor-
responding to jobs with release times on or beforet and
deadlines on or aftert. That is, the number of wrapper-
tasks inWT-Queueis at mostn. Therefore, slack recla-
mation can be performed (by traversingWT-Queue) in
time O(n). Hence, the complexity of RA-DPM isO(n)
at each scheduling point.

5 Simulation Results and Discussion

To evaluate the performance of our proposed schemes,
we developed a discrete event simulator using C++. In
the simulations, we consider six different schemes. First,
the scheme ofno power management (NPM), which ex-
ecutes all tasks/jobs atfmax and puts system to sleep
states when idle, is used as the baseline for comparison.
Theordinary static power management (SPM)scales all
tasks uniformly at speedf = U · fmax (whereU is the
system utilization). For the task-level static RA-PM, af-
ter obtaining the optimal utilization (Xopt) that should
be managed, two heuristics are considered:smaller uti-
lization task first (RA-SPM-SUF)and larger utilization
task first (RA-SPM-LUF). For dynamic schemes, we im-
plemented ourjob-level dynamic RA-PM (RA-DPM)and
thecycle conserving EDF (CC-EDF)[19], a well-known
but reliability-ignorant DVFS algorithm.

We focus on active power and assumePind = 0.1,
Cef = 1 andm = 3. The energy efficient frequency
is fee = 0.37 (see Section 2). Transient faults are as-
sumed to follow the Poisson distribution with an average
fault rate ofλ0 = 10−6 atfmax (and corresponding sup-
ply voltage), which corresponds to 100,000 FITs (failure
in time, in terms of errors per billion hours of use) per
megabit and is a reasonable fault rate as reported [11, 30].
To take the effects of DVFS on fault rates into consider-
ation, we adopt the exponential fault model developed in
[29] and assume that the exponentd = 2. That is, the
average fault rate is assumed to be100 times higher at
the lowest speedfee (and corresponding supply voltage).
The effects of different values ofd were evaluated in our
previous work [26, 27, 29].

We consider synthetic real-time task sets where each
task set contains20 periodic tasks. The periods of
tasks (p) are uniformly distributed within the range of
[10, 20] (for short-period tasks) or[20, 200] (for long-
period tasks). The WCETs of tasks are uniformly dis-
tributed in the range of1 and their periods. Finally, the
WCETs of tasks are scaled by a constant such that the
system utilization of tasks reaches a desired value [19].
The variability in the actual workload is controlled by the
WCET
BCET ratio (that is, the worst-case to best-case execu-
tion time ratio), where the actual execution time of tasks
follows a normal distribution with mean and standard de-
viation beingWCET+BCET

2 andWCET−BCET
6 , respec-

tively [3].

We simulate the task set’s execution for107 and108

time units, for short- and long-period task sets, respec-
tively. That is, approximately 20 million jobs are exe-
cuted during each run. Moreover, for each result point in
the graphs,100 task sets are generated and the presented
results correspond to the average.

5.1 Performance of Task-Level Schemes

For different system utilization (i.e., spare capacity),
we first evaluate the performance of the task-level static
schemes. It is assumed that all jobs take their WCETs.
Figure 3a first shows the probability of failure (i.e.,
1−reliability) for NPM and static schemes for task sets
with short periods (i.e.,p ∈ [10, 20]). Here, the proba-
bility of failure shown is the ratio of the number of failed
jobs over the total number of jobs executed.

From the figure, we can see that, as system utilization
increases, for NPM, the probability of failure increases
slightly. The reason for this is that, with increased to-
tal utilization, the computation requirement for each task
increases and tasks run longer, which increases the prob-
ability of being subject to transient fault(s). The prob-
ability of failure for SPM increases dramatically due to
increased fault rates and extended execution time. Note
that, the minimum energy efficient frequency isfee =
0.37. For very low system utilization (i.e.,U < 0.37),
SPM executes all tasks withfee. The probability of fail-
ure for SPM increases slightly with increased utilization
for the same reason as NPM. However, when system uti-
lization is higher than0.37, the processing speed of SPM
increases with increased utilization, which has lower fail-
ure rates and results in decreased probability of failure.

For reliability-aware SPM schemes (i.e., RA-SPM-
SUF and RA-SPM-LUF), by incorporating a recovery
task for each task to be scaled, the probability of fail-
ure is lower than that of NPM and system reliability is
preserved, which confirms the theoretical result obtained
in Section 3. Note that, with20 tasks in a task set, the
utilization for each task is a small number and is typi-
cally close to each other. Therefore, RA-SPM-SUF and
RA-SPM-LUF perform roughly the same.

The probability of failure for long-period task sets is
shown in Figure 3b, where all schemes have similar be-
havior to that of short-period task sets. However, for the
same system utilization, long-period task sets will have
longer execution time (almost10 times longer), which
leads to a probability of failure which is roughly10 times
greater.

Figure 3c further shows the normalized energy con-
sumption for short-period tasks with NPM as a baseline.
Here, reliability-aware SPM schemes consume roughly
20% more energy than that of ordinary SPM because
there is less spare capacity available for energy manage-
ment. Moreover, the figure also shows the energy con-
sumption forOPT-BOUND, which is calculated as the
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Figure 3. Reliability and energy for static schemes.
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Figure 4. Reliability and energy for dynamic schemes.

fault-free energy consumption with the assumption that
the managed tasks have the accumulated utilizationex-
actly equal toXopt. Clearly, OPT-BOUNDprovides a
performance bound for theoptimalstatic solution. Thus,
from the figure, we can see that the normalized energy
consumption for two heuristics will be within5% of that
for the optimal solution. For long-period tasks, the nor-
malized results are similar, and are not included due to
space limitations.

5.2 Performance of Job-Level Schemes

With system utilization being fixed atU = 1.0, we
vary WCET

BCET ratio and evaluate the performance of the
dynamic schemes. Figure 4a first shows the probability
of failure for short-period tasks. Here, we can see that, as
WCET
BCET ratio increases, more dynamic slack is available.
The probability of failure for CC-EDF first decreases rad-
ically due to scaled execution, then decreases slightly
because of shorter execution time. Again, by reserving
slack for recovery jobs, RA-DPM preserves system reli-
ability. The results for long-period tasks are similar.

Figure 4b shows the normalized energy consumption
for short-period tasks. Initially, as the ratio ofWCET

BCET
increases, more dynamic slack is available and normal-
ized energy consumption decreases. Due to limitation
of fee, when WCET

BCET > 5, the normalized energy con-
sumption for both schemes stays roughly the same and
RA-DPM consumes about15% more energy than CC-
EDF. RA-DPM performs much worse than CC-EDF for
long period tasks (in terms of energy) as shown in Fig-

ure 4c. One possible explanation could be that, when
slack is pushed forward excessively by the long-period
tasks, this may prevent other jobs from reclaiming, and it
may be wasted.

5.3 Effects of Discrete Speeds

So far, we have assumed that the clock frequency can
be scaled continuously. However, current DVFS-enabled
processors (e.g., Intel XScale [1]) only have a few speed
levels. Nevertheless, our schemes can be easily adapted
to discrete speed settings. After obtaining the desired
speed (e.g., Algorithm 2 line9), we can either use two
adjacent frequency levels to emulate the task’s execution
at that speed [13], or use the next higher discrete speed to
ensure the algorithm’s feasibility. Assuming Intel XScale
model [1] with 5 speed levels{0.15, 0.4, 0.6, 0.8, 1.0}
and using the next higher speed, we re-ran the simula-
tions. The results for normalized energy consumption are
represented asRA-DPM-DISCand shown in Figure 4bc.
Here, the cases for discrete speeds consume at most2%
more energy than that of continuous speed. The reason is
that, with the next higher discrete speed, the unused slack
is not wasted but actually saved for future usage.

6 Conclusions

DVFS was recently shown to have negative impact on
settings where transient faults become more prominent
with continued scaling of CMOS technologies and re-
duced design margins. In this work, we proposed for the



first time a reliability-aware energy management (RA-
PM) framework forperiodic tasks. Focusing on EDF
scheduling, we first studiedtask-levelutilization-based
static RA-PM schemes that exploit the system spare ca-
pacity. We showed theintractability of the problem and
proposed two efficient heuristics. Moreover, we proposed
thewrapper-taskmechanism for efficiently managing dy-
namic slack and presented ajob-leveldynamic RA-PM
scheme. The scheme is able toconservethe slack re-
claimed by a scaled job, which is an essential requirement
for reliability preservation, across preemption points.

The proposed schemes are evaluated through simu-
lations with synthetic real-time workloads. The results
show that, compared to those of ordinary energy manage-
ment schemes, the new schemes could achieve significant
amount of energy savings while preserving system relia-
bility. However, ordinary energy management schemes
that arereliability-ignorant, often lead to drastically de-
creased system reliability.
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