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Kejun Long, Min Chen, and Victor C.M. Leung, Fellow, IEEE

Abstract—This paper comprehensively discusses the coopera-
tive communication and computation of vehicular system. Based
on the cooperative transmission, an stochastic model of vehicle-
to-vehicle (V2V) communication reliability is established using
probability theory. Furthermore, the computation reliability is
defined as a new metric for computation offloading, and a vehicle
computational performance evaluation model is also established.
In order to effectively compute the required data, we combine
V2V communication and vehicle computing to further char-
acterize the coupling reliability of cooperative communications
and computation systems. In addition, we propose a virtual
queue model that combines queue length and vehicle privacy
entropy to optimize partitioning. Finally, considering the amount
of processing data and cut-off time of vehicle applications, we
establish the optimal partition model of vehicle computing with
the goal of maximizing the coupling reliability, and propose the
coupling-oriented reliability calculation for vehicle collaboration
using dynamic programming methods. Simulations show that
the proposed scheme outperforms traditional approaches in
terms of coupling reliability and completion rate. In addition,
the allocation between local computing and data offloading is
controlled by the server’s privacy perception of collaboration
events.

Index Terms—Cooperative vehicle infrastructure system
(CVIS), vehicular communication, mobile edge computing
(MEC), partial offloading, dynamic programming.

I. INTRODUCTION

C
URRENTLY, the increasing scale of using various ad-

vanced onboard sensors has brought a growing demand

for vehicle information services. Meanwhile, as more sophisti-

cated software and algorithms are deployed on board, vehicle

terminals are required to efficiently process complex programs

(e.g., real-time application algorithms such as trajectory track-

ing, navigation positioning and environmental recognition,
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etc.). However, such terminals equipped with vehicles are con-

strained by battery capacity, storage resources and computing

power. In addition, they are also constrained by limited space,

volume and weight in terms of hardware resources. In the

foreseeable future, the computing resources of an indepen-

dent vehicle terminal will not be sufficient to fully handle

the explosive growth of data from various intensive vehicle

applications. The concept of the Internet of Vehicles (IoV)

is emerging, which integrates available computing resources

from different vehicles to construct a powerful distributed

mobile computing system to maximize the utilization of poten-

tial computing resources for surrounding vehicles or roadside

infrastructures [1]. Existing literature has already introduced

the mobile edge computing (MEC) paradigm into Internet of

Vehicles (IoV) communication systems to solve the computing

resource allocation between mobile terminals [2], [3]. In such

a paradigm, a vehicular user can transfer all or part of its

computing tasks to a roadside resource-rich infrastructure such

as a roadside unit (RSU) or Central Cloud for processing,

or take advantage of underutilized storage and computing

resources from one or more nearby vehicular. This type of

computing paradigm based on vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) communications can be viewed

as a computing-oriented collaboration between vehicles and

infrastructure.

However, the topological dynamics caused by the high-

speed movement of vehicles, the randomness of channels

caused by environmental interference, and the multi-path

fading of wireless signals make it difficult to maintain a

reliable and efficient vehicular wireless network between ve-

hicle clusters. In order to cope with the above-mentioned

challenges, Cooperative Diversity technology in the framework

of distributed wireless ad hoc networks has been introduced

[4]. Cooperative Diversity is also known as Cooperative Com-

munication, which mainly forms a spatially distributed virtual

multi-antenna system by sharing physical antenna resources

among mobile groups, e.g., Virtual Multiple Input Multiple

Output System (Virtual MIMO), to effectively improve the

reliability and channel capacity of wireless networks [5]. There

are several types of cooperative communications, including

fixed relaying schemes such as amplify-and-forward (AF) and

decode-and-forward (DF), selective relaying schemes [4], [6],

and incremental relaying schemes [4], [7], [8]. They all make

use of relay signals between cooperative terminals to achieve

spatial diversity. In this paper, we will apply the decode-and-

forward scheme into our data offloading design. The relay

selection process is out of the scope of this paper.
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Computational partitioning is one of the core functions for 
implementing edge computing [9]. It allows a single vehicle 
terminal to avoid processing all the computing loads, but 
instead divides the whole application into several computing 
subtasks, and then distributes them to peer vehicles or RSU 
for processing according to the state of the network connec-

tion, computing load and application processing requirements. 
Furthermore, computational offloading i s a lso a n important 
function for implementing edge calculations. Current research 
around computational offloading is mainly aimed at optimizing 
system energy consumption or jointly optimizing energy and 
latency. The communication model is usually considered as a 
stable cellular communication network or a WLAN network. 
In fact, the inherent characteristics of vehicular networking 
transmission need to be considered in the scheme of vehicular 
computing.

As vehicular communication and computation are two cou-

pled physical processes, the partitioning and offloading of 
vehicular computing tasks need to incorporate the consider-

ation of physical characteristics of vehicular communication, 
e.g., the mobility of vehicles and dynamics. As previously 
stated, the challenges faced by end-to-end vehicular network 
connections also need to be addressed. Due to the mobility of 
vehicle networks, it’s a great challenge to deliver reliable and 
efficient c omputational o ffloading. In  th e dy namic transmis-

sion environment, it is even more challenging to further ensure 
the coupling reliability of communication and computation.

In this paper, our aim is to address the aforementioned 
challenges related to vehicular cooperative communication 
and computation. The main contributions of our work are 
summarized as follows:

• We present stochastic modeling for V2V communication

dynamics. An analytical model for characterizing reliabil-

ity (i.e., the success probability of transferring data via

the V2V connection within a deadline) of a V2V link is

established.

• We propose an evaluation model to characterize the

computation reliability which is defined as the probability

that a vehicle successfully calculate a certain amount of

data within a deadline.

• We propose a virtual queue model to optimize parti-

tioning. Finally, we formulate constrained optimization

problems based on dynamic programming by combining

the reliability modeling of both V2V communications and

partial offloading. The goal is to maximize the coupling

reliability of vehicular cooperative communication and

computing by optimizing the data workload partitions

among V2V cooperators.

The rest of this paper is organized as follows. Section

II provides an overview of the related works. Section III

introduces the system model in terms of V2V communications

and computation offloading. In section IV, we propose an

optimization model for cooperative computation, followed

by the simulation results in Section V. Finally, Section VI

concludes this paper.

II. RELATED WORK AND MOTIVATION

Mobile edge computing is an emerging paradigm, whose

core concept is to deploy diverse storage and computing re-

sources close to the edge of the communication network [10],

such as sensor nodes, mobile devices, roadside infrastructure,

etc.. Mobile edge computing provides a high-performance

computing environment that is similar to cloud computing

and supports lightweight real-time processing and analysis

of massive amounts of data [11]. Further, compared with

the centralized cloud computing paradigm [12], mobile edge

computing provides flexible management and scheduling of

computing resources for edge-side nodes via a communication

network, which realizes communication and computing re-

source coordination, thereby alleviating the impact of massive

data transmission on core networks and ultimately improving

service performance and user experience. Moreover, mobile

edge computing is also considered to be an important part

of 5G [13], [14] and 6G [15] mobile communication systems

because of its promise to support the huge amount of data

processing services.

Similar to typical computing offloading systems, many

emerging computational offloading studies are focused on

optimizing terminal energy consumption and increasing termi-

nal battery life [16], [17]. Zhang [18] considered application

data processing in both local execution and cloud execution

modes, and optimized the CPU clock frequency and data

transmission with the goal of minimizing power consumption,

and finally determined that the application adopts the energy-

efficient application execution mode in processing data. In

addition to optimizing the energy consumption of mobile

application execution, many studies also pay attention to the

time constraints of mobile application execution [19], e.g., the

constraints of application deadline [20]. Muñoz [21] studied

the mobile application offload problem with delay constraints

and came up with solutions to optimize utilization of commu-

nication resources and computing resources. The purpose of

existing optimization models is to minimize the computing and

communication energy consumption of the mobile terminal.

Many recent efforts are devoted to propose effective joint

task offloading and resource allocation schemes in terms of

improving offloading utility [22], decreasing the energy con-

sumption and task completion time [23], [24], and reducing the

system-wide computation overhead [25]. Sun [26] proposed a

computation efficiency metric which was defined as the num-

ber of calculated data bits divided by the corresponding energy

consumption, and further proposed a joint computing algo-

rithm that combines local computing and offloading. Based

on the queuing theory, Liu [27] described the queue length

of computing tasks in mobile and cloud caches, and proposed

reliability measurement for mobile and cloud computing, i.e.,

the probability that the queue length is less than the buffer

capacity. However, the reliability metric in the scenario of joint

calculation of local computing and offloading has not been

investigated. In addition, there is a lack of joint computing

methods with reliability as a constraint.

Along with the rapid development of vehicular ad hoc

networks (VANETs), a significantly increasing number of
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privacy-related issues have entered the spotlight of research

debate [28]. Most previous works focus on the protection of

location privacy. The proposed methods mainly include but not

limited to anonymous access [29], privacy enhancing technolo-

gies [30] and cryptographic approaches (e.g. identity-based

cryptosystem [31]). Some other proposals in VANETs focus on

the utility of various statistical disclosure control techniques,

and the qualitative analysis of privacy leak behavior [32], [33].

Those studies that use an information-theoretic approach to

measure privacy [34] serve as the cornerstone for our work.

III. SYSTEM MODEL

A. System Analysis

We build a network scenario with multiple mobile edge

computing (MEC) servers and several requesting vehicles. The

servers are deployed on moving vehicles with limited wireless

and computing resources. These vehicles are also referred to

as service vehicles.

The computing tasks of the requesting vehicle can be

executed locally by its own resources. Besides, the requesting

vehicle within the communication range of service vehicles

can offload the tasks to the service vehicles. There is no

core scheduler in the model, and the task offloading schedule

is completed by the requesting vehicle. Following existing

literature such as [35], [36], we can use the following two key

parameters to characterize the profile of a mobile application:

• The input data size D is the total number of data bits as

the application input. These D-bit data can be partitioned

and offloaded to a service vehicle which is the cloud edge

for remote execution.

• The application completion deadline T denotes the max-

imum number of successive time slots before the mobile

application must be completed. In addition, we use t
(from T to 1) to represent the time slot, and these D-

bit data can also be partitioned into a series of smaller

pieces si ∈ [0, D], where st denotes the number of data

bits that should be transmitted to the service node in the

ti time slot.

We assume that each offloaded task is assigned to only one

server. Moreover, each vehicle node has a queue buffer to

store the tasks’ arrivals. Denote the task queue lengths of the

requesting vehicle (Source node s) and the service vehicle

(Destination node d) in the time slot t as Qs(t) and Qd(t),
respectively.

B. Communication Model

Suppose that each pair of V2V pair communicates through

Rayleigh fading channels. We define a communication model

based on cooperative transmission. The wireless link between

requesting vehicle (Source node s) and service vehicle (Des-

tination node d) can be represented by the following model

gs,d = cs,d
hs,d

SDk/2
(1)

where SD is the distance between requesting vehicle and

service vehicle. Since k is the path loss coefficient, SDk/2

(1 − 𝜆𝑡)st 𝜆𝑡st

Decode and Forward

RD SR

SD

Local ComputingOffloading

V2V Transmission

Channel gs,d
Requesting VehicleServing Vehicle

Allocation Policy➠ 𝜆𝑡

Applicatio

n Profile

Data size:D

Deadline: T

st

r

Cooperative Communication

d s

Decision➠

Computation Tasks

Processor Wireless InterfaceMem. Cache …

Moving Vehicles

Fig. 1. Cooperative v2v computing system model.

describes the large-scale behavior of channel gain. hs,d char-

acterizes the fading characteristics of channels. cs,d is a

connection variable. cs,d = 1 when a connection is established

between the requesting vehicle and the service node, otherwise

it is 0.

Consider a three-node scenario in Fig.1, a source node s

wants to communicate with a destination node d with the help

of a relay node r. Assuming that the relay node can perform

perfect decoding when the received signal-to-noise ratio (SNR)

exceeds a threshold, the mutual information of this cooperative

link can be shown as

Is,d =











1

2
log(1 + 2SNR |gs,d|

2
), if |gs,r|

2
< q(SNR)

1

2
log(1 + SNR |gr,d|

2
+ SNR′ |gs,d|

2
), if |gs,r|

2
≥ q(SNR)

(2)

where SNR and SNR′ are the signal-to-noise ratio in the

path s → d and r → d respectively. q(SNR) = 22R−1
SNR

and R is the data rate in bits/s/Hz defined by Quality of

Service (QoS) requirement. Since hs,d is assumed to be a

complex Gaussian variables with zero mean and unit variance,

|gs,d|
2

=
∣

∣

∣

hs,d

SDk/2

∣

∣

∣

2

is an exponentially distributed variable

with parameter SDk/2.

According to the results in [37], we have the outage prob-

ability of cooperative transmission between the source node s

and destination node d as

Ps,d(R) = Pr(Is,d < R)

≈
1

2
SDk

t (SR
k
t +

SNR

SNR′
RDk

t )
(22R − 1)2

SNR2
t

(3)

where SR is the distance between s and r, RD is the distance

between r and d.

The application needs to determine how much data will be

executed by the local and service vehicles, respectively, in each

time slot t, with an objective to minimize the total unreliability

on the mobile device. Specifically, the distribution policy under

a given threshold is determined by the following decision rule
{

Local execution, λt

Service V ehicle execution, 1− λt

(4)

where λt is the proportionality coefficient in time slot t.
Therefore, the data size of the local execution sst and the

service vehicle execution sdt in time slot t are respectively
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expressed as sts = λtst and std = (1 − λt)st. Further, we can 
rewrite (3) as follow

Ps,d(st) = Pr(Is,d(t) < st)

≈
1

2
SDk

t (SR
k
t +

SNRt

SNR′
t

RDk
t )

(22(1−λt)st − 1)2

SNR2
t

(5)

where Ps,d(st) represents that the outage probability for a task

with data size st transmitting by cooperative transmission in

time slot t.

C. Computation Model

The top of Fig.1 shows the architecture of the vehicle node,

which contains a processor, data storage components such as

memory and cache, a single-server First Input First Output

(FIFO) queue to store arriving tasks pending for execution,

and a wireless interface. We denote B as bandwidth and W
as number of CPU cycles.

Let W indicate the number of CPU cycles needed for an

application. For a given input data size L, it can be derived as

W = LX (6)

We assume that the probability distribution function (PDF)

of X is PX(x), and its cumulative distribution function (CDF)

is defined as FX(x) = Pr[X ≤ x] and its complementary

cumulative distribution function (CCDF) denoted as F c
X(x) =

1−FX(x). Therefore, the CCDF of the workload W is given

by F c
W (w) = F c

X(w/L).
As shown in [35], the number of CPU cycles per bit can be

modeled by a Gamma distribution. The PDF of the Gamma

distribution is given by

PX(x) =
1

βΓ(α)
(
x

β
)α−1e−

x
β (7)

The CDF of the Gamma distribution is given by

FX(x) =
1

Γ(α)
Γ(α, βx) (8)

while the Gamma distribution has the following two infer-

ences: 1) Γ(α, z) =
∫∞

z
xα−1e−xdx. 2) For any positive

integer α ≥ 1, it satisfies Γ(α) = (α− 1)!.
We use the soft deadline to characterize probabilistic per-

formance, that is, the statistical CPU scheduling model which

assumes the application completion needs to meet its deadline

with the probability p by allocating Wp CPU cycles. The

parameter p is the application completing probability (ACP).

In other words, the probability of an application requires no

more than the allocated Wp should satisfy (F c
W )−1(p) =

Pr[W ≤Wp] ≥ p.

In this work, if Wp allocated by the requesting vehicle is not

enough to support the application to complete the computing

task, the probability of success is calculated as follow

FW (Ws(t)) = 1− Pr[W ≤Ws(t)]

= 1−

∫ ∞

Ws(t)/λtst

1

βαΓ(α)
(
Ws(t)

λtst
)α−1e−

Ws(t)
λtstβ dst

(9)

*A single-server FIFO queue

is used to provide services

Serving Vehicle

Virtual Queue 𝑄‘𝑑(𝑡)

Application Profile

Until exit phase

Data size: D

𝜆𝑡	st(1− 𝜆𝑡)st

Virtual Queue 𝑄‘𝑠(𝑡)

Requesting Vehicle

Fig. 2. Virtual Queue in time slot t.

D. Virtual Queue Model

According to Little’s law, the average queuing delay is

proportional to the average queue length [38]. Besides, the

queue length/queuing delay violation will ultimately under-

mines the reliability of task computing. For example, if a

finite-size queue buffer is over-loaded, the incoming tasks will

be dropped. Based on the system provided before (sections

III-A - III-C), we propose the concept of a virtual queue (as

Fig.2 shows). The initial time slot is indexed by t = T + 1.

In this work, the end-to-end delay constraint is indirectly

represented by the virtual queue length of the service vehicle.

For the current decision period t, A(Q′
s
(t), Q′

d
(t)) is used

to store the virtual queue status of the network, where the

real queue length of requesting vehicle s and the real queue

length of service vehicle d are defined as Qs(t) and Qd(t),
respectively.

Assuming that the number of tasks in the system at the

beginning of time slot t is same as the previous time slot, i.e.

Q(t) = st+1. Then the priori virtual queue Q′
s
(t) is determined

by st+1 and a priori parameter λt+1(following the decision

rule provided in (4)), it can be derived as

Q′
s
(t) = λt+1st+1 (10)

Similarly, the priori virtual queue length of d at the begin-

ning of time slot t is expressed as

Q′
d
(t) = (1− λt+1)st+1 + θt+1 (11)

let θi = Θ+
i , where (a)+ := max(a, 0) and Θi is defined

as
∑T

i

[

(1− λi)si −
Wd(i)
Xd

]

. Wd(i) represents the number of

CPU cycles that the service vehicle d provides for the applica-

tion in time slot t, and Wd(i) ∈ {Wd(i) |WdH ,WdL}, which

depend on the privacy exposure rate of d. WdH represents

large CPU cycles, WdL represents small CPU cycles. Xd is

the number of CPU cycles required by the application for the

service vehicle to calculate the data per bit per second.

Instead of providing a privacy protection mechanism, the

proposed system attempts to make progress in quantifying the

privacy perception of vehicles. To this end, we refer to privacy

entropy to further define privacy exposure rate.

Hd = −
T
∑

i=t+1

p̂i log2 p̂i (12)
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max
{si}

T
i=1

:
T
∏

t=1

{

[

1−
1

2
SDk

t (SR
k
t +

SNRt

SNR′
t

RDk
t )

(22(1−λt)st − 1)2

SNR2
t

]

×

[

1−

∫ ∞

Ws(t)/λtst

1

βαΓ(α)
(x)α−1e−

x
β dx

]}

=
T
∏

t=1

{[

1−
SDk

t (SR
k
t + SNRt

SNR′

t
RDk

t )[2
2(1−λt)st − 1]2

2SNR2
t

]

×

[

1−
Γ(α, βWs(t)

λtst
)

Γ(α)

]}

s.t.

{

∑T
t=1 st = D,

∀st > 0.
(19)

where p̂i is expressed as the probability that each message is

associated with the service vehicle during the communication

process, which is updated as time changes. Assuming that the

purpose of the attacker is to determine the willingness and

behavior of the task recipient to the request, then in each time

slot t in the system, the service vehicle is guessed as the true

provider of the service with a certain probability.

In the absence of any optimal scheduling, the service vehicle

considers that the probability of a service event occurring in

each time slot is equal, i.e., vehicle d is determined as the

service provider in each time slot, in which case its maximum

entropy

max{Hd} = − log2
1

T
(13)

Prid is proposed to measure the privacy level of the service

vehicle d, which represents the subjective perception of pri-

vacy [39] by the service vehicle for the offloading event. Prid
is defined as the normalization of entropies as below

Prid =
Hd

max{Hd}
(14)

Therefore, 1−Prid indicates the privacy exposure rate deter-

mined by the subjective perception of the service vehicle d.

An increase in the value of Prid means the offloading event

is protected, that is, the privacy leakage rate is lowered and

the probability of being attacked is reduced, and vice versa.

In this model, Wd(i) in time slot i is taken as WdH when

1−Prid is less than a given threshold φ, otherwise Wd(i) is

taken as WdL.

Suppose that the initial threshold λT is subject to standard

uniform distribution (i.e., λT ∼ U(0, 1)). We denote the

number of data bits that are remained to be offloaded at the

beginning of the time slot t by lt. According to the previous

statement, we have Q′
s
(T ) = λT lT and Q′

d
(T ) = (1−λT )lT .

To achieve load balancing of the complete system, the the

proportionality coefficient λt in time slot t is determined as

follow

λt

1− λt
=

Q′
d
(t)

Q′
s
(t)
⇒ λt =

Q′
d
(t)

Q′
s
(t) +Q′

d
(t)

(15)

According to the length of the queue Q′
s
(t), Q′

d
(t) in (10)

and (11), (15) is reduced to

λt =
(1− λt+1)st+1 + θt+1

st+1 + θt+1
(16)

IV. STOCHASTIC OPTIMIZATION MODEL FOR V2V

TRANSMISSION AND COMPUTING

A. Optimization Algorithm for Joint Reliability

We consider the optimization of transmission scheduling

of D-bits application data in T time slots and denote t as

discrete time index in descending order (from T to 1). The

initial time slot is indexed by t = T + 1. We also denote

by f = [fT , fT−1, . . . , f1]
T a feasible scheduling solution

and by F the corresponding feasible region. Then, since

SD, SR,RD, SNR are random variables, and λt changes

over time, we propose the optimization model for V2V

transmission scheduling based on (5) and (9). The goal is to

maximize the estimated success probability of computation

offloading, with the derivation process and final expression

shown in (19).

For the sake of simplicity, let

P (st) ≡

[

1−
SDk

t (SR
k
t + SNRt

SNR′

t
RDk

t ) · [2
2(1−λt)st − 1]2

2SNR2
t

]

×

[

1−
Γ(α, Ws(t)

βλtst
)

Γ(α)

]

(20)

Therefore, the optimization model can be abstracted into

another form like

max
{si}

T
i=1

:
T
∏

t=1

P (st)

s.t.

{

∑T
t=1 st = D,

∀st > 0.

(21)

From (21), the optimal solution depends on the random

variables of the channel in the initial time slot t = T +1, i.e.,

the value of SDt, SRt, RDt, SNRt. Applying the dynamic

programming principle to (21), we denote the number of data

bits that without offloaded at the beginning of the time slot t
by lt. Thus, we can have lt+1 = lt−st for t = T − 1, . . . , 2, 1,

and l1 = D. We also denote the optimal number of data bits

to be scheduled in time slot t by s∗t . Let ft(lt, st) indicates the

contribution of stages t, t + 1, . . . , T to objective function if

system starts in state lt at stage t, immediate decision is st, and

optimal decisions are made thereafter. Besides, let f∗
t (lt) be

the optimal value of the objective functions in (21) under the

system conditions. f∗
t (lt) = ft(lt, s

∗
t ), and the recursive rela-

tionship will always be of the form f∗
t (lt) = max

st
ft(lt, st).
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Then, the dynamic programming solution is used to solve the 
optimization problem of the objective function in (21).

Consequently, the contribution of stages ft(lt, st) for this 
problem is

ft(lt, st) = P (st) ·max
T
∏

i=t+1

P (si) (22)

where the maximum is taken over st+1, . . . , sT such that

l1 = D; lt+1 = lt − st, t = T − 1, . . . , 2, 1 (23)

when t = 1, D-bit application data is waiting for an optimized

transmission schedule, i.e., the number of data bits that are

remained to be offloaded at the beginning of the time slot T
is l1 = D. Moreover, ∀si > 0 for t = T, T − 1, . . . , 1. Thus,

f∗
t (lt) = max

0<st≤lt
ft(lt, st) (24)

where ft(lt, st) = P (st)·f
∗
t+1(lt+1), with f∗

T+1(lT+1) defined

to be 1. Thus, according to (22) and (24), the optimization

model can be rearranged into a series of recursive equations,

i.e., the recursive relationship relating the f∗
1 , f

∗
2 , · · · , f

∗
T

functions, as follows

f∗
t (lt) =

{

P (lT ), t = T

f∗
t+1(lt+1) ·max0<st≤lt P (st), 1 ≤ t < T

(25)

Although t = T is the first step of the optimization process,

it is the last time slot in practice. Therefore, the whole

remaining data bit, lT , must be transmitted in the last time slot

to meet the deadline T imposed on the computation offload.

Thus, the optimal number of data bits scheduled in time slot

t = T is s∗1(lT , SDT , SRT , RDT , SNRT , SNR′
T ) = lT .

Besides, the queue length of the requesting vehicle s in slot

t = T is QT = lT and the initial threshold λT is subject

to a uniform distribution (i.e., λT ∼ U(0, 1)). Then, we can

calculate the expected optimal objective function in time slot

t = T by

f∗
T (lT ) = P (lT ) =

[

1−
Γ(α, Ws(T )

βλT lT
)

Γ(α)

]

×

[

1−
SDk

T (SR
k
T + SNRT

SNR′

T
RDk

T ) · [2
2(1−λT )lT − 1]2

2SNR2
T

]
(26)

In addition, a practical implementation of the reliability-

oriented vehicular computation offloading based on the dy-

namic programming approach is described in Algorithm 1,

where the output f∗(1, 1) is the optimal reliability of the

system.

B. Complexity Analysis

Since the algorithm involves two stages (The process of

path restoration is omitted in the algorithm.), we analyze the

complexity in a sequential way. Firstly, D is defined as input

n. When t = T , the variables st, lt, ft have linear complexity

with the data size D. So the time complexity is O(3D) =
O(n), where O(n) means the upper bound for the complexity

grows with order n. In the second stage, when t is from T −1
to 1, the reverse dynamic programming is used to solve the

Algorithm 1: Reliability-Oriented V2V Computation

Offloading

Input: α, β, k, privacy tolerance threshold φ, λt+1,

WdH, WdL and T-dimensional arrays

SNR, SNR′, SD, SR,RD
Output: f∗(1, 1)

1 Initialize the countdown time index t as t = T ;

2 if t = T then

3 for i = 1 to D + 1 do

4 l(i, t)← i− 1, s∗(i, t)← l(i, t) ;

5 Initialize λ(i, t), φ and Wd(i, t)←WdH ;

6 calculate f∗(i, t) according to (26);

7 end

8 end

9 else

10 for t = T − 1 to 1 do

11 for i = 1 to D + 1 do

12 let tmp(i)← 0; l(i, t)← i− 1;

13 for j = 1 to l(i, t) + 1 do

14 s(j, t)← j − 1, next← l(i, t)− s(j, t);
15 nextn← find(l(:, t+ 1)− next = 0);
16 calculate λ(i, t) according to (16)

where λt+1 ← λ(nextn, t+ 1);
17 calculate P (s(j, t)) according to (20) ;

18 f(i, t)← f∗(nextn, t+ 1) · P (s(j, t));
19 if f(i, t) > tmp(i) then

20 let f∗(i, t)← f(i, t),
s∗(i, t)← s(j, t);

21 replace tmp(i) with f(i, t);
22 calculate Prid(i, t);
23 if Prid(i, t) < φ then

24 let Wd(i, t)←WdL;

25 end

26 else

27 let Wd(i, t)←WdH;

28 end

29 calculate θ(i, t) and λ(i, t);
30 end

31 end

32 end

33 end

34 end

35 return f∗(1, 1);

optimal reliability. Firstly, traverse all possible state variables

lt and the decision variables st allowed by each lt, the time

complexity is O(TD2) = O(n2) which is affected by the

Data size. Secondly, find lt+1 in previous stage that matches

the result of the state transition equation through the binary

search method, the time complexity is O(logD) = O(log n).
Therefore, our proposed algorithm has a total complexity in

O(n2 log n).
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TABLE I
SIMULATION PARAMETERS AND COMMUNICATION CONFIGURATION

D [bits] 104

T 500

k 2

α 2

β 0.008

B [MHz] 10

Ws [GHz/s] 0.2

WdH [GHz/s] (0.02, 0.2)

WdL [GHz/s] 1

Xd [MHz/bit/s] 0.25

SNR[dB] [10, 15]

SNR′[dB] [10, 15]

{SD0, SR0, RD0}[m] {15, 12.5, 12.5}

V. NUMERICAL RESULTS

In this section, we present our simulation results of the

joint offloading and computation scheme. We conduct different

simulation experiments, where the parameter and communica-

tion configurations are shown in Table I. In particular, we set

SNRH = 15dB and SNRL = 10dB respectively to simulate

the good and the bad SNR conditions, and randomly select the

values of SNR and SNR′ between 10dB and 15dB in each

time slot t to simulate dynamic conditions.

There are two basic situations in actual implementation: (1)

All computing tasks are transmitted to the service vehicle via a

cooperative communication link. (2) Vehicles with calculation

requirements can decide to performance local execution for all

the data instead of computation offloading. We evaluate the

proposed reliability of above situations by imposed deadline

and input data in Fig.3 and Fig.4, where the size of the

application input data D is varied from 100 bits to 104 bits

and the given deadline from 50 to 500 unit time slots. As

can be seen from Fig.3, with a larger processing data by

a given deadline, the reliability of communication performs

worse. Similarly, the CPU is likely to be unable to complete

data processing tasks when the application data is large. For

example, it can be seen from Fig.4 that when the local CPU

needed to successfully process 1500 bits of data in 500 time

slots, the reliability of independent computation is lower than

0.5.

Fig.5 provides the influence of the initial offloading decision

coefficient λT on the optimal reliability of the system under

different channel conditions. The three sub-figuresi from top

to bottom shows the optimal reliabilities of the system when

s→ d is an uncertain channel, a channel with SNRH , and a

channel with SNRL. By averaging the results of multiple sim-

ulations, we can draw the following conclusions: (1) For the

random channel, the proposed optimal reliability performance

is the best when the initial offloading decision coefficient λT

is set to 0.5; (2) when the channel state can maintain a stable

level, λT = 1 is a better choice. The above conclusions provide

guidance for the subsequent experiments. We will select the

optimal λT for different simulation environments to reduce the

interference of various factors on the experimental results and
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Fig. 3. Reliability of independent communication.
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Fig. 4. Reliability of independent computation with SNR = 30dB.
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Fig. 5. Optimal reliability f∗(1, 1) under different initial offloading decision
coefficient λT .

to obtain optimal reliability.

Next, we compare the proposed scheme (marked as

’ROCC’) with six other methods: (1) Uniform scheme which

(marked as ‘Uniform1’) schedules equal data bits in each
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Fig. 6. Reliability performance comparison.

time slot and half of them to service vehicle; (2) Uniform

scheme which (marked as ‘Uniform2’) schedules equal data

bits in each time slot and randomly schedules them to service

vehicle; (3) Random scheme which (marked as ‘Random1’)

schedules random data bits in each time slot and half of

them to service vehicle; (4) Random scheme which (marked

as ‘Random2’) schedules equal data bits in each time slot

and randomly schedules them to service vehicle; (5) Dynamic

programming scheme which (marked as ‘DP1’) schedules data

bits through a standard dynamic programming and half of

them to service vehicle; (6) Dynamic scheme which (marked

as ‘DP2’) schedules data bits through a standard dynamic

programming and randomly schedules them to service vehicle.

Extensive Monte Carlo simulations have been carried out with

1000 replications per initial state condition. The numerical

results are given in Fig.6. It can be seen in the figure that

the proposed scheme ROCC has a better optimal reliability

performance than any other method under different channel

states (bad SNR conditions, good SNR conditions, dynamic

conditions) and limited computational resources. Specifically,

compared with the dynamic programming scheme (DP1) with

better performance, the proposed scheme is 35.21% higher

when the channel state is bad. When the channel state is

good, the proposed scheme is 1.87% higher than DP1 and

when the channel is under dynamic conditions the proposed

scheme has a 0.32% advantage against DP1. This confirms the

advantage of our proposed method in stochastic and limited

communication and computation situations.

Fig.7a shows the optimal data computation schedule s∗t
for ROCC and DP1 under dynamic conditions. It can be

seen from the figure that in the initial 20-time slots, ROCC

has an obvious trend of oscillation. This oscillation period

indicates that the algorithm is adjusting the system configura-

tion according to the channel conditions so that the dynamic

adjustment of the distribution coefficient in the later period

can maintain the stability of the system. So as to obtain the

optimal system reliability under the premise of maintaining

the load balance between vehicles after entering the stable

period. Fig.7b illustrates the stage reliability index, which is

similar to Fig.7a. It is obvious that driven by the proposed

ROCC algorithm, the system is divided into two phases: an

oscillation period and a stable period. After a very short period

of oscillation, the algorithm can maintain the overwhelming

majority of stage reliability index at a higher level. e.g., after

t = 480, the stage reliability index of ROCC is mostly better

than the stage reliability index of DP1. Moreover, Fig.7c

compares the changes in system optimal reliability of two

optimization schemes over the deadline T .

VI. CONCLUSION

In this paper, we have explored the reliability-oriented

modeling of cooperative communication and computational

offloading. Then we have formulated constrained optimization

problems by combining the reliability modeling of both V2V

communications and partial offloading. In addition, we have

proposed a virtual queue model that combines queue length

and vehicle privacy entropy to optimize partitioning. To gain

a better insight, we have proposed to solve it via dynamic

programming method. Simulation results have revealed the

effectiveness and advantage of our method in guaranteeing

the coupling reliability performance and improving completion

rate (e.g., Compared with 6 methods based on uniform,

random or dynamic programming, the optimal reliabilities of

the proposed schemes are 13.39%, 21.45%, 40.05%, 90.50%,

0.32%, 488.50% higher, respectively.). In addition, since the

proposed optimal reliability decreases as the service vehicle’s

privacy sensitivity to collaborative events increases, it is very

important to consider the load balancing of the system during

the optimization process.
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