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Abstract sumption while meeting all the deadlines for various real-

time task models. These include a number of power

The prominent energy management technique, Dy-management schemes which exploit the available static
namic Voltage and Frequency Scaling (DVFS), was re- and/or dynamislackin the system [3, 19, 21].
cently shown to have direct and adverse effects on sys- Reliability and fault tolerance have always been ma-
tem reliability. In this work, we investigate static and dy- jor factors in computer system design. Due to the effects
namicreliability-aware energy managemesahemes for  of hardware defects, electromagnetic interferences and/or
a set ofperiodic real-time task® minimize energy con-  cosmic ray radiations, faults may occur at run-time, es-
sumption while preserving system reliability. Focusing pecially in systems deployed in dynamic/vulnerable en-
on EDF scheduling, we first show that the static prob- vironments. With the continued scaling of CMOS tech-
lem is NP-hard and propose twask-levelutilization- nologies and reduced design margins for higher perfor-
based heuristics. Then, we develojpb-level dynamic mance, it is expected that, in addition to the systems that
(on-line) scheme by building on the idea wfapper- operate in electronics-hostile environments (such as those
tasks to monitor and manage dynamic slack efficiently in outer space), practically all digital computing systems
in reliability-aware settings. Our schemes incorporate will be remarkably vulnerable tvansient faultd8].
recovery tasks/jobs into the schedule as needed for reli-  The backward error recoveryechniques, which re-
ability preservation, while still using the remaining slack  store the system state to a previous safe state and repeat
for energy savings. Simulation results show that all the the computation, can be used to tolerate transient faults
proposed schemes can achieve significant energy saving$20]. It is worth noting that both DVFS and backward re-
while preserving the system reliability. Moreover, the en- covery techniques are based on (and compete for) the ac-
ergy savings of the static heuristics are close to those oftive use of the system slack. Thus, there is an interesting

the static optimal solution by a margin 8%. trade-off between energy efficiency and the system relia-
bility. Moreover, DVFS has been shown to have a direct
1 Introduction and adverse effect on the transient fault rates, especially

) for those induced by cosmic ray radiations [29], further

The phenomenal improvements in the performance of ¢ompjicating the problem. Hence, for safety-critical real-
computing systems have resulted in drastic increases injme embedded systems (such as satellite and surveil-
power densities. For battery-operated devices with lim- |3nce systems) where reliability is as important as energy

ited energy budget, energy is now considered a first-classefficiency, reliability-cognizantenergy management be-
system resource. One common strategy to save energiomes a necessity.

is to run the system components at low-performance op-
eration points, whenever possible. For example, DVFS
scales down the CPU frequency and supply voltage si-giency requirements [7, 18, 23, 25]. As an initial study,
multaneously to save energy [24]. _ ~ we previously proposed reliability-aware power man-
For real-fume systgms where tasks have stringent tim- agement (RA-PMcheme that dynamically schedules a
ing constraints, scaling down the clock frequency (pro- yecovery job at task dispatch time, hence preserving the
cessing speed) may cause deadline misses and speci@|siem reliability [26]. The scheme is further extended

provisions are needed. In recent past, several researcl, myjiple tasks with a common deadline [27]. How-
studies explored the problem of minimizing energy con- ever, preemptive scheduling, which is common gieri-

*The research of Hakan Aydin was supported by NSF CAREER odic real_-tlme tasks, ha_'s nOI_been conS|dere.d.
Award CNS-0546244. In this work, we investigate both static and dy-

Until recently, only a few studies investigated the im-
plications of having both fault tolerance and energy effi-




namic RA-PM schemes for a set of periodic real-time 2.2 Power Model

tasks scheduled by the preemptive Earliest-Deadline-

First (EDF) policy. Specifically, we consider the problem  The relation between the supply voltage and operating

of exploiting the spare CPU capacity for energy savings frequency is known to be almost linear [5]. DVFS re-

while preserving the system reliability. We show that the duces supply voltages for lower frequencies [24] and we

optimal static RA-PM problem islP-hardand propose  will use the ternfrequency change stand for both sup-

two efficient heuristics for selecting a subset of tasks to ply voltage and frequency adjustments. Considering the

use the spare capacity for the objectives of energy and re-ever-increasing static leakage power due to scaled fea-

liability management. Moreover, we develogod-level  ture size and increased levels of integration [15] as well

dynamic RA-PM algorithm that monitors and manages as the power-saving states provided in modern power-

the dynamic slack which may be generated at run-time, efficient components (e.g., CPU [2] and memory [16]), in

again for these dual objectives. The latter algorithm is this work, we adopt the simpkystem-level power model

built on the wrapper-taskmechanism: the key idea is proposed in [29], where the power consumptiBrof a

to conservethe dynamic slack allocated to scaled tasks computing system is given by:

for recovery across preemption points, which is essen-

tial for preserving reliability. To the best of our knowl- P = P + A(Pipq + Pi) = Ps + h(Pina + Ces f™) (1)

edge, this is the first research effort that provides a com-

prehensive energy management frameworkﬁeﬂodic Despite its Simplicity, this power model captures the es-

real-time tasksvhile preserving the system reliability sential components for system-wide energy management.
The remainder of this paper is organized as follows. HETe.Ls IS thestatic power which includes the power to

The models and problem formulation are presented in maintain basic circuits and ke(_ap the clock running. It

Section 2. Section 3 focuses on the task-level, utilization- &1 t_)e removed only by powering Off_ the Wh°|e, sy_stem.

based static RA-PM schemes. Thieapper-taskconcept Pina is thefrequency-independent active powm_llc.h IS

is introduced and the job-level dynamic RA-PM scheme & constant and corresponds to the power that is indepen-

is presented in Section 4. Simulation results are presented!®nt of CPU processing speed. It can be efficiently re-

and discussed in Section 5. We conclude in Section 6. Moved by putting systems into sleep state(s) [2, ).
is thefrequency-dependent active powethich includes

processor’s dynamic power aahy power that depends

2 System Model and Problem Description ~ ©O" System processing speeds [S, 16]. _

When there is computation in progress, the system is
activeand? = 1. Otherwise, when the system is turned
off or in power-saving sleep modek,= 0. The effec-
tive switching capacitanc€’.; and the dynamic power
exponentm (in general,2 < m < 3 [5]) are system-
dependent constantg.is thenormalizedprocessing fre-
qguency withf,,.. = 1.

Intuitively, when executing a given job, lower fre-

2.1 Application Model

We consider a set of independent periodic real-time
tasksT" = {Ti,...,T,}. The taskT; is characterized
by a pair(p;, ¢;), wherep; represents its period and
denotes its worst case execution time (WCET). JHe

qu of T;, which is referred t_o ag?i' arrives at time guencies result in less frequency-dependent active en-
(4 —1) - pi and has a deadline gf p;. ergy consumption. But with reduced speeds, the job runs

In DVFS settings, it is assumed that the WCETof longer and thus consumes more static and frequency-
task T; is given under the maximum processing speed independent active energy. Therefore, a minievargy-
[fimaz. FOr simplicity, we assume that the execution time efficient frequency.., below which DVFS starts to con-
of a task scaleinearly with the processing spekdThat  sume more total energy, does exist [12, 15, 21]. Consid-
is, at speedf, the execution time of task; is assumed to  ering thatenergyis the integral of power over time, from
bec; - % the above equation, one can find thi@9]:

The system utilization is defined &5 = > | u;,
whereu; = ;— is taskT;'s utilization. The tasks are to be
executed on a uni-processor system according to the pre-
emptive EDF policy. Considering the well-known feasi-
bility condition for EDF [17], we assume th&t < 1. Consequently, for energy efficiency, we assume that

fee < f < fmaz- We develop our framework by as-

1A number of studies have indicated that the execution time of tasks ;ummg continuous frequency. The |mpI|cat|ons of hav-

does not scale linearly with reduced processing speed due to accesselid discrete speed levels are discussed in Section 5.3.

to memory [22] and/or 1/O devices [4]. However, exploring the full 2Considering the prohibitive overhead of turning on/off a system
implications of this observation is beyond the scope of this paper and is (e.g., tens of seconds), we assume that the system will not be turned off
left as our future work. during the interval considered attl is always consumed.
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2.3 Fault Model 2.5 Reliability-Aware Power Manage-
ment (RA-PM)

At run-time, faults may occur due to various reasons,
such as hardware failures, electromagnetic interferences Conventionally, DVFS-basedrdinary power man-
as well as the effects of cosmic ray radiations. The agement schemes exploit all the available (static and/or
transientfaults occur much more frequently thamer- dynamic) slack for energy management and are, conse-
manentfaults [14], especially with the continued scaling quently,reliability-ignorant(in the sense that no attention
of CMOS technologies and reduced design margins [8]. is paid to the potential effects of DVFS on task reliabil-
Consequently, in this paper, we focus on transient faults, ities). Instead of usingll the available slack for DVFS
and use backward recovery techniques for fault tolerance.to save energy, one can reserve a portion of the slack to
It is assumed that the faults are detected usengty(or schedule aecovery jobRJ for any job J whose exe-
consistencychecks at the completion of a job's execu- cution is scaled down, to recuperate the reliability loss
tion, and if needed, the recovery task is dispatched, in thedue to the energy management [26]. The recovery job

form of re-execution [20].

In our previous work [29], we have studied the nega-
tive effects of DVFS on transient faults induced by cos-
mic ray radiations. Assuming that transient faults follow
Poisson distribution [25], the average transient fault rate
for systems running at frequengy(and corresponding
supply voltage) can be expressed as [29]:

A(f) = 2o g(f) ®)

where) is the average fault rate correspondingtQ, . -
That is, g( fimaz) = 1. With reduced processing speeds
and supply voltages, fault rate generally increases [29].
Therefore, we have(f) > 1for f < fiaz-

2.4 Problem Description

Our primary objective in this paper is to develop

power management schemes for periodic real-time tasks

né Task-Level Static Schemes

executing on a uni-processor system and preserve syste
reliability at the same time. We define thaiability of

a real-time job as therobability of its being correctly
executed before its deadlin®ne of the key findings re-
ported in [29] is that the reliability of a job whose execu-

RJ will be dispatched (at the maximum frequenty..)

only if a transient fault is detected whehcompletes.
The recovery can be in the form of re-execution dhd
has the same WCET as that.6{20].

With the help ofR.J, the overallreliability R of job J
will be the summation of the probability of being ex-
ecuted correctly anthe probability of having transient
fault(s) duringJ’s execution while the recovery joBJ
being executed correctly. We have shown thathe
amount of available slack ismorethan the WCET of a
job, by scheduling a recovery job (e.g., re-execution),
one canguaranteeto preserve the reliability of a real-
time job while still obtaining energy savings using the
remaining slack, regardless of different fault rate in-
creases and scaled processing sped@§]. In increas-
ing level of sophistication and implementation complex-
ity, we first introduce theask-level staticschemes and
thenjob-level dynamischemes in the next two sections.

To start with, we consider static RA-PM schemes that
make their decisions at thtask-level In this approach,

tion is scaled through DVFS decreases drastically due tofor simplicity, all the jobs of a task have the same treat-

the increased fault rates aegtended execution time.
The reliability of a real-time system depends on the
correctexecution ofall jobs within their deadlines. With-

out loss of generality, we assume that the system reliabil-

ity is satisfactorywhen no power management scheme is

ment. That is, if a given task is selected for energy
management, all its jobs will run at the same scaled fre-
guency; otherwise, they will run dt,,,,.. From the above
discussion, to recuperate reliability loss due to scaled ex-
ecution, eaclscaled joS will need a corresponding re-

applied, even under the worst-case scenario (i.e., whenCOVery job within its deadline, should a fault occur.

jobs take their WCETS). To preserve system reliability,
for simplicity, we focus on maintaining the reliability of
individual jobs in this work. Specificallyfor a peri-
odic real-time task set with utilization U, we consider
the problem of how to use the spare CPU utilization
(1 = U), as well as the dynamic slack generated at
run-time, for maximizing energy savings while keep-
ing the reliability of any job of task 7; no less thanR?

(i = 1,...,n), whereR? = e~*o¢ (from Poisson fault
arrival pattern and the average fault ratg[26]) is the
original reliability of 7;'’s jobs, when there is no power
management and the jobs use their WCETSs.

To provide the required recovery jobs, we can con-
struct periodiagecovery tasks (RTy exploiting the spare
CPU capacity (orstatic slack. The recovery task will
have the same timing parameters (i.e., WCET and period)
as those of the task to be scaled. Hence, we can schedule
a recovery job for eacprimary job and preserve its re-
liability. Note that a recovery job will be activated only
when the correspondingrimary job incurs a fault.

As a concrete example, suppose that we have a pe-
riodic task set of three tasks = {T3(1,7), T»(2,14),

SWe use the expressiacaled jobto refer to any job whose execu-
tion is slowed down through DVFS, for energy management purposes.
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Figure 1. Static schemes for a task set with
three tasks {71(1,7),7%(2,14),T5(2,7)}.
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T3(2,7)} with system utilization ag/ = =. Without
considering system reliability, theptimal ordinary static
power management (SPM) under EDF will scale down
all tasks at the speefl = U - fiue = % as shown in
Figure 1la [3, 19]. In the figure, the X-axis represents

time and the height of task boxes represents processingE

speed. Due to the periodicity, only the schedule within
the least common multiple (LCM) of tasks’ periods is
shown. However, by uniformly scaling down the execu-
tion in this way, the reliability figures of all the tasks (and
that of the system) would be significantly reduced [29].
When applying static RA-PM, we first compute the
spare capacity as— U = % After constructing the re-
covery taskRT;(1,7), which has the same WCET and
period as the tasi; with the utilizationru; = 7 the
overall system utilization will bé&/" = U + ru; Lf
we allocate the remaining spare capacity (iles U !
%) to taskT7, all jobs of 77 can be executed at the speed
of % With the recovery tasi?7; and the scaled exe-
cution of 73, the effectivesystem utilization isexactly1

the system power is given by a cubic function. Simple al-
gebra shows that, managing only t&kcould sav%E,
where E is the energy consumed by all jobs of tdBk
within LCM under no power management. In compari-
son, the energy savings would %bE if both T, andT»

are managed, which is a significant improvement.

3.1 Intractability of Task-Level RA-PM

The inherent complexity of the optimal static RA-PM
problem warrants an analysis. Suppose that the system
utilization of the task set i§/ and the spare capacity is
sc =1—U. If a subset) of tasks are selected for man-
agement with total utilizatioX’ = >, - u; < sc, af-
ter accomodating all recovery tasks, the remaining spare
capacity (i.e.,sc — X) could be used to scale down the
selected tasks for energy management. Considering the
convex relation between power and processing speed (see
Equation 1), the solution that minimizes the energy con-
sumption will uniformly scale down all jobs of the se-
lected tasks where the scaled processing speed will be
f= m % Therefore, without considering
the energy consumed by recovery jobs, the amount of to-
tal fault-freeenergy consumption within C M would be:

LCM - Ps + LCM(U — X)(Pina + et - finaz)
+LCM~SC< ind + Cef (i) ) 4)

where the first part is the energy consumption due to

static power, the second part captures the energy con-
sumption of unselected tasks, and finally, the third

part represents the energy consumption of the selected
tasks. Simple algebra shows that, wh&p,; = sc

(BzatCet)or, Epon will be minimized.

If Xopt > U, all tasks should be scaled down ap-
propriately to minimize energy consumption. Otherwise,
the problem becomes essentially a task selection prob-
lem, where the summation of the selected tasks’ utiliza-

tion should beexactlyequal toX,,, if possible. In other

and the modified task set is schedulable under EDF aswords, such a choice would definitely be the optimal so-
shown in Figure 1b. From the figure, we can see that lution.

every scaled job of task; has a corresponding recovery
job within its deadline. Therefore, dl,’s jobs could pre-
serve their reliability leveRY. Since the jobs of tasks,
andTj; run at f,,,..., their reliability figures are preserved
at the levels of?) and RS, respectively.

Therefore, by incorporating a recovery task for the

Theorem 1 For a set of periodic tasks, the problem of
the task-level utilization-based static RA-PM is NP-hard.

Proof We consider a special case of the problem with
m = 2, Cey = 1andPy,g = 0; thatis, X,,; = 5.
We show that even this special instance is intractable, by

task to be managed, the task-level utilization-based statictransforming the PARTITION problem, which is known

RA-PM scheme could preserve system reliability while
obtaining energy savings. In [27], we reported that it is
not optimal (in terms of energy savings) for the RA-PM

to be NP-hard [10], to that special case.
In PARTITION, the objective is to find whether it is
possible to partition a set efintegersay, . . ., a,, (Wwhere

scheme to utilize all the slack for a single task in case of >~ , a; = S) into two disjoint subsets, such that the
aperiodictasks. Similarly, we can use the spare capacity sum of numbers in each subset is exaétly

for multiple periodic tasks for better energy savings. For
instance, Figure 1c shows the case where BotandT;

are scaled to spe%jafter constructing the recovery tasks
RT; and RT>. For illustration purposes, we assume that

Given an instance of the PARTITION problem, we
construct the corresponding static RA-PM instance as
follows: we haven periodic tasks, where;, = a; and
pi = 2- 5. Note that, in this casd/ = }_ °t =



sc =1-U = % Observe that, the energy savings
will be maximized if it is possible to find a subset of
tasks whose total utilization is exacth,,; = % = l

Sincep; = 25 Vi, this is possible if and only if one can
find a subset of taské such that}", . ¢; = 5. But
this can happen only if the original PARTITION prob-
lem admits a YES answer. Therefore, if RA-PM problem
had a polynomial-time solution, one could also solve the
PARTITION problem in polynomial-time, by construct-
ing the corresponding RA-PM problem, and checking if

the maximum energy savings that can be obtained cor-

some slack further complicates the problem. This is be-
cause, once a job’s execution is scaled through DVFS,
additional slackmustbe reserved for potential recovery
operations to preserve system reliabilitdence, main-
taining the reclaimed slack until the job completes suc-
cessfully is essential in reliability-aware settings

The slack management problem has been studied ex-
tensively (e.g., CASH-queue [6] ang-queue [3] ap-
proaches) for different purposes. By borrowing and also
extending some fundamental ideas from these studies, we
provide a new framework which guarantees¢baserva-

respond to the amount we could gain through managingtion of the reclaimed slack, thereby maintaining the reli-

exactly X,,; = % = 25% of the periodic workload. ®
3.2 Heuristics for Task-Level RA-PM

Considering the intractability of the problem, we pro-
pose two simple heuristics for selecting tasks for en-
ergy management:.Largest-utilization-first (LUF)and
Smallest-utilization-first (SUF)Suppose that the tasks
in a given periodic task set are indexed in the non-
decreasing order of their utilizations (i.e:; < w; for
1 <i < j < n). SUF will select the firsk tasks, where
k is the largest integer that satisfiEsf:1 u; < Xopt.
Similarly, LUF will select the lask tasks, wheré; is the
smallest integer that satisfi®s;_, u; < X,

ability figures.

Specifically, in this work, we propose therapper-
taskmechanism to track/manage dynamic slack. For any
dynamic slack generated at run-time, a new wrapper-task
will be created with the following two timing parameters:
asizethat equals the amount of dynamic slack generated
and adeadlinethat is equal to that of the job whose early
completion gave rise to this slack. A wrapper-task is de-
stroyed when all the slack it representgeaslaimedor
wasted Otherwise, it will compete for CPU along with
normal real-time jobs. When a wrapper-task has the high-
est priority (i.e., the earliest deadline) and is “scheduled”,
it will “fetch” the highest priority job in the ready queue

Here, SUF tries to manage as many tasks as possiblejf any) andwrap the job's execution during the interval

since any managed jobs could achieve better reliability.

when the wrapper-task is “executed”. If there is no ready

However, at some point, when the remaining spare capacjob, the CPU will become idle, the wrapper-task is said to
ity is not enough to accomodate a recovery task for the “execute no-ops” and the corresponding dynamic slack is

task with the next smallest utilization, SUF may waste
significant portion of the spare capacity. LUF tries to

consumed/wasted during this time interval.

select larger utilization tasks first, where the amount of 4.1 ~An Example with Wrapper-Tasks

wasted spare capacity is at most the smallest utilization

among all tasks. The potential drawback of LUF is that,
sometimes, relatively few tasks might be managed for en-

ergy savings. These heuristics are evaluated in Section 5,

4 Job-Level Dynamic RA-PM

In our backward recovery framework, the recovery

Before formally presenting the algorithm, we first
illustrate the idea of wrapper-tasks through a detailed
example. We consider a task-set with four periodic
real-time tasksl’ {T1(1,6), T»(6,10), T5(2,15),
T4(3,30)}. For jobs withinLC'M (= 30), suppose that
Jo1, Ja2, Jo3 and Jy; take2, 3, 4 and23 time units, re-
spectively, and all other jobs take their WCETS.

Recall that EDF scheduling is useebr jobs with the

jobs are executed only if their corresponding scaled jobs same deadline, the one with the smaller task index is as-

fail. Otherwise, the CPU time reserved for recovery jobs

is freed and becomes dynamic slack at run-time. More-

over, it is well-known that real-time tasks typically take a
small fraction of their WCETSs [9]. Therefore, significant

amount of dynamic slack can be expected at run time,

sumed to have higher priority¥hen.J,; completes early

at time3, 4 units of dynamic slack will be generated and
the system state is shown in Figure 2a. Here, a wrapper-
task (shown aslotted rectanglgis created to represent
the slack, which is labeled by two numberssiae(e.g.,

which should be exploited to further save energy and/or 4) and adeadline(e.g.,10). Similar to ready jobs that

enhance system reliability.
Unlike the greedy RA-PM scheme which allocates all

are kept in the ready queuBgady-Q (where the dead-
lines are indicated by the numbers at the bottom of the

available dynamic slack for the next ready task when the job boxes), wrapper-tasks are kept ia-Queuen in-

tasks share a common deadline [26], in periodic execu-

tion settings, the run-time dynamic slack will be gen-

erated at different priorities and may not be always re-

claimable by the next ready job [3]. Moreover, possible
preemptions that a job experienadter it has reclaimed

creasing order of their deadlines.

Itis known that, the slack that a jok. can reclaim (i.e.
the reclaimableslack) should have a deadline no later
than J,’s deadline [3]. From our previous discussion,
to recuperate reliability loss due to energy management,
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Figure 2. Using wrapper-tasks to manage dynamic slack

a recovery job needs to be scheduled witlij’s dead- within J3;’s deadline in the worst case.

line. Hence, a non-scaled job will reclaim the slack only  Suppose that the scald; finishes its execution cor-

if the amount of reclaimable slack is larger than the job rectly at time8, after being preempted b, at time6.
size. Thus, attim@, .J3; reclaims the available slack and  The recovery jobR.J3; will be removed fromReady-Q
scales down its execution as shown in Figure 2b. Here, aand all its time slots will become slack as shown in Fig-
recovery jobR.J3; is created. The scaled execution/gf ure 2c. But this slack is not sufficient for reclamation
uses the time slots of the reclaimed slack and is scaled aby Jy1. However, since the corresponding wrapper-task
speed; = 3, while RJs; will take Js,’s original time  has higher priority, it is scheduled and wraps the execu-
slots. Both.J3; and R.J3; could finish their execution  tion of J,;. When the wrapper-task finishes at tiftig a



newwrapper-task with the same size is created, but with Algorithm 1

EDF-based RA-DPM Algorithm

the deadline ofJ,;.
rowing the slack for its execution and returning it with
the extended deadline (i.e., the slaclished forwar}l

The schedule and queues at tiire after J,5 arrives, are
shown in Figure 2d.

WhenJ,; completes early at timé4 (after being pre-
empted by.J;3 at time 12), 3 units of slack is generated
with the deadline 020, as shown in Figure 2e. Now, we
have two pieces of slack (represented by two wrapper-

Note that, as faults are assumed to be detected at the

end of a job’s execution, fll recovery job is needed to
recuperate the reliability loss due to eyeartially scaled

2
3
4
5:
tasks, respectively) with different deadlines. 6:
2
8
9

executiod. Thus, when thepartially-executedJ,; re- 10:
claims all the available slack (since both wrapper-tasks 11:
have deadlines no later thdy,'s deadline), a full recov- 12:
ery job RJy; is created and inserted inReady-Q J4; ﬁ

uses the remaining slack to scale down its execution ap- .
propriately as shown in Figure 2f.

16:
When the scaled/y; finishes early at timd5, both 17:
its unused CPU time anB.J4; are freed as slack. After g

the arrival of J35 at time 15, the schedule and queues

are shown in Figure 2g. Herdg, will reclaim the slack 19:
and be scaled to spe%dafter reserving the slack for the  20:
recovery jobR.Js,. After the scaled/s, is preempted 21
by Ji4 and J,3, at time 18 and20, respectively, and; 22:
completes early at time4, Figure 2h shows the newly 23
generated slack and the stateRefady-Qwhich contains '
Jis (with arrival time 24). Note that, the recovery job j

) . : . 26:
RJss (i.e., the slack time) is conserved even affgy is 7.

preempted by higher priority jobs.

J15 reclaims the new slack. Suppose that both of the 29;

It can also be viewed a$,; bor- 1:

In the algorithm, t,.s: is the elapsed time since last
scheduling point. J and WT represent the current job
and wrapper-task, respectively (each can have the value of
NULL if there is no such a job or wrapper-task).rem
andWT.rem denote the remaining time requirements]
andWT.d are the deadlines.

. Step 1:

if (J'=NULL and J.rem —
Jrem — = tpast;
if (J completes)
CreateWT(.rem, J.d);/Islack of early completion
elseEnqueuef, Ready-Q)}
if (WT!'=NULL and WT.rem — tpast > 0) {
WT.rem — = tpast; EnqueuelV T, WT-Queue)
if (WT'=NULL and J!=NULL)
CreateWT{,qs¢, J.d);//push forward slack;
if (J is scaled and succeeds)
RemoveRecoveryJoli(Ready-Q;
CreateWT(.c, J.d);//slack from recovery joB;
5: Step 2:
for (all newly arrived jobN J){ N J.rem = N J.c;
NJ.f = fmae; EnqueuelV J, Ready-Q)}
Step 37/in the following, J and WT will represent the
next job and wrapper-task to be processed, respectively;
J=Dequeue(Ready-Q)
if (J'=NULL) ReclaimSlack(, WT-Queug
WT=Header(WT-Queue)
if (J!I=NULL){
if (WT!= NULL andWT.d < J.d)
[IW'T wrapsJ's execution (a timer is needed)
WT = Dequeue(WT-Queuge)
elseWT = NULL;//normal execution off
Execute();}
else if(WT'!=NULL)
WT = Dequeue(WT-QueudJV T executes no-ops

tpast > 0) {

scaled jobs/,5 andJs, fail, then, R.J;5 and R.J3, will be
executed as illustrated in Figure 2i. It can be seen that all
jobs (including recovery jobs) finish their executions on
time and no deadline is missed.

4.2 Job-level RA-DPM Algorithm

As the example illustrated, in addition Ready-Q
that is used to hold the ready jobs, a wrapper-task queue
(i.e., WT-Queugis needed to track/manage available dy-
namic slack. The rules for managing dynamic slack with
wrapper-tasks are as follows:

e Rule 1 (slack generation):When new slack is gen-
erated due tearly completion of jobsr removal of
recovery jobsa new wrapper-task is created. How-
ever, it may be merged with an existing element in
WT-Queusdf they have the same deadline. That is,
all wrapper-tasks inWWT-Queueepresent slack with
different deadlines. Wrapper-tasksWiT-Queuare
kept in the increasing order of their deadlines.

4Although checkpointing could be used for partial recovery [25],
we have shown that checkpoints with a single recovery section cannot
guarantee to preserve task reliability [26].

e Rule 2 (slack reclamation): The slack is reclaimed

when: (a) a non-scaled job has the highest priority
in Ready-Qandits reclaimable slack is larger than
the job size; or (b) the highest priority job Ready-

Q has been scaled (i.e., its recovery job has been
reserved) but its speed is higher thAn and there

is reclaimable slack. After the slack is reclaimed,
the corresponding wrapper-tasks are removed from
WT-Queueand destroyed.

Rule 3 (slack forwarding/wasting): the wrapper-
tasks of non-reclaimed slack compete for CPU along
with ready jobs. When a wrapper-task has higher
priority (i.e., earlier deadline) and wraps the execu-
tion of a job, the corresponding slackgashed for-
ward; otherwise, if a wrapper-task executes no-ops,
the corresponding slack is wasted. Note that, when
wrapped execution is interrupted by higher priority
jobs, only part of slack (which is consumed by the
wrapped execution) will be pushed forward, while
the remaining part has the original deadline.



The outline of the EDF-based RA-DPM algorithm is Algorithm 2 ReclaimSlack{, WT-Queug
shown in Algorithm 1. Note that, RA-DPM may be in-  1: if(J is a recovery job) return; //recovery job is not scaled
voked by three types of eventgob arrival, job com- 2: Step 1://collect reclaimable slack
pletion and wrapper-task completiorfa timer can be 3 slack =0;

4
system). As common routines, we uBequeue(J, Q) % it (WT.d < J.d) slack+ = WT.rem;
to add a job/wrapper-task to the corresponding queues 3: Step 2://scale dowry if the slack is enough
. . 8: if (!J.scaled) slack— = J.c; fi

header) job/wrapper-task and remove it from the queue. 9 it (.scaled) slac Jmenz*i{? IIreserve for recovery
Moreover, Header(Q) is used to retrieve the header slack = 2rem=L1 " 1o [1slack needed for PM

At each scheduling point, as the first step (from line 12: if (1.J.scaled){CreateRecoveryJobf;slack+ = J.c;}
3 to line 14), the remaining execution time information 13:  J.scaled = true; /llabel as scaled
are updated. If they did not complete, they are put back 15:  while (slack > 0){
to Ready-QandWT-Queudlines 7 and9), respectively. 16 WT =Header(WT-Queug)
tion of J (line 11), as discussed before, the corresponding & lw?/‘;Deq”e“E(V\l/T'g“el“@; o
amount of slack (i.e,4s:) is pushed forward by creat- else{WT.rem— = slack; slack = 0;}
wrapped job. Otherwise, the slack is consumed (wasted).

If the current job completes early (lirig or its recov-
scaled execution (lines3 and 14), new slack is gener- 4.3 Analysis of RA-DPM
ated and corresponding wrapper-tasks are created.

}

used to signal a wrapper-task’s completion to operating for(WT eWT-Queup

if (1 _ .
and, Dequeue(QYo fetch the highest priority (i.e., the if (1/:scaled && slack <= J.c) retur;

tmp = rnin(fee, slack+J.rem fmaz);
job/wrapper-task without removing it from the queue. 11: J.f = tmp: linew speed
of the currently running job and wrapper-task (if any) 14: //remove reclaimed slack frofVT-Queue
When a wrapper-task{ T) is used and wraps the execu- 17 if (slack > WT.rem){slack— = WT.rem;
ing a new wrapper-task with the deadline of the currently

L ) g riority jobs preempt the scaled job’s execution later.
ery job is removed due to the primary job’s successful P ¥l P P J
) i i ] Note that, when all jobs in a task set present their
Secondly, if new jobs arrive at the current scheduling \yceTs at run time, there will be no dynamic slack and

point, they are added ®eady-Qaccording to their EDF 4 \yrapper-task will be created. In this case, RA-DPM
pr_|or|t|es (I|ne17)._ The remaining timing requirements perform the same as EDF and generate the same
will be set as their WCETSs at the spegdl... The last \yqst case schedule, which is feasible by assumption.
step is to choose the next highest priority readyjogf However, as some jobs complete early, RA-DPM will un-
any) for execution (lines9 to 29). J first tries toreclaim - yetake slack reclamation and/or wrapped execution, and
the available slack (lin@0; details are shown in Algo-  4ne needs to show that the feasibility is preserved even

rithm 2). Then, depending on the priority of the remain- ,ier these changes in CPU time allocation of jobs.
ing wrapper-tasks, the execution.bfmay be wrapped by

a wrapper-task (lin@5) or executed normally (lin€6). ~ Theorem 2 For a periodic real-time task set whose uti-
When a wrapper-task has the highest priority but no job jization does not exceet0%, the feasibility of the task
is ready, the wrapper-task executes no-ops if)e set is preserved under RA-DPM.

Algorithm 2 further shows the details of slack recla-
mation. As mentioned previously, recovery jobs are ex-  The full formal proof is omitted due to space limi-
ecuted atf,,., and are not scaled (ling. For a jobJ, tations, but can be found in [28]. To sketch the proof,
by traversingWT-Queugwe can find out the amount of first, we observe that, the elementsWiT-Queueepre-
reclaimable slack (line3 and5). If J is not a scaled job  sent the slack of tasks that complete early. These slack
(i.e., its recovery job is not reserved yet) and the amount elements, while being reclaimed, may be entirely or par-
of reclaimable slack is no larger than the sizeJofi.e., tially re-transformed to actual workload. Our strategy
J.c), the available slack is not enough for reclamation consists in proving thagt any timet during execution,
(line 7). Otherwise, after properly reserving the slack for the remaining workload could be feasibly scheduled by
recovery (linek), J's new speed is calculated, which is EDF, even if all the slack elements in WT-Queue were
bounded byf,. (line 9; as discussed in Section 2). The to be re-introduced to the systemith their correspond-
actual amount of slack used byincludes those for en-  ing deadlines and remaining worst-case execution times
ergy management (line)) as well as the slack for recov-  (sizes). This, in turn, allows us to show the feasibility of
ery job (where the recovery job is created and added tothe actual schedule, since the above-mentioned property
Ready-Qin line 12). For the reclaimed slack, the cor- implies the feasibility even with an over-estimation of the
responding wrapper-task(s) will be removed frokir- actual workload, for any time
Queueand destroyed (lineks to 20), which ensures that Regarding the time complexity, note that the deadlines
this slack isconservedor the scaled job, even if higher-  of wrapper-tasks correspond to real-time jobs’ deadlines.



At any timet, there are at most different deadlines cor-
responding to jobs with release times on or befoamd
deadlines on or after. That is, the number of wrapper-
tasks inWT-Queuds at mostn. Therefore, slack recla-
mation can be performed (by traversilgT-Queug in
time O(n). Hence, the complexity of RA-DPM i©(n)

at each scheduling point.

5 Simulation Results and Discussion

We simulate the task set’s execution fidr” and 108
time units, for short- and long-period task sets, respec-
tively. That is, approximately 20 million jobs are exe-
cuted during each run. Moreover, for each result point in
the graphs]00 task sets are generated and the presented
results correspond to the average.

5.1 Performance of Task-Level Schemes

For different system utilization (i.e., spare capacity),
we first evaluate the performance of the task-level static

To evaluate the performance of our proposed schemesschemes. It is assumed that all jobs take their WCETSs.
we developed a discrete event simulator using C++. In Figure 3a first shows the probability of failure (i.e.,

the simulations, we consider six different schemes. First,

the scheme ofo power management (NPMyhich ex-
ecutes all tasks/jobs gt ., and puts system to sleep

1—reliability) for NPM and static schemes for task sets
with short periods (i.ep € [10,20]). Here, the proba-
bility of failure shown is the ratio of the number of failed

states when idle, is used as the baseline for comparisonjobs over the total number of jobs executed.

Theordinary static power management (SPatgales all
tasks uniformly at speefl = U - f,.q. (WhereU is the
system utilization). For the task-level static RA-PM, af-
ter obtaining the optimal utilizationX,,:) that should
be managed, two heuristics are considergdaller uti-
lization task first (RA-SPM-SURNnd larger utilization
task first (RA-SPM-LUE)For dynamic schemes, we im-
plemented oujob-level dynamic RA-PM (RA-DPMNd
thecycle conserving EDF (CC-EDHL9], a well-known
but reliability-ignorant DVFS algorithm.

We focus on active power and assuifg, = 0.1,
C.y = 1 andm = 3. The energy efficient frequency
is fee = 0.37 (see Section 2). Transient faults are as-
sumed to follow the Poisson distribution with an average
fault rate of\g = 1079 at f,,.. (and corresponding sup-
ply voltage), which corresponds to 100,000 FITs (failure
in time, in terms of errors per billion hours of use) per

From the figure, we can see that, as system utilization
increases, for NPM, the probability of failure increases
slightly. The reason for this is that, with increased to-
tal utilization, the computation requirement for each task
increases and tasks run longer, which increases the prob-
ability of being subject to transient fault(s). The prob-
ability of failure for SPM increases dramatically due to
increased fault rates and extended execution time. Note
that, the minimum energy efficient frequencyfis. =
0.37. For very low system utilization (i.el/ < 0.37),
SPM executes all tasks with.. The probability of fail-
ure for SPM increases slightly with increased utilization
for the same reason as NPM. However, when system uti-
lization is higher tha.37, the processing speed of SPM
increases with increased utilization, which has lower fail-
ure rates and results in decreased probability of failure.

For reliability-aware SPM schemes (i.e., RA-SPM-

megabit and is a reasonable fault rate as reported [11, 30]SUF and RA-SPM-LUF), by incorporating a recovery

To take the effects of DVFS on fault rates into consider-

task for each task to be scaled, the probability of fail-

ation, we adopt the exponential fault model developed in ure is lower than that of NPM and system reliability is

[29] and assume that the exponeht= 2. That is, the
average fault rate is assumed to 1i#) times higher at
the lowest speed.. (and corresponding supply voltage).
The effects of different values afwere evaluated in our
previous work [26, 27, 29].

preserved, which confirms the theoretical result obtained
in Section 3. Note that, witR0 tasks in a task set, the
utilization for each task is a small number and is typi-
cally close to each other. Therefore, RA-SPM-SUF and
RA-SPM-LUF perform roughly the same.

We consider synthetic real-time task sets where each The probability of failure for long-period task sets is

task set contain®0 periodic tasks. The periods of
tasks p) are uniformly distributed within the range of
[10,20] (for short-period tasks) 0f20,200] (for long-
period tasks). The WCETs of tasks are uniformly dis-
tributed in the range of and their periods. Finally, the

shown in Figure 3b, where all schemes have similar be-
havior to that of short-period task sets. However, for the
same system utilization, long-period task sets will have
longer execution time (almogt) times longer), which
leads to a probability of failure which is roughly times

WCETSs of tasks are scaled by a constant such that thegreater.

system utilization of tasks reaches a desired value [19].

The variability in the actual workload is controlled by the
WCET
BCET . et
tion time ratio), where the actual execution time of tasks

follows a normal distribution with mean and standard de-
viation beingWCETEBCETL gng WCET=BCET respec-
tively [3].

ratio (that is, the worst-case to best-case execu-

Figure 3c further shows the normalized energy con-
sumption for short-period tasks with NPM as a baseline.
Here, reliability-aware SPM schemes consume roughly
20% more energy than that of ordinary SPM because
there is less spare capacity available for energy manage-
ment. Moreover, the figure also shows the energy con-
sumption forOPT-BOUND which is calculated as the
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Figure 4. Reliability and energy for dynamic schemes.

fault-free energy consumption with the assumption that ure 4c. One possible explanation could be that, when
the managed tasks have the accumulated utilizagion  slack is pushed forward excessively by the long-period
actly equal to.X,,;. Clearly, OPT-BOUNDprovides a  tasks, this may prevent other jobs from reclaiming, and it
performance bound for thaptimal static solution. Thus,  may be wasted.

from the figure, we can see that the normalized energy .

consumption for two heuristics will be withist% of that 03  Effects of Discrete Speeds

for the optimal solution. For long-period tasks, the nor- So far, we have assumed that the clock frequency can
malized results are similar, and are not included due to pe scaled continuously. However, current DVFS-enabled
space limitations. processors (e.g., Intel XScale [1]) only have a few speed
5.2 Performance of Job-Level Schemes levels. Nevertheless, our schemes can be easily adapted
to discrete speed settings. After obtaining the desired
speed (e.g., Algorithm 2 lin@), we can either use two
adjacent frequency levels to emulate the task’s execution
at that speed [13], or use the next higher discrete speed to
ensure the algorithm’s feasibility. Assuming Intel XScale
model [1] with 5 speed levels[0.15,0.4,0.6,0.8,1.0}

and using the next higher speed, we re-ran the simula-
tions. The results for normalized energy consumption are
represented aRA-DPM-DISCand shown in Figure 4bc.
Here, the cases for discrete speeds consume at2ffost
more energy than that of continuous speed. The reason is
that, with the next higher discrete speed, the unused slack
is not wasted but actually saved for future usage.

With system utilization being fixed d&f = 1.0, we
vary WCET ratio and evaluate the performance of the
dynamic schemes. Figure 4a first shows the probability
of failure for short-period tasks. Here, we can see that, as
WEEL ratio increases, more dynamic slack is available.
The probability of failure for CC-EDF first decreases rad-
ically due to scaled execution, then decreases slightly
because of shorter execution time. Again, by reserving
slack for recovery jobs, RA-DPM preserves system reli-
ability. The results for long-period tasks are similar.

Figure 4b shows the normalized energy consumption
for short-period tasks. Initially, as the ratio 52
increases, more dynamic slack is available and normal-
ized energy consumption decreases. Due to limitationg  Conclusions
of fee, whenEEEL > 5, the normalized energy con-
sumption for both schemes stays roughly the same and DVFS was recently shown to have negative impact on
RA-DPM consumes aboluit5% more energy than CC-  settings where transient faults become more prominent
EDF. RA-DPM performs much worse than CC-EDF for with continued scaling of CMOS technologies and re-
long period tasks (in terms of energy) as shown in Fig- duced design margins. In this work, we proposed for the




first time a reliability-aware energy management (RA-
PM) framework forperiodic tasks. Focusing on EDF
scheduling, we first studiethsk-levelutilization-based
static RA-PM schemes that exploit the system spare ca-
pacity. We showed thimtractability of the problem and
proposed two efficient heuristics. Moreover, we proposed [15]
thewrapper-taskmechanism for efficiently managing dy-
namic slack and presentedab-leveldynamic RA-PM
scheme. The scheme is abledonservethe slack re-
claimed by a scaled job, which is an essential requirement
for reliability preservation, across preemption points.

The proposed schemes are evaluated through simu{17]
lations with synthetic real-time workloads. The results
show that, compared to those of ordinary energy manage-
ment schemes, the new schemes could achieve significan[lls]
amount of energy savings while preserving system relia-
bility. However, ordinary energy management schemes|[19]
that arereliability-ignorant, often lead to drastically de-
creased system reliability.
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